

TVA Coal Gasification Demonstration P Plant Based on Texaco Gasifiers	lant Project
4.1 Summary of Feed and Products	
TABULATION OF FEED AND P	RODUCTS (4 MODULES)
Coal Feed Rate TPD as Rec'd	
Gasification	21,230
Boiler Plt	1,340
Excess Fines	0
Total	22,570
Oxygen Feed, 98%, TPD	18,120
Product Gas	
MM SCFD	1,234.6
HHV BTU/SCF	286.0
_mmm BTU/DA	353.1
Composition, MOL&	
H ₂	37.51
÷ CO	50.04
CH ₄	0.32
N ₂ + Ar	1.39
co ₂	10.73
H ₂ O	0.01
C ₂	
By-products	
Sulfur LTPD	729
Ammonia, TPD	
Phenols, TPD	-
Oil, BPD	. •

· **-**

••

Р

1. N. C. A. FOSTER WHEELER ENERGY CORPORATION TVA Coal Gasification_Study Texaco Gasifiers OVERALL MATERIAL & ENERGY BALANCE د. داريس (PER MODULE) Tons/Day MMBTU/HR Input e, £ 1. Coal to Coal Handling 5,643 5,164.0 8.7 SAir 20,860 36,600 61.0 🖛 Water 💀 _ 91₂ Limestone ·•**;** ۰. 77.8 Power 63,194 5,311.5 Total In Output . . . 8,260 3,714.1 Product Gas 207 Sulfur (ST/D) 68.2 . 23.5 760 Slag \sim : 127 Cooling Tower Evap. 15,027 1,214.2 26.9 Cooling Tower Losses 9,273 Air Plant Waste Gas 12,519 8.9 · · · · · 14.4 Vent Gases 8,500 • 4 ندونند، منارب Water Losses 8,250 13.6 Miscellaneous 298 227.7 4 63,194 geotal Out 5,311.5 ۍ : .

TVA Coal Gasification Study Texaco Gasifier

SECTION DESCRIPTION

4.2

.

 \cdot

1.11......

Form No. 130-17

STEAM BALANCE

A. <u>Reference Material</u>

- Process Flowsheets - Steam Balance Summary - Equipment Summary List - Equipment Summary List

B. Description of Flow

Flow of steam generation and distribution may be followed on the Plant Steam, Condensate and Boiler Feed Water Diagram, Drawing No. 54099-35-1-50-151.

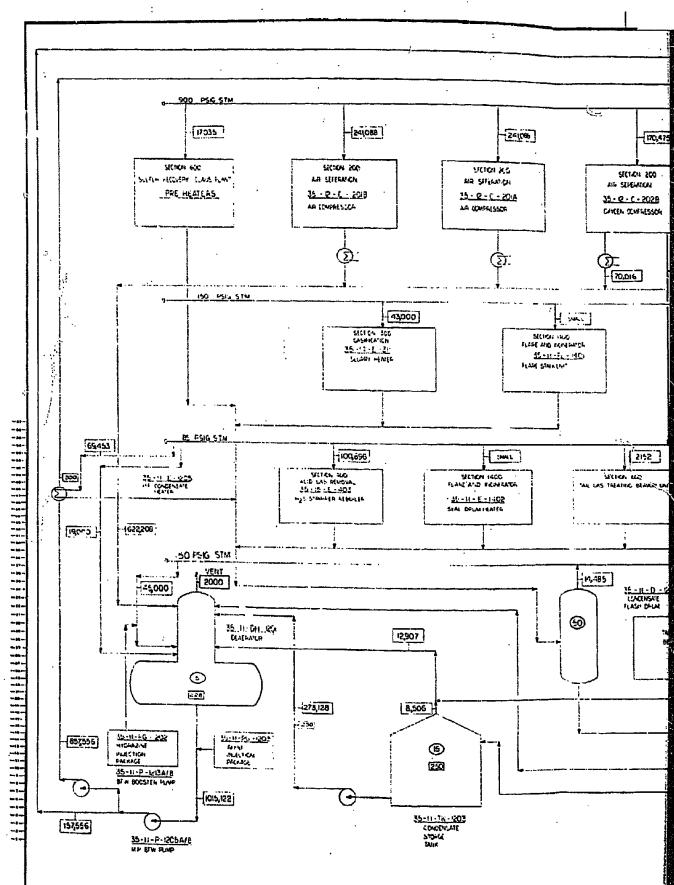
The Steam Header System consists of four steam levels:

High Pressure (H.P.)	900 psig, 1000 ⁰ F
Medium Pressure (M.P.)	150-psig, 365 ⁰ F
Low Pressure (L.P.)	85 psig, 460 ⁰ F
Low Pressure (L.P.)	50 psig, 298 ⁰ F

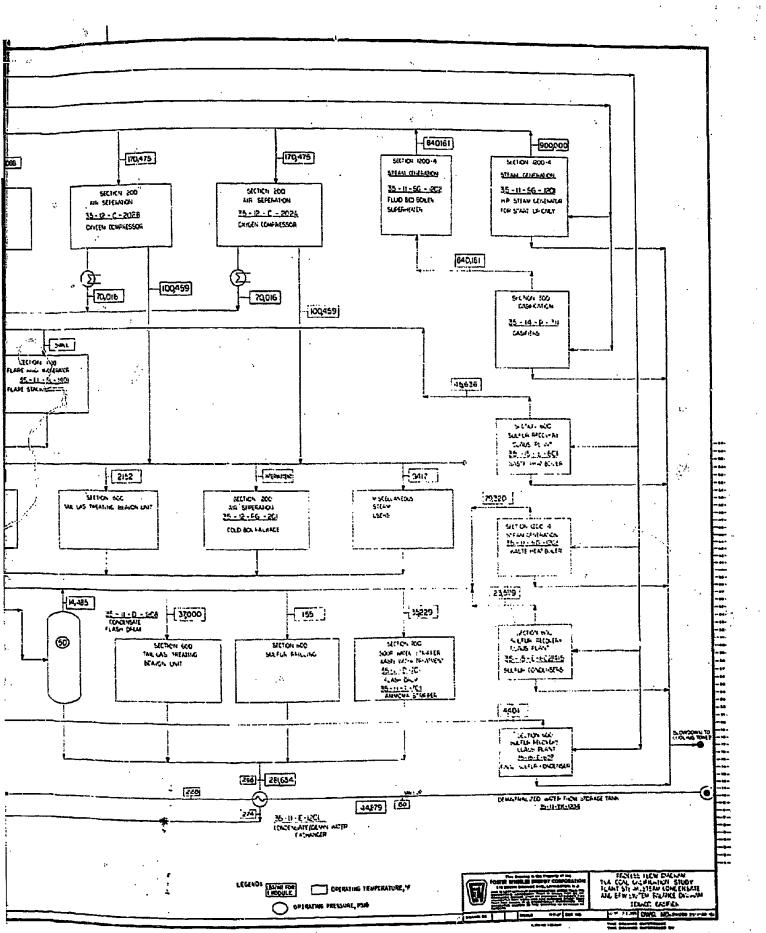
High pressure saturated steam is generated through waste heat recovery in the Radiant Cooler, E-313 and Convection Cooler, E-314. Most of high pressure steam is condensed or expanded through turbines driving Air Compressor, C-201, and the Oxygen Compressor, C-202. A small amount of H.P. steam is required for preheat in the Claus Sulfur Recovery Plant. Condensate from H.P. steam users is returned to the deaerator.

Medium pressure steam is generated in Claus Plant Section in the Waste Heat Boiler, E-601. Medium pressure steam is utilized principally in the Gasification Section 300.

85 psig steam is extracted from the oxygen compressor turbine. It is utilized principally in the H_2S Stripper Reboiler, E-403, in Acid Gas Removal Section 400. Other consumers of 85 psig steam are the H.P. Condensate Heater, E-1205, and Deaerator, DH-1201. Also, the Beavon Tail Gas Treating Unit, steam tracing and miscellaneous items utilize 85 psig steam.

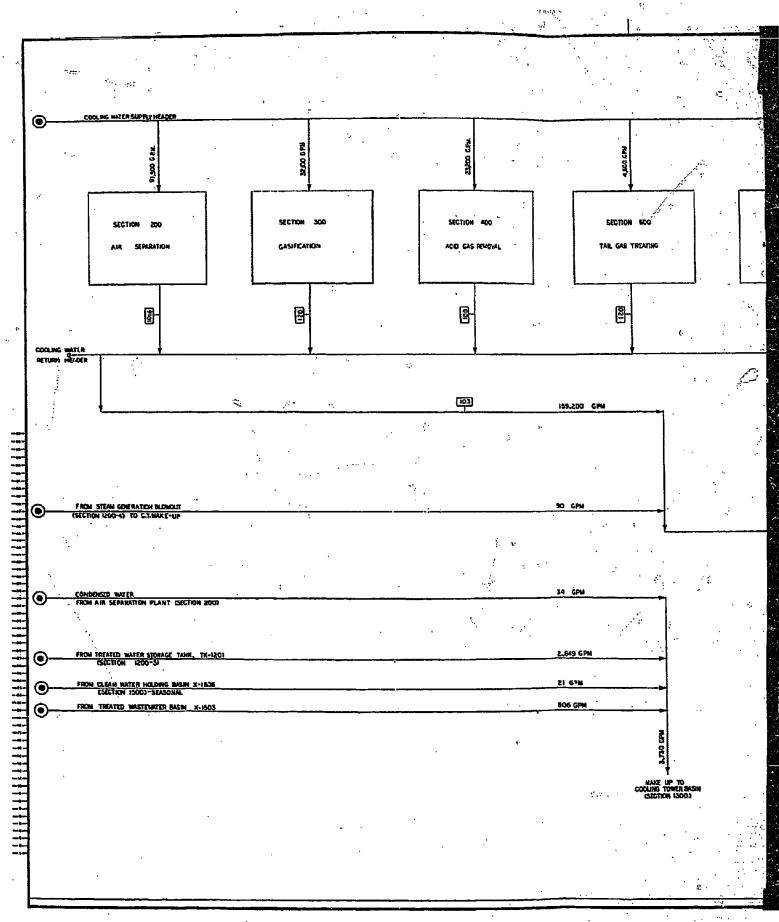

Ŷ

Form No. 130-171

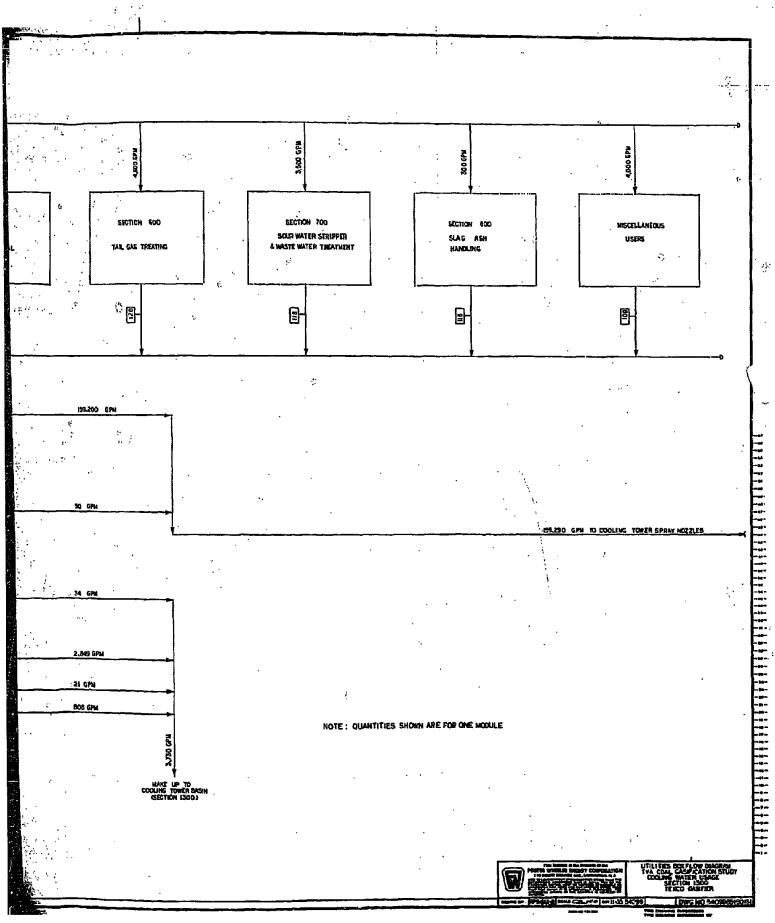

50 psig steam is generated by flashing medium and high pressure 🔆 steam condensate into Condensate Flash Drum, D-1208. Waste Heat 👘 Bc Yer, SG-1203, upstream of the Fluid Bed Boiler Superheater, SG-1202, also generates 50 psig steam by recovering heat from flue gas. Consumers of the 50 psig steam are: Deaerator, DH-1201; the Flash Drum, D-701; and Ammonia Stripper, T-701 in Section 700; Tail Gas Treating Unit and Sulfur Prilling Unit. Blowdown from various steam generating equipment is directed to the cooling tower as cooling tower makeup. L.P. condensate flows to the Condensate Storage Tank, TK-1203 and flashes to 15 psig steam. Final Sulfur Condenser, E-607, also generates 15 psig steam. Deaerator, DH-1201, utilizes all of the 15 psig steam generated within the plant. The condensate from the storage tank is pumped to the deaerator for subsequent use as boiler feed water. A BFW Booster Pump, P-1213, is provided in series with the M.P. BFW Pump, P-1205, to pump a portion of the deaerated condensate to the H.P. level.

1.50

Process flowsheet 54099-35-1-17 shows the Steam Generator, SG-1261, and the Fluid Bed Boiler Superheater, SG-1202. The Steam Generator is used during the plant startup. The Fluid Bed Boiler Superheater superheats the 900 psig saturated steam produced in the Gasifier. Limestone is injected into both the Steam Generator and Fluid Bed Boiler to reduce the sulfur emission. Approximately 90% of the sulfur in the coal is converted to calcium sulfite, recovered as ash and discharged to the slag pond.


. •

and the second secon


F	oster Wheeler E	NERGY CORPO	RATION		
			•		4
	413	<u>Cooling</u>	Mater Usage		
: *	a Xana a sa	Utilities Bo	k Flow Diagram	s.	
	•				
				:	
				No. 54099-35-1-5 . 200, Air Separa	
	for the Refrige	ration Compress		Acid Gas Removal	
	in Sec. 300, Ga				•
	water return he	ader discharges	at the cooling	h section. The c tower spray nozz	les. The
	cooling tower m windage losses	akeup of 3,730 at the cooling	gpm compensates tower and for c	for evaporation ooling tower blow	and down
	(550 gpm).	······································			
,					
			·		
				· .	
					1 - 7847 a.a
	•				
	· .				
	,"				
121					
Form No. 130-171					
No.					
orm					
1	1				
1					

p

4;

. and a second . · 4 . • 2 • •

TVA Coal Gasification Study

Texaco Gasifiers

Power Requirements

FOSTER WHEELER ENERGY CORPORATION

Plant Power Usage, Kw

÷

.

Section	Name of Section				
		Gross	From Steam	Net	
100	Coal Handling (Crushing, Feeding)	3100		3100	ч. ф. 2
200	Air Separation	178,192	176,192	2000	
300	Coal Grinding	11,928	'	11,928	
300	Gasification and Gas Scrubbing	11,604		11,604	÷
400	Acid Gas Removal (Selexol)	38,508		38,508	
600	Sulfur Recovery - Claus Plant	1,792	·	1.792	
600	Sulfur Recovery - Beavon Unit	3,972		3,972	
600	Sulfur Prilling	1 20		120	
700	Sour Water Stripping & Wastewater Treatment	768			• • • • • • • • • • • • • • • • • • •
800	Slag Handling	160	. — -	. 160	
1200-1	Raw Water Treatment	800		800	
1200-2	Condensate Treatment and Pota	ble		. '	
	Water	1100	·	1100	
1200-3	BFW Treatment	5600		5600	
1200-4	Fluid Bed Boiler	500		500	
1300	Cooling Water System	30,000		30,000	
1400	Flare & Incinerator	1,000		1,000	
1500	Wastewater Treatment	800		800	
2000	General Facilities	900		900	· ·
2100	Buildings	450		450	•
, 2200	Dock Facilities	200	•	200	. •
	TOTAL	291,494	176,192	: 115,302	

Form No. 130-1/1

.

4.4

92^{7 2 8 3} FOSTER WHEELER ENERGY CORPORATION ÷ ---.... ***** Fuel Requirements - Texaco Gasifier System 4.5 ÷ . The fuel required to produce the medium Btu product gas and provide the required quantity of process steam is coal. Approximately 5,000 T/D of dried coal (containing 2.0 wt % moisture), 5,418 T/D as-is coal, is fed to each gasifier module. In addition, the fluid bed boiler superheater in each module will consume about 335 T/D of coal (as-is). There are no other normal fuel requirements. ۰. a 5 .: Form No. 130-171

. a na najara FOSTER WHEELER ENERGY CORPORATION . T , 1 . . . • . • ÷., SECTION 5.0 . PLANT LAYOUT . r, · . .

TVA Coal Gasification Study Texaco Gasifiers

5.0 PLANT_LAYOUT

Introduction

a garage a

The development of the Key Plot Plan requires the optimization of all facilities from the standpoint of accommodating the process steams, minimizing piping sizes and lengths, consilidating common facilities, access to coal storage and ash deposit areas, minimizing changes in the topography of the site, minimizing visual intrusions into the environment, etc.

1.

. . . :

. .

As the plant is now envisaged, the major heavy structural loads would be situated where some twenty feet of overburden occurs over occasional outcroppings of Chickamauga limestone. This would provide excellent subsoil conditions for accommodating foundations for gasifier reactor vessels and other heavy rotating equipment and tanks.

A prominent feature of the Key Plot Plan is the cluster of four gasification modules. Each module contains in addition to the gasifier reactor, special coal preparation, raw gas cooling and compression (as may be required), extraction of by-products (when applicable) and treatment of the raw gas for removal of acidic compounds and sulfur.

Within the context of a conceptual design and level of detail expected in arriving at the cost estimate, the Key Plot Plan and elevation drawings, in two views of the entire plant, have been developed. The equipment and structures for the various process elements are representative of such units. The gasifier reactors and materials handling elevation views are fairly accurate representations of how the plant would actually appear.

The rationale and design philosophy for developing the Key Plot Plan and elevations is discussed below under the following headings.

Key Plot Plan & Elevation Views

<u>Paragraph</u>	Facility	<u>S</u>	ection No.
Α.	Dock Facilities		2200
в.	Coal Storage, Handling & Preparation		100 /
С.	Coal Gasification		300
D.	Air Separation & Steam Generation		200, 1200
E.	Gas Treating & Removal of Sulfur		700, 600
F.	Waste Water Treatment		1500
G.	General Facilities		2000
H.	Flare & Incinerator		1400
I.	Ash Storage		2000
J	Buildings	-	2100
K.	Cooling Water System	А	1300
L.	Elevation Views		

.

Key Plot Plan

- A. Dock Facilities A promontory on the N.W. shore of Murphy Hill has been selected for barge unloading as it incorporates the best features desired, considering -
 - Spillage of coal or water from coal into Guntersville Lake would be minimized.
 - There is minimal dredging required initially, and it is expected that future dredging of silt would be required on very infrequent intervals.
 - 3. Docking and any movement of barges by tow boat, would be completely unhampered in this location. This is especially true in the event that 24 loaded and 24 unloaded b arges had to be moored, as stipulated in the Design Criteria (1.2.3).
 - 4. The conveyor, from the dock area inland, would pass along a land area at the S.W. corner of Murphy Hill, which provides a convenient area for dead storage of coal to a height of approximately 50 feet.

A dock, auxiliary to the coal unloading facilities, is provided to accommodate the shipment of sulfur, either in a liquid state or as dry prills, by means of a barge. The auxiliary dock may also be utilized for the receipt of any bulk materials which would be necessary for the operation of the plant.

B. Coal storage, handling and preparation - The acreage required for the 90 day dead storage, stipulated, is seen to occupy a perinsula at the S.W. corner of Murphy Hill. Maximal use is made of an area having an irregular boundary. The proportions of the area are such that the encirculing roadway, acilitates monitoring the coal pile to maintain compaction with a view to preventing fires and erosion of surface fines by the elements. One of the important benefits of the site selected or dead storage of coal is the latitude it provides, or coal conveying and treatment. When coal is withdrawn from dead storage, there are several stations for transfer and processing of the coal before entering the final feed device for the gasifier or the ancillary combustion equipment. The lineal distance provided between reclaim from dead storage and the gasifiers is ample to accommodate limits on elevation feasible with the belt conveyors as coal is fed to various stations and, ultimately, to the gasifier feed.

- C. Coal Gasification The arrangement of the reactor for coal gasification is closely intertwined with the coal feed system. As a consequence, the reactor vessels are aligned parallel to the conveyor for coal feed and the system for removal of ash or slag as it occurs at the reactor itself. The process systems, ancillary to the coal gasifiers, are arranged in close proximity for each module.
- D. Air Separation and Steam Generation These plants are situated contiguous to each other and in close proximity to the gasifier to minimize the length of high pressure steam piping to the compressor turbine drives of the air separation plant. The economic necessity of minimizing the length of oxygen piping from the air separation plant to the gasifiers dictates having the air separation plant in close proximity to the gasifiers. Coal, flux and ash conveying design condiserations have been a strong influence in determining the general location of the steam generation plant.
- D. Gas Treating and Removal of By-products The raw gas stream is processed to remove acidic compounds and to separate and concentrate H₂S as well as other compounds containing sulfur in trace amounts. Ammonia is also separated from the raw gas for disposal by burning in the SRU reaction furnace. The separated gas stream containing the concentrations of sulfur compounds are then diverted to a Claus sulfur recovery unit (SRU) to produce elemental sulfur. Inasmuch as each gasification module is provided with a separate gas treating and sulfur recovery system, all, such units are contained in the plot area common to each module. A spare SRU is placed contiguous to the four modules.
- F. Water Treatment This area is for general service to the entire plant, exclusive of boiler feedwater treatment which is done in the utility area. The western area, adjacent to a cove S.W. of Murphy Hill, is a naturally low laying area at approximately 600 feet elevation. The principal reason for selecting this ares is that it allows for adequate head to drain oily waters and other liquid wastes for treatment. Considering the variety of ponds, tanks, clarifiers and separators, maximal utilization of the irregular terrain is possible with minimal requirements for grading. Inasmuch as the river flows from N.E. to S.W., overflow of treated wastewaters may be returned to the river, conveniently, at a location downstream of the fresh water intake from the N.W. face of Murphy Hill, as shown on the Key Plot Plan.

G. General Facilities - This area is reserved for the storage of various chemicals such as limestone, chemicals for the treatment of waste waters, catalysts, the storage of prilled sulfur ready for shipment and the sewage treatment plant. The grade is at approximately 600 feet elevation to accommodate the gravity flow of sewage to the treatment plant, and is otherwise centrally located to serve various process units and the waste water treatment area nearby.

Form No. 130-171

5

ł

:

يترجيني الم

1.0

Form No. 130-171

к.

H. Flare - A separate flare for each of the four modules is provided. The separate flare limits the maximum radiation from the flame of an emergency diversion of all process gas flows to the atmosphere. The flares are located S.E. of the process areas, to minimize the length of piping and yet provide isolation of radiation from the flame. Moreover, the terrain where the flares are situated are areas which need only be cleared and grubbed, avoiding costly cutting and filling.

I. Ash Storage - Terrain laying generally N.E. of the process areas has been reserved for the storage of ash. The ash or slag storage commences from an area S.E. of Murphy Hill and occupies the terrain between the process areas and the shoreline surrounding the cove S.E. of Murphy Hill. This arrangement results in maximul utilization of an irregularly shaped terrain for the very considerable guantity of ash and slag which may require storage during the life of the plant. The entire perimeter of the ash and slag storage area is accessible by roadway, which is built on an embankment² constructed of rocky material from the plant site. At the foot of the embankment, a drainage system is to be provided to collect surface water runoff.

Buildings - Administration, maintenance, visitor's center, laboratory, control, environmental data and dock buildings are some of the more important facilities which are identified on the Key Plot Plan. At the level of detail required for this pahse of the study, additional buildings, stipulated in the Design Criteria, such as operator's shelters, weigh station instrument room, emergency first aid shacks, etc., are not shown but are otherwise included within the scope of the conceptual assessments.

Based on our preliminary estimate of ease of access to the site via either the connecting road running S.E. from the immediate exit of the plant, thence to Five Points or S.W. of the main entrance, access to the plant is well selected, in our opinion.

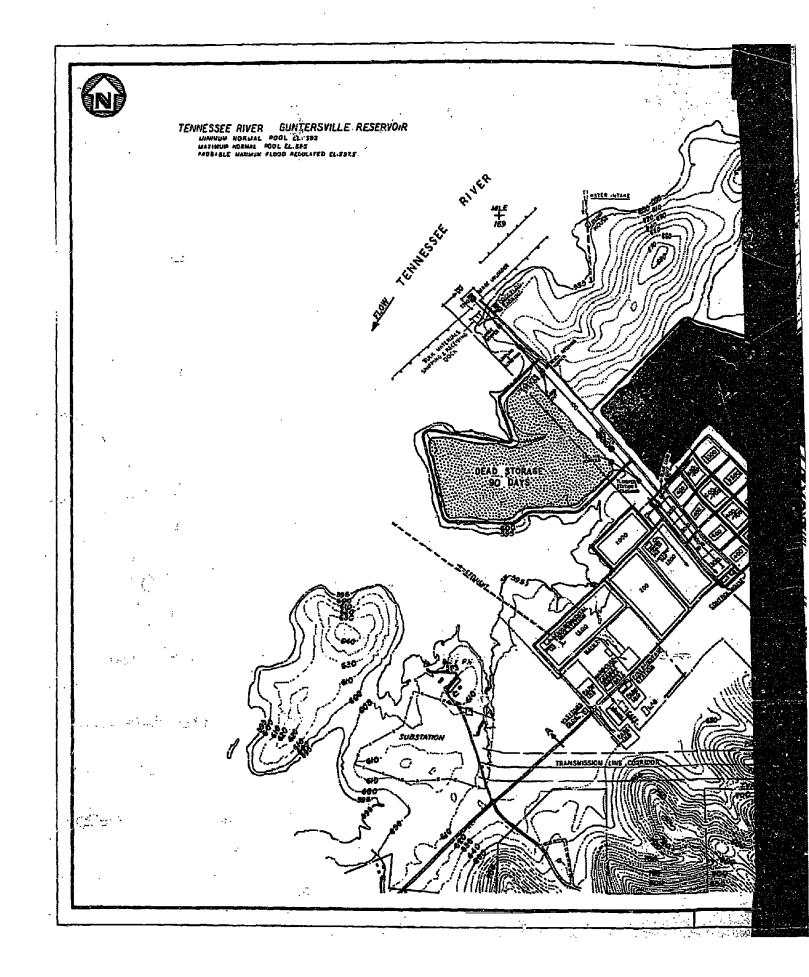
Cooling Water System - The cooling towers and water circulating pumps are shown, at present, at the extremity of each of four gasification modules and adjacent to the air separation plant to minimize piping costs and pumping losses. As the cooling towers are situated, there is some minimal diffusion of cooling tower plumes over either the. process areas or the buildings. As the reader may be aware, the prevailing wind in summer is to the South when the cooling towers would be operating at, or near, full capacity. In the winter months, the prevailing wind direction is to the north.

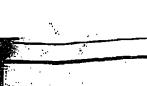
During summer operation, underwindy conditions, cooling towers at the N.E. perimeter of the process areas would experience wind velocities which are flowing over the ash pile. The presence of the ash pile upstream of the cooling towers is not considered to have any measurable adverse impact on performance. This position appears to be confirmed by the results of tests on a tower-spoil hill configuration which duplicates, in almost every respect, the proposed design.

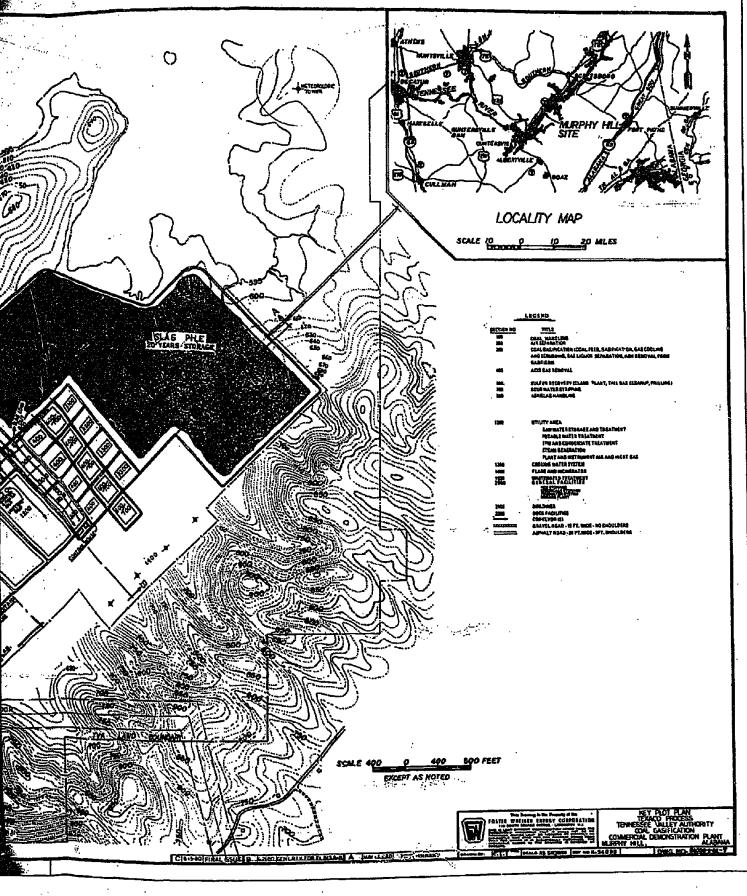
9

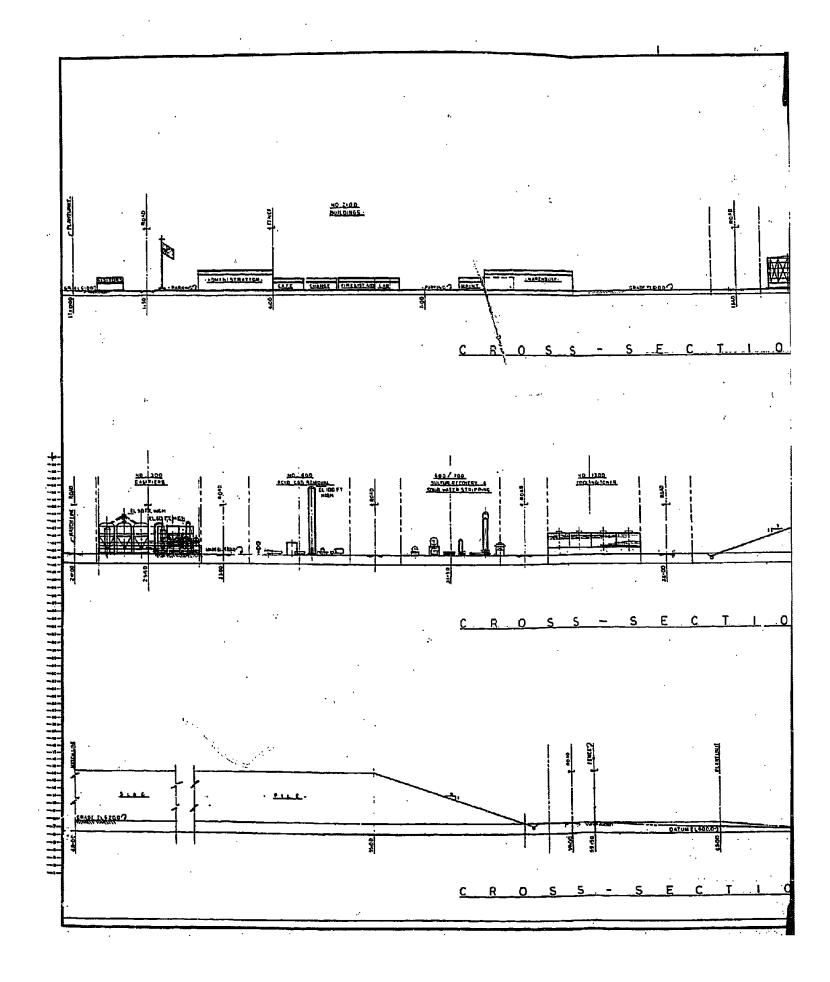
ρ

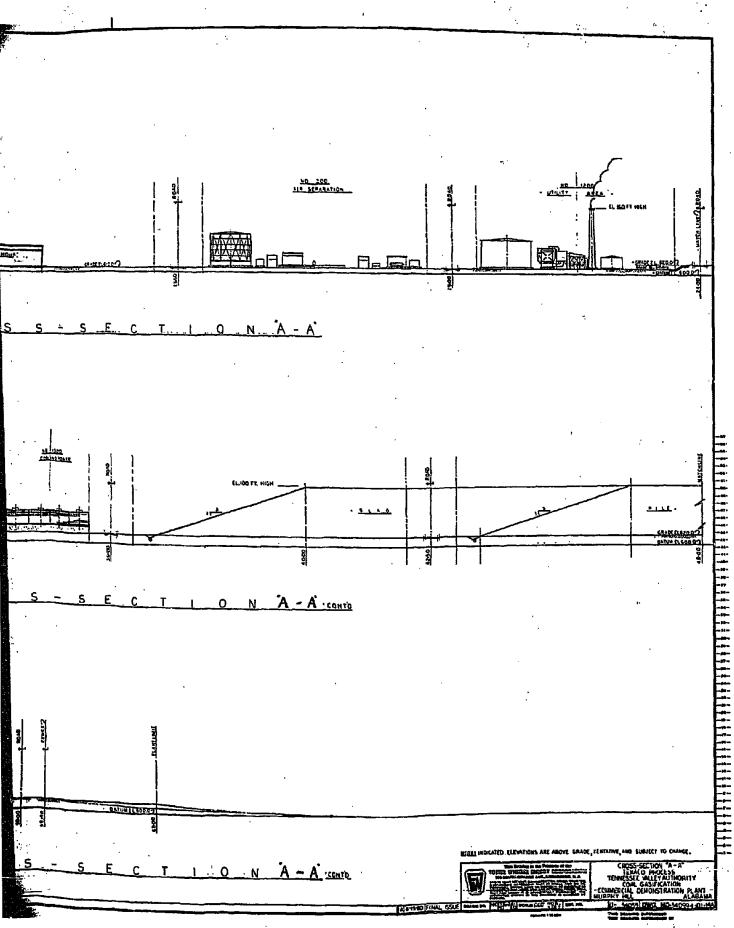
Reference is made to the report: "Hydrothermal Modelling of Browns Ferry Nuclear Plant Cooling Towers" by S.P. Jain and J.F. Kennedy, Report No. 219, Iowa Institute of Hydraulic Research, April 1979. The report, sponsored by TVA Water Systems Development Branch, makes the following statement in regard to the spoil hill upstream of the cooling towers.

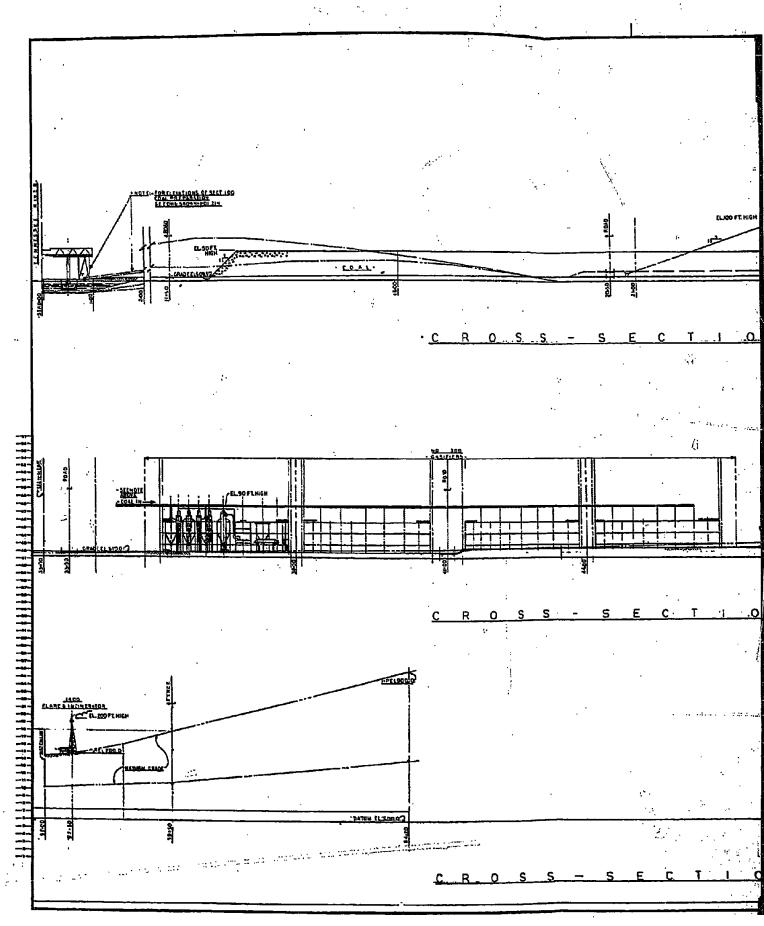

"The influence of the spoil hill on \overline{R} (the recirculation ratio of effluent air stream into the intake louvers) is significant, amounting to no more than \pm 1%"

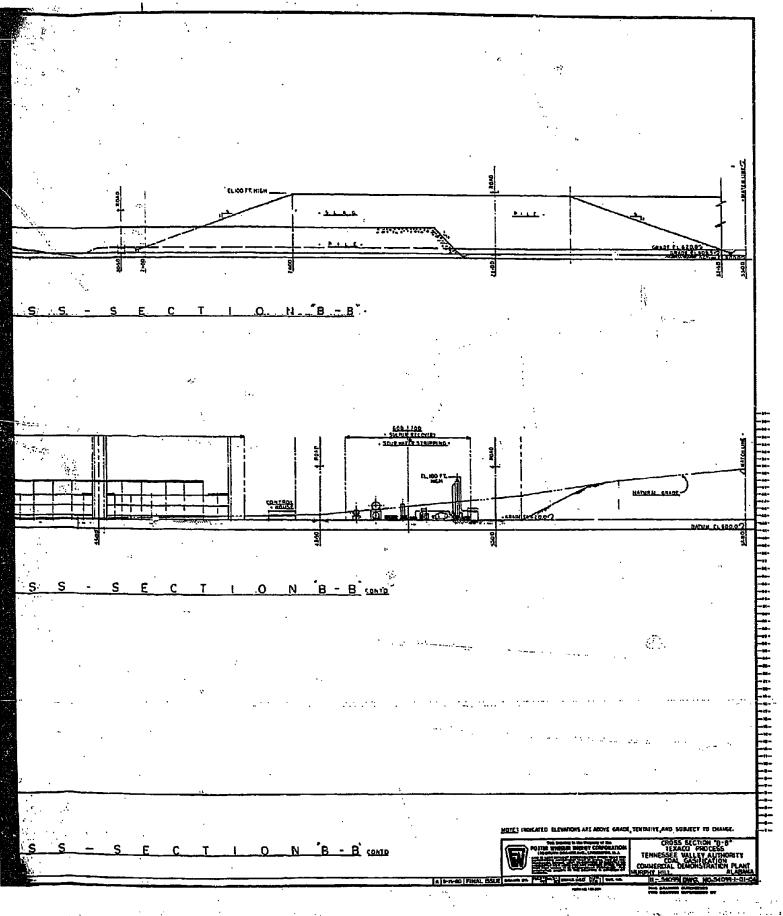

(Foregoing appears on p. 25, V I. Summary of Results)

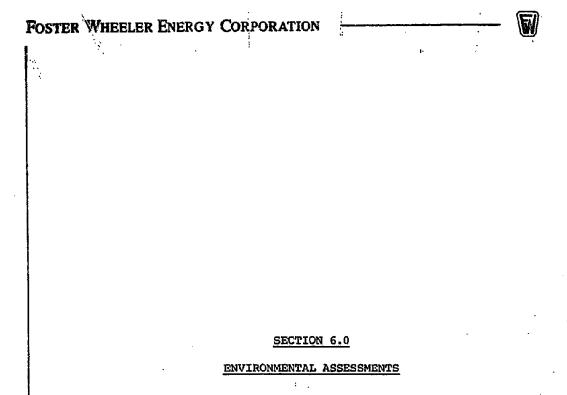

L. <u>Elevation Views</u>


Form No. 130-171


- I. Terrain considering the rocky nature of the subsoil, based on extensive boring and seismic depth of rock determination, the plant areas have been terraced in order to minimize costly cutting and filling of excavated materials. The terraces shown are substantially those which form the basis of the cost estimates. As will be avident from the drawings, every effort has been made to limit differences in elevation to 15 feet. Wherever a greater difference in elevation occurs, a roadway for access of fire fighting equipment has been provided at the higher elevation, paralelling the main service road below.
- II. Process Units The structures, towers and other equipment shown are representative of the type of equipment for a particular process. Where fairly detailed information on both the size and quantity of equipment was available, as an e xample, the gasifier reactors and ancillaries, the elevation views shown are substantially an accurate pictorial representation.







and the second second

.'

6:0

Form No. 130-171

P

ENVIRONMENTAL ASSESSMENT

TVA Coal Gasification Study

Texaco Gasification Process

The emissions associated with a coal gasification plant involves possible gaseous and particulates contaiminants discharges to atmosphere. The waste water from the plant, including runoff and leachates from coal and ash piles, may contain water soluable, as well as insoluable liquids and solids. Additionally, thermal pollution may exist.

This gasification process, investigated for the TVA, uses cooling towers or air coolers so that thermal pollution from het waste liquids to the rivers and streams is not a factor.

Most of the sulfur in coal is gasified in the form of H_2S and COS. These compounds together with particulates are removed by aqueous scrubbing followed by Acid Gas Treating (Selexol). Sour water produced during gas cleanup is sent to Waste Water Treatment Section 700, for removal of absorbed H_2S and NH_3 , and clarifications for the removal of solids before being pumped to wastewater treatment, Section 1500. Ammonia in the sour gas is destroyed and elemental sulfur recovered from H_2S in the the Claus Unit. The fulsur Plant has a tail gas cleanup unit for the unconverted sulfur gases from the Claus Unit cslled a Beavon Unit. All the gas remaining after sulfur removal is vented to the stmosphere with less than 200 ppm (v) of sulfur.

The Texaco process produces negligible amounts of ammonia and nitrogen coupounds in the product gas are absorbed in the quench water and stripped in the wour water stripper. This stream is sent to the Fluidized Bed Superheater where it is combusted underconditions conducive to minimization of NOX formation. H_2S is stripped from the water before ammonia removal and recycled to the process.

Steam is superheated in a coal fired fluidized bed of limestone removing some 90% of the sulfur dioxide formed with the combuscion of coal. The flue gas is then vented through a baghouse to minimize particulate discharge to the atmosphere.

Product gas is scrubbed with water in two stages of venturi scrubbers to remove particulates. The sour water from the scrubbers is stripped to remove dissolved acid gas and settled to remove char and then treated before discharge.

The principal gaseous emissions from this facility are the following:

- a) Gas leaving the Beavon Sulfur Recovery Unit absorber
- b) Gas vented from the Beavon Unit Oxidizer Pit

The Claus Unit and Beavon Tail Gas Treating Unit together convert almost all the sulfur from sour gases to elemental sulfur. The clean gas stream containing less than 200 ppmv of total sulfur, emission "a" listed above, is discharged to atmosphere from the absorber in the Beavon Unit (part of Sec. 600).

Emission "b" results from air which flows through the Beavon Unit Oxidizer Pit and oxidizes the sulfides to elemental sulfur. The licensor has stated that this emission "b" is contaminant-free and is essentially nitrogen and oxygen (air). The quantity of oxygen which reacts is small.

The gaseous emissions described above are listed in Table I for a single module. The gasification plant will have a total of four gasification modules.

In addition to the above gaseous emissions, the cooling tower will emit large quantities of water vapor as evaporative and windage losses.

The principal normal effluent stream quantity is cooling tower blowdown. This stream will be treated to reduce zinc and chromium to undetectable levels before being discharged.

Clean water streams, rinse and neutralization water from demineralization, ash pile leachate and stormwater runoff will be surged in a common basin, then used in ash handling or perhps fed to the cooling tower or discharged in part.

Coal pile runoff, service water and stripped sour water are combined and treated to precipitate chlorides and iron, then used as cooling tower makeup or alternatively they are discharged. BOD levels for coal pile runoff and service water are specified in Table IIT. The BOD level for stripped sour water is approximately equal to the suspended solids level or about 40 ppmw. The composite stream, after wastewater treating, will contain about 40 ppmw BOD.

Each of the above aqueous streams is described in Table III. Quantities indicated are per module and contaminants are our best estimates from engineering literature and past experience with similar or other gasification processes. Sanitary waste water, approximately 10,400 lbs/hr per module, is treated in a packaged biological system and is then discharged.

Modifications of the reported effluents may be expected based upon any additional information received from the process developer, from literature or from similar processes.

;-

•	Ţ	ABLE I	
	Emissions	to Atmosphere	
		~~	
1. <u>Vent G</u>	as from Bea	von Unit Absorber	
Component	Mole Wt.	Mols/Hr	Lbs/Hr
Hydrogen (H ₂)	2,016	2.402	4.84
Carbon Monoxide	28.011		
Carbon Dioxide (CO ₂)	44.011	336.759	14,821.1
Nitrogen (N ₂)	28.014	1,075.025	30,115.75
Oxygen (O ₂)	32.000		
Hydrogen Sulfide (H ₂ S)	34.080	10 ppmv max.	0.46
Carbonyl Sulfide (COS)	60.075	195 ppmv	
Total Dry Gas		1,414.187	44,942.15
Water		83.058	1,496.37
Total Wet Gas		1,497.245	46,439
Temperature, ^{OF}		95	

1

2. Vent Gas from Beavon Unit Oxidizer Pit T=100^OF

Component	Mols/hr	Lbs/Hr
N ₂	177.75	4,979
0 ₂	47.30	1,514
Total Dry Gas	225.05	6,493
Water	15.54	280
Total Wet Gas	240.59	6,773

FOSTER WHEELER ENERGY CORPORA	TION
	ABLE II
EFFLUENT S	TREAMS AND LOSSES
<u>Source</u> Rinse and Neutralization	Net Aqueous Flow, Lbs, Hr Discharge, Lbs/Hr 60,700 10,700
Service Water	(50,000 to Ash Handling) Or to Cooling Tower 100,000 to cooling 0 303,000 tower
Cooling Tower Blowdown Cooling Tower Evaporation	440,000 440,000 1,250,000 1,250,000 175,000 175,000
Cooling Tower Windage Loss Air Separation Plant	(1,000,000) (1,000,000) 16,000 Water 16,000
Aqueous Discharge	1,891,700 lbs/hr (3,783 gpm)
Net Aqueous Makeup After Raw Water Treating	= 3,050,000 lbs/hr = 6,100 gpm

÷

•••

Form No. 130-171

٠.

.

.~

Fos	TER WHEELER ENERGY	CORPORATION	W
1		م الرمن مشتر ال	
		TABLE III	
• •		INDEG KIL	м.
	EFFLUE	ENT STREAMS BREAKDO	AWIN
	έ¢.		j ⊥
		Discharge Flow	Estimated
	Streams	Lbs/Hr	Quality
•			
· ·	1. Rinse and Neutral-	10,700	TDS 6,000 mg/liter
	ization Water	·	PH neutral
		•	•
	2. Ash Pile Leachate	150,000	TDS 500 mg/liter
	:2. ASU FILE DEGUNDLE	Intermittent	SS 200 mg/liter
		Flow	
		0	BOD 10 mg/liter
		,	
	3. ISBL Stormwater	28,000	TDS 100-150 mg/liter
	, Runoff	Intermittent	SS 50-100 mg/liter
		Flow	BOD 20 mg/liter
	· 0	· ·	÷ . ÷
Ċ.		re pumped to the c	ooling tower or discharged. If
			54.2 + 75.0 + 3.5 = 142.7 #/hr.
		·····	
		$V_{\rm br} = 000 - 15 \pm 0$.56 = 2.06 #/hr, PH 6.5
	00 - 00 + 201 - 0204 H	///// 000 - 115 · 0	
	4. Coal Pile Runoff	24,000	<u>TO TRTG</u> TDS 500 <u>mg.</u> (12#/hr)
		Intermittent	liter
	•	Flow	
_	•		ss 200 <u>mg. (</u> 4.8#/hr)
1.11		•	1 2 b a a
1 11-061		•	liter
1 ()-NCL (N		:	BOD 8 mg. (0.19#/hr)
1 / 1-DC1 .DV 16		:	BOD 8 <u>mg. (0.19</u> #/hr) liter
Futh Nu. 1JU-1.1		:	BOD 8 mg. (0.19#/hr)
1 י ו-שנו ישל וווזשל		:	BOD 8 <u>mg. (0.19</u> #/hr) liter COD 10-20 <u>mg. (</u> 0.24-0.48#/hr)
Fufit Nu. 130-11		:	BOD 8 <u>mg.</u> (0.19#/hr) liter COD 10-20 <u>mg. (</u> 0.24-0.48#/hr) liter
1 י ו-שכו ישה הוזשין	·	:	BOD 8 <u>mg.</u> (0.19#/hr) liter COD 10-20 <u>mg. (</u> 0.24-0.48#/hr) liter
Lutuct ur win	· · ·	:	BOD 8 <u>mg.</u> (0.19#/hr) liter COD 10-20 <u>mg. (</u> 0.24-0.48#/hr) liter

.

	TABLE III	
EFFLU	ENT STREAMS BREAKDO	DWN (Cont'á)
	Υ,	
; <u>Stream</u>	Discharge Flow Lbs/Hr	Estimated Quality
⁵ . Service Water	100,000	<u>TO TRTG</u> TDS 200 <u>mg (</u> 20#/hr) liter
		SS 200 mg (20#hr) liter
		BOD Su-150 <u>mg</u> (5-15#hr) . liter
6. Stripped Sour	303,000	TDS 7,000-8,000 (2,121-2,424#/hr)
Water		NH ₃ 20 mg/liter (6.1#hr)
		H ₂ S 5 mg/liter (1.6#hr)
		SS 40 mg/liter (12.1#hr)
		Cl 1,750 mg/liter (3204hr)
	,000 + 303,000 - 16	to the cooling tower. If discharged 5,000 = 411,000 Lbs/hr water with
	:	lime sludge
SS	30 mg/liter x 41	-
COD	25 mg/liter x 41	1,000 = 10.3 #/hr
TDS	500 mg/liter x 41	1,000 =205.5 #/hr
7. Cooling Tower Blowdown	440, 000 Lbs/h	<u>TO TRTG</u>
		Cr 12 mg/liter (3.3#/hr)
		2n 8 mg/liter (2.2#/hr)
		TDS 1,000 mg/liter (275#/hr)

۰,

0

. 1

1 1-001 -001 1010 1

р

TABLE III			
EFFLUENT	STREAMS	BREAKDOWN	Cont'd)

7. Cooling Tower (Cont'd)

		LVG.	TRTG
•		Cr	0.05 <u>mg (</u> 0.0137#/hr) liter undetectable
	·.	Zn	0.1 <u>mg (</u> 0.0275 #/hr) liter
	•	TDS	1,000 <u>mg. (</u> 275 #/hr) liter

÷

W

 $\sum_{i=1}^{n}$

TABLE IV

Composition Given to FW For Kentucky #9 Seam Coal

Component <u>in Coal</u>	Dry <u>Wts</u>	As-Is Wt%
Carbon (C)	67.310	60.872
Hydrogen (H ₂)	4.757	4.302
Nitrogen (N ₂)	1.529	1.383
Oxygen (O ₂)	6,343	5.736
Sulfur (S)	4.100	3.708
Ash	15.830	14.316
Chlorine (Cl ₂)	0.131	0.119
н ₂ о	0	9.564
Total	100.000	100.000

ρ

Form No. Lou-171

٠.

1	ENERGY CORPORATION	
		•
	SECTION 7.0	
	SUGGESTIONS FOR FOLLOW-ON	WORK
	• •	
		·

. .

.

•

۰.

Form No. 130-171

	e de la companya de l
7.0	SUGGESTIONS FOR FOLLOW-ON WORK
fur	the event that TVA selects the Texaco Coal Gasification process for ther consideration relative to the proposed Coal Gasification onstration Plant, the follow-on work described below is suggested
Α.	Carry out bench scale and pilot plant tests of TVA candidate coals.
в.	Carry out engineering studies to evaluate available data on waste heat boiler performance and assess potential waste heat boiler de
c.	Identify and evaluate methods of increasing the coal slurry concentration fed to the Texaco Gasifier. This could increase t gasifier product gas heating value thus reducing the quantity of CO ₂ removal required in the Acid Gas Removal System in order to meet the Product Heating Value Specification.
Ð.	Conduct wet grinding test using TVA candidate coals.
Ē.	Review and further optimize steam, cooling water and overall wat usage in the plant.
F.	Study interactions with other coal gasifiers in the event two different types of gasifiers are included in the Demonstration Plant.
•	
	· · · · · ·
	,

1

λ.

÷

Form No. 130-171

;

· . • .

FOSTER WHEELER ENERGY CORPORATION 4 .

2 .:

. .

. .

Form No. 130-171

'_

SECTION 8.0 PROJECTIONS

•.

Ø

!

.

. ۰.

8..0

Form No. 130-171

ρ

PROJECTIONS

The Texaco Coal Gasification Process is a developing technology having recently progressed from the pilot plant to the demonstration plant stage. A demonstration plant has been in operation in Germany for about two years. The Texaco coal gasifier being installed by TVA in Muscle Shoal will represent a further demonstration of the process.

-

Continued development of the Texaco process in the long term is expected to demonstrate operation at pressures substantially above 500 psig. This would be an important advantage since all compression beyond oxygen compression would be eliminated. •

Form No. 130-171

÷

÷

. .

.

SECTION 9.0

COST ESTIMATES

. .

FOSTER WHEELER ENERGY CORPORATION

9.1 Investment Costa

÷,

. .

Form No. 130-171

The total capital investment required for the commercial coal gasification plant, based on Texaco entrained flow gasifiers, is estimated at \$1.84 billion. Included in this total are the following capital related costs:

ų.

- Installed plant cost
- Initial catalyst and chemical inventor,
- - Cost of land at \$3,000 per acre
 - Plant start-up costs; taken as a percentage of the
- plant annual operating cost

- Required working capital: summarized in Table 9.7

The estimated installed plant cost, summarized in Table 9.1, is \$1.67 billion. This represents a conceptual cost estimate, based on first quarter 1980 costs for an Alabama site, having an expected accuracy of +30%, -15%. The accuracy range specifically means that the upper limit has a value of 30% higher than the estimated cost and the lower limit is 15% below the estimated value.

In addition to the battery limits processing units and support facilities, the installed plant cost includes site preparation, spare parts, and a project contingency factor. Process engineering and license fees are included in the costs for the individual process units. Additional breakdown of the costs associated with the plant support facilities is given in Table 9.2. It should be noted that only about 10% of the total required site preparation cost is included in the installed plant cost. The remaining site preparation for ash disposal is treated as an operating expense over the life of the plant.

Items specifically excluded from the plant investment cost estimate are:

- Soil consultant expenses
- Environmental consultant expenses
- Craft training program
- Cost of all permits
- Import duties, if any
- Escalation from date of estimate
- Financing charges
- Construction camp facilities
- Sales and use tax 👘

The estimated schedule of investment capital disbursements according to plant module is given in Tables 9.3 through 9.6. The disbursements corresponding to the erected plant cost were estimated according to Foster Wheeler's proposed overall project schedule shown in Fibure 9.1. Cost of land acquisition was charged in the year 1981 while the cost for the initial charge of catalyst and chemicals was charged during the last year of construction. Working capital and start-up costs were accounted during the year of plant start-up.

PLANT BASED ON TEXACO GASIFIERS

Summary of Estimated Capital Investment in Millions of Dollars (1980)

.

ι.

· .

.

	÷*	-	-			•
MCDULE		_1_		3_`	4	TOTAL
ON-SITES				·*		
SECTION	DESCRIPTION					
100	Coal Receipt and Preparation	32.6	0	0	0	32.6
200	Air Separation	83.7	77.4	77.4	77.4	315.9
300	Gasification	124.0	124.0	124.0	124.0	496.0
400	Acid Gas Removal	34.5	34.5	34.5	34.5	138.0
500	Product Gas Compression	-	-	• ••	-	-
600	Sulfur Recovery	25.2	12.5	11.5	11.5	60.7
700	Sour Water Stripper	4.3	4.2	4.2	4.2	16.9
800	Ash/Slag Handling	2.5	2.5	2.5	2.5	10.0
900	Phenol Recovery	-	-	-	-	-
1000	Ammonia Recovery	-	-	-	-	-
	SUB-TOTAL	306.8	255.1	254.1	254.1	1,070.1
	Offsites	159.5	79.5	56.3	56.2	351.5
•	Spare Parts	7.1	4.8	4.7	4.7	21.3
	Site Preparation	9.9	0	0	0	9.9
	Contingency	72.2	48.2	48.2	48.1	216.7
	TOTAL INSTALLED PLANT COST	555.5	387.6	363.3	363.1	1,669.5
	Initial Catalyst & Chemicals	0.5	0.4	0.3	0_3	1.5
	Cost of Land	1.2	0	0	0	1.2
.:	Start-Up Cost	26.4	22.6	18.8	18,8	86.6
•	Working Capital	21.6	19.7	19.3	19.2	79.8
	TOTAL CAPITAL INVESTMENT	605,2	430.3	401.7	401.4	1,838-6

,

ſ,

:

TABLE 9.2 SUMMARY OF SUPPORT FACILITIES COST

. 21

•

TEXACO GASIFICATION

Section	Description	D & E Cost, MM
1200	Utilities Area Water Treatment Steam Generation	7.0 171.8
1300	Cooling Water System	42.8
1490	Flare System	3.2
1500	Waste Water Treating	20.0
2000 2100	General Facilities Storage Electric Power Distribution Lighting & Communications Roads & Fences Firewater System Inter-connecting Piping Buildings	5.6 17.0 2.5 2.2 5.0 61.9 16.5
2200	Dock Facilities	2.0
		351.5

Ę

PLANT BASED ON TEXACO GASIFIERS

	<u>M1</u>	LLIONS OF 1980 \$		
,		MODULE #1	•	4
Year	Installed <u>Plant Cost</u>	Other * Investment	Working <u>Capital</u>	Yearly Total
1980	9_44	- ,	Š.	9.44
1981	33.04	1.20		34.24
1982	152.76	-	· –	152.76
1983	234.43	-	-	234.43
1984	125.83	9.00	10.80	145.63
1985	0	17.90	10.81	28.71
TOTAL	555.50	28.10	21.61	605,21

ESTIMATED INVESTMENT CAPITAL DISBURSEMENTS SCHEDULE

* Other Investment = Cost of Land, Start-Up (Costs) and Initial Catalyst & Chemicals.

·• ···

•••

· · · · ·

ì.

ρ

٠,

. .

-

•.

.

.

.

۰ ·

٠.

 ${\bf i}_{ij}$

-

PLANT BASED ON TEXACO GASIFIERS

.

1	· · · · · · · · · · · · · · · · · · ·	LLIONS OF 1980 \$	(SEMENTS SCHEDU	
		MODULE #1 and 2		
Year	Installed Plant Cost	Other * Investment	Working <u>Capital</u>	Yearly Total
1980	9 . 44	-	-* ·	9_44
1981	33.04	1.20	-	34.24
1982	166.71	-	-	166.71
1983	294.73	 	-	294.73
1984	302.97	9.00	10.80	322.77
1985	136.21	18,24	10.81	165.26
1986	0	22,60	19.68	42.28
TOTAL	943.10	51.04	41.29	1,035.43

ESTIMATED INVESTMENT CAPITAL DISBURSEMENTS SCHEDULE

* Other Investment = Cost of Land, Start-Up (Costs) And Initial Catalyst & Chemicals.

17	M	ILLIONS OF 1980 \$:		
		MODULE #1,2 and	13		
Year	Installed Plant Cost	Other * Investment	Working <u>Capital</u>	Yearly Total	
1980	9.44	-	-	9_44	
1981 .	33.04	1.2	-	34-24	
1982	· 166.71	-	-	166.71	
1983	308.68	.	-	308.68	
1984	370.51	9.0	10.80	390.31	
1985	320.08	18,24	10.91	349.13	
1986	97 . 95	33.73	39.00	170.68	
1987	0	8.00	0	8.00	
TOTAL	1,306.41	70,17	60,61	1,437.19	

<u>.</u>...

TABLE 9.5

PLANT BASED ON TEXACO GASIFIERS

•

;

ESTIMATED INVESTMENT CAPITAL DISBURSEMENTS SCHEDULE

* Other Investment = Cost of Land, Start-Up (Costs) and Initial Catalyst & Chemicals.

TABLE 9.6 PLANT BASED ON TEXACO GASIFIERS

5

 ϕ

н. Ді

ŗ

i.

	<u>M</u> ;	ILLIONS OF 1980 \$		
	· .·	MODULE #1 thru	4	•
÷	Installed	Other *	Working	Yearly
lear	Plant Cost	Investment	<u>Capital</u>	Total
1980	9.44	- '	-	9.44
1981	33.04	1.20	<u> </u>	34.24
1982	166.71	-		166.71
1983	308.68	÷	-	308.68
1984 ·	388.81	9.00	10.80	408.61
1985	410.13	18,24	10.81	439.18
1986	287.51	33.73	39.00	360.24
1987	65.19	27.13	19.20	111.52
TOTAL	1,669.51	89.30	79.81	1,838,62

ESTIMATED INVESTMENT CAPITAL DISBURSEMENTS SCHEDULE

* Other Investment = Cost of Land, Start-Up (Costs) and Initial Catalyst & Chemicals.

ş

: ::

:

ESTIMATED WORKING CAPITAL (1980 DOLLARS) TEXACO CASIFICATION

Plant Modules	T	2	m	6	TOTAL
Coal Inventory 90 days @ \$1.25/MMETU	13.94	13,94	13.94	13 . 94	55,76
Plant Materials and Supplies @ 0.9% installed cost	5.00	3.49	3.27	3.27	15.03
Plant Payroll @ 90 days	1,13	17.0	0.57	0.45	2.86
Catalyst and Chemicals @ 90 days	0.35	0.35	0,35	0.35	1-40
Electric Power Costs 90 days @ \$0.024/KwH	1.19	6T.1	51.1	1.19	4.76
TOTAL, MN\$	21.61	19.68	. 19,32	19.20	18°61

•

.

.....

TABLE 9.7

;

	201	11 111 101 111 4/1														1 		EGEND.	ENGINEERING INCL. DESIGN/DRAFT'G. CONSTRUCTION START - UP & COMMISSIONING
--	-----	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	-------	--	--------	---

FOSTER WHEELER ENERGY CORPORATION

Ľ.

9.2 Operating Costs

Form No. 130-171

.

2

The annual production and operating requirements corresponding to the 4-module gasification plant, based on the Texaco gasifier, are summarized in Table 9.8. Values are given for 100% plant service factor. The service factor is the expected yearly production divided by the plant rated capacity for 365 days. A summary of the estimated plant service factors by module and year is given in Table 9.9.

FW/

Estimated annual operating costs, in 1980 dollars, for the 4module plant are summarized in Table 9.10. The coal price used in this base calculation is 1.25 \$/MMBTU as delivered, which corresponds to 27.45 \$/Ton. No product credit is taken except for excess coal fines which are credited at 80% of the delivered coal sice, i.e., 1.00 \$/MMBTU.

The estimated plant staffing requirements are detailed in Tables 9.11 and 9.12. The salaries and wage rates employed follow the guidelines provided by TVA's design criteria (dated March, 1980).

Maintenance materials and subcontract labor were estimated as percentages of the erected plant cost. As requested by TVA, a corporate general and administrative expense of 1.0 percent of plant maintenance and operating cost, exclusive of coal, was included.

A separate operating expense designated as ash disposal costs is associated with the continuing site work required for stock pilung the coal ash through the life of the project.

TABLE 9.8 SUMMARY OF ANNUAL OPERATING REQUIREMENTS

TEXACO GASIFIER CASE . . ļ,

:`.

•;;

. .

.

.

:

BASIS: 4-MODULE PLANT @ 100% SERVICE FACTOR (365 DAYS/YEAR)

•

ł

ltem		Rate/Year	,
·			
Product Gas @	353.1 MAMETU/D	128.882 × 10 ⁶	MMBTU
Coal Feed @ 22	2570 TFO	180.908 × 10 ⁶	MMBTU
Limestone 没 91	1 TPD	33376	Tons
Catalyst & Che	em'cals	5.170	MMS
Electric Powe	r @ 91.2 Mw	798.912 x 10 ⁶	KwH
By-Product Co	al Fines		•
By-Product Su	lfur @ 842 TPr	307418	Tons
By-Product Am	monia	· · · · · · · · · · · · · · · · · · ·	
By-Product Na	phtha		
By-Product Li	ght Oil	• 	
By-Product Ta	ir 🦾		
By-Product Ph	nenol		
	ан 14 Ал		
	· · · .		

•:

Table 9.9

.

Summary of Plant Service Factors

.

.

) (A					
Module	1			4	Total	i,	
1984	٥	0	0 '	, 0	0		,
85	7.5	. 0	-	. o	7.5		•
BG	20.0	5.0	° 0	. 0	25.0	•	•
87	22.5	20.5	13.0	0	56.0		
88	1	22.5	22.5	18.75	86.25	. '	
89				22.5	90.0		
a 1990			ļ				
91			1				
92				1	.1		
93	1		1				
93	1				ļ	•	
, 95	1						
95				ļ	1		
97							
98							
99				l			
2000							
01							
02					1 .		
03	4				Ý		
04	22.5	<u> </u>		ł	90.0		
05	9.25	22.5	\checkmark		76.75		
0ь	0	15.75	22.5	V.	61.75		
07	• 0	0	5.5	22.5	28.0		
2008	0	0	<u> </u>	0	C		
					•		

Bases: Percent of 4-Module Plant Operating 365 Days/Year

· · ·

TABLE 9.10 SECTIMATED PLANT ANNUAL OFFENATION COSTS (1980_DOLLARS) SECTIMATED PLANT ANNUAL OFFENATION COSTS (1980_DOLLARS) SECTIMATED PLANT BASTIS 4-HODDILE FLANT TEXACO GASTIFLER CAST POL Item TEXACO GASTIFLER CAST Annual TEXACO GASTIFLER CAST Annual 1 Coal Feed 180,908 x 10 ⁶ x 1.25 \$/WBSTU 26.13 2 Timestone 33076 x 13 \$/Toon 26.13 3 Catalyst/Chemicrafs (Table 9.1] and 9.12) 0.43 4 Electric Power 798.912 x 10 ⁶ x 0.025 \$/KMH 19.97 5 Plant Labor & Supervision 0.43 6 Operating Supplies At 304 of Labor & Supervision 4.33 7 Maintenance Materials At 3.18 of Blant Cost 19.97 8 Maintenance Materials At 5.18 of Maintenance Material 1.00 9 TVA G & A Overhead At 5.55 of Maintenance Material 1.01 10 At 5.18 of Fabor & Supervision 4.33 10 At 5.55 of Maintenance Material 1.00 10 At 5.18 of Fabor & Supervision 4.33 11 TVA G & A Overhead At 5.55 of Maintenance Material 10 At 5.55 of Maintenance Mate			Annual Cost, MM\$ 00% SF 	203.52	0.39	4.65	.7.98	14.42	4.33	35.09	19.31	1.00	4.10	304.79	0.00	304.79
4-MODULE PLANT Item Item Coal Feed Coal Feed Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Supe Catalyst/Chemicals Catalyst/Chemicals Supe Supe Supe Supe Supe Supe Supe Supe	· •.	м.	Annual <u>100% SF</u>	226,13	0.43	5,17	19.97	14.42	4.33	35.09	19.31	1.00	4.10	l	0.00	329.95
4-MODULE PLANT Item Item Coal Feed Coal Feed Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Catalyst/Chemicals Supe Catalyst/Chemicals Catalyst/Chemicals Supe Supe Supe Supe Supe Supe Supe Supe		TABLE 9.10 INT ANNUAL OPERATING COSTS (1980 DOLLARS) TEXACO GASIFIER CASE	Calcu tion Basis for 100% Service Factor (S.F.)	180.908 x 10 ⁶ x 1.25 \$/MMBTU	33076 x 13 \$/Ton	(Table 9.8)	798.912 x 10 ⁶ x 0.025 \$/KwH	(Table 9.11 and 9.12)	At 30% of Labor & Supervision	At 2.1% of Erected Plant Cost		14 of Items 2 through	-		At Zero Credit	
			4-MODULE PLANT Item	Coal Feed	Limestone	Catalyst/Chemicals	Electric Power	Plant Labor & Supervision	Operating Supplies	Maintenance Materials	Maintenance S/C Labor	TVA G & A Overhead	Ash Disposal	Total Gross Operating Cost	By-Product Credits	Net Annual Operating Cost

ρ

12

Estimated Plant Operating Staff

•

Basis: 4 - Module Plant

		21 - ²¹ 1 : 17	
		Annual *	Annual
Position	Number ^V	Salary/Wage, S	Cost,
Plant Superintendent	. 1	57936	57936
Plant Operating Supervisor	16	48990	783840
Shift Engineer	16	39192	627072
Ass't Shift Engineer	4	32092	128368
Jnit Operator	80	28826	2306080
Ass't Unit Operator	48	24140	1158720
Auxiliary Operator	32	21726	695232
Yard Operations Supervisor	2	34080	68160
Plant Results Supervisor	1	48990	48990
Ass't Plant Results Supervi	50r 4	39760	159040
Instrument Unit Foreman	16 ·	30672	490752
Instrument Mechanic	24	30160	723840
Instrument Mech. Apprentice	18	22880	411840
Mechanical Unit Foreman	- 16	30672	490752
Engineering Aide	16	23004	368064
Chemical Unit Foreman	4	30672	122688
Chemical Lab. Analyst	36	23004	828144
Materials Tester	12	23004	276048
Boilermaker Foreman	8	32234	257872
Boilermaker	· 16	27264	436224
Janitor (Senior)	16	20824	333184
Janitor	24	19170	460080
Coal Handling Foreman	2	29120	50240
Primary KEO	2	27040	54080
Apprentice HEO	2 .	22880	45760
Coal Tower Foreman	2	29120	58240
Coal Car Dump Operator	4	29120	116480
Track Foreman	2	29120	55240
Laborer	6	17680	106080
•			

Total Operating Staff

.

430

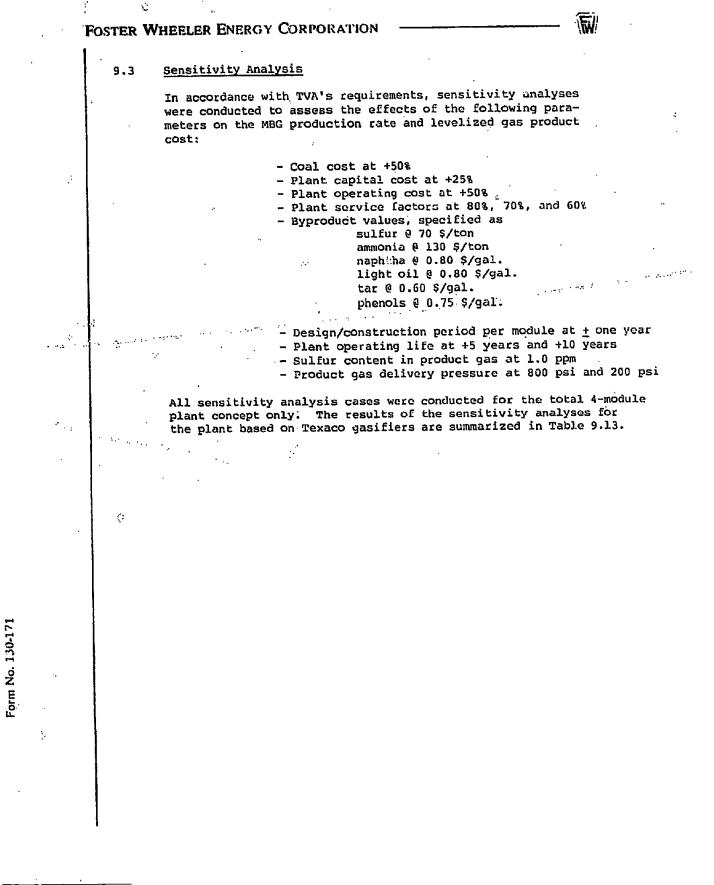
11,730,046

* 1980 basis, includes fringe benefits

`.[:] ÷

Estimated Plant Maintenance Staff

Basic:	4 - Module Plant


Position		Number	Annual * Salary/Wage, S	Annual <u>Cost,</u>
Mechanical S	upervisor	·· 1	48990	- 48990
Ass't Mechan	ical Supv.	4	39760	159040
Mechanical E		28	22436	628208
	bestos ·	2	34320	68640
El	ectricians	7	32240	225680
	Onworkers	4	31200	124800
Ма	chinists	5	28080	140400
Steamfittess Painters Truck Drivers		10	33280	332800
		2	27040	54080
		6	21840	131040
Journeymen:	Electrician	7	30160	211120
•••••	Ironworkers	4	29120	116480
	Machinists	5	26000	130000
	Steamfitters	7	31200	218400
	Painters	1	24960	24960
	Truck Drivers	4	19760	79040
		-		
Total Mainte	nance Staff	97		2,693,678

* 1980 Basis, Includes Fringe Benefits

.

.

- • · · · ·

:

.

.

SENSITIVITY ANALYSIS SUMMARY

TEXACO GASIFIER - 4 MODULE PLANT

·		. 4
Case	Total Gas Production MMMM BTU	Relative Gas Cost
Base Case	2295.7	1.00
Coal Cost @ +50%	2295.7	1.22
Plant Cost @ +25%	2295.7	1.08
Operating Cost @ +50%	2295.7	1.11
Plant Service Factor @ 80%	2040.6	1.06
70%	1785.6	1.15
60%	1530.5	1.26
By-Product Credit	2295.7	0.96
Design/Construction @ +1 year	2295.7	1.08
-l year	2295.7	0.92
Plant Life @ +5 years	2875.7	1.04
+10 years	3455.6	1.08
Sulfur @ 1.0 ppm	2295.7	1.02
Delivery Pressure @ 800 psig	2295.7	1.01
@ 665 psig	2295.7	1.00
·		