

DE83011163

DATA BASE FOR FUSED-IRON CATALYST IN THE FISCHER-TROPSCH REACTION

DEPARTMENT OF ENERGY, PITTSBURGH, PA. PITTSBURGH ENERGY TECHNOLOGY CENTER

APR 1982

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

Search the NTIS Database from 1990 forward

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service

DE83011163

DOE/PETC/TR-83/6 (DE83011163) Distribution Category UC-90d

A DATA BASE FOR FUSED-IRON CATALYST IN THE FISCHER-TROPSCH REACTION

By R. F. Batchelder H. W. Pennline R. R. Schehl

.Date Published April 1982

CONTENTS

Page

					94	
Abstract					• • • • •	1
Introduction					• • • • •	1
Experimental					••••	3
Descriptio Catalyst P Experiment Analysis o Data Reduc	n of the Equipme reparation al Procedure f Products tion	nt,		· · · · · · · · · · · · · · · · · · ·	• • • • •	3 3 4 5 7
Results and Dis	cussion	•••••••••••			• • • • •	. 8
Rate of (H Selectivit Olefin/Par Aging Effe Effect of	2 + CO) Consumpt y affin Ratio cts Catalyst Particl	ion e Size			• • • • •	9 9 10 10 12
Summary						13
Bibliography						14
Appendix A - Ex	xperimental Data	•••••		• • • • • • • • • • • • •	، بو بر میں بر ایک میں	23
· · · · ·	· · · · · · · · · · · · · · · · · · ·					
			•			
				•		

ILLUSTRATIONS

Figu	ire	Page
1.	Berty Reactor	15
2.	Schematic of Reactor System	16
3.	(H ₂ + CO) Consumption Response	17
4.	Schulz-Flory Distribution From 3-19, Period A	18
5.	Degree of Polymerization Response	19
б.	Propylene/Propane Ratio Response	20
7.	(H ₂ + CO) Conversion Versus Time on Stream for Temperature	21
8.	Aging Trends of Catalyst Run 3-29	22

TABLES

1.	List of Experiments	6
2.	Effect of Particle Size on (H ₂ + CO)	12

A DATA BASE FOR FUSED IRON CATALYST IN THE FISCHER-TROPSCH REACTION

R. F. Batchelder, H. W. Pennline, and R. R. Schehl U. S. Department of Energy Pittsburgh Energy Technology Center P. O. Box 10940 Pittsburgh, PA 15236

ABSTRACT

Various tests were conducted with a promoted, fused-iron catalyst. Hydrogen and carbon monoxide mixtures of different ratios with or without light olefin additives were reacted in a gradientless, mixed reactor. Process and catalyst parameters investigated were temperature $(250^{\circ}-325^{\circ}C)$, pressure (100-600 psig), H2:CO synthesis gas ratio (1/1 - 4/1), and catalyst particle size. Results from these experiments have been presented graphically, and observations have been discussed.

INTRODUCTION

In the past, various investigators who have tried to model Fischer-Tropsch reactor systems have suffered due to the inconsistent kinetic data available in the literature. The Pittsburgh Energy Technology Center (PETC) of the U. S. Department of Energy in a cooperative effort with Universal Oil Products, Inc. (UOP) proceeded to develop an experimental data base with a fused-iron catalyst for Fischer-Tropsch synthesis.

Universal Oil Products, under contract to DOE, performed preliminary evaluation of four reactor systems for use in indirect liquefaction via Fischer-Tropsch technology.¹ The four reactor systems are as follows: (1) SASOL Synthol

reactor, (2) Tube-Wall Reactor (TWR), (3) Slurry (Kolbel) reactor, and (4) oil circulation reactor. As one approach to this evaluation, Universal Oil Products developed a computer model to predict performance of these four reactor systems.

Universal Oil Products developed a simple kinetic model based on available literature with the help of several consultants; Universal Oil Products used fused-iron kinetic data reported in the literature to fit the parameters of their kinetic model. However, in spite of the vast amount of literature relating to F-T synthesis, there were insufficient self-consistent kinetic data available to enable Universal Oil Products to incorporate a kinetic model that is capable of predicting carbon number distributions, olefin-paraffin ratios, etc. A PETC-Universal Oil Products cooperative effort was undertaken, with PETC developing the experimental data base for carbided fused-iron catalyst in a mixed reactor and Universal Oil Products incorporating these kinetic data into their mathematical model.²

This report summarizes the results of the experimental program. The experimental results are tabulated in Appendix A. Some general observations are made about the dependent variables -- the $(H_2 + CO)$ conversion, the degree of polymerization, and olefin/paraffin ratio -- in terms of the independent variables -- the reaction temperature, the pressure, the reactor H_2/CO ratio, and the catalyst particle size. The reader is referred to Universal Oil Products's final report,² where a kinetic model is refined to optimize the degree of fit to this experimental data base.

EXPERIMENTAL

Description of the Equipment

The studies were conducted in a mixed reactor. The reactor is shown in Figure 1 and described by Berty.³ In this type of reactor, bulk heat and mass transfer effects are minimized or eliminated by the high internal recycling of product gas. A schematic of the reactor flow system is represented in Figure 2. Typically, the various blends of synthesis gas were ordered from a gas-blending firm. The gas was used directly from the aluminum cylinders. Aluminum, rather than carbon steel, cylinders were used to prevent iron carbonyl formation. A boost compressor on the feed line was used to maximize cylinder gas usage. The feed flow was metered and controlled by a mass flowmeter whose principle of operation is based on gas thermal capacities.

Products exit the reactor via a downward sloping, heated line $(200^{\circ}C)$ and enter a hot trap $(200^{\circ}C)$ where heavy hydrocarbons, if formed, are condensed. Lighter products are condensed in an air-cooled trap and a water-cooled trap. After the system pressure is reduced, the product gas is metered by a wet test meter. Periodically, product gas can be directed to an on-line gas chromatograph that can analyze for unreacted feed and hydrocarbons up to a carbon number of eight.

Catalyst Preparation

The catalyst was an ammonia synthesis catalyst type C73-1-01 by United Catalyst, Inc., with the following chemical analysis:

	<u>Weight Percent</u>
Fe0	30-37
Fe203	65-58
Free Fe	0.5
Total Fe	67-69
A1203	2.0-3.0
K20	0.5-0.8
CaO	0.7-1.2
SiO2	0.4
P	0.015
S	0.001
C1	0.002
Fe++/Fe+++	0,45-0,65

After crushing and sieving to 6 to 8 mesh, the catalyst was blown with air to remove any fine dust particles. A 2-kg quantity of catalyst was riffled to insure homogeneity. For each test, 50 g of catalyst was then loaded into a one-inch-diameter basket and supported by a stainless steel screen. During operation, impeller speed was 1240 rpm. An outer furnace heated the reactor while excellent bed temperature control was obtained by a modification that involved the installation of a cooling coil in the reactor head.

Experimental Procedure

Initial experimentation with fused-iron determined that (1) tests were reproducible between Berty units, (2) a shutdown immediately followed by purging with helium did not affect the catalyst activity when the test was restarted, and (3) a long hydrogen reduction is required for data reproducibility. With this knowledge, the catalyst for each test was brought to synthesis conditions in an identical manner. Initially, the reactor system was pressurized to 300 psig with hydrogen. Reduction began by flowing hydrogen at 2500 vol/vol-hr

Λ

space velocity at 450°C and 300 psig for 72 hours. At the end of this period, traps were drained to collect the water formed in the reduction. -- At-this time, the temperature was decreased to 250°C. The induction was initiated by switching the feed gas from hydrogen to 2:1 H2/CO synthesis gas and incrementing the flow rate over a one-hour period to achieve a 1600 vol/vol-hr space velocity at 300 psig. Induction then continued for 23 hours, and a 2:1 H2/CO synthesis The purpose of the induction period is to allow a gas was always used. carbonaceous layer to slowly form on the iron surface at a mild temperature. At the end of the induction period, the feed gas was switched to the blended gas that was to be used in the particular test. Synthesis was conducted at 1600 vol/vol-hr space velocity with blended gases at the desired pressure and with temperatures of 275⁰, 300⁰, and 325⁰C. The catalyst remained at each temperature for 48 hours (a 12-hour stabilization period and two successive 18hour material balance periods). A temperature sequence for a standard run consisted of two periods at each of the following temperatures: 275°C, 300°C, 275°C, 325°C, and 275°C. Trap drainings, metered flows, and gas analyses were obtained for each 18-hour period, and these were used for material balance It should be noted that after the 300° C and 325° C temperature determinations. excursions, the catalyst was returned to 275°C in order to characterize any deactivation. Table 1 is a list of the various tests that were conducted.

5

and the second second

States and the states of the s

TABLE 1. List of Experiments

Run	Feed H2/CO Ratio	Pressure psig	Added Feed Components	Objectives
2-18 3-19 2-25	2 2 1	300 300 300		Base Conditions Base Conditions Determine effects of H2/CO ratio
3-21	4	300		Determine effects of H ₂ /CO
3-22 3-24 3-28 2-19 2-21 3-25 3-26	2 2 1 2 2 2 2	400 400 100 300 300 300 400	5% C2= 5% C3= 1.3% C4= + 0.3% C5= 5% C2	Determine pressure effects Determine pressure effects Determine pressure effects Determine olefin equilibrium Determine olefin equilibrium Determine olefin equilibrium
3-20 2-22 2-23 2-24 2-26 3-27 3-29	2 2 2 2 1 1	400 300 300 300 300/400 300	1% C2H4 5% CO2 5% CH4	on olefin equilibrium Determine olefin equilibrium Determine effect of CO2 Determine effect of CH4 Operation at 250°C Operation at 250°C 14-18 mesh catalyst, effect of particle size Aging study at 300°C

Analysis of Products

•

The gas, liquid, and wax products were characterized by various techniques. Product gas and unreacted feed gas exiting the system were analyzed for hydrocarbons up to C_8 by gas chromatography. However, isomer and olefinparaffin differentiation could only be made for C1-C4 hydrocarbons. The liquid trap drainings were first physically separated into oil and aqueous phases. The oil phase was analyzed by simulated distillation (ASTM D-2887), fluorescent indicator adsorption (FIA) (ASTM D-1319), and bromine number (ASTM D-1159). The GC output from the simulated distillation of the oil phase was further analyzed to yield a weight percent by carbon number distribution for a range of carbon numbers (5 to 24). This was done by observing the repeating pattern of GC peaks and establishing retention time windows to coincide with each carbon number. The aqueous fraction was analyzed by mass spectroscopy to determine mole fractions of H₂0, methanol, ethanol, n-propanol, iso-propanol, butanol acetone, and acetic acid. The water fraction was verified by the Karl Fischer reagent technique. Waxes were analyzed by simulated distillation, and bromine numbers were determined.

DATA REDUCTION

Appendix A lists the material balance results for each test period. Most of the entries are self-explanatory. The molar flow rates of inlet and outlet reactor In this program, hydrocarbons streams are listed in units of millimoles/hr. beyond carbon number 24 were not considered. With the range of degree of polymerization that we observed, the effect of neglecting products beyond carbon The molar flow rates for the inlet stream were number 24 is negligible. determined by combining the inlet gas composition and inlet gas flow rate. The outlet stream composition was determined by combining the exit gas analysis, the oil fraction analysis, and the aqueous fraction analysis with the yields of the The yields of the oil, aqueous, and wax gas, oil, and aqueous fractions. fractions are listed in units of g/hr. The results of the FIA and bromine number analysis of the oil fraction are listed if available. The derivation for degree of polymerization from Schulz-Flory kinetics is as follows:⁴

·7

$$\ln X_{n} = n \ln p + \ln \frac{1-p}{p}$$

where X_n = mole fraction of carbon number n species (including alcohols, paraffins, and olefins)

p = probability of chain growth

A plot of $\ln X_n$ versus carbon number should yield a straight line with slope lnp and intercept $\ln \frac{1-p}{p}$. The degree of polymerization is defined as DP = $\frac{1}{1-p}$.

The carbon number range used for this determination was typically 2 to 18 unless olefins were added to the feed gas, in which case the next higher carbon number was used as a lower limit.

RESULTS AND DISCUSSION

The experimental program covered a wide range of three independent variables: reactor temperature, reactor H_2/CO ratio, and catalyst age. Reactor temperature ranged from $250^{\circ}C$ to $325^{\circ}C$. The H_2/CO ratio was varied by using feed gases with H_2/CO ratios of 1, 2, and 4. Catalysts were operated for as long as 14 days under synthesis gas flow.

Q

Rate of $(H_2 + CO)$ Consumption

The (H₂ + CO) consumption can be used as a measure of the rate of CO incorporation into hydrocarbons. Figure 3 is a 3-dimensional plot of (H₂ + CO) consumption vs. the two independent variables: reactor temperature and reactor H₂/CO ratio. The data are taken from the results of run numbers 2-25, 2-18, and 3-21, where the inlet H₂/CO feed ratios were 1/1, 2/1, and 4/1, respectively. All subsequent 3-dimensional plots are obtained by using the data from these tests. The reactor temperature ranges from 250° C to 325° C, and the reactor H₂/CO ratio ranges from 1 to 100. The (H₂ + CO) consumption increases rapidly with temperature (see Figure 3) and also increases with H₂/CO ratio. Assuming a rate expression for rate of propagation or rate of chain growth of the form rp = kp (CO)^X (H₂)^Y, where kp is the rate constant, then y must be greater than x. This conclusion is confirmed by Universal Oil Products's model fitting of the experimental data.²

Selectivity

Figure 4 is a Schulz-Flory plot $(1nX_n \text{ vs. n})$ for period 3-19A. The C₂-C₄ alcohols are included in this distribution. As is typical for an iron catalyst, the product selectivity can be represented well by the Schulz-Flory distribution evident by the linear relationship. The degree of polymerization is a measure of selectivity, i.e., DP = 1 yields 100% methane, DP = 4 yields maximum gasoline, DP = 6 yields largely wax. Figure 5 is a 3-dimensional plot of DP vs. the independent variables of reactor temperature and reactor H₂/CO ratio. The degree of polymerization decreases strongly as temperature increases. Since

the chain termination reactions have a higher activation energy than the chain propagation reaction and thus begin to dominate at higher temperatures, leading to a lower degree of polymerization. The H_2/CO ratio appears to have an effect on the degree of polymerization at the lower temperatures where increasing H_2/CO ratio decreases degree of polymerization. It might be concluded that higher H_2 concentrations have a stronger effect on chain termination (i.e., hydrogenation) than on chain propagation.

<u>Olefin/Paraffin Ratio</u>

Figure 6 illustrates the effect of H_2/CO ratio and reactor temperature on the propylene/propane ratio. The propylene/propane ratio increases as the reactor temperature increases. The propylene/propane decreases as the H_2/CO ratio increases. The explanation for H_2/CO ratio effect is straightforward; at high H_2/CO ratios, hydrogenation to paraffins is promoted, resulting in lower olefin/paraffin ratios. The propylene/propane ratio increases with increasing reactor temperature.

Aging Effects

As described below, during each run the temperature is cycled through the following temperatures; 275° C, 300° C, 275° C, 325° C, and 275° C, where two mass balance periods are completed at each temperature. If the reactor temperature

is returned to the base temperature $275^{\circ}C$ after each temperature excursion, the rate of deactivation can be monitored.

The deactivation behavior is highly dependent on the H₂/CO ratio of the feed gas. Figure 7 is a plot of H₂/CO conversion vs. days on stream for runs with H₂/CO feed gas ratios of 1, 2, and 4. The (H₂ + CO) conversion is used to measure activity because it represents the rate at which carbon is converted to hydrocarbons. With a H₂/CO feed gas ratio of 4, the catalyst actually exhibits a large increase in activity over the 10-day cycle (see Figure 7). An explanation could be that the carbide equilibrium on the catalyst is approached more slowly under conditions of low carbon monoxide partial pressures. The runs with H₂/CO ratios of 1 and 2 exhibit no significant deactivation until the 9th and 10th day after operation at 325° C. The run with 1:1 H₂/CO shows a greater deactivation than the run with 2:1 H₂/CO.

Run 3-29 was conducted to observe aging effects at a constant temperature of 300° C, with a 1:1 feed gas. Figure 8 shows the trends for (H₂ + CO) conversion, DP, C₃H₆/C₃H₈, and bromine number as a function of days on stream. The (H₂ + CO) conversion decreases steadily as catalyst age increases, indicating the general deactivation of the catalyst. The plot of degree of polymerization does not reveal any trend. The propylene/propane ratio rises to a plateau after several days. After an initial rise, the bromine number undergoes a steady decrease. In general, it appears that the olefin/paraffin ratio of the lighter hydrocarbons remains constant, while that for the heavier fractions decreases with catalyst age.

Effect of Catalyst Particle Size

Run 3-27 was a standard run with 1:1 H₂/CO feed gas except the catalyst particle size was reduced to 14 to 18 mesh in contrast to a particle size of 6 to 8 mesh that was used in the other runs. Fifty grams of fresh catalyst was charged in all cases. The effect of particle size is illustrated in Table 2, which compares the (H₂ + CO) conversion of run 3-27 with that of run 2-25 (1:1 H₂/CO feed gas).

TABLE 2.	Effect of	Particle	Size on	(H ₂ +	CO)	Conversion
----------	-----------	----------	---------	-------------------	-----	------------

			(H ₂ + C)) Convers	ion	
	275 ⁰ C	300 ⁰ C	275 ⁰ C	325 ⁰ C	275 ⁰ C	250 ⁰ C
Run 2-25 (6 to 8 mesh)	36	56	36	61	15	8
Run 3-27 (14 to 18 mesh)	55	71	55	79	40	18

The rate of reaction is considerably higher with the smaller catalyst size, indicating the presence of considerable internal particle diffusion. A range of catalyst particle sizes would have to be investigated in order to reveal the magnitude of the internal diffusion. The conclusion is that considerable internal diffusion exists in the 6 to 8 mesh catalyst. For the limiting case of an infinite internal diffusion resistance, the reaction would take place only on the outer surface of the particle, and the rate would be proportional to the external surface area of the catalyst.

SUMMARY

In conclusion, an experimental data base for the promoted fused-iron Fischer-Trospch system has been presented. The experimental program successfully covered a wide range of the independent variables: reactor temperature, reactor pressure, H_2/CO ratio, and catalyst particle size. The important responses that were measured include (H_2 + CO) consumption, (H_2 + CO) conversion, degree of polymerization, and propylene/propane ratio. These responses have been graphically presented and the observations have been stated.

REFERENCES

 Universal Oil Products, Inc., Comparison of Fischer-Tropsch Reactor Systems-Phase 1, Final Report, DOE Contract Number DEA-CO1-78ET10159, 1981.

2. Universal Oil Products, Inc., Comparison of Fischer-Tropsch Reactor Systems-Phase 2, Final Report, DOE Contract Number DEA-CO1-78ET10159, to be published.

3. Berty, J. M. Reactor for Vapor-Phase Catalytic Studies, Chem. Eng. Prog., 70 (5): 68, 1974.

4. Satterfield, C. N., Huff, G. A., Longwell, J. P. Product Distribution from Iron Catalysts in Fischer-Tropsch Slurry Reactors, Ind. Eng. Chem., Process Des. Dev. 21(3):465, 1982.

Figure 2-Schematic of Reactor system.

BSI/2670

BSI/2669

Figure 5-Degree of Polymerization response.

BSI/2671

Figure 6-Propylene/Propane ratio response

~ ~

BSI/2667

Figure 8- Aging trends of catalyst run 3-29

MULAR FLOW HAFE IN Amule/HR CO 50 H2 90 CU2 90										
HULE/HK FLUW HATE IN 50 4MULE/HK CO 50 51 42 91 CU2				•						
		E44 0704		2026 613			0220		Eon' area	1030 L04
cu2	1700°/0	10/0°110 10/0°110	24/2°210	247 7946	.74/5°510	213.3/92	9050 8.80C	212.5307 540	8010 000	401.8004 1008.7451
400		00000					0.0000			
aoa										
CH4	0000	0,000	0,000	0.0000				0000-0	00000	0,0000
C2H4	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0000	0.000	0 0000
C3H6	000000	0.000	0.0000	0.0000	0.000	0.000	0.000	0 0 0 0 0	0.0000	0 0 0 0 0
C4H8	0.000	0.0000	0.000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.0000
C5II10	0,000	0.0000	0000000	00000	0.000	0.000	0.0000	0.000	00000	00000
AULAR FLOW OUT									-	
MOLEZHK CO 21	72.4839	282.1722	172.9356	150.8899	248.7762	282.8754	107.8322	72.2177	310,2306	267.0950
H2 71	21.6832	747.3431	676.9805	596.1539	695.2977	790.6008	613.5928	508.7703	844.3792	765.5871
	1107-14	40. 1124	COCE.#0	0407 040	30.8015	42.8545	2656.28	94° 1491	2010.02	470,0509
10	93.4990	90°0718	100.5401	0400-111 76 8454	11.0093	1/47*98	140.0121	140.8090 36 5146	63.61.20	6406.41
	2.4500	2.9513	7.3814	7.4056	4.1465	4.7148	19.7331	10.5486	5.0037	4.6682
CZ	5.8149	6.0216	7.3814	6.4799	2.7640	3.1428	5.4393	6.4915	2,5025	2,3341
U U U	6.0425	6.2573	12,6538	11.1085	5.3157	6.0443	12.1194	14.6058	7.5062	5.8352
C3	2.2191	2,3608	0.000		1.0631	1.2089	1.11/9	00000	0000 0	0.000
	2.5085	2.5977	4.2179	3.7028	2.5518	2.9015	5.6798	6.4915	2.5025	2,3341
2=04=	0.3420 1 5457	0.3548 4.6574	0,0000	000000	1901°0	0.1206	CUVI.U	0.000	000000	00000
	0.1138	6211.0	0,0000	0.0000	0.1061	0.1206	0.0952	0.0000	0000	0-0000
	3.2325	3.3204	0.3629	0.3262	2.6580	3.0122	5.2941	1.0422	0.1255	0.0437
C 6	1.9134	1.9499	0.7601	0.6178	1.6156	1.7952	2.9627	1.4648	0.2333	0.1092
C7	1.2418	0.9822	1.2050	0.9391	1.0373	1.0994	2.0589	1.8889	0.3828	0.2434
C8 C8	0.6610	0.6610	0.7356	0.9886	0.5816	0.6890	1.5120	1.7111	0.4284	0.3331
	1000.0	0, 4504	60%6°0	1468 0	0.994E	CCC+++0	1.121.1 0 7307	1/82.1	2885 U	0 3362
	1011	5235 C	0.5840	4265.0	0.020 0.020 0.020 0.020		0.4705	0.5860	0.1997	0 1866
C12	0.1512	0.1652	0.2289	0.3584	0.1772	0.1771	0.3057	0.3759	0.1448	0.1456
C13	0.60.0	0.1220	0.1320	0.1597	0.1334	0.1344	0.2016	0.2513	0.1058	0.1159
C14	0.0615	0.0850	0.0666	0.1094	0.0140	0.1206	0.0281	0.0611	0.0172	0.1030
C15	0.0369	0.0815	0.0360	0.0725	0.0876	0.0912	0.0131	0.0363	0.0692	0.0728
C19	0.220.0	8/60°0	0.0245 0.0245	0.0080	0.0647	0.0673	0.0369	0,0194	0,0013	2550.0 3950 0
CIB	0.0137	0.0294	0.0136	0.0302	0.0357	#TCO*0	0.0146	0.0130	0.0268	0.0279
610	0.0097	0.0209	0.0103.	0.0182	0.0250	0.0291	0.0103	0.0082	0.0203	0.0207
C20	0.0077	0.0149	0.0074	0,0099	0.0182	0.0204	0.0066	0.0039	0.0145	0.0153
120	0,0044 0,0074	0,0040	0.0047	0 0000	0,0000	0,0153	0.00.0	0000	0.0066	0.0104
222	120000				0,0065	4110°0				
C24 C24	0.0013	0.0014	0,0000	0000	0.0047	0.0049	0.0000	0.000	0.0030	0.0027
CIUH	0.000	00000	0.2854	0.0000	0.1632	0•000	0.0000	1,3855	0,000	0.1864
CZQH	3.1609	3.1244	4.8517	4.3757	2.7748	3,3118	6.3350	6,3948	3.1463	3.1686
N-C30H	0.7254	0.7171	0.8562	0.9175	0.4897	0.5204	1.3772	1.5987	0.6624	0.5592
I - C3(JH	0.1036	0.1024	0.2140	0.2117	0.1224	0.0473	0.1836	0.5329	0.1242	0.1398
C40H	0.2591 0.1556	0.2561	0.2854	0.2117	0.1632	0.1892	0.2754	0,3197	0.1242	0.1864
	0.1555	7541 0	0417°0	C141 0	4777°0 .	4141°0	02020	1012 U	2000000	0.1270
NUCLIC NOTS		1001-0	FC07 • 0	77110	7607*0	0007*0	FC 7 • 0	1610.0	717710	*007*0

: !

H1-2 = 5-14	Υ.	S	IJ	G	S.	ť.	ບ	Ŧ	Ţ	ن د. :
SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C	300,0000	300,0000 275,0000	300,0000 300,0000	0000 ° 00E	300,0000 275,0000	300.0000 275.0000	300.0000	300,0000	300,0000	300,0000
FEED GAS, SCFH (32F	1 1.1870	1.1870	1.1870	1.1870	1.1870	1.1870	1.1870	1.1870	1.1870	1.1870
TATL GAS, SCPH (32F	0 006 0 0	0.9320	0.8330	0.7320	0.8390	0.9540	0.7530	0.6410	1.0050	0.9210
H2 CONVERSION	26.6739	24.2221	31.4609	39.6440	29,6065	19.9578	38.1604	48.2277	14,9011	24.1050
CD CUNVERSTON	46.3490	44,8751	66.3143	70.6085	51.5414	44 . 8993	78.8097	85,9057	39.0361	41.1522
H2+CO CUNVERSION	36.5115	34.5486	48.8876	55,1263	40.5740	32.4286	58.4851	67.0667	26,9686	32.6286
Y LELUS GM/HR			•.* •							
. 010 -	0.4458	0.4792	0.7111	0.7167	0.4056	0.4222	0.9500	1.1278	0.3500	0.3167
AQUEDUS PHASE	. 1.0833	1.0708	1.5056	1.4722	0,8611	0.9944	1.9556	2.2889	0006*0	0.9833
WAX	0,0083	0.0167				0.0444	0.0056	0.0333	0.0722	0.1111
ANALYSIS .			-							
- SVIJ	:	•	···· ··· · · · · · · · ·		rene					
ARDMATICS	3,0000	4,0000	6.0000	7.0000	. 7.0000	8,0000	9,0000	9.000	4.0000	0000*6
LILEF LUS	57.0000	67.0000	71.0000	17.0000	80.0000	77.0000	82.0000	87.0000	45,0000	83,0000
SATURATES	40.0000	30.0000	23,0000	16,0000	13,0000	15,0000	0000 6	4.0000	51,0000	8,0000
BR #	42.0000	45.0000	60.0000			57.0000		69 0000	معهد والالله والعالم فالمالية ومعالياته وفوا	47.0000
D.P.	2,8459	3.1927	2,9456	3.4762	3.2648	3.3790	2.6152	2.7042	3,6774	4.2859
S. MATERIAG" KECUVERY	093,4590	94.5418	90,4589	88.4972	86,5499	91.6966	90.1908	92.7279	92.1341	97.2726

:

RUN # = 2-19 PERIUD		٩	£	υ	د	ىد	U	Ŧ	. н	Ċ,
MOLAR FLOW DAVE	и т .					•	•		1	•
MMDLE/HR CU	-	466.1124	466.1124	463.3380	463.3380	463,3380	0455,534	0955.538	NETA DRA	450 A72A
H2	:	916.2031	916.2031	916.4783	916.4783	916.4783	916.4783	916.4783	920.4054	920.4855
Ch2		0,000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0.000	0.0000
H20		00000	00000	000000	0.0000	0.000	0.0000	0.000	0,0000	0,000,0
C2H4		69.1693	68.1642	60 03 03	0000°0 7000	0000.02	0000.0		0000.0	00000
C3H6		0.000	0.000	0000 0	0000.0	0000-0	8/56*60	8/56*60	0610.1/	0,0000
С4ня		0,000	0.000	0.0000	0.000	0,0000	0.000	00000	00000	00000
C5H10		0.000	0000	0.000	00000	0.0000	0.0000	0.0000	0.0000	0.0000
MOLAR FLOW OUT										-
MMOLE/HR CO		247,3018	247.3781	156.5179	155.7173	247.9191	87.7957	64.3628	300.5193	294.9996
H2		671.4082	678.0422	594.3723	591.3320	709.1628	533.1120	504.7410	767.4424	753.3466
	:	41.40.45	41.3611	58.6184	60.6601	37,9483	83.7768	94.6833	32.9913	33.4689
		18.3300	1/80.11	106.9871	106.4398	81.8709	135.7672	137.1945	67.0577	65.8261
C1 C2=		46.4387	18.3283 50.9375	20. 12 22 15 12	75.0241 51 0514	15.6820	33.4892	32.5198	11.9211	11.7022
C2		34,3541	30,1353	28.9764	2877.80	14 2004 A	1020°C0	15 5000	00100100	00.4330
C3#		6.0423	6.1843	8.8164	8.7713	E 188 15	11.4042	11.1786	2018-0 2018-2	1 - CO - D
C3		1.9028	1.6867	1.8819	1.8723	1.1532	1.4483	1.3553	0.7448	0.7312
1-C4=		2.4622	2.5862	3,8638	3,8440	2.7673	5.5215	5.2505	2.1106	2.0718
2+C4=		0.3361	0.3369	0.3966	0.3945	0.1152	0.1806	0.1692	0.1239	0.1217
I-C4	- I	1.3433	1.2364	1.3865	1.3794	0.6924	0,9959	0.9315	0.4470	0.4878
20		0.1117	0.1123	6850 0	0.0984	0.1152	0.0903	0.0846	0.1239	0.1217
		2.82/1	3. 0228	4.0385	4.1176	2.5363	5.1328	4.1559	2.1664	2.1339
		1.004 0.4420	1,9160	1914-7	1014°2	1.4051	2.8416	2.6719	1.2752	1.2318
		1205.0	10000 C	1.0305	1106.1	0,6368	1.9122	2.1330	0.9274	0.8489
50		0.4015	0.5889	0.8748	0.5053	1253.U	1.3580	1.8208	0.6046	0.5433
C10	•	0.3466	0.4343	0.6614	0.7396	0.9802	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4/07 0
C11		0.2418	0.3108	0.4629	0.5080	0.2463	0.6568	1500.1	0.123.0	0.1230
C12		0.1693	0.2166	0.3193	0.3378	0.2236	0.3811	0.4603	0.1305	0.1293
C13		0.1218	0.1526	0.2180	0.2276	0.1082	0.2651	0.3312	0.0974	0.1321
C14		0,0496	0.1075	0.1500	0.1526	0.0782	0.0615	0.0928	0.0858	0.1079
		0.000/	0.0752	0.1050	0.1059	0.0573	0.1193	0.0596	0.0615	0.0621
		0,0485	0.0534	0.0722	0.0205	0.0130	0.0207	0.0355	0.0443	0.0453
		2000 U	0 0266	0.0494	0°050	1950 0	2020 0.	0.0191	0.0341	0.0341
612	1	0.0189	0.0180	1000	4 0 0 1 7 3	102000			0020*0	0.0253
0.00		0.1144	0.0137	0 0157						C010*0
C21		0.100	8600.0	0,0100	0110-0	0.0140	5510.0	0.0122	0.0129	0.0134
C22		0.0041	0.0078	0.0072	0.0075	0.0118	0500-0	0.00	0.0068	0 0075
C23		0.0065	0.0059	0.0046	0.0048	1900.0	0.0058	0.0075	0.0047	
C24		0,000,0	0.0057	0.0044	0.0046	0.0065	0.0055	0.0034	0.0027	0.0034
							:			
		6340°0	2520.0	0.000	0.000.0	0.000	0.000	0.0000	0.4023	0.4082
		C C Z C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	8/99/3	00000.0	0021.0	3,3122	5.8840	6.6500	2.3408	2.3747
		1.07/4	20/0°T	16001	1,000,0	0.8110	1.5877	1.7944	0.5121	0.5195
C40H		0.1886	0.1863	1,00.0	0 2726	0,000	2082.0	0.4167		000000
ACETHNE		0.1886	0.1863	0.4695	0.4089	0.1707	05/00/1	1 2725	0 1007	0,11404
ACETIC ACIU		0.0472	0.0466	0.2012	0.2045	0.2134	0.2802	0.3167	0.0732	0.0745
							1 2 1 2 1 2 1 2		23-282	オドーンキン

•

•

	RUR # = 2-19 PERTRO	A	- 11	U	C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U	E E	1	
	SYSTEM PRESS, PSIG Avg Cat temp, drg C	300,0000 275,0000	300,0000 276,0000	300,0000	300.0000	300.0000 275.0000	300.0000	325.0000	300.0000 275.0000	300,0000 275,0000
- 	FEED GAS, SCFH (32F)	1.1510	1.1510	1.1510	1.1510	1,1510	1.1510	1.1510	1.1510	1.1510
	rall GAS, SCFH (32F)	0.8830	0.8880	0.7820	0.7780	0.9110	0.7140	0.6690	0.9800	0.9620
	112 CUNVERSION	26.7184	25,9943	35.1461.	35.4778	22.6209	41.8304	44.9260	16.6191	18.1577
2	CO CONVEPSION	46,9437	46.9274	66.2195	66.3923	46.4928	81,0515	86.1089	34.5948	35.7962
_	H2+CO CONVERSION	36,6311	36.4608	50.6828	50,9350	34.5569	61.4409	65,5175	25.6070	26.9769
-	VIELDS GM/HR		·			×	•	•		
•	01P	0.4333	0.4958	0.7611	0.7944	0.3778	0.9611	1.1778	0.3111	0.3000
	AQUEDUS PHASE	1.0292	1.0167	.1.4833	1.4722	0.9222	2.0056	2.2667	0.7667	0.7778
	WAX	0.042	0.0125		0.0333	0.0444	0.500.	0.0222	0,0556	0.0944
-	NALYSIS OIL	• •••	-			•	•			- - -
:	FLA &	•••		· · · · · ·	and the second					
	ARDMATICS	2,0000	3,0000	6.0000 78.0000	6.0000 80.0000	:	7.0000	6.0000 82.0000	×	•
•	SATURATES	46,0000	54,0000	16.0000	14.0000	· · · · · · · · · · · · · · · · · · ·	14.0000	12.0000		• • • • • • • • • • • • • • • • • • •
}	BR #			57.0000	61.0000	54.0000		a sensit rer a Jakenson ennesiev a	50.0000	50.0000
	0 • P •	2.9077	2.9587	3,0123	2,8864	2.8599	2.7794	2.7588	3,0123	3,0607
2	WATERIAL RECOVERY	1141.69	100.0029	97.8581	97.7544	98.9807	100.4896	97.7544	101.2854	100,8040
7	•	•				·			• `	

HUN # = 2. PER10D	21	*	8	U	Ŀ.	ы	ít.	U	T	I	د
HULAR FLOW Imole/HR	RATE IN CU H2	442,5827 889,3950	459,6815 923,7561	464.1199 919.4551	446.8559 885.2540	446.8559 885.2540	459.6815	442.5827 890.8039	442.5827 890.8039	442,5827 890,8039	459.6815 925.2195
	C02	0.000	0.000	0.000	00000	0.000	0.000	0.000.0	0.000	0.000	0,000
	H20 CH4	0,0000	000000000000000000000000000000000000000	0.0000	0°0000 0°0000	0.0000	0.0000	0.0000	0000000	000000000000000000000000000000000000000	0.0000
	C2H4	0000	0.0000	0.0000	0.0000	0.000	0.000	00000	0.0000	0.000	0.000
	C3H6	71.4615	74.2224	74.2297	71.4686	71.4686	72.6128	69.9118	69.9118	69°9118	72.6128
1	C5H10	00000.0	0.0000	0.000	00000	0.000	0.0000	0.000	0.000	0.000	00000
WOLAR FLOW	DÚT									-	
MMULE/HR	CO	212.4646	207,7520	135.9791	139.0850	223.0177	219.6330	43.9292	42,3254	246.4863	246.2729
	H2	624,0497	632,6033	549.4658	563.9070	659.3567	666.4730	462.4529	445.5697	691.2817	692.7124
	C02	78,0060	82.0623	111.0035	110.6997	84,0358	41,9169 	80.2758	131.5935	32,8676 72,8252	30.5250 73.0947
	CI	17.4487	18,4896	24.6054	24,9787	15,0829	16.4450	36.6608	35,3223	13, 3324	13.7198
	C2=	7742.5	2.7003	4.8097	5.6765	4,0938	4.2195	9.8243	9.4656	4.1453	4.273B
	C2 2 = 2	4.7212 65 0785	4.7785	5.1799 71 ENAE	4.7312 75 0812	2,5861 73 0000	2.8134	4.1533 02 0665	4.0016 90 0335	2,0167	2.1369 70 0173
	58	8,8268	8.1020	6.3828	5.0142	2.6937	2-9214	3.2745	3.1549	1061.1	2.0247
	1+C4=	2,1552	2.2855	3.6078	3.7850	2,5861	2.5963	5.8303	5.6175	2.5768	2.5867
	2-C4=	0. 3083	0.3121	0.3702	0.2840	0.1076	0.1080	0.1601	0.1543	0.1118	0.1122
:		1,455.1	1.2405	1.2222 2220 2220	1.1349	0.1544	1757.0	1950.1	1.0002	0.5601	0.5520
28	C5	2.8122	2.5965	4.2277	3.8439	2.6407	2.5479	5.1390	5.4712	2.5171	2.4964
8	C6	1.5912	1.4778	2.4930	2.2355	1.5816	1.3459	2.7644	3.4252	1.4963	1.3464
	C7	0.6991	0.8372	1.2752	1.6899	1.1103	0.9490	2.0565	2,9493	1.0057	0.7135
	8 5 5 5	0.5053	0.4468	-0.100 0.8736	0.4793	0.4538	0.3931	1.02564	2.2666 1.6564	0.5843	0.3835
	C10	0.3864	0.3473	0.6414	0.6976	0.3525	0.3134	0.9473	1,2296	0.3278	0.3017
	C11	0.2860	0.2603	0.4514	0.4841	0.2619	0.2398	0.6814	0.8408	0.2451	0.2238
t - at at a st an and see the		0.2109	0.1878	0.3103	0.3284	0.1795	0.2431	0.4599	0.5441	0.1718	0.1569
	C14 C14	0.1123	0.1023	0.1515	0.1560	0.0819	0.1286	0.2177	0.2332	0.0755	0.0672
	C15	0.0843	0.0751	0.1069	0.1101	0.0541	0.0931	0.1483	0.1451	0.0458	0.0402
	C16	0.0641	0.0571	0.0776	0.0766	0.0350	0.0679	0.0309	0.0272	0.0281	0.0362
	C18 C18	0.0380	0.0430	0.0548	0,0503	0.0214	0.0529	0.0921	0.0640	0,0233	0.0256
· And and a set of a long statement of the set of	C19	0.0360	0.0321	0.0381	0.0336	0.0103	0.0278	0.0390	0.0115	0.0125	0.0140
	C20	0.0274	0.0244	0,0259	0.0213	0.0084	0.0202	0.0206	0.0054	0.0106	0.0109
	C21	0,0195	0.0189	0.0172	0.0152	0.0067	0.0148	0.0118	0.0000	0.0076	0.0080
•		0,0110	0.0138	0.0118	EL00°0	0,0051	0.0113	0.0037	0.000	0.0060	0.0066
	C24 C24	0,0045	0.0076	0.043	0000	0.0023	0.0065	0000	0.000	0.0022	0.0030
	C10H	0 7162	0 6920	0,000	0000		9666 0				0000 0
	C2UH	3,2336	3.1246	6.6347	5,9576	5.2266	4.9846	8.1025	8.0436	3.8489	3.9194
-2	C30H	0.7578	0.7323	1.3660	1.2366	0.8487	0.5085	1.9428	1.8651	0,6909	0.7036
1 m)	COUH	0.0659	0.0637	0.3473	0.4268	0.0181	0.0202	0.5272	0.2577	0.0617	0.0629
ACE	TONE	0.1781	0.1721	0.5572	0.4812	0.2481	1421-0	1 8653	1014-0	0.2445	0.2510
ACETIC	ACID	0.1117	0.1080	0.1973	0.1979	0.1753	0.1942	0.2994	0.3676	0.2313	0.2355

•

$RUN \ # = 2-21$ PERIOD	· · · · · · · · · · · · · · · · · · ·	1	ບ້	e .	` ` בב``	Ē.,	<u>ອ</u>	Ŧ	•	
SYSTEM PRESS, PSIG Avg Cat Temp, deg (300.0000 275.0000	300.0000	300.0000	300.0000	300.0000 275.0000	300,0000	300.0000	300.0000	300,0000 275,0000	300,0000 275,0000
FEED GAS, SCFH (321	r) 1.1130	1.1560	1.1560	1.1130	1.1130		1.1130	1.1130	1.1130	
TAIL GAS, SCFH (321	7) 0.8100	0.8200	0.7300	0.7460	0.8510	0.8540	0.6300	0.6070	0.8840	0.8870
H2 CUNVERSION	29.8344 E. 0044	31.5184 EA UNES	40.2401	36,3000 2005 03	25 . 5178	27,9660	48.0859	49.9812	22,3980	25,1299
H2+CO CONVERSION	40.9144	43,1618	55.4709	52.5874	8108.76	40.0933	69.0801	10.2089	33,3526	35.7776
YIELUS GM/HR		·								
010	0.4958	0.4417	0.7500	0.7722	0.4056	0.4500	1.1944	1.5778	0.3833	0.3500
AQUEDUS PHASE WAX	1.1125	1.0750	1,5778	1.5556	1.0278	1.0556	2,2333	2.3667 0.0889	0.9111	0.9278
									· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1
ANALYSIS DIL		•	•							
FIA % ARDMATICS		- -			8-0000		0000-6	-	15.0000	10.0000
OLEFINS			•		72.0000		80.0000		73.0000	73.0000
SATURATES	· · ·	*			20.0000	1 1 1	11.0000		12.0000	17.0000
BR #	52.0000	34.0000	39,0000	70.0000	61.0000	63.0000	77.0000	84+0000	61.0000	29,0000
D.P.	3,1168	3,0853	a.0773	3.0913	2,7685	3.1902	2,9916	2.8168	2.7827	2.8292
MATERIAL RECOVERY	.92,2815	1840.55	94.1884	95,0301	94.8098	95,5677	96.7925	96,7472	95,9944	96.3676

J	468,4587 899,2101 78,3142 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	<pre>628 647.38435 647.38475 647.3867.38643 111.45.46534 75.386431 75.386433 75.69334 0.0099910 0.287493 0.287494 0.284954 0.284954 0.284954 0.002494 0.002448 0.002448 0.002448 0.002448 0.002448 0.002448 0.00234 0.00244 0.00244 0.00244 0.00244 0.</pre>	0.2738 5.1443 1.2508 0.1241 0.2293 0.2293 0.1371
I	467.9434 899.5572 78.4750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	<pre>623 5532 173559 173559 17259 17</pre>	0.2948 5.5389 1.3467 0.1336 0.1336 0.2469 0.3019
Ŧ	462.3990 916.0727 72.5894 0.0000 0.0000 0.0000 0.0000 0.0000	4656 4656 4656 4658 30.411 30.4148 8.310	0.0000 8.5997 2.9812 0.4188 0.3287 1.8567 0.2792
IJ	462.3990 916.0727 72.5894 0.0000 0.0000 0.0000 0.0000 0.0000	466 19355 19355 19355 19355 19355 103555 1035555 10355555 10355555 10355555 10355555 10355555 10355555 10355555 103555555 103555555 103555555 1035555555 103555555555 103555555555555555555555555555555555555	0.0000 13.0200 3.9710 0.5253 0.5253 0.5253 0.3674
Ŀ	462.3990 916.0727 72.5894 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	22 454 454 454 457 457 457 457 457	0.0000 5.2053 1.3828 0.1371 0.2567 0.2563
ല	460.6525 918.5466 72.5894 0.0000 0.0000 0.0000 0.0000 0.0000	1 62 1 62 1 64 1 64	0.0000 4.9612 1.1991 0.0000 0.2443 0.1761 0.3343
۵	460.6525 918.5466 72.5894 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	42 47 47 47 47 47 47 47 47 47 47	0.0000 8.0200 2.3194 0.33479 0.3216 0.3216 0.2584
U	460.6525 918.5466 72.5894 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0000 7.5317 2.2162 0.3549 0.5479 0.5479 0.2004
Ŧ	459.4910 918.9807 72.5894 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1 445 1 45 1 45	U.3599 6.1146 1.5925 0.0869 0.2063 0.2063
٩	459,4910 918,9807 72,5894 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	1652 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	0,0965 3,5892 1,3878 0,1171 0,1171 0,2559 0,2559
	3022244080 N		
UN # = 2-22 ERTOD	0648 F50W K41 Molethr CC CC CC C1 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	N0LAR N0	C10 C20 N-C30 N-C30 1-C30 C40 ACETUM
æ C.	a-2⊑. i ;	Σ Σ 30	

		•								
	300.0000 275.0000 1.1480 0.8700 28.0052 51.1979 39.6016	0.3200 0.9700 0.1400	10,0000 76,0000 14,0000	58,0000 2,9293 99,2448						
	300.0000 274.8000 1.1480 0.8840 0.8840 50.3580 38,5544	0.4500 0.0889	7,0000 77,0000 16,0000	61.0000 3.1858 101.5714						
æ	300.0000 324.8000 1.1480 0.6260 48.8232 87.8123 87.8123	1.2833 2.4667 0.0722	9.0000 15.0000 15.0000	82.0000 2.7150 96.1282						
ع	300.0000 325.2000 1.1440 0.6470 85.0301 66.2379	1.1389 3.5056 0.0389	10.0000 71.0000 19.0000	73.0000 3.0919 102.9760						
Ĭ r.	300,0000 275,3000 1,1480 0,8530 0,8530 27,0887 53,4871 40,2879	0.5000 1.2389 0.0722	18.0000 62.0000 20.0000							
ш [°]	300.0000 275.3000 1.1480 0.8640 26.9799 52.9699 39.9749	0.5222 1.2056 0.0833	15,0000 60,0000 25,0000	53.0000 3.2021 98.3282						
C	300,0000 299,9000 1.1480 1.1480 37,3530 37,3572 70,3977 53,9503	0.7889 1.8667 0.0222	11.0000 65.0000 24.0000	65.0000 3.2576 98.7927						
ט	300.0000 300.2000 1.1480 0.7590 37.6256 68.6457 53.1356	0.7556 1.8444 0.0333	10,0000 61,0000 29,0000	63.0000 3.1309 99.9567						
, נד. י	300,0000 275,0000 1,1480 0,8410 29,8001 51,9734 40,866	0,5208 1,23333 0,0375	8,0000 45,0000 47,0000	47,0000 3,5528 97,6022						
V	300.0000 275.0000 1.1480 0.8530 21.4032 51.4032 39.6647	0.4136 1.2545 0.0409	9,0000 45,0000 46,0000	42,0000 3,4801 96,7595						
$k(l)w \ b = 2=22$ $PEKI(l)l$	SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C FEED GAS, SCFH (32F TAIL GAS, SCFH (32F H2 CONVERSION CO CONVERSION H2+CU CONVERSION H2+CU CONVERSION	YIF.LUS GM/HR OIL Aquedus Phase Wax Analysis Oil	·FIA 3 AROMATICS ULLEFINS SATURATES	br # D.P. Matektal recovery						
RUN # = 2=23 PERTOD	A	£	U	c	ы	íz.	ხ	Ŧ	I	C
---	---	---	---	---	---	---	---	---	---	---
MOLAR FLUM RATE I MMOLE/HR CO H2 H2 H2 H2 CH4 C3H6 C3H6 C3H6 C3H6 C3H6	x 453,8059 922,1584 0,0000 0,0000 77,0088 0,0000 0,0000	453.8059 922.1584 0.0000 77.0888 0.0000 0.0000 0.0000	453.8059 922.1584 0.0000 77.0888 0.0000 0.0000 0.0000	472.2422 897.9868 0.0000 0.0000 78.4649 0.0000 0.0000	474.1690 897.4317 0.0000 0.0000 78.5433 0.0000 0.0000 0.0000	453,8059 922,1584 0,0000 0,0000 77,0888 0,0000 0,0000	453.8059 922.1584 0.0000 77.0888 0.0000 0.0000	453.8059 922.1584 0.0000 77.0888 0.0000 0.0000	453.8059 922.1584 0.0000 17.0888 0.0000 0.0000	464.5120 911.6063 0.0000 74.0316 0.0000 0.0000 0.0000
C5H10	0,0000	0.0000	00000	0000	0000	0.000	0.000	0.000	0•0000	0.000
MULAR FLOW OUT MMOLE/HR ,CO	230,5410	224.0171	142.6491	138,3824	229,0205	219,4029	59,0585	48.6829	239,2272	249,1421
H2	689.2639	691,1883	593,3813	582.9724	685.9346	669,3460	489.6965	497.7427	731.6183	727.5428
	51.6417	59,9320	64.8476	64.5160 	43.7598	42.9756	91.6298 490 7000	9205°16	40.6928	3/.0921 D6 5564
	1545 20	2000 10	110-9025 105 4061	5750°671	94°1011	2112 04	106 6313		86 1644	1907.7961
	2.1263	2.7016	5.1514	6.9677	5.6409	4.7888	980389	8,3936	4.1806	4.6787
C2	5.2587	5.4031	5.9435	5.9871	3,3845	3.0069	5.2496	5.0365	2.0909	2.3394
C3=	5,0351	5,8540	8.9153	10.7960	7.8973	6.2372	10.4993	11.2475	5.1097	7.0181
E)	2.0145	1.9135	1.9808	0.0000	0.000	1.1138	1.5587	1.5948	0.8132	0000 • 0
1+0+1	4F10*Z	2.4767	3.5661	3.9255	2.2564	2.8957	4.2653	5.5396	2.5554	2.3394
2-04	10, 5354 1 24544	0.3373	0.3966 1 3665	0.0000	0.0000	0.0000	0.1645	0.252.0 1.0908	0.0000 0.5804	0.0000
	0000.0	10000-0	00000-0	0.0000	2021-1	0.0000	0000 0	0.0837	00000	0.0000
50 50	2,8108	2.9847	3.4712	0.6724	0.7385	2.6118	3.4826	5,6586	2,5554	0.0520
Ce	1.7092	1.5315	1.7239	1.0000	0.6387	1.3005	1.7531	3.4240	1.5191	0.1609
C1	0.4526	0.6437	0.7146	1.44H3	0.6394	0.4720	1.4050	2.5023	1,1215	0.2970
80	0.4402	0.3485	0.7172	0.7047	0.3846	0.5479	1.4512	1,9314	0.1759	0.3736
	1917 V	0.4700	LUEL N				. 3000 U	1 0228	03500	0, 7647
	0.2308	1912.0	0.4860	0.4467	0.2645	0.3127	0.6722	0.7224	0.2348	0.1975
C12	0.1/29	0.1991	0.3024	0.2414	0.1795	0.2444	0.4683	0.4414	0.1529	0.1392
C13	0.1241	0.1444	0.1773	0.1273	0.1183	0.1816	0.3356	0.3220	0.1133	0.1000
C14	• 0.0455	0.1057	0.1016	0.1034	0.0140	0.0265	0.0634	0,0793	0.0224	0.0159
C15	0.0710	0.0778	0.0785	0.0724	0.0429	0.1012	0.0394	0.0456	0.0129	6600.0
C16	0.0546	0.0160	0.0061	0.0065	0.0227	0.0126	0.0231	0.0267	0.0075	0.0046
CI7	0.0417	0.0435	0.0375	0,0335	0.0148	0.0555	0.0130	0.0151	0,0043	0,0122
010	0150.0	2000 U	2120°0	0 01010	4700 0	2160 0	0100.0	0.0135	0.0114	. 0.009B
		8000 D	0.0147	0 0194	0.0056	0.020	0.0148	0.0085	0.0060	0.0074
	0 0164	0.0176	0.0117	0.0074	00000	0.0193	0.0106	0.000	0.0046	0.0053
C22	0.0124	0.0129	0.0067	1700.0	0.000	0.0138	0.0067	0.0000	0.0033	0.0034
C23	0,0095	0.0087	0.0043	0.0045	0.000	0.0103	0.0032	0.000	0.0021	0.0024
C24	0,0068	0,0059	0.0041	0.000	0.000	0.0070	0.0031	0.000	0.0020	0.0015
CIUH	1.2830	1.5759	0.0000	1.2923	0.4891	1.2840	2.0536	2.5402	0.0265	0.1811
CZUH	1,4181	4.2308	4.7072	3,8508	3.2758	3.6490	5.2347	5.5152	3.0801	2.9798
N+C30H	0.4437	1.2082	1.1037	0.7180	0.6775	0.7490	1.5263	1.5932	0.5836	0.5114
I-C30H	0.8460	0.3765	0.3508	0.1186	0.0726	0.1868	0.1048	1.3509	0.0198	0.0000
C40H	6660°U	0.5952	0.4759	0.1612	0.3101	0.2497	0.3258	0.5908	0.1532	0.2225
ACETONE	0.0675	0.2925	0.6625	0.3141	0.2448	0.2274	1.6301	1.3951	0.1626	0.2265
ACETIC ACID	0,00/8	0.1264	CIBI.U	0.0960	0.2306	C412.V	cc/2.0	U.1458	110200	0.62.0

HIN # = 2-23 PERLUD	V	£	ບ	د .	51	<u>ئ</u>	უ		I	Ŋ
SYSTEM PRESS, PSIG SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C EVEN CAS STEP (3357)	300 0000 274 0000	300,0000 274,0000	300.0000 299.0000 1.1490	300,0000 300,0000 1,1490	300.0000 275.0000	300.0000 275.0000	300.0000 325.0000 1.1490	300.0000 325.0000 1.1490	300.0000 275.0000 1.1490	300.0000 275.0000 1.1490
TAIL GAS, SCH. (32F)	0.8840	0.688.0	0.7820	0.1770	0.8930	0.8790	0.6470	0.6620	0.9160	0.9240
H2 CONVERSION	25,2554	25,0467	35,6530 68,5661	35.0801	23.5669	27.4153	46.8967 86.9860	46.0242 89.2723	20.6624 47.2842	20.1911 46.3648
H2+C() CONVERSION	37,2313	37,8413	52,1095	52 8884	37,6338	39,5340	66,9413	67.6482	33,9733	33.2779
YIELDS GM/HR			•							
010	0,3958	0.4125	0.7111	0.7500	0.4056	0.4889	1.0722	1.2389	0.3500	0.2692
AQUECUUS PHASE WAX	0.0333	0,0250	0.0111	0,0389	1111.0	0.0611	0.0944	0.0278	0.1111	0.1538
ANALYSIS Dil			-			•				
FIA & ACMATICS	7.0000	7.0000	5.0000	3.0000	0000*6 1	12.0000	16.0000	16.0000	16,0000	8,0000
OLEFINS	0000 84	48,0000	72.0000	1000 64	80,0000	79.0000	75.0000	74.0000	72.0000	86.0000
SATURATES	45,0000	45.0000	23.0000	18,0000	11.0000	0000 * 6	0000*6	10.0000	12.0000	6,0000
BR #	46,0000	50.0000	63.0000	68.0000	55,0000		63.0000	66.0000	57.0000	29.0000
U.P.	3,3237	3,1635	2.9468	3,0287	2,9497	3.2312	2.9067	2.7433	2.6738	2,8961
WATERIAL RECOVERY	99.2602	102,6840	98 ° 9456	96.1350	97.1027	101.3635	93.8068	100.8133	98.3302	97.2132

RUN # = 2-24 PERIOD	4 1	4	<mark>ַ ט</mark>	Ē	ĸ	'n	ს	н
MOLAR FLOW RATE	N							
MMDLF/HO CO	ADD ANN	A R9 4705	105 UNG1	407 53 KOV	ADE COEL	E01 0117	E 1 6 8 4 9	2201 COV
	5041 290 2041 290	9637.7592	1000-001	0000 1000 3002 7308	1600°608	11/0.100	11/0°1000	0001°504
CU2	0000	0000.0	0.0000	0000	00000		0000 0	
UCH	0000 0	0000 0						
0.44 10.44	0000	0,000	0000					
C2H4	0.000	000000	0.000	0.000	0.000	0.000	0000 0	0,000
C3H6	0.000	00000	0.0000	0.0000	0000-0	000000	0.000	0.0000
C4HB	0000	0.000	0.000	0000 0	00000	0.0000	0.000	0.000
C5H10	0,000	0.0000	0.0000	00000	0,000	0.000	0.000	0,0000
MOLAR FLOW OUT		•						
MMOLE/HR CO	245,2560	259,9977	378.1304	387,5553	286.7056	277.6633	175.4906	165.8183
H2	738,0400	737.7990	883.1859	878.2929	796.2704	786.9116	659.6365	684.1320
H20	60.0214	63.2970	22.5007	34,7950	58.0999	46.9553	75.0995	74.5258
C02	94.2421	94.6476	38.2511	35.6472	81.9161	77.9427	121.8104	127.2322
C1	25.7751	20.6396	8.8584	7.4067	16,7441	16.0690	28.1821	29.2003
C2=	3.0062	3.0787	2.3795	2.1164	4.5773	4.3715	7.3268	7.6132
	7.2668	5.3599	1.4549	1.3229	2.6498	2.4813	4.2320	4.3797
11 CO	7.2668	6.5004	2.7765	2,5138	5.6620	5.4346	10.0128	9.2815
S.	2,1248	1240.2	1261.0	0.6615	1.2051	1.1811	1.5489	1.5641
1 - C4 =	2.9516	2.8508	1.3216	0.000	2.7702	2.5993	4.8521	4.7976
2=04=	1564.0	0.3418	000000	0.5294	0.0000	0 0 0 0 0	0.1032	0.2084
	1,9301	1.3585	0/66.0	1.4549	0.7224	0.7091	1.0319	1.0431
* u 34		0,000,0	0.000	0,000	00000.0	00000*0	00000	0,1042
9 9 9	3.0341 1.4738	2,9890	1.1530	1.4049	2.011.2	3.4982 1 6060	4.9121	5,1431 2,020 c
	0.4007	6706 U	0.1507	0.6645	1.0461	1 7015	2021-2	1000 C
CB	6684.0	0.4190	0.1388	0.0000	1.4254	0.1180	000000	1000-7
C9	0.5862	0.7517	0.1004	000000	00000	0.000	0000-0	0.000
C10	0.4862	0.4438	0.0648	0.000	0.3111	0.3635	0.4751	0.4924
C11	0.3480	0.4288	0.0458	0.000	0.1939	0.2309	0.3185	0.3251
CIZ	0.2471	0.2147	0.0310	0.0000	0.1407	0.1628	0.2177	0.2149
C13	0.1830	0.1528	0.0186	0000000	0.0957	0.1112	0.1507	0.1398
C14	0.0419	0.0333	0.0128	0.0000	0.0635	0.0754	0.1060	0.0921
C15	670 0	0.0228	0.0092	000000	0.0444	0.0521	0.0752	0.0625
. C16	0.0216	0.0155	0.0060	0.0000	0.1917	0.2076	0.1336	0.0953
	0,0102	0.0110	0.0049	0.0000	0.1464	0.1540	0.1118	0.0621
	1250 0	0/20-0	8500°0	00000		1411.0	0.0693	0.0391
		0.01000		00000	0.042	0.0523	0.03/5	CHI0.0
101	0 0148	7210°0			2200.0	000000	0070.0	/ #TO " O
122	7500 U							
023	0-0060	0.0027		0.0000		6 5 7 0 ° 0	001010 00177	
C24	0.0029	0.0026	0.0006	0.000	0.0167	0.0098	0.0049	0.000
C10H C20H	0.5381	0.1454 2 Ause	0.1803 0.6020	0.1540 0.0347	0,3957	0.2748	0000000	0.1441
						740/17		5715°C
		C760.0	0.6223.0		0,010,0	2000 0	0.0000	
C40H	0.1540	0.1253	0.0527	0.0675	0.1188	0.0896	0.1555	0.1441
ACETONE	0.0703	0.0844	0.0293	0.0339	0.1058	0-0686	0.7852	0.2434
ACETIC ACID	0.1802	0.1106	0.1641	0.2426	0.5544	0.5357	0.5153	0.5308

.

																.'	
				•													· .
	•	- 		•													
	· .																
·					•				•	2				-			•
·		i			•				1							•	
	000	40	24	00	=	,	1 		00	84	86						•
Ξ	00	84	9 G G	- 85 - 85	90		: ·		0. 0.	• 08	• 23						
	300	50	47	0 -	, O			•	65	m	105						
	-							•		_							
	000	160	326	611	667	· ·			000	110	291						
ប	0.0	8 0 8 0	0°0				:		0°8	3.3	6 . 8						
	0 m		9.4						រល់ រ		10						•
	000		4	0	5 m	•		:	0	ŝ	ţ				•	• •	· · .
	0000	933 248	674 961	566					000	932	134		•				·• .•
<u>i</u> .	0.0-	0 -	2.2	•-	0			1	n.		1.	•					
	39.5		ł	l	i i		1	· .			10						
•	000	50	34	44						00	32						
•••T	000	95	86 93	54	6			•	:	68	41	·			•		• .
•	75	01	29	0-	0			· ·	:	m	06	•					
					1				•								
•	000	440	153	333 11	11				:		213	•				•••	•
		0.5	54	0			:		÷		N.	. • •		·			
·	300		~~					•	;		1 0 I						
			2 2 2 7	o à	, o				. :	4	8						• • • •
	000	043 690	164 427	100	100				000	183	583	•.					•
ບ	000		2.0	00			•		9	2	8	•					
:	m N ·					•			•			÷					•
	000	22	11	20.	28		; ; ·	,	00	82	. 18						
æ	004	- 0 4 - 0 4 - 4	.10	. 45 32	50				3.	8 4	۲۲.	: •					
-	300 275	23	35	.o	0	•	• • , •	:	5	Ņ	04						
				1	į				;							•	•
	000	970	829 C33	000 708	192		: .	•	000	443	886			•		•	,
A	0.0	3 4	- · •	. S . S			: :	•		۲ ۰ ۵	9						
	30	~~~	4 M	:	•		;		4	••	10		•				
	່ວີຊີ	25)		•	•			•	• •		:						
	SIG SIG	: C	Ņ	F	1	•	5	۲ Λ			ΣHΥ						
	d H	H N	S II	IR		•		TE:	•							· · ·	· .
-2	EME	SIS	IVEF	IN/I			FIN .	URI	:		KEC.						·
en H	PF. AS.	AS, VER	CON	9 0		1s	A 4 ARC 01/E	LVS	*: ;		ÅL					. •	·
4 10D	U E N U E N U E N	C C C	N C S	LDS	XV	ц¥5 ЦЦ	: [HH.		ER I						
UN F.H.	S V S V G	121	12+1	UIE V	3	NNA.			; ; ;	Ч. С	IA F						•
، ملد جلہ	, ,		<u>,</u>			~	:		ł		35						

. **.**

RUN # = 2-24						
PERTON	L	J	¥	÷	æ	z
MOGAR FLOW RATE IN						
MMOLEZHR COT	499.8503	498.5677	498.5677	482.6069	505.8737	487.2596
H2	953.2028	1001.6403	1001.6403	969.5744	992.2328	959.9755
CU2	0.000	0.000	0000.0	0,0000	00000*0	0000.0
UZH	0.0000	0000.0	0.0000	0000 0	0.000	0,000.0
CH4	0.000	0.000	0.000	0000	0.0000	0.000
C2H4	0.000	0.000	000000	00000	0 * 0 0 0 0	0.000
C3H6	00000	0.000	0.000	0.0000	0.000	0.000.0
C4H8	0000.0	00000	0.000	00000	0.000	0,000.0
C5H10	0,000	0.0000	000000	0000*0	0.0000	0.0000
MOLAR FLOW OUT						
MMOLE/HR CO	275.8192	268.4094	84.7207	71.2212	277.5360	281.6792
. H2	769.7017	771.5311	592.6820	569.7707	794.1628	796.6819
H20	54.0263	45,9829	102.8603	108.2229	47.5797	47.3369
C02	95.4154	88.6147	145.7623	149.4768	91.3106	91.8782
C1	16.5020	16.0906	36.0129	40.3587	15.6189	15.7160
C2=	5.8436	4.4307	7.8327	9.2320	6.0073	4.8357
C2	3.5361	2.4486	4.8613	5.6275	3.6044	2.4178
C3=	8.2510	5.7133	10.8040	12.3477	7.2087	7.2535
C3	0.000	1.0494	1.5307	1.7588	00000	0.0000
1-C4=	3.5361	2.7984	5.2215	5.8908	2.4029	2.4178
2-C4=	00000	0.000	0.1801	0.1755	0000000	0.0000
I-C4	1.1/87	0.5830	1.0805	1.1427	1.2015	1.2089
N-C4	00000	00000.0	0060.0	0.0878	0.0000	000000
	0.1703	2.7652	4.9757	5.9506	0.1398	0.7874
Cê	0.2902	1.3367	2.6674	3.1562	0.2281	0.5269
C.1	0.4533	1.0017	1.6652	2.2340	0. 3577	0.4803
CB	0.5611	0.6295	1.3238	1.5217	0.4295	0.3449
C9	0.4472	0.4176	1.0689	1.1719	0.3203	0.4247
C10	0.3792	0.3828	1.0429	1.0802	0.3028	0.2673
C11	0.3212	0.3135	0.8231	0.8428	0.2488	0.1855
C12	0.2544	0.2471	0.4850	0.4820	0.1893	0.1293
C13	0.21/3	0.2016	0.3420	0.3337	0,1321	0,0228
C14	0.1110	0.1256	0.2541	n.2491	0.1019	0.0760
C15	0.1084	0,0443	0.1725	0.1644	0.0796	0.0536
C16	0.0846	0.0711	0.1112	0.1010	0.0619	0.0395
C17	0.0600	0.0527	0.0666	0.0550	0.0497	0.0287
CIB	0.10.0	0.0479	0.0404	0.0284	0.0550	0.0192
C19	0.530	0.0309	0.0383	0.0224	0.0460	0.0136
C20	0.0426	0.0207	0.0243	0.0170	0.0320	0.0066
127	CA20.0	0,1148	2410.0	2210.0	0.0230	0,0068
	1120.0	0.110	0.0147	9110 0	2/10.0	0.0052
C23	0,0151	0600.0	0.0105	0.0074	0.0127	0.0037
C.24	6110°0	0.0072	0.0101	0.0071	1600.0	0.0024
CIOH	5641.0	0.3639	0.0000	0,000	0.000	0.1310
C20H	2.4502	2,5792	5.7720	5,0913	2.4916	2.4314
N-C30H	0.0133	0.6226	1.7723	1.9117	0.6029	0.5423
I-C3UH	0.1131	0.620.0	0, 2505	0.3648	00000*0	0 • 0000
C40H	0,1460	0.1732	0.2997	0.2862	0.0950	0.1036
ACETONE	0.0675	0.0871	0.6519	1.1119	0,0869	0.0752
ACETIC ACIU	0.1171	0.2142	0.2125	0.2956	0.2335	0.1589

.

			•		
Z	300.0000 275.0000 1.1490 0.9550 17.0102 42.1911 29.6007	0.4167 1.0222 0.1444		3,3393 102,8789	10104901
W	300.0000 275.0000 1.1870 0.9510 19.9510 19.9513 32.5497	0.4222 1.0333 0.1056		4.1016	
Ľ	300.0000 325.0000 1.1490 0.6940 41.2350 85.2424 63.2387	1.2333 2.4222 0.0667		3.1691 104.8025	3
×	300.0000 325.0000 1.1870 0.7120 40.8289 83.0072 61.9180	1.1722 2.3111 0.1944		3.3513 103.8791	
.	300,0000 275,0000 1.1870 0.9220 22.9732 46.1639 34.5686	0.5000 1.0278 0.1056		3.5790 102.6148	
Ţ	300.0000 277.0000 1.1490 0.9330 19.2510 44.8196 32.0353	0.1111		4.2712	· · · • • • • • • • • • • • • • • • • •
k1):1	SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C FEED GAS, SCFH (32F) TALL GAS, SCFH (32F) H2 CONVERSION CO CONVERSION H2+CU CONVERSION	VIELDS GM/HR Dit. Aguedus Phase Wax	ANALVSIS. 01L FIA & AROMATICS 01EFINS SATURATES	BR# D.P. Material recovery	

A
2.6873 689. 6.5137 755.
0*0000 0*00 0*0000 0*00
0.0000 0.0000
0.000 0.0000
0.0000 0.0000
1 1 6 0 0 0 1 A E 1 1
7.1270 436.1272
5.6842 32.4172
1.0380 181.9342 8.2296 25.6387
3.7560 5.2920
4.08/9 5.1099
6.1875 8.6682 1.2152 1.4596
2.9829 4.6437
0.0000 0.3651 0.7730 1.0945
0.000 0.0000
2.8669 4.7830 5.563 2.3034
0,7193 1.0953
0.3151 1.5747
0.2558 0.7663
0.1853 0.6203
0.2281 0.6783
0.1774 0.5174
0.1409 0.2887 0.1066 0.2887
0.0807 0.2161
-0429 0.1050-0
0.0352 0.0735
0.0265 0.0450
0.UZUZ 0.U286
3.3256 0.3504 1.8653 2.7391
1.6484 0-7951
0.1202
3.0950 0.0958
1.04/2 0.2805 1.1846 0.2016

96 . 7166	96.5090	97.4068	97.1221	71.5210	98.4029	97 ₁ 8889	100.4246	94.6359	6111•66	100,000	ם שאדבאנואט אצינטעקאו ס
·		3.1958	3.6070	3,7206	3.7517	4,8781	4,1243	4.4300	3.8575	8/16°E	• d•0
			51.0000	71.0000	60,0000	62,0000	78.0000	16.0000		44.0000	BR #
				20-0000 64-0000	•	70.0000		•	23.0000		SATURATES
- - -	*		: : :	16,0000	· · · · · · · · · · · · · · · · · · ·	14.0000	•		8,0000 70,0000		FIA % Ardmatics. Unefins
											ANALYSIS
0.0778	0.0611	0.0944	0.1278 0.0833	0.7600	0.4167 0.3444	0.4278	0.8278	0.8111 0.2778	0.8042 0.2500	0.7167 0.2583	AJULITUS PHASE WAX
0.0111	0.0056	0.0556	0.1722	1,9000	0.6556	0.7389	1.4722	1+5222	0.5375	0.4833	YTELDS GM/HR
7.8194	7.6327	15.2215	15.1759	61.7378	35.2101	36,8036	57.1583	54.8706	35,9237	36.6186	H2+CO CONVERSION
7.8961	6,9536	12.0911 18 3520	10.6729	31.0532	27.9132	30,3662	46.7408 67.5758	42.2752 67.4660	32.0673 39.7600	33,9474 39,2899	HZ CONVERSION CO CONVERSION
1.0740	1.0780	1.0310	1.0340	0.6370	0,8840	0.8720	0.7170	0.7200	0,8720) 0.8650	TALL GAS, SCFH (326
251,0000	250.0000 1.1490	275.0000	275.0000 1.1490	325.0000	275,0000	275,0000.	300.0000	300,0000 1,1530	2/5.0000	0000.612	PLED GAS, SCFH (32F
300.0000	300.0000	300.0000	300.0000	300.0000	300.0000	300.0000	300.0000	300,0000	300,0000	0000 00E	SYSTEM PRESS, PSIG
ت.	۲	در	-	Ξ	بو	ы	۔ م	: ص	H	Υ.	KUM # = 2=25 P+,P100

ŋ	445.0040 904.2240 0.0000 0.0000 67.3900 0.0000 0.0000	732 732 732 732 732 732 733 733	0.3042 0.0000 0.1226 0.0355 0.2192
I	445.0040 904.2240 0.0000 0.0000 67.3900 67.3900 0.0000 0.0000	7313 735 735 735 735 735 735 735 735 735 73	0.4143 0.0201 0.0759 0.0836 0.2561
Ξ	497.1095 949.2907 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	72 6566 6566 646 646 646 646 646 6	0.6571 0.0000 0.1398 0.1485 0.5005
5	497.1095 949.2907 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	72 728 704 708 704 704 704 704 704 704 704 704	0.6468 0.0000 0.1264 0.1359 0.4873
ĺ₽.	485.0782 962.9164 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	83 856,7173 856,7173 856,7173 89,9579 89,95793 89,95793 80,0000 0,00000 0,0000 0,0000 0,0000 0,00000 0,00000 0,00000 0,00000000	0.1957 0.0572 0.0285 0.1957
لد	485,0782 962,9164 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	837 846 856 856 856 856 856 856 856 85	0.1982 0.0000 0.0578 0.0288 0.1977
c	485,0782 952,9164 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	82 82 82 82 82 82 82 82 82 82	0.0486 0.0759 0.0759 0.3750
υ	482.3748 964.7496 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	88 87 87 87 87 87 87 87 87 87	0.3514 0.0000 0.1192 0.0746
20	482,3748 964,7496 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	52 100 10	0.0018 0.0018 0.1573 0.1573 0.3956
A	482,3748 964,7496 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	10000000000000000000000000000000000000	0.8240 0.8240 0.1871 0.1871 0.1441
ለሀቤ # == 2=26 ንቲደተብህ	ИЛЛАН FLOW RATE IN МАЛЛЕ/НН СО СО2 Н20 С14 С14 С244 С246 С346 С346 С346 С346 С346 С346 С346	MOLE/HR FLOW UUT MMOLE/HR 001 H20 H20 C02 H20 C02 C02 C02 C02 C02 C03 C03 C03 C03 C03 C03 C03 C03 C03 C03	N+C30H T-C30H T-C30H C40H ACETINE ACETIC

.

RUN # = 2-26

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· • •					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ņ	300,0000 275,0000 1.1230 0.9820	16.1358 25.8490 20.9924	0.0611 0.4778 0.0444	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	38,0000	2.6495 100.5067	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ħ	400,0000 250,0000 1,1230 0,9540	16.4449 29.6434 23.0441	0.1545 0.6591 0.1000		41.0000	2,8223 98,5399	
UN FIETS FIETS A A B C D F F F F F F F F F F F F F F F F F F	Ŧ	400.0000 275.0000 1.1450 0.8590	24,5665	0.8278 1.2056 0.0611		41.0000	3.9917 98.5770	
R N C N E F VSTRM PRESS, PSIJE 400, 0000 400, 0000 400, 0000 300, 0000	3	400.0000 275.0000 1.1450	25.3892 54.0323 39.7108	0.7000 1.2167 0.0722		52+0000	3.9167 98.4591	
UN 1 = 2-25 A A A C D C D C D C D C D C D C D C D C	Ŀ	300.0000 250.0000 1.1450	11.0289 22.7478 16.8883	0,0333 0,5278 0,0611			2,3904 98,2632	
10.4 # = 2-26 A B C T CFATTA FERP, PEG C 400,0000 400,0000 400,0000 VG CATT FEMP, PEG C 400,0000 400,0000 400,0000 VG CATT FEMP, PEG C 71,1450 1,1450 1,1450 1,1450 Att, GAS, SCFH (327) 0,4126 0,1334 23,1125 41,9334 2 CUNVERSION 57,1225 41,9334 22,1204 25,6664 2 CUNVERSION 57,1225 41,9334 22,1204 25,6864 2 CUNVERSION 57,1225 41,9334 22,1204 26,7704 2 CONVERSION 57,1225 41,9334 22,1204 26,7704 2 CUNVERSION 57,1225 41,9334 22,1204 26,7704 2 CONVERSION 6,71125 0,1125 0,1204 0,1134 0 LL 0,1125 0,1204 0,000 0,0000 BR # 55,0000 59,0000 59,0000 6,70000 BR # 5,3410 100,1102 99,1115 99,5854 81,2803 AFKIALAL RECOVERY 100,1102 99,1115 99,5854 81,2803	E	300.0000 250.0000 1.1450 1.0300	10.0491 21.7458 15.8974	0.178 0.5333 0.1000	1	32,0000	3,0244 99,4543	
10.0 μ <td< td=""><td>د</td><td>400.0000 250.0000 1.1450 0.9830</td><td>6./2008 44.6219 25.6864</td><td>0.1444 0.7833 0.1556</td><td>•</td><td>30.0000</td><td>3.2754 87.2803</td><td></td></td<>	د	400.0000 250.0000 1.1450 0.9830	6./2008 44.6219 25.6864	0.1444 0.7833 0.1556	•	30.0000	3.2754 87.2803	
IN # = 2-26 A A B 'FHTDD A A B 'YSTER PESS, PSLG 400.0000 275.0000 'EED GAS, SCFH (32F) 1.1450 1.1450 'EED GAS, SCFH (32F) 0.8260 0.8350 'EED GAS, SCFH (32F) 0.8260 0.8350 'EED GAS, SCFH (32F) 0.8260 0.8350 'ELL GAS, SCFH (32F) 0.84260 0.6792 'ELLS GM/HR 0.6583 0.6792 'IL GAS, SCFH (32F) 0.8126 0.9000 2 CUNVERSION 43.1725 41.9345 2 CUNVERSION 57.5215 56.1348 2 CUNVERSION 57.5215 56.1364 2 CUNVERSION 57.5215 56.1364 2 CUNVERSION 57.5215 56.1364 2 CUNVERSION 57.5215 56.1264 2 CUNVERSION 57.5215 56.1364 0.1102 9.1125 0.1264 0.1102 9.0000 59.0000 111 1.25 0.1204 ATERIAL RECOVERY 100.1102 99.1115	ບ	400.0000 250.0000 1.1450 0.9690	16.4525 28.1885 22.3206	0.2111 0.8056 0.0944	· . · · · . ·	46.0000	3.4906 99.5854	
IIN # = 2-26 A 'EHTDD VG CAT TEMP, DEG C 275,0000 VG CAT TEMP, DEG C 275,0000 ALL GAS, SCFH (32F) 1,1450 ALL GAS, SCFH (32F) 1,1450 2 CUNVERSION 24,0000 2 CUNVERSION 57,5215 2 CONVERSION 57,5215 2 CONVERSION 69,0000 3 ATURATES 0,0112 BR # 55,0000 ALTISIS 0,0112 ATERIAL RECOVERY 100,1102	H	400,0000 275,0000 1.1450 0.8350	21.9335 41.9335	0.6792 1.2500 0.1208	8 0000	23,000,0 59,000,0	3.8772 99.1115	
IN # = 2-26 FRA PRESS, PSIG VG CAT TEMP, DEG LEED GAS, SCFH (32F) 2 CUNVERSION 2 CUNVERSION 2 CONVERSION 2	· _ A	400,0000 275,0000 1,1450 0,8260	24.8236 57.5215 43.1725	0.6583 1.4167 0.1125	0000 2	24,0000 55,0000	3.2380 100.1102	
	RUN # = 2-26 PERTAD	SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C FEED GAS, SCFH (32F) TAIL GAS, SCFH (32F)	HZ CUNVERSIUN CO CUNVERSIUN H2+CO CONVERSION	YIELDS GM/HR Dil Aouedus Phase Wax	ANALYSIS OIL FIA * ARCMATICS	SATURATES BR (D.P. MATERIAL RECOVERY	

r404 * = 3-19 PERTOD	ĸ	Ŧ	υ	c	ند	Ĭz.	უ	-	J	
«шкак ғырж кать IN Ампьелня СО ИЗ	486.9821 060 8005	486.9821 960 4006	487.2260 060 0000	487,2260 050 0000	487,2260	487.2260	487.2260	517.8210	517.8210	
202	0000.0	0.0000	0000.0	0000.0	0000 0	000000	0000.0	20000°0	29090.0	
H20 744	0.0000	0.0000	00000	0,0000	0,0000	0.0000	000000	000000	0.000	
C2H4	0000.0	0.000	00000	0.000	00000-0	00000	0.000	00000-0	0,000	
C3H6	0.000	0,000	00000	00000	0.000	0.000	0.000	0.000	00000	
C4H8 C5H10	0000000	0.0000	0.0000	0000°u	0000000	0.000.0	0000000	0,0000	0,0000	
MOLAR FLOW OHT						, , ,			, , ,	
MADLE/HR CO	269.2396	264.7469	155.3612	153.5593	263.6552	261.0592	74.8784	306.0327	308.9920	
H2	760.3409	766.3719	648.1628	640.6456	748.7363	769.2549	563.5630	766.8819	759,9523	
07H	40.1395	44°38/9	60.1280 110 0305	64.0427	- 44,4530	45.0198	90.0393	33,3165	37,0709	
10	17.2170	18.2299	29.1922	78.8536	16.4362	16-5921	148.0108 39.7654	14,0415	84.10/3 13.6009	
C2=	4.8532	4.1805	6.0363	5.9663	5.1365	5.8019	10,1825	5.6406	5.4881	
C2	4.1601	3,5996	5.8380	5.7703	2.1392	2.7841	6.3200	2,2802	2.1478	
	5.3157	5.5733	8,8066	8.7045	5.3644	5,4536	12.1142	5.1606	4.8918	
	1.2010	1.5545 75567	1.9194 2.0578	1006	1.02/8 9 6959	1640.1	1.4431 K 0011	0.8401	0.8348	
2-04=	0.2307	0.2319	0.3955	0.3909	0.1139	0.1157	0.2633	0.1200	0.1193	
I-C4	1.0403	0.9289	1.3857	1.3696	0.5848	0.6966	1.2287	0.6001	0,5963	
2 - C 4	0.1153	0.1100	0.1982	0.1959	0,1139	0.1157	0.0878	0.1200	0.1193	
C5 C6	2.6903	2.8616 1.5831	3.8893	4.2914 7.5449	2.7704	2.6642	5.9726	2.5124	2,6330 1,5803	
C1	0.4764	1.1516	2.5018	1.9627	1.1307	0.9782	2.4931	1.0573	1.1955	
53 C 8	0./846	0.5578	0.9693	1.4069	0.7678	0.6170	1.5913	0.6531	0.9170	
C10 .	0.4951	0.5372	0.5310	0.6646	0.3447	0.3661	C761.1	0.3012	2755°0	
C11	0,3786	0.4145	0.4389	0.4762	0.3333	0.3202	0.6548	0.2494	0.2371	
C12	0.2038	0.3034	0.2816	0.2065	0.3055	0.2906	0.3781	0.2336	0.2232	
· C13	0.1449	0.1631	0.1898	0.1213	0.2317	0.2199	0.2659	0.1793	0.1600	
C15	0.071	0.0848	0.0930	0.0676	0.0920	0260°0	0.0528	0.1286	0.0705	
C16	0.0558	0,0619	0.0067	0.0035	0.0204	0.0174	0.0315	0.0682	0.0507	
C17	0.0408	0.0457	0.0505	0.0331	0.0534	0.0554	0.0169	0.0521	0.0373	
C19	0.0191	0.0242	0.0254	0.0148	0.0325	0.0446	0.0152	0.0311	0.0204	
C20	0.0144	0.0159	0.0188	0.0113	0.0327	0.0331	0.0072	0.0221	0.0159	
. 221	0110.0	0.0118	0.0128	0.0080	0.0225	0.0249	0.0034	0.0169	0.0117	
	0,0090	0.0096	8600 0	0,0070	0.0165	0.0190	0.0033	0.0121	0.0080	
C24	0.0041	0.0044	0.0045	0.0047	0.0076	0.0087	0.0030	0.0037	0,0029	
	0 4640	0 4462	0000 0	0.000	0000 0	0000		0000 0	0000 0	
C104 C20H	3.5056	3.3725	7.2564	6,7259	4.0142	3.4784	6.9107	3.0045	3.3475	
N=C30H	0.1217	0.6943	1.2681	1.1697	0.4460	0.5466	1.5023	0.3343	0.3719	
I=C30H	0.2062	0.1984	0.2114	0.1462	00000	0.0497	0.2003	000000	0.0000	
ACETONE	0.1547	U.170%	0, 2913 0 . 4932	0.5119 0.5119	0.14482	U.1765 0 1491	0.0000	U.1440 D.1486	U.1653	
ACETIC ACID	0,1547	0,1488	0.2114	0,2193	0.2478	0.2485	0.3005	0.1857	0,2066	

55.0000 307.0000 375.0000 355.0000 375.0000 355.0000 375.0000 355.0000 375.0000 355.0000 375.0000 355.00000 355.0000 355.0000 <td< th=""><th>55.0000 307.0000 277.00000 277.0000 277.0000 <td< th=""></td<></th></td<>	55.0000 307.0000 277.00000 277.0000 277.0000 <td< th=""></td<>
02120 07766 35570 09916 05916 062490 09751 12-2227 02120 502434 50.4752 45.4193 94.6317 40.895 12.4324 15332 561131 50.4753 45.4193 94.6317 40.895 40.2324 1552 561131 50.4753 45.4193 90.8778 0.8711 1552 15728 01564 01595 01111 0.1139 0.2222 15020 561000 49.9000 45.0000 55.0000 55.0000 48.0000 1502 0.0156 101.2357 101.1399 0.2222 33978 29220 2.7728 33154 33306 2.7617 3.5500 3.2014 06098 96.95662 100.0155 101.2357 101.1643 102.2395	0.17760 0.77760 33.2972 19.6150 0.9120 0.9150 0.6940 0.9400 0.9400 0.2727 15.2325 50.1718 50.713 33.9728 33.1404 22.6668 91.74915 10.2277 15.1352 0.7718 1.6854 372 3.9928 13.1404 22.6668 9.4.2384 0.1718 1.6855 1.02563 0.7636 1.2444 0.4278 0.4278 0.1718 1.6855 1.0256 1.6444 2.1333 0.7889 0.47819 0.47819 0.1722 0.6699 9.4000 95.0000 1.0000 1.0000 1.1399 0.2222 0.66000 99.0000 95.0000 1.0000 1.0000 1.1399 0.2222 0.685 0.000 1.0111 0.1399 0.2223 0.1722 0.2667 0.1975 1.012557 1011140.1022395
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3,000 5,000 5,000 5,00000 5,0000 5,0000 5,0000 5,0000 5,0000 5,0000 5,0000	$\begin{array}{c} 3.0000\\ 5.0000\\ 5.0000\\ 5.0000\\ 5.0000\\ 5.0000\\ 5.0000\\ 5.0000\\ 5.0000\\ 5.000\\ $
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	56.000 69.000 49.000 49.000 59.000 48.000 3.3978 2.9220 3.3154 3.3806 2.7617 3.5300 3.2914 00.6898 96.8564 95.9874 100.6552 100.0155 101.2657 101.2555 00.6898 96.8564 95.9874 100.6552 100.0155 101.2657 102.2395
0.6699 96.6564 95.9844 100.6562 100.0155 101.2557 101.1643 102.2395	3,978 2.9220 2.7220 3.3754 3.3806 2.7617 3.5300 $3.291496.6564$ 95.9974 100.6562 100.0155 101.2957 107,103.3955
0,6898 96,8564 95,9894 100.6552 101.2557 101.1643 102.2395	0,6898 96,8564 95,9674 100,6562 100,0155 101,2557 101,1843 102,2395

RUN # = 3-20 PERINI	Q	ſ	ت	¢	÷	Ĺ.	C	I	-	
	Ł	;	J	-	J		,	:	*	
AULAR FLOW RATE IN										
ANDLE/HR CO	488.1146	479.4911	479.4911	479.4911	479.4911	479.4911	479.4663	479.4663	488.8910	
2H	952,8470	960.4431	960.4431	1644 046	960.44J1	960.4431	9695.049	0645.004	2616,164	
CIIZ	0,000	0,000	0.000	0000.0	0.000	0.000	00000	0000 0	0,000	
H20	0000.0	00000	000000	0000 0	00000	00000	0000 0	00000	00000	
194 1955		15 5415	0.0000	10 00 00	000000			0.0000 4 K K K K K K	14 5020	
51000 51000		0140*01	0140 01	0140°CT	0140.01	0170°CT	01700°CT		00000	
C3H6	0,000	00000	00000		00000					
C418 C5H10		0000								
			0000	•		0000				
MOLAR FLOW OUT										
MMOLE/HR CO	182.9820	184.7474	117.7050	118,8494	222,3627	224,2069	83.9565	62.2506	253,7360	
H2	653.6519	655,7513	573.9285	579.5083	688.4702	694.1802	518.7041	472.1937	720,9691.	
H20	58,545	57,3885	51.5516	73.0116	49.7207	51.2715	84.5642	83.7322	43.9443	
C02	105,7232	103.5401	123.1801	124.3776	90.8693	91.6229	128-0137	128.2974	83.8335	
CI	24.2958	22.2305	31.8439	32.1535	20.2048	20.3724	40.8981	39.8554	17.8845	
C2=	11.8939	14.6171	18.5229	18.7030	16.9974	17.1384	16.7080	16.0944	16.7667	
C22	12.0967	8.9333	9.6716	9.1657	6.0935	6.1440	11.5546	11.4636	6.7067	
C 3=	7.2172	7.1059	10.4929	10.5950	6.8417	6.8984	11.1390	11.2352	8,9422	
:	2.4402	1.9287	1.9158	1.9344	1.3897	1.4012	1,9952	1.9736	0.0000	
1-C4=	3,1512	3.2486	4.9769	4.9748	3.2074	3.2340	5.0705	5.0102	3,3533	
2-C4=	0,3053	0.2026	0.1821	0.1839	0.1067	0.1076	0.2497	0.3035	00000	
1-04	1.6268	1.2186	1.2775	1.2899	0.9617	0.9697	1.3298	1.2148	1.1178	
N-C4	0.1014	0.1013	0.0911	0.0919	0.1067	0.1076	0.1659	0.1518	0.000	
C5	3.7298	3.2316	9.2030	9.2854	3.2100	3.2150	4.9335	5.0152	0.1676	
C 6	1.8001	1.9833	4.6659	4.7131	1.7934	1.7498	2.7831	3.0886	0,2638	
C1	1.1047	1.5189	2.8453	2.8973	1.5650	1,4032	2.0972	2.7277	0.4034	
e C	1.0460	0.4877	1.2489	1.3482	0.8400	0.7825	1.3937	1.7855	0.4694	
C9	0.7130	0.6766	0.7797	1266.0	0.5476	0.5086	0.9938	1.2058	0,3931	
C10	0.7026	0.6886	0.4931	0.6827	0.4302	0.4065	0.7649	0.7582	0.3476	
C11	0.3832	0.5153	0.2371	0.5102	0.4252	0.4054	0.4935	0.3784	0.2624	
CIZ	0.2024	0.2654	0.1778	C 7 8 2 . 0	0.2958	0.2461	0/62.0	U.1303	0.2328	
C13	01410	0161.0	0.1094	0.1/80	0.2120	0.2095	0.1513	0.1144	C64I 0	
C14	0.13/2	0.1372	0.0677	0.1074	0.1521	0.1494	6260.0	0,0500	1411.0	
		1201-0	00000 CLCC C	1100.0		6/01°0		0660.0	0.000	
	0.440	0610.0	1070-0	6070°0		CO/0*0 .				
	0530	0.0530	0.0133	0.0046	7550 0	0.0000		1610°0	C120.0	
	Pht 1) U	10100 U	0.0100	100041	0.0286	0 0332	0.0032	0.0078	0_0261	
620	0.0281	0.0281	0.0071	0.0058	0.0188	0.0237	0.000	0.0037	0 0202	
C21	0 0201	0.0201	0.0045	0.0055	0.0119	0.0148	0.000	0,0000	0,0148	
C22	0.0149	0.0149	0.0043	0.0026	0.0076	0.0126	0*0000	0.000	0,0099	
C23	0,0084	0.0102	0.0021	0,0000	0.0036	0.0086	0.0000	0.000	0.0067	
C24	0.0059	0,0059	0.000	000000	0000.0	0.0049	0.000	00000	0,0039	
1111	0000	0,0000	0.0000	0.0000	0.0000	0,0000	00000	0-0000	00000	
C20H	4.0277	4.5323	5.7081	6.9378	5.0851	4.1680	6.8876	7.6731	3.5604	
N-C30H	0.84/3	0.8299	0.9514	1,1563	0.9040	0.9706	1.8176	1.9183	0.6340	
I-C30H	0,0000	0.0000	0.000	0.0000	0.0565	0.1713	0.4783	0.4796	000000	
C40H	0.2607	0.1915	0.2378	0.2478	0.2260	0.2284	0.3826	0.3837	0.1951	
ACETONE	0.3911	0,3830	0.4162	0.4956	0.2260	0.2284	1.2436	1.3428	0.1463	
ACETIC ACID	£17C*0	0.5107	0.5945	0.1435	CZRZ 0	1/60.0	0/82.0	1585.0	0,2920	
	:	•				•				

P+4[UD	.	н. Н		· · ·	· · · ·	-	2	5	: •, :
SYSTEM PRESS,PSIG Avg Cat Temp, deg C Fred Gas, scfh (32f	400.0000 275.0000	400,0000 275,0000 1,1540	400.0000 300.0000 1.1540	400.0000 300.0000 1.1540	400.0000 275.0000 1.1540	400,0000 275,0000 1.1540	400.0000 324.5000 1.1540	400.0000 324.5000 1.1540	400.0000 275.0000 1.1540
LATL GAS, SCPB (32F	0.8020	0.8010	0.7200	0.7270	0.8440	0.8510	0.6560	0.6000	0.8830
H2 CULVERSTON	31.4001	31.7241	40.2434	39,6624	28.3174	27.7229	45.9905	50.8334	24.2292
CU CUMVERSION	62,5125	61.4701	75.4521	75,2134	53,6253	53.2407	82.4896	87.0167	48.0997
H2+CO CONVERSION	46,4563	46.5974	57.8477	57.4379	40.9714	40.4818	64.2401	. 68.9250	36.1644
VIELDS GA/HR		•							
010	0 6792	0.6792	0.6875	0.8389	0.6056	0.5722	0.8944	1.0778	0.4500
AJUKIUS PHASE	1.4917	1.3583	1.3250	1.7944	1,2333	1.2167	2.0944	2.1333	1,0333
WAX.	0,0333	0,0958	0.0417	0.1056	0.0611	0.0500	0.1056	0.0500	0.0722
ANALYSIS OIL				•					
FIA &				•	**************************************				
AROMATICS	•								
SATURATES		•	•	•	•	· · · · · · · · · · · · · · · · · · ·	•		
BR #	43,0000	52,0000	27.0000	55.0000	60.0000	64.0000	69,0000	72.0000	54,0000
U.P.	3,3046	3 • 3331	2.5789	2,5999	3,2788	3.3136	2,5609	2.5228	3.7453
MATERIAL RECOVERY	96,5389	96,9518	96.4718	101.5993	98,5224	98.8551	95,2664	91.2631	95,5540

· · ·

											•																			•													
J	290.6439	0000-0	0,000	0.000	0.0000	0 • 0 0 0 0	0.0000		33 5360	739.6040	109.4952	62.5400	30.9168	6.8888	4,4508	4.00.00 1.00.22	4.3508	0.1811	1.2686	0.0905	3.9132 7 7688	1.5014	1.0522	0.7242	0.5370	0.4025	0407.0	101010	0.0437	0.0179	0.0121	0 0043		000000	0.0000	0.000.0	0.000	0.3787	11.0644	1.2859	0.2698 n.4493	0.5569	0,2636
Г	290.6439	2064°C011		0.0000	0.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000.0	, -	. 7 8795	634.9978	151.2421	38.5432	63.1849	7.8785	0.40U3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.6480	0.2360	1.4182	0.1573	4.2427	1.3248	0.7640	0.5556	0.4552	0.3103	01010	0.0714	0.0460	0.0108	0.0223	0.0054		0.000	0.000	0.000	0.000	0.0000	8.4946	2.4627	0.7854 0.6456	2.5509	0.2163
¥	295,9966	00000000	0,0000	0.0000	0.0000	0*0000	0.0000		8 8144	654.6691	126.5838	40.8667	60.6994	7.2118	: AITZ . /	2220.01	4.0065	0.0000	0.8013	0.0000	0.3631	1.1162	0.4390	0.3508	0.6630	0.4520	5/6T•0	0.0817	0.0552	0.0370	0.0302	0.0195	0 0070	0.0038	0.0018	0.000	0 0000	0.0000	11.8787	3.1984	1.5/US	3.2249	0.0796
υ	290.6439	2061 * 6011	00000	0.0000	0.000	0,000	0.0000		50 81 35	839-4057	72.5301	59.8125	25.2431	5+0689	4*C)**	LECC.1	3 0409	0.1013	1.1153	0.1013	3,0316 1.6456	1.0207	0.7276	0.4555	0.3533	0.3485	0.6444	2601.0	0.800	0.0604	0.0392	0.00.0	0.0123	0.0079	0.0061	0.0029	0.0014	0.000	9.2885	1.2114	0.3733	0.3833	0.1538
(tr.	290.6439	0000-0	0-000	0.000	0.0000	00000.0	0000		46.2240	812.4509	81.3552	62.9501	27.8355	550H.C	7 5724 5725	1.9673	3.5413	0.1965	1.2784	0,0983	3.6858	1.5616	0.6821	0.50.67	0.3899	0.3778	0503.0 Vcui 0	0.1340	0.0711	0.0506	0.0498	1250 0 CECU 0	0-0166	0.0105	0.0067	0.0032	0.0015	00000	10.4187	1,3588	0.4187	0.4300	0.1726
ж,	290,6439	2064 6011	0.0000	0.000	0*0000	0.000	0000000		93,1236	734.6167	98.9794	51.5836	39,8438	5.0027	010000	0.5790	3.6245	0,3560	1.7791	0.1776	4.1969	0.9473	0.6129	0.6322	0.4690	0.3260	1412.0	0.0985	0.0644	0.0582	0.0365	0,0073	0.0017	0.0000	0.000	0.0000	0.000	00000	13.2637	2.1292	0.6155	0.8156	0,1687
D	290.6439 1166 4069	0000-0	0.000	00000	0.000	00000	0000 0		35,2180	779.5462	85,2395	60.9168	37.6920	2640.4	20102 6	2.6649	3.1408	0.3808	1.8083	0260 0	3.94/5 1.9557	1.0383	0.6789	0.4911	0.3664	0.2492	0.1110	0.0759	0.0504	0.0350	0.0313	0.0133	0.00.0	0.0040	0.0013	0.0012	0,0000	0.0000	11.4265	1.8386	0.5300	0.7024	0.1453
υ	289.1683 1148 7370	0000-0	0.0000	0.0000	0.000	000000	00000*0		107-8460	920.0626	56.3451	49.4114	22.2430	1114°7	1000°C	2-1348	1.6856	0.2246	1.3476	0.0786	1.1524	0.8167	0.4513	0.3260	0.2551	0.1258	0000000	0.0638	0.0468	0.0346	0.0263	0.0179	0.0138	0.0101	0.0077	0.0055	0.0035	0.6900	4.6198	0,9893	0.3177	0.1141	0.0723
Ł	289,1683 1165 4370	00000	0.000	0.0000	00000.0	0.000	0.0000		104.7192	896.1722	57.8877	50.6103	23,6999	8460°7	0. 10 HA	2.5349	1.5436	0.3312	1.5436	0.11.0	1.2921	0.7175	1.1008	0.2950	. 0.2238	0.11286	0.0788	0.0569	0.0417	0.0308	0.0234	0.0160	0-0123	0.000.0	0,0069	0.0049	0.0032	0.7088	4.7462	1.0216	u. zost 0. 3264	0.1173	0.0743
۲	289.1683 1165 4374	0000 0	0.000	0.000	00000	0000000	00000.0		102.1108	884.2366	57.0251	48.7702	24.4415	1,000 AUDO	3 HU19	2.9327	1.3038	0.3262	1.7384	0°1084	2.2388 1.2388	0.1521	8766.0	0.2217	0,1/38	187 1 0	0.0705	0.0529	1.6£0.0	0.0382	0.0293	0.0178	0.0145	0.0115	0,0088	0,0063	0.0047	0.6983	4.6755	1.0063	0.3215	0.1155	0,0732
	IN		•	•					:					•			:															•			• •				•				
JN # = 3-21 28100	JLAR FLOW RATE 10LE/HR CO H2	C02	H20	CH4	C2H4	C3H6	C5H10	LAR FLOW DUT	ULE/HR CO	H2	H20	C02		52		50	1-04=	2-C4=	1-C4		Cé.	C1	C8	6.	010	613	C13	C14	C15	C16	C17	C19	C20	C21	C22	C23	C24	C10H	C20H		C40H	ACETONE	ACETIC ACID
<u>.</u> ж.	3 X 2 X	;		ļ				04	E E		:						;			4 6	5	1		;						•													

	-					
	300.0000 275.0000 1.1530 0.7160 36.5417 88.4615 62.5016	0.5944 2.6667 0.1167	10,0000 10,0000 10,0000	72.0000 2.6368	102.6376	
H .	300,0000 325,0000 1,1530 0,6220 45,5170 97,2893 71,4031	0.5000 3.5167 0.0389	86,0000	77.0000	96.2545	
н	300.0000 326.0000 1.1530 0.6330 43.5240 97.0221	0.5722 3.3611 0.0222		3.1178	1679.98	
U	300.0000 275.0000 1.1530 0.8010 27.9787 79.4207 53.6997	0.4833 1.8722 0.0222	10.0000 16.0000 74.0000	51.0000 3.1930	95.8186	
بتا	300.0000 275.0000 1.1530 0.7770 30.2914 84.0943 57.1929	0.5333 2.1000 0.0167	8,0000 16,0000 76,0000	65.0000 3.1355	98.2435	
म	300,0000 300,0000 1,1530 0,7020 36,9696 92,0440 64,5068	0.5000 2.6444 0.0444	10.0000 53.0000 37.0000	51.0000 2.9435	94.7695	
<u>م</u>	300.0000 300.0000 1.1530 0.7510 33.1147 87.8828 87.8828	0.4056 2.2778 0.0389	8,0000 53,0000	53,0000 2,8800	97.0568	
υ	300.0000 275.0000 1.1530 0.8880 21.0543 62.7048 41.8796	0.3083 1.3583 0.0250		39.0000 3.1038	96.3482	
19	300,0000 275,0000 1.1530 0.8700 23,1042 63,7861 43,4452	0.2750 1.3958 0.0208		38,0000 3,0031	96,9583	
Å	300.0000 275.0000 1.1530 0.8570 24.1284 64.6881 44.4083	0,2333 1,3750 0,0458		36, U000 3, 0753	94.3123	
HN # = 3-21 F.K100	YSTEM PRESS, PSIG VG CAT TEMP, DEG C EED GAS, SCFH (32F) All GAS, SCFH (32F) 2 CUNVERSION 2 CUNVERSION 2 CUNVERSION 2 CUNVERSION	LELDS GM/HR Dit Aquenus Phase Wax	VALYSIS OIL FIA % Aromatics Culefins Saturates	BA #	TERIAL RECOVERY	
a d	N K E F H J H	7	6	.	47	

RUM # = 3-22 PERIUD	V	£	U	٦	œ	is.	უ	Ŧ	I	J
ИОБАН FLDW KATE IN Имоце/ни со н2 н20 сн2 с14 с346 с346 с346 с346 с346 с346 с346 с34	517,8210 929,4582 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	488.1146 952.8470 0.0000 0.0000 0.0000 14.4683 0.0000 0.0000 0.0000	479.4911 960.4431 0.0000 0.0000 0.0000 15.6416 0.0000 0.0000 0.0000	479.4911 960.4431 0.0000 0.0000 15.6416 0.0000 0.0000 0.0000	479.4911 960.4431 0.0000 0.0000 0.0000 15.6416 0.0000 0.0000 0.0000	479.4911 960.4431 0.0000 0.0000 15.6416 0.0000 0.0000 0.0000	479.4911 960.4431 0.0000 0.0000 0.0000 15.6416 0.0000 0.0000	479.4663 960.3950 0.0000 0.0000 15.6416 0.0000 0.0000 0.0000	479.4663 960.3950 0.0000 0.0000 15.6416 0.0000 0.0000 0.0000	488.8910 951.5132 0.0000 0.0000 14.5938 0.0000 0.0000 0.0000 0.0000
MALAR FLAW OUT MMOLE/HR CO H2U H2U CO2 C1 C2= C2=	308,9920 759,9523 37,0709 84,1075 13,6009 5,4881	182,9820 653,6519 583,5958 105,7232 24,2958 11,8939,	184.7474 655.7513 655.38853 103.5401 103.5401 14.6171	117.7050 573.9285 513.9285 123.1801 31.8439 18.5229	118.8494 579.5083 73.0116 124.3776 32.1535 18.7030	222.3627 688.4702 49.7207 90.8693 20.2048	224.2069 694.1802 51.2715 91.6229 20.3724 17.1384	83.9565 518.7041 84.5642 128.0137 40.8981 16.7080	62.2506 472.1937 83.7322 128.2974 39.8554 16.0944	253.7360 720.9691 43.9443 83.8335 17.8845 16.7667
C2 C3= 1-C4= 2-C4= 1-C4	2,1478 4,8918 0,4348 2,5055 0,1193 0,1193	12.0967 7.2172 2.4402 3.1512 0.3053 1.6268	8.4333 7.1059 1.9287 3.2486 0.2026	9.6716 10.4929 1.9156 4.9269 0.1821 1.2775	9.7657 10.5950 1.9344 4.9748 0.1839 1.2899	6.0935 6.8417 1.3897 3.2074 0.1067 0.9617	6.1440 6.8984 1.4012 3.2340 0.1076 0.9597	11.5546 11.1390 1.9952 5.0705 0.2497 1.3298	11. 4636 11. 2352 1. 9736 5. 0102 0. 3035 1. 2148	6.7067 8.9422 0.0000 3.3533 0.0000 1.1178
5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,01193 2,0130 1,0903 1,19555 1,19555 1,19555 1,19555 1,195555 1,1955555 1,195555555555	0.1014 3.7298 1.8601 1.1647	0.1013 3.2316 1.51833 1.5189 0.4877	0.0911 4.001 2.0030 2.8659 1.2453 1.2453	0.0919 9.2854 2.8131 2.8973 1.38973 1.3882	0.1067 3.21067 1.7934 1.5650 0.8650	0.1076 3.2150 1.7498 1.4032 0.7825	0.1659 4.9335 2.7831 2.0972 1.3937 0.9938	0.1518 5.0152 3.0866 2.7277 1.7855	0.0000 0.1676 0.2638 0.4634 0.4694
C10 C110 C110 C110 C110 C110 C10 C10 C10	0,0122	0,1026 0,3832 0,2654 0,1910 0,1910 0,1031	0,6886 0,5886 0,5153 0,1910 0,1931	0.2371 0.2371 0.1778 0.1778 0.1078 0.0574 0.0443	0.6827 0.5102 0.2145 0.1780 0.1780 0.0017 0.0017	0,4302 0,4352 0,2958 0,2120 0,2120 0,1558	0,4055 0,4055 0,2861 0,2861 0,2861 0,1075 0,10759	0.1613 0.2570 0.1613 0.04925 0.04925	0.13784 0.13682 0.11463 0.11464 0.01990	0.3476 0.2328 0.2328 0.1695 0.1197 0.0890
5335-6684 5335-6666666666 5335-666666666666666666	0.0273 0.0273 0.0274 0.0274 0.0274 0.0274 0.0274 0.0157 0.0080 0.0080 0.00246	0.0081 0.0081 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088	0,00589 0,0589 0,0394 0,0281 0,0102 0,0102 0,0102	0.0195 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132 0.0043	0,000 0,000000	0.00119 0.00119 0.00119 0.00119 0.00119 0.00119 0.0000 0.0000	0.00580 0.04380 0.0332 0.0188 0.0126 0.0126		0.0000	0.0148 0.0362 0.0261 0.0148 0.0199 0.0099
C10H C20H N-C30H I-C30H C40H ACETUNE ACELLC ACID	0.0000 3.3475 0.3175 0.0000 0.0000 0.1653 0.1653 0.2066	0.0000 4.6277 0.8473 0.0000 0.2607 0.3911 0.5214	0.0000 4.5323 0.6299 0.0000 0.1915 0.3130	0,0000 5,7081 0,9514 0,000 0,2378 0,2378 0,2378	0,0000 6,9378 1.1563 0,0000 0,2478 0,7433	0.0000 5.0451 0.9040 0.0565 0.2260 0.2260	0.0000 4.1680 0.9706 0.1713 0.2284 0.2284	0.0000 6.8876 6.8876 1.8176 0.4783 0.3826 1.2436 0.2870	0.0000 7.6731 1.9183 0.4796 0.3837 1.3428 1.3428	0.0000 3.5604 0.6340 0.1951 0.1463 0.1463

4<u>8</u>

KIIN # = 3-24	·					ı	:				
PERICU	A	£	U	c	ы.	لك	ი	н	I	.	2
MOLAR FLOW RATE IN	_						•	1	•.		• .
MMOGE/HR CO	492.2462 971.3082	492.2462 971.3082	500.8366 960.6691	500.8366 960.6691	489.6103 974 8243	489.6103 074 0743	489.6103 074 0743	487.1661 077 7604	508.2189 066 2150	486,3871	486.3871
C02	0000	00000	0.0000	0.000	0000*0	000000	00000	00000 0	00000	,0000.0	00000-0
H20	0,000	0,0000	0.0000	0,000	0,000	0,0000	0.0000	0 • 0 0 0 0	0.0000	0.0000	0.000
CH4	0.000	0.000	0,0000	00000	0.000	0.0000	00000	00000	00000	0.000	0.0000
C2H4	00000	0000 0	0000.0	0.000	0.0000	00000*0	00000	0.000	00000	00000	0 0000
C3H6	00000.0	00000 0	000000	00000	00000	0.0000	0.0000	00000	00000	0.0000	00000
	00000					0000.0	00000	000000	0000	00000	00000
		0000	0000	0000.0	00000	0000.0	0,000	0,000	0000 *0	0,000.0	0000-0
MOLAR FLOW DUT				1							
MMULEZHR CO	189.5145	202,0905	332.0258	341.0710	243.4051	249.0973	143.0752	143.3781	257.6912	258.7554	62.0283
H2 H2U	661.2646 65.1116	690.0396 54 0868	772.3725	793.0201 1020.04	722.4117	736.0703	625.1126	635,0975	722.8752	716.0378	529,3052
CU2	109.0219	106.8047	53,0383	51.9318	91.8301	42.0042	126.7510	120.2834	0407-20	50110-05 5011-18	1040 EVI
CI	25,3/01	19,9997	8.2422	R.4359	21.1319	19.5236	30.2477	30.2155	18.9643	2011202	45.9004
C2=	4.2795	4.6069	3.5324	3.6159	5.4214	4.9367	6.7218	6.1588	5.5777	5.0190	7.7741
C2	6.6232	4.3978	2.3549	2.4106	3.7613	3.3663	5.3771	5,3890	4.4622	3.5690	8.0226
U CO	7.6420	6.8064	3.5324	3,6159	6.8594	6.5082	9,6983	8.2752	8.9244	6,5804	12.4886
	2.04/0	1, 1800	C//[.º]	FCU2.1	1.0485	1.4582	1.8247	1.8280	00000	1.4501	2,3155
14240	3.2901 0.4040	5012°0	C//T*T		3.2080	3,0298	4.41/2	4°[4]2	3.4400	3.2340	1620.0
2-C4+ I=C4	1.1326	1.1515	1.1775	1.2053	0,4853	0.8974	1.1518	1.0582	0.000	10000	1 4880
N-C4	0.000	0.0000	0 0 0 0 0	0.0000	0.000	0.000	0.000	0.1922	0.000	00000	0.0826
C;	4.0522	3.5194	00000	0,3154	2,9876	4.6072	7.1435	5.5674	0.2453	3.2624	5.9692
<u>.</u>	2.494	2.5108	0.3128	0.5018	1.2169	1.8239	3.0858	2,3530	0.3593	1.7004	3.4102
5	0.08/4	29/0.2	0,5665	0.1538	1.3346	2.4860	4.3403	2.7145	0.5203	1.2130	2.6314
5	0°/469	1.0623 0 4442	0.7269	0.0000	1.5221	0.1122	00000	00000	0.6086	0.7202	2,1607
C10	0./141	5955.0	0.2115	0.2445	12/2.1	00000	0.0000	0.5446	001240		1 5678
CII	0.5288	0.2332	0.1634	0.1851	0.2343	0.1353	0.5657	0.3509	0.3345	0.3193	0.9579
C12	0.3145	0.1559	0.1234	0.1290	0.1518	0.0771	0.3704	0.2247	0.2664	0.2072	0.6216
C13	0.2084	0.1028	0,0895	0.0882	0.1026	0.0433	0.2325	0.1383	0.1973	0.1396	0.4189
C14	0.0529	0.0687	0.0680	0.0635	0.0667	0.1868	0.2794	0.1511	0.1195	0.0987	0.2960
		0,0403	TICO 0	0 0440		0.1314	0 1056	0 0000	0.0450	9040.0	0.1913
C17	0.0529	0.0660	0.0933	0.0422	0.0523	0,0663	0.0627	0,00,00,00	0.0481	0.02020	0-0405
CIR	0.0088	0.0386	0.0676 .	0.0319	0.0296	0.0425	0.0296	0.0118	0.0413	0.0175	0.0526
C19	0.0250	0.0197	0.0473	n.0166	0,0187	0.0296	0.0187	0.0083	0.0254	0.0104	0.0312
C20	0.0159	0.0134	0.0317	0.0086	0.0133	0.0221	0.0133	0.0000	0.0167	0.0059	0.0178
(21) (22)	0710 0	2010.0	6810*0-		0,006	0,0153	00000	00000	0.0142	0.0019	0.0056
101			7200 0	0 0025	100000	0110.0			1010.0		
C24	0.0044	0.000	0.000	0.0024	0,000	0.0000	0.000	0,000	0.0062	0.000	0.0000
										•	1
CICH	1622.0	4.1587	0.0764	0.2458	3,0957	0.0134	0.3672	0.2056	1.3046	0.6181	0.0000
N-C30H	0.9339	1.0040	0.3534	0.3389	0.7127	0.6515	1-6726	1.3405	0-7507	0.6403	2.5108
I-C30H	0.0478	0.5558	0.0000	00000	0.3093	0.0000	0.1863	0.1752	0.0650	0.0155	0.7374
C4UH	0.1906	0.2403	0.0873	0.0284	0.1338	0.1350	0.2762	0.2120	0.1409	0.1145	0.3288
ACETIC ACID	0.3024	0.4116 0.4116	9-550 0.3373	0.2635	0.4943	U.112U 0.4897	20.0124 20757	U * 5 # U /	U.13//	0.1075	1.0007
		> = = = >) -)) =)	***	3 1 1 1 - 2		>->>->	4 - 2 2 + 2	>>>==>	~ + ~ ~ ~ ~	- > > > + >

:

		ş.,	•				
	400,0000 325,0000 1,1580 0,6530 45,8328 87,2471 66,5400	1.7167 2.5833		3.3448	103.7875	• •	
ر ب	400.0000 275.0000 0.8800 26.7232 46.8005 36.7619	0.5722 1.0111 0.2278			102.5512		
	400,0000 275,0000 1,1580 0,8830 0,8830 24,4025 49,2952 36,8489	0.5389 1.1444 0.1278		58,0000 3,8311	97,9850	•	
і : :	400,0000 300,0000 1,1580 0,7600 35,0130 70,5690 52,7910	0.7667 1.7167 0.1333		2.8662	97.0813		
IJ	400.0000 300.0000 1.1580 0.7590 35.8777 53.3260	1.2889 2.4722 0.4167		71.0000 3.1696	109.0255		
, 1 .	400.0000 275.0000 1.1580 0.8870 0.8870 24.4920 24.1233 36.8077	0.5833 1.1111 0.1278		3.3841	100.9978		
	275.0000 1.1580 0.8740 255.8870 50.2860 38.0865	0.6444 1.2500 0.0722	н на	60.0000 3.1674	101.1212		
<u>م</u>	400.0000 250.0000 1.1580 0.9550 17.4513 31.8997 24.6755	0.4158 0.9053 0.2368		59.0000 3.7093	97,5311	•••	
บ	400,0000 250,0000 1,1580 0,9320 19,2320 19,606 33,7058 26,6532	0.3833 0.8611 0.1889		46.0000	95.1255	• •	
, 11	400.0000 275.0000 1.1580 0.8270 28.9577 58.9515 43.9515	0.7750 1.4375 0.1417			99,5189		
V	275.0000 1.1580 0.8040 31.9202 61.5001 46.7101	0.1667 1.4333 0.0833		48.0000 2.9855	98,8594	· · · · ·	
2194 # = 3-24	SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C Fren GAS, Scfh (32F) Tail GAS, Scfh (32F) H2 CLNVERSION CU CUNVERSION H2+CO CONVERSION	YTELDS GM/HR 011. Agnieous Phase Wax	ANALYSIS DIL FTA % Aromatics Ouefins Saturates	BR #	MATERLAL RECOVERY		

RIN E = 2.	25	•		•	•		•						
PERTUD	2	-	-	33	U	£	£	ís.	უ	t	IJ	×	1
POLAR FLOW	RATE I	z					•			3	Î		
HMDLE/HK	CC H	477. 952.	,2219 9892	477.2219 952.9892	465.6294 963.2696	489.1616 909.8989	480.2146 950.2123	480.2146 950.2123	480.2146 950.2123	480.2146 950.2123	472.2077	471.3162	471.3162
	C112	0	0000	0.0000	0.0000	0.0000	0.000	0.000	0.000	0000	0000	0.000	0.000
	H20 742	••	0000	000000	000000	00000	0.000	0.0000	0.000	000000	0.000	0,0000	0.0000
	C2H4		0000	0.0000	0.000	00000	0000	0000-0			0,000		00000
	C3H6	0	0000	0.0000	0.000	0.0000	0.000	0.000					
	C4H8	13.	5308	13.5308	13.2417	11.0650	15.4717	15.4717	15.4717	15.4717	17.4894	15.3217	15.3217
	C5H10	4.	5103	4.5103	4.3650	3.4946	5.2548	5,2548	5.2548	5.2548	5.8303	5,3991	5,3991
MULAR FLOW	OUT						:						
MADLEZHR	ទ	195.	2262	196.4966	108.3635	114.5451	207.7340	218,8135	55.6846	233.4987	236.5647	348.2966	346.6570
	H20 H20	667. 50.	2795 8408	700.9867	581.5518 67.0655	577.2729	686,7940 47.2602	706.7342 Af 0717	490.9673 of 2727	736.4192	721.9093	813,1051 20 2001	806,8095
	C02	95	1080	113.7032	129.1337	129.0913	95,3880	94.0574	131.7613	86.4399	87.7401	37.0927	38.1841
	10	24.	3174	35.1044	29.7094	30.0911	18.5479	16.5471	41.8024	16.1648	16.5485	6.9413	8.6358
	: : : : :	.	4084	4.1945	6.2306	7,0906	5,2999	4.2454	8.9412	4.8269	4.5539	1.7347	1.7269
		• •	0943 4045	0°4068	14/10	4,8178	2.8622	2.5043	5.9603	2.3574	2.4433	1.1153	1.3574
	50	0 0	2726	2.7603	9.3008 1.7159	9.5033	0,01/U	0,9800	11.8430	5.9496	5.4422	2.1069 0.4958	2.0977
•	1-C4=	13.	6347	15,2336	16.3447	17.0913	19,3958	15.5672	18.9798	20-0943	18.9918	15.7409	15-9141
	2-C4= -		6532	1,5454	0.8124	0.6365	0.3175	0.000	0.5487	0.2241	0.2218	0.0000	0.1232
	I=C4	4.	0289	3,0908	2.1676	1.8178	1.3760	0.7622	1.8826	0.8986	0.8884	0.3722	0.4939
	N-C4	.	0000	0.5518	000000	00000	0.1058	0.000.0	0.1566	0.0000	0.1109	0.000	0.0000
	0 9 0 0	»	1408	0.3410	8.1769 2.1244	8.3202 1.9401	8 9248	14.1628	8.1708 1.9504	8.5805	8.1154 1 2720	6.1970	6.25555
•	C1 .		4335	0.4180	1.3499	1.1453	0.9467	2.1424	1.6801	0.9390	0.8662	0.2473	0.2266
	63	•	4426	0.4149	1,2310	1.0462	0.5821	0.4785	1.2751	0.5747	0.5125	0,000	0.1046
	63	. .	5875	0.6503	0,8940	0.8494	0.4560	0.4692	1.0272	0.4347	0.4854	0,0000	0.1537
	013	•••	4690	0.0107	0.1273	0.8304	0.4262	0.3867	0.9882	0.3595	0.3985	0.000	0.1432
	C12		3180	0.4010	U.5028 0.2038	2666°0	0.2316	0.2631	0.1752	0.3012	0.3344	00000	0.1316
	C13	0	2511	0.2352	0.2030	1662.0	0.2186	0.2155	0.3372	0.1952	0.2181	0.0000	0.0990
	C14	0	1971	0.1778	0.1655	n.2307	0.1438	0.1522	0.2562	0.1284	0.1505	0.0000	0.0690
	C15	0	1533	0.1281	0.1287	0.1626	0.1079	0.1184	0.1753	0.1034	0.1150	0.0000	0.0579
	0 5 5		1021	1060°0	0.0757	0 0800	0,0789	0,0931	0.1195	0.0815	0.0886.	0.0000	0.0483
	C18		0741	0.0558	0.0536	0.0586	0.0482	0.0811	0.0531	0.0587	0.0617	00000	0.0411
•	C19	0	1840	0.0391	0.0407	0.0382	0.0312	0.0623	0.0336	0.0464	0.0403	0.000	0.0330
	C20		0437	0.0328	0.0290	0.0264	0.0237	0.0513	0.0239	0.0423	0.0287	0.0000	0.0274
	122		20040		C170.0	1610.0	0.0188	0.0357	9100.0	0.0336	0.0237	00000	0.0222
	C23		0240	0.0152	0.0112	0.0057	0.0103	0,0180	0.000	0,0100	#/10°0		011000
	C24		0172	010.0	0.0080	0.0055	0.0082	0.0132	0.000	0.0147	0.0112	0.0000	0.0107
• .	0010	-			0000	1 200 0							
	C20H		9225	2.3402	5.4242	4.3529	2.8513	2.7173	0.0000 4.0839	2.1011	0.0846 2.2133	0.0597	0.0926 0.7208
-12 -	-C3UH	0°	5665	0.6760	1.3127	0.9111	0.6510	0.6208	2.5965	0.4778	0.4389	0.2220	0.1526
-	C30H	00	0739 1843	0.1067	0.1615 0.1802	0.1969	0.0795	0.0759	0.4101	0.1216	0.0000	0.0117	0.0157
ACF	TONE		906	0.0788	0.3596	0.2974	0-1201	0 1145	0.0010	0.0755	2040°0	070000	0.0140
ACETIC	ACID	•••	0370	0.2514	0.2512	0.1455	0.2480	0.2365	0.000	0.2608	0.3477	0.1326	0.1146

We have a state of the st		•		<i>i</i> .		an a
PHIO $z \to z_{1}^{2}$ $A = 1 + z + z_{1}^{2}$ $A = 1 + z + z + z + z + z + z + z + z + z +$: حر	300.0000 250.0000 1.1520 0.9740 15.9697 26.4492 21.2094	0,2333 0,5500 0,3444	45.0000	4.5066 96.8426	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ж	300.0000 250.0000 1.1520 0.9777 15.3140 15.3140 26.1013 20.7076	0.2222 0.6056		94.7951	
PRIM $= -2.5$ A B C D F G I F G I F G I F G I F G I F G I F G I F G I I F G I I F G I <t< td=""><td>n,</td><td>300.0000 275.0000 1.1520 0.8770 24.6073 49.9024 37.2548</td><td>0,5556 0,9500 0,1611</td><td>58.0000</td><td>3,9057 97,7645</td><td></td></t<>	n,	300.0000 275.0000 1.1520 0.8770 24.6073 49.9024 37.2548	0,5556 0,9500 0,1611	58.0000	3,9057 97,7645	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	п	300.0000 275.0000 1.1520 0.8860 22.4995 51.3762 36.9378	0.5111 0.9167 0.0667	6.0000 14.0000 14.0000	3,7980 96,2144	
PRIME $3 - 255$ A B C D E F F RFEILID SYSTEM PRESS, PEIG 300,0000 3000 300,000 3000 300,000 3	ט	300.0000 325.0000 1.1520 0.6190 48.3308 88.4042 68.3675	1.1556 2.1056 0.0778	6.0000 82.0000 12.0000 85.0000	3.5808 91.5119	
PH110 = 3-25 A B C D E SYSTERH PEESS-PERTE 390, 0000 300, 0000 300, 0000 300, 0000 300, 0000 FED GAS, SCPH (23F) 0,11490 11,1490 11,1490 11,1490 11,1500 FED GAS, SCPH (23F) 0,11490 0,11490 0,11490 11,1900 27,2334 FED GAS, SCPH (23F) 0,11490 0,11490 0,11490 0,1150 FED GAS, SCPH (23F) 0,11490 0,11490 0,1150 FED GANERSICM 59,000 11,1000 0,1120 FED GANERSICM 0,0567 0,0167 0,0100 SCORUMERSICM 0,0567 0,0167 0,0000 FED GANERSICM 0,0567 0,0100 11,0000 FILANCE 0,0167 0,0167 0,0100 FILANCE 0,0100 5,0000 5,0000 FILANCES 0,0100 3,4010 3,4010 FILANCE 0,0100 5,0000 1,0000 FILANCE 0,11000 1,10000 1,0	(21	300.0000 275.0000 1.1520 0.8610 25.6235 54.4342 54.0289	0.5722 1.0278 0.1500	9,0000 75,0000 16,0000 60,0000	3.5506 99.0833	
R000 # = 3-25 A B C D FERILID AFG CAT ENPL DESS, PSEG 300,0000 300,0000 300,0000 AFG CAT SETH TERPS, DESC 2775, UU00 275, UU00 300,0000 300,0000 FFD GAS, SETH (327) 0,1130 0,7130 0,7140 TALL GAS, SETH (327) 0,1140 0,7140 1,1490 TALL GAS, SETH (327) 0,1140 0,7140 1,1490 COUNDERSION 34,534 56,433 34,554 C1 COUNDERSION 41,2537 32,3249 56,5649 C1 COUNDERSION 41,2537 42,6333 0,9556 C1 COUNDERSION 44,5357 34,5554 56,5649 VIEILIS GA/HR 0,6547 0,6333 0,9333 AMALVELS 0,0317 0,0313 0,9556 AMALVELS 0,0347 0,0317 0,9560 AMALVELS 0,0347 0,0417 0,0500 AMALVELS 0,0347 0,0317 9,9560 AMALVELS 0,0347 0,011 1,0000 BALVENTES 50,0000 7,0000 7,0000 AMALVELS 0,0347 0,011 9,9560 AMALVES 0,0347 0,011 9,16700 BAL 0,117 </td <td>نعا</td> <td>300.0000 276.0000 1.1520 0.8370 27.7220 55.7414 42.2317</td> <td>0.5722 1.0778 0.1222</td> <td>6 • 0000 82 • 0000 12 • 0000 60 • 0000</td> <td>3.6716 95.9875</td> <td></td>	نعا	300.0000 276.0000 1.1520 0.8370 27.7220 55.7414 42.2317	0.5722 1.0778 0.1222	6 • 0000 82 • 0000 12 • 0000 60 • 0000	3.6716 95.9875	
RUN # = 3-25 A B C SYSTEM PRESS, PELG 300,0000 300,0000 300,0000 SYSTEM PRESS, PELG 300,000 300,0000 300,0000 ALL 259,0911 359,0911 36,6713 0,0147 ALL 0,0542 0,0417 0,0167 0,0167 ALL 0,0542 0,0100 1,000 0,0167 ALALYSIS ALAL	Q	300,0000 1,1490 0,7180 36,5564 76,5834 56,5699	0.9556 1.6222 0.0500	5.0000 84.0000 11.0000 71.0000	3.7325 91.5575	
RUN # = 3-25 FERIO SYSTEM PRESS.PSIG 300.0000 300.0000 FEE GAS SCH (327) 1.1490 2.11490 TAIL GAS, SCH (327) 0.8150 0.8710 FEE GAS SCH (327) 0.8150 0.8710 TAIL GAS, SCH (327) 0.914 58,8249 H2 COUNTRSION 59,9914 58,8249 H2 COUNTRSION 59,9914 58,8249 H2 + COUNTRSION 59,9914 58,8240 H2 + COUNTRSION 59,9914 58,8240 H2 + COUNTRSION 59,9914 58,8240 H2 + HASE 1.1208 1.1208 H114 AULUS FHASE 0.0542 0.0417 ANTURAVELS 60,0000 20,0000 BR # 59,0000 20,0000 BR # 4,0000 25,0000 BR # 4,0000 25,00000 BR # 4,00000 25,0000 BR # 4,0000 25,0000 BR # 4,000000 25	ບ	300.0000 300.0000 1.1490 0.7130 39.6273 76.7275 58.1774	0.9333 1.5944 0.0167	5.0000 81.0000 14.0000 77.0000	3.4819. 95.8405	
RUN # = 3-25 A FEFD GAS, SCEN PRESs, PSIG 300.0000 AVG CAT TEMP, DEG C 275.0000 FFFD GAS, SCEN (32F) 1.1490 TA1L GAS, SCEN (32F) 0.8150 TA1L GAS, SCEN (32F) 0.8150 TA1L GAS, SCEN (32F) 0.8150 TA1L GAS, SCEN (32F) 0.8100 TA1L GAS, SCEN (32F) 0.8166 TA1L GAS, SCEN (32F) 0.81150 TA1L GAS, SCEN (32F) 0.81150 TA1L GAS, SCEN (32F) 0.9111 T2+CO CUNVERSION C1 CONVERSION C2 CONVERSION SATUHATES ANALVSIS BR # D.P. B.A D.P. B.P. D.P. B.P. D.P. P.P. D.P. P.P. D.P. P.P. <td>яя</td> <td>300.0000 275.0000 1.1490 0.8710 26.4434 58.8249 42.6341</td> <td>0.6333 1.1292 0.0417</td> <td>5.0000 75.0000 20.0000 57.0000</td> <td>4.1040 102.5511</td> <td></td>	яя	300.0000 275.0000 1.1490 0.8710 26.4434 58.8249 42.6341	0.6333 1.1292 0.0417	5.0000 75.0000 20.0000 57.0000	4.1040 102.5511	
RUN # = 3-25 PERICID SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C FALL GAS, SCFH (32F) H2 CONVERSION CCI CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION H2+CO CUNVERSION D.P. D.P. D.P.	Ā	300.0000 275.0000 0.8150 29.9804 59.0911 44.5357	0.6667 1.1208 0.0542	4 0000 60 0000 36 0000 59 0000	4,3328 95,3060	
• J • J	RUN # 3-25 PEALOD	SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C FFED GAS, SCFH (32F) TAIL GAS, SCFH (32F) H2 CONVERSION C0 CUNVERSION H2+CO CUNVERSION	YIELIUS GM/HR nil Aourdus Phase Wax	ANALYSIS OIL FIA % AHOMATICS OLEFINS SATUHATES BR #	D.P. J MATEHIAL RECOVERY	

		· •
د	465.0369 911.1830 0.0000 0.0000 0.0000 72.6620 0.0000 0.0000 0.0000	64 64 813 814 815 815 815 815 815 815 815 815 815 815 815 815 815 815 815 816 8174 8174 818 818 818 818 814 818 8
Ä	465,5581 906,4604 0,0000 0,0000 0,0000 72,5168 0,0000 0,0000	24 673 857 857 855 17 <
Ť	459.6391 917.8221 0.0000 0.0000 70.6919 0.0000 0.0000	444 13026 3373 3464 3475 <t< td=""></t<>
ს	456.4089 918.6322 0.0000 0.0000 0.0000 72.5313 0.0000 0.0000 0.0000	4 60 8 63 8 63 8 63 8 63 8 63 8 63 8 64 8 73 8 73 8 73 8 73 8 73 8 73 8 73 8 75 8 75
٤.	456.3639 915.6343 0.0000 0.0000 75.5758 75.5758 0.0000 0.0000	212 212 840 8
ند	456,3639 915,6343 0,0000 0,0000 0,0000 75,5758 0,0000 0,0000	623 603 921 921 921 921 921 921 921 921 921 921 921 921 921 921 921 931 932 933 933 933 933 933 933 933 933 933 933 933 933 933 934 935 933 934 935 935 936 937 938 937 938 939 939 939 939 939 939 939 939 939 939 9
د	456,36343 915,6343 0,0000 0,0000 0,0000 75,5758 0,0000 0,0000 0,0000	5 5
ບ	460.6772 922.8090 0.0000 0.0000 0.0000 67.8668 0.0000 0.0000 0.0000	101. 212. 71 212. 71 212. 72 252. 72 254. 72 255. 72 255. 72 255. 72 255. 72 255. 73 255. 74 11 75 255 75 255 75 255 75 255 75 255 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75 25 75
I	460,6772 922,8090 0,0000 0,0000 0,0000 67,8658 0,0000 0,0000 0,0000	 64 760 4 799 4 799
٩	460.0772 922.8090 0.0000 0.0000 0.0000 67.8668 0.0000 0.0000	<pre>615 602, 5756 1925, 7156 1925, 7156 1925, 7156 192, 5755 725, 5505 725, 5505 725, 5505 725, 5505 72, 5505 72, 5505 72, 5505 72, 5505 72, 5206 70, 2409 70, 2409</pre>
RII4 # = 3-26 PERIOD	MULAR FLOW RATE IN MMOLE/HR CO H2 CO2 H20 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H4	MNLAR FLOW OUT MNNLE/HR CO H2 H2 H2 C12 C12 C2 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3

J.	0.0000 5.0000 1.1480	0.8940 4.1127 6.7046	0.5111	5 • 0000 5 • 0000	9.0000 3.8431 3.8340
	27	- 64		11	10
H	400.0000 275.0000 1.1480	23.0673 23.0673 47.6959	0.0556		57.0000 3.7389 99.2369
3 2	400,0000 325,0000 1,1480	51.3073 89.4240 70.3657	1.1667 2.3500 0.0556	6,0000 77,0000 17,0000	47.0000 2.9457 97.4362
9	400.0000 325.0000 1.1480	0.6500 48.4122 86.8406	1.1500 2.1500 0.0722		75.0000 3.1974 98.6580
د. ات	400.0000 275.0000 1.1480	0.8600 26.8121 53.4405	0.1056		59.0000 3.4363 98.5941
म	400.0000 275.0000 1.1480	0.8680 26.4232 53.7626	0.6167 1.2667 0.0722	6.0000 78.0000 16.0000	60.0000 3.3234 10017110
e	400.0000 300.0000 1.1480	0.7270 38.2313 79.0085	0.0611	5,0000 75,0000 20,0000	71.0000 3.0353 94.9879
บ	400.0000 300.0000 1.1480	0.7180 41.2461 78.0297	1,1111 1,6556 0,0611	7.0000 76.0000 17.0000	71.0000 3.3281 99.4552
1 1	400.0000 275.0000	0.8150 31.6697 61.4685	0,1125	6.0000 56.0000 28.0000	60,0000 3,4049 99,5162
A	400.0000 275.0000	0.1910 34.7243 65.4816	0.1400	5,0000 59,0000 36,0000	54,0000 3,4406 101,1570
PERIOD # 3=70	SYSPEM PRESS, PSIG Avg Cal Temp, Deg C Ferd Gas, Soff (325)	TATL GAS, SCFH (32F) H2 CONVERSION CO CONVERSION H2 CO CONVERSION	VIELDS GM/HR DIL ANULOUS PHASE WAX	ANALYSIS DIL FIA AROMAPTCS OLEFINS SATUFATES	BR # D.P. MATERIAL RECUVERY

ким # = 3-27 Ректир	A	'n	U	د	¢.	iz.	U	Ħ
							•	•
NUGPK FLUW KATE I Marte Jud	N1 200 6133	700 6133	407 E164	AETT TAT	707 053V	9451.0.17	710.1340	710.1349
	2610.001	2010-001	757 5855	748.8036	100.201	745.2759	145.2759	745.2759
	0000	0000 0	0,000	0.0000	0000-0	0 0 0 0 0	0.000	0.000
		0,000	0.000	0.000	0,000	0000-0	0.0000	0.000
CH4	0,000	0.000	0.0000	0000 0	0.000	0.000	0.000	0.000
C2H4	0,000	0.0000	0.0000	0.0000	00000	0.000	0 0 0 0 0 0	000000
C3H6	0,000	0.000	0,0000	000000	0.0000	0.000	0.000	0.000
C4H8	0,000	0.0000	0,0000	0.0000	0,000	0.000	00000	00000
CSH10	0,000	00000	00000	0.000	0.000	0.0000	0.000	0.0000
MOLAR FLOW OUT								
MNULE/HP CO	265.2346	245.6845	113.2843	119.5587	25,9154	232.9374	54.6733	232.9374
H2	414.9020	393,5118	305.6389	295.0645	421.3928	428.4552	260.3390	428.4552
H2U	44.9514	43.2187	57.9491	, 53,9061	33.5606	35.6545	65.5779	35.6545
C02	197.9784	241,3225	254.6986	269,0068	218.2210	217.0341	289.3735	217.0341
C1	25,3871	25.7917	31.7046	28.1265	18,2481	18.1482	31,0443	18.1482
C2=	2, 4362	3,1290	5.0937	6.2080	5.6432	5.6130	10.6017	5.6130
C2	8.4302	8,3446	10.2639	8,5836	4.5153	4.4905	6.2364	4.4905
C3=	8.2410	8.6292	12,1647	12.3387	8.3710	8.2325	15.1063	8.2325
C3	3,0308	2,8445	3.4972	2.6824	1.5051	1.4972	1.9404	1.4972
1-C4=	3,0308	3.2238	4.2575	4.7520	3,8566	3.7420	6.7215	3.7420
2-C4=	0.1577	0.7548	0.9887	0.8431	0.2824	0.2804	0.4851	0.2804
I-C4	2.2731	2,1805	2.6610	2.1461	1.1288	1.1224	1.4553	1.1224
N-C4	0.0946	0.1897	0.0159	0.1530	0,0438	0.0935	. 0.1386	0.0935
C5	4,4546	4.6679	5.9757	5,7176	4.1828	6.2220	8.5300	6.2220
C6	2.2065	2,3043	2,7061	3.2130	2.3997	2.5697	6.4080	2.5697
C1	1.2898	1.3923	1.9172	1.7065	1.5797	1.7044	6.4271	1.7044
C8	1.0078	0.8551	1.3466	1.2017	0.8583	1.1837	2.4126	1,1837
60 	0.9984	0.7615	1.5959	1.0443	1.1211	0.1339	1.555.1	0.1339
C10	0.7996	0.8411	1,2405	1.3600	0.5525	0.5758	0.7418	96/6*0
C11	0.6300	0.6726	0.9694	1.0871	0.7498	0.3772	0.0000	0.3772
CI2	0.5077	0.5451	0.7254	CO58.0	0.4938	0.2540	8472.0	0+02+0
C13	0.4100	0.4493	0.5524	0.0074	0.405.0	0.1694	U.1141	540T°N
C1 4	0.3254	0.3560	0.4119	8010.0	0925.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000 0	2004°0
	6867 0	0.2804	6T16 0	1050C 0	0.2010		4240 0	
	0.4779 A 1660	0612.0	0/12.0	2000 0		7077 U	7950.0	0.1694
	001140	100100	8801-0	0.1433	0.1246	0-1176	0.0300	0.1176
	0 1487	0-1-0	470-0	0.0987	0.1096	0.0802	0.0142	0.0802
000	0.0647	0.0701	0.0490	0.0645	0.0801	0.0508	00000	0.0508
C21	6640.0	0.0482	0.0311	0.0391	0.0648	0.0282	0.0000	0,0282
C22	0.0271	0.0319	0.0148	0.0213	0.0437	0.0192	0.0000	0.0192
C23	0.0166	0.0203	0.0095	0.0102	0.0279	0.0110	000000	0.0110
C24	0,0045	0.0097	0,000	0.0049	0.0167	0.0071	0 • 0 0 0 0	0.0071
1010	0 7040	0 6064	0000-0	0-1079	0-4720	0 0 0 0 0 0	0-000	0,0000
CODE	2.4080	3.0904	3.3757	3.7850	3.2004	3.3707	3.8313	3.3707
	0.8870	1.0623	1.1428	1.1957	0.7733	0.8507	1.2436	0.8507
I+C30H	0.000	160.0	0.2583	0.1864	0.0228	0.0722	0.000	0.0722
C40H	0.1692	0.1955	0.1815	0.1762	0.1644	0.0706	0.1610	0.0706
ACETONE	0.1056	0.1218	0.4188	0.4082	0.1253	0.1261	1.0351	0.1261
ACETIC ACID	0.1085	0.1203	0.1275	0.1714	0.3663	. 0.4026	0.6666	0.4026

1444 140 = 3-27 1444 140	V	عد`	ບ	۶.	ᅶ	Ŀ	U	н
SYSTEM PRESS, PSIG	300.0000	300.0000	300,0000	300,0000	300.0000	300.0000	300.0000	300.0000
AVG CAT TEMP, DEG C Feed Cas. Scph (326	275.0000	275.0000	300.00000 1.1570	300.0000	275.0000	275.0000	325.0000	1.1570
FAIL GAS, SCFH (32F	7) 0.7480	0.7500	0.6000	0.6050	0.7420	0.7390	0.5480	0.7390
h2 CHUVERSIDN	44.4863	47.3483	59.6562	60.5952	44.0641	42.5105	65.0681	42.5105
CU CUMVERSION .	62,5699	65,3288	83.7589	83.1078	96.3086	67.1981	92,3010	67.1981
H2+CU CONVERSION	53,5281	56,3386	71.7075	71.8515	70,1864	54 8543	78.6846	54.8543
YTELIUS GM/HR		×						
016	1.1042	1.1292	1.5778	1.7000	1.1611	1.2278	1.9556	1.2278
AQUEDUS PHASE WAX	1.0208	1.0375 0.2H75	1:3278 2.8000	1.2778 0.4111	0.8556 0.6222	0.8889	1.5444 0.3500	0.68889
ANALYSIS			• • •				·	
FIA & APCIMATTCS	A_0000	4.6000		6 - 0000	6,0000	8_0000	10-0000	8.0000
DLEFINS	66.0000	64.0000	68.0000	72.0000	77.0000	70.0000	77.0000	70.0000
SATURATES	30.0000	32.0000	26.0000	22,0000	17.0000	22.0000	13.0000	22.0000
	64.0000	67.0000	82.0000	83°0000	62.0000	64.0000		
0.P.	4.0296	4,0494	3.8244	4,0897	4.1028	4.0002	2,8061	4.0002
MÄTERIAL RECOVËRY	100.5603	106.8850	110.6054	101,8256	102,1423	99,9381	100,1518	99.9381
		:		~				
• •	•				•			
	۰ ^۰							
	• • •	•						
•		•	 :				-	
-								

I	ATE IN Co 705 0547	H2 751,9597	CO2 0.0000	H20 0*0000	CH4 0.000	2H4 0.0000	3H6 0.000	4HB 0.0000	H10 0.000	11	CD 347,0670	H2 515,0966	120 23.1068		CI IZ.9499 235 K 5042	20	[3= 6.2593		:4= 3.0221	34= 0.1075	-C4 6.4755	-C4 0.10/5 C5 A 452	C6 2.0238	C7 1, 3906	C8 1.7570	C10 0.4028	C11 0.2848	C12 0.1958			216 0.1853	217 0.1316	19 0.0707	20 0.0448	221 0.0293	.22 0.203		N/NN*N 627	000 0 0.0000	20H 1.6086	0,439/0	10H 0.0935	INE U. COSO
ŗ	705.0513	751.9597	0 0000	0.000	0.0000	0.000	0.000	000000	0.000		351,8102	521.6874	26.0926	1/2,35/6	13./000	2 3016	6.4660	0.9867	3.1789	0.1094	0.6574	0.1094 3 AUEE	2.0750	1.7290	0.6642	0.2851	0.2073	0.1465	1860 0	0602.0	0.1544	0.1341	0.0725	0.0523	0.0362	0.0242	0.0145	6/00.0	0.8981	1.9947	U.3465	0.0561	0.1020
х	706 5104	750.4935	0.000	0.0000	0.000	0.0000	0.000	0.000.0	0.000		553.5381	636.4418	16.1125	63.6106	CHU2.4	1.6274	1.9134	0.3829	1.0203	0.0000	0.2557	00000	1.0301	0.3605	0.3946	0.1378	0660.0	0.0741	0.0547	0.1630	0.1278	0.1006	0.0608	0.0467	0.0360	0.0263	0.0193	0.0130	0,0049.	0.5759	0.15/7	0.0267	5 I G A * A
Ŀ		742.4212	0.000	00000	000000	0.000.0	0.0000	0.000.0	0.000		571.6537	636.1740	17.6101	61.8553	5.8/11 • 6770	0 5167	1.6778	0.3866	0.9033	0.00.0	0.1546	00000	0.6705	0, 3576	0,3833	0.1128	0.0434	0.0619	0.0437	0.1442	0.1133	0.0899	0.0552	0.0426	0.0322	0.0248	0.0171	8110.0	0,33333	0.5437	0,0000 0	0.0238	0,0313

. . .

• •

HUN 4 = 3-27 PERIOD	I	ت. ۲	¥	11	••
SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C	300,0000	300,0000 275,0000	300,0000	300,0000 250,0000	• • • • •
FEED GAS, SCFH (32F Tail GAS, SCFH (32F	1 1.1570 1 0.8590	1.1570	1. 1570 1. 0060	1.1570	
H2 CONVERSION CU CONVERSION H2+CU CUNVERSION	31.4994 50.7745 41.1370	30.6230 50.1016 40.3623	15.1969 21.6528 18.4249	14.3109 19.8393 17.0751	
YIELDS GM/HR					
010	0,8111	0.6889	0.3222	0.3167	
AQUEDUS PHASE WAX	0.5500	0.6722	0.3556	0.3944	
ANALYSIS		• •	• •		
	•••••	•		,	
ARDMATICS MLEFINS		12.0000 72.0000	•	•	
SA PHRATES	:	16.0000		,	
BK #	55,0000	53.0000		42.0000	
.ମ . ପ	3,8666	3 . 9390	5.1327	4,9820	
UN MATERIAL RECOVERY	103.7277	104.7524	99.4628	100.8283	
-				• .	

RUN # = 3=28 0-0100		-	1	t.	c	ā	Ĺ.	U	Ħ
LEK 1 UU		¢	Đ	ر	2	£.	•	þ	:
FULAR FLOW RA	TE IN								
MMOLEZHR	55	476.5813 070 LAAA	479,9581 0440 0460	479.9581 044 7440	481.0098 040 0847	48/.012/ 040 0010	485.5033 665 A213	4/3°1319 060 060	419.4115 964.7496
		0000.0	0000.0	0000-0	0000 0	0000.0	0000 0	0000	0.000
)	20	0 0 0 0 0	0.000	0.000	0.000	0.000	0.0000	0.000	00000
U	H4	0,000	0.000	0.000	0,0000	0.0000	0.0000	0.0000	0.000
C 3	H4	0,000	0,0000	0 0 0 0 0 0 0	000000	0,000	00000	00000	0.000
C	9H	0,000	0,0000	0.0000	0.000	0.0000	00000	0.000	0.000
C4	НВ	0000.0	0.000	0,0000	00000	0.000	0.000	0.000.0	0 • 0000
CSH	10	0,000	0 • 0 0 0 0	0.000	0.0000	0.0000	0.0000	0.0000	0.000
MOLAR FLOW OU	÷								
MMOLE/HR	co	360.9589	379.2498	426.9680	442.5750	396.1146	393.1055	330.5212	313.0748
	H2	870.7199	884.4734	927.8992	- 957.9089	873.8619	888.8774	837.1506	857.3817
н ,	20	25,1892	28,8474	13.6976	13.5863	20.6355	19.5542	23.0856	24.4345
		49,92,99	27.7781	19.8925	17.7513	41.4379	41.7908	65.0832	80.5413
	c1	14.4915	14.5865	5.2861	5.7291	12.5798	12.0223	20.9287	23.5134
0	2=	1.1452	1.1932	0.6455	0.7158	1.2044	1.2160	1.9147	2.4679
	2	3,8210	3.7131	1.1129	1.1452	3.2121	3.1073	4.5942	5.0668
U	3=	2.7659	2.7845	1.2520	1.2884	2,5424	2.5668	3.7006	4.5465
U	ņ	1.5807	1.4590	0.4173	0.4295	1.2044	1.0812	1.4035	1.0083
	4=	1.0538	0.9286	0.5564	0.5726	0.6370	0.9450	1.2760	1.5583
2-C	4=	0.2641	0.2546	0.1391	0.1432	0.2673	0.2696	0.2549	0,3893
•	C4	1.0538	0.9285	0.2782	0.2863	0.8034	0.6754	0.8936	1.0393
-2	C4	0.000	0,0000	0.0000	0.000	0.000	0.000	0.0000	0.0000
	C 5	1./110	1.4590	0.6955	0.7158	1.3380	1.3537	1.7894	2.3195
	C 6	0*6*0	0.6627	0.2828	0.4295	0.6714	0.6815	0.7902	1.0503
	C7	44/c°0	0.3982	0.1509	0.1468	0.4095	0.2863	G/ GG • 0	0.11/4
	СH	0.3679	0.2046	0.3070	0.2979	0.1548	0.1730	0.2219	0.3145
	60	0.1336	0.000	0.0629	0.0412	0,0009	0.10/6	1042	0.1474
	10	0,1202	0,0000	0.0759	0.0472	0.0747	0.0874	0.1511	0.1444
υ	11	0.0942	0.000	0.0481	0.0418	0.0507	0.0781	6,1353	0.00 0
ູ	12	0.0117	0 • 0 0 0 0	0.0372	0.550.0	0.0385	6190 0	0070°0	
с О	13	0.0556	0.000	0.290	0,0205	0.0503	5640°0	0.0133	0.0419
0	14	0.0440	000000	0.0227	0.0217	0.0238	2650 * 0		1050.0
	<u>c</u> -	0.03450	0.0000	c/10°0	1110.0	6910°0	C750.0	0.0422	0.0444
	0 1 2	6470 0	000000	8510.0	0*10°0	2010 0	6710°0		
J		0,0213			0 0126		0.0154	0.0198	0.0074
י ב י	0 T C	0.0144	0.0000	0,0068	0.0102	0.0079	0.0126	0.0152	0.0041
	20	0.0132	0,0000	0.0053	0.0082	0.0085	0.0102	0.0044	0.0033
	21	0.0107	0.000	0.0015	0.0066	0.0069	0.0035	0.0037	0,0011
0	22	0.0076	0.000	0.0010	0,0052	0.0048	0.0079	0.0086	0,0005
	23	0.0059	0.000	0.0028	0.0042	0.0039	0.0063	0.0068	0.0000
U	24	0.0049	0.0000	0.0023	0.0033	0.0031	0,0052	0.0056	00000
t		C061 0	1011 0	7030 U	0050 0.	0000 0	0-0797	0-0492	0,0247
วิเ			10110	0.1768		0.2716	0.2238	0.3872	0.3557
			0.1512	0.0711	0.0600	0.1376	0.0879	0.1665	0.1663
			0-0267	0.0134	0.0003	0.0176	0.0215	0.0303	0.0231
	HO	0.0212	0.0243	0.0203	0.0206	0.0292	0.0231	0.0327	0.0340
ACETO	N C	0.0150	0.0172	0.0051	0,0056	0,0135	0.0106	0.0277	0.0259
ACETIC AC	10	0,0495	0,0566	0.0523	0.0465	SE90°0.	0.0682	0.0806	0.0881

60

:

PERTOU	, A	f	υ	<u> </u>	, 단]	ß.	IJ	#	
SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C FEVD CAS, SCPH (32F	100,0000 275,0000	100.0000 275.0000 1.1450	100.0000 250.0000 1.1450	100.0000 250.0000 1.1450	100,0000 275,0000 1,1450	100.0000 275.0000 1.1450	100.0000 300.0000 1.1450	100,0000 300,0000 1,1450	
TALL GAS, SCHH (32F	0660 1 (1,0460	1.1000	1.1320	1.0570	1.0660	1.00H0	1.0260	
H2 CONVERSION	10.2792	8.2149 20 0427	3.7714	0.3201	9,0657	19.0413	13.6154	11.1291	
H2+CO CONVERSION	17.2700	14.6288	7.1976	4.7220	13.8651	13,3419	22,0256	22.9170	
YIELDS GM/HR			1			the second s			
JIL AAHGAHS DHASE	0.1417 0.4875	0.1125 0.5583	0.0667	0.0611	0.0722	0.1056	0.4556	0.4778	
MAX	FEFO.O			0,0056	0.0111	0.0111	0.0167	0.0111	
ANALYSIS Dil					•			•	
FIA'S ARDRATICS	7,0000		7.0000	7.0000	11.0000		14.0000	14.0000	
OLEFINS SATURATES	51.0000	•	50.0000	52,0000 41,0000	51,0000 38,0000	•	36.0000	49,0000	
BR	43.0000					28.0000	34.0000	46.0000	
D•₽•	3.1497		3.3887	3,4207	3.0161	3.1606	3.0897	2,8108	
OMATERIAL RECOVERY	103.0627	98.7419	100.5559	101.9941	102,5844	102.4337	102.2030	104.0669	
				· .					
				•					

	RUN # = 3-28					
	PERION	1	,	¥	د	¥
	HULAR FLOW RAIE IN					
	MMOLE/HR CO	479.9581	479.9581	247.5733	247.5733	251.4751
	H2	964.2659	964.2659	500.3982	500.3982	498.4469
	C02	0.000	0.000	0.000	0000 0	0.000
	H20	0.0000	0.0000	0.000	0.000.0	00000
	CH4	0.000	00000	00000	00000	0.000
	C2H4	0.0000	0.000	00000	00000	000000
	C3H6	00000	0.000.0	00000	0.000	0.000
	C4H8	0.000	0.0000	00000	0.000	00000
	C5H10	0.000	00000.0	0.000	0.000	00000
	MOLAR FLOW OUT					
•	MMOLE/HR CO	391.4741	384.3428	146.3552	145.5426	207-9597
	. H2	873,8023	903.5372	409.5426	391.4164	478.3074
	H20	14.2038	14.8008	14.0607	16.4564	6.8350
	CU2	42.0532	37.5873	41.4571	39,6370	18.6102
	C1	11.0898	14.5166	12.3111	11.4577	5.1629
	C2=	1.6035	1.8997	1.2564	1.1768	0.7888
	C2	2.1380	2.8496	3.0152	2.8490	1,0758
	C3 =	2.5392	2.9853	2.6382	2,5392	1.2905
	C3	0.6678	0.9499	1.0049	0.9907	0.3586
		1.0690	1.2212	U.9421	0.9907	0.5733
	2 - C 4 =	0,1333	0.1357	0.1442	0.1855	0,0000
	1-04	61/66.0	0.5428	0.6279	0.6815	0.2870
62	NICA	0,000	00000	0.0000	0.000	0.000
2	ŝ	1.2052	1.4926	1.0726	1.1150	0.7204
		0,5418 0,4146	1289.0	0.4538	0.4495	0.4338
		0114-0		1901.0	1617.0	0.2246
	2 J L	0.4412	0.4300	1260.0	6440°0	0.0221
				4071°N		0.03/6
		0 11194	1901 0	1051.0	0.1509	0.0655
		0.1119	6T01.0	C611.0	1001.0	0.0785
		6100°0	0.0550	0.0540	0.0150	0.0456
		1/80.0	800000	5540 * 0	2860.0	0.0371
		6660°0	0.0455	0 02027		5620°0
	C16	0.0050	0.0269	0.0221	0.0084	0 0000
	C17	0.0206	0.0213	0.0174	0.0203	0.0151
	C18	0.0158	0.0169	0.0136	0.0160	0.0119
	C19	0.0119	0,0133	0.0106	0.0121	0.0121
	C20	0.0045	0.0105	0.0084	0.0125	0.0094
	C21	0.0073	0.0104	0.0016	0,0096	0.0074
	C22	0.0043	0,0069	0.0011	0.0061	0.0046
	C23	0.0032	0.0055	0.0040	0.0050	0.0037
	C24	0.0030	0.0042	0.0032	0.0040	0.0029
	C10H	0.0417	0.0000	0,0000	0.0210	0.0224
	CZUH	0100.0	0.2400	0.3530	0.4049	0.0962
	N-C3UH	0.1204	0.1728	0.1253	0.1602	0.0341
	I-C30H	0.0197	0.0092	0.0155	0.0297	0.0028
	C40H	0.0327	0.0236	0.0266	0.0294	0.0103
	ACETONE	0.0221	0.0107	0.0138	0.0182	0.0030
	ACETIC ACIU	0,0915	0.0610	0.0458	0.0527	0.0329

•

,

	•						
	+ 1 7 ¹ + 1		·				
	-			:			
	· · · · · ·						
	· .						
			·				
	• *						
	ана						
	· ·	,					
			· .		· •		
			•				
	· • •						
	· .						
						· · · · · · · · · · · · · · · · · · ·	
		÷.					
	20000m	133	000	56			
	6 9 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07 13 01:		551 84(
Σ	0000470	000	50 C				
	5 1	ŗ		. ++		: ::	
	226000 230000 230000	89. 11	00000	58	•		
_	400 44 40 44 40 40 40 40 40 40 40 40 40	61 01 01	00000	34 19			
-	00 3414 3414 00 00 3414 00 00 00 00 00 00 00 00 00 00 00 00 00		4 3 5 3 F	0.4			
	~ N	•		· :			
	00000000000000000000000000000000000000	22 33 67	00000	54			
	559 52 52 52 52	24.04	00000	40			
-	24000 24000 24000	000	4 3 9 0 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	m 00			
	~ ~			्यन			
•	000 300 116 98	22 44 22 22 22 22 22 22 22 22 22 22 22 2	000000	50			
	00410761	292					
-	00 1 1 1 3 1 3 1 3 1 3	000	43 43	3 (01			
	81 81 81	22		21			
-	0040%43	10			• •		
	100 11 19 13 13 13	:000		3			
	ີ່ວີຣີຣີ			. [
	32		•	X X			
		SE .	E C C	VEF	2		
58	SCF.	 VHc	ATI INS 1NS	300	· .		
1	LAN EEE	. 1 S .	TU F	æ			
" _	TARKS CVARS CVARS	2011	S I S I A A C A S A S A S A	IAL		and the second secon	
101 #		A STOR		ER			
24 H	+ 12 2027 2027 2027 2027 2027 2027 2027 20	U A N: I I V	A N A	D.P MAT			
		-	-	63			
	- ,		•			н н ^и	

1000 * 6 5 7 2852 * 057 0000 * 0 0000 * 0 0000 * 0 0000 * 0 0000 * 0 0000 * 0
6662.484 0.000.0 0.000.0 0.0000.0 0.0000.0 0.0000.0
CO2 H20 CH4 C2H4 C2H4 C2H4 C3H6 C4H8 C4H8 C5H10

•

•

RUN I = 3-29 PERIOD	. <		ບ	۵.	: E,	Ŀ.	უ	Ŧ
SYSTEM PRESS, PSTG Avg Cat Temp, deg C Feed Gas, scfh (32f)	300.0000 300.0000 1.1480	300.0000 300.0000 1.1480	300.0000 300.0000 1.1480	300.0000 300.0000 1.1460	300.0000 300.0000 1.1480	300.0000 300.0000 1.1480	300.0000 300.0000 1.1480	300.0000 300.0000 1.1480
TATL GAS, SCFH (32F) H2 CONVERSION CO CONVERSION) 0.6370 51.8817 68.4666	0.7300 44.8310	0.7460 42.4340 62.6271	0.7620 41.8580 50 6575	0.8010 37.4420 53.5300	0.8200 35.0315	0.8560 29.8916	0.8590 29.9694
H2+CO CONVERSION	60.1741	54.2714	52,5305	50.7578	45.4845	4166°E4	37.4190	37.7115
VIELDS GM/HR nil Aquenus Phase	· 1.1042 0.9583	1.1792 0.9417	1.2042 0.9375	.1.1583 0.8625	1,0583 0.8250	0.9500	0.8583	0.8167
WAX	0,0083	0.1667	0.1292	0.1667	0.1417	0.0167	0.0667	0,0958
ANALYSIS Uill	· ·	۰ <u>.</u>		•	•• •		•	
FIA % ARDMATICS	7.0000	7,0000	7,0000	7.0000	7.0000	7.0000	8 • 0000 ·	7.0000
ULEF J NS SATUPATES	18,0000	76.0000	16.0000	19,0000	79.0000 14.0000	16.0000	80.0000 12.0000	79.0000
BR #	72.0000	74.0000	15.0000	74.0000	72.0000	71.0000		
р. Р.	2,9653	2.9326	2,9329	2.8507	3.1864	2,9510	2.8684	2.8294
MATERIAL RECOVERY	86,2973	98.3166	98.4994	100,3699	100.6154	99.7323	. 97.1503	98.6564
				•				

-65

RUN # = 3-29 PERIUD	-		¥	2	2	2	c
	•	5	-	2	5	2	2
MOLAR FLOW RATE IN							
MMOLE/HR CO	704.8215	704.8215	709.1116	709.1116	684.4761	701.1644	704.8215
	1001 861	1001.861	0/02.021	0102.061	760.0461	744.8052	739.7007
HOU		0.000	00000	00000	000000	00000	000000
CH4	0.000	0.0000	0.000	00000	00000-0	0,000	0.0000
C2H4	0.000	0.0000	0.000	0.0000	0.000	0.000	0.0000
C3H6	0,000	0.0000	0.000.0	00000	00000	0.000	00000
C4H8 C5H10	000000	0000000	00000	000000	0.000	0.0000	0.0000
	00000	0000	0.000	0000*0	0.000	00000	00000
MOLAR FLOW OUT							
MOLE/HR CO	405.2162	464,0466	469,9926	495.4644	501.4482	527.9783	550.8626
H2 H2()	529,9838 27.6487	567.5641 24.1947	580.9302 24 1664	585.1079 22 3445	622.4452 22.4452	606.9282	624.8214
CU2	124.1665	108-2770	96.6730	92.0663	122.15.15 122.5645	67.8481	4200-EI 68-72
CI	12,4085	14.9920	14.1956	11.0235	10.7279	8.7589	7-9055
C2=	3.7538	4.4020	4.2948	3,2703	3.1184	2.5904	2.2951
C2	3.2024	3.5696	3.4594	2.5437	2.4950	2.0977	1.7849
C3=	5.8523	5,8305	5.4871	4.2399	4.2409	3.8246	3.3154
	1.1039	1.1899	1.0734	0.8475	0.8736	0.7403	0.6374
	5640°Z .	6668.2	2.6240	1.9380	1.8716	1.7269	1.6577
7.5-1 7.5-1	8065°0	4/cs.0	0.2380	0.2418	0.2489	0.2463	0.1272
N-C4	0000-0	+2000°°0	0000.0	000000	0.0000	0 0000	2016.0
CS.	3.1314	3.1913	2.8005	2.4566	2.3508	2.0759	1.7294
C6	1.1959	1.9640	1.5602	1.4155	1.2071	1.0886	0.9140
C1 C1	2.6612	1.2616	1.0657	2.4759	0.4574	0.8837	0.6551
CH	1.1054	0.8021	0.7034	n,9142	0.7332	0.6263	0.6355
C9	0,625,0 .	0.7686	0.6784	0.6201	0.4739	0.5103	0.3910
C10	2720°0	0.5542	0.4892	0,2152	0.3875	0.3728	0.3183
	0.4152	0.4091	0.3644	0,3607	0.2914	0.2750	0.2384
	344C 0	0600°0	0.120	04/2°0	1072.0	1/02-0	181.0
	0.0488	0.0417	0.0368	0.0384	01610	0.0270	0.0240
C15	0.0126	0.0306	0.0270	0.0291	0.0242	0.0198	0.0179
C16	0.0244	0.0234	0.0207	0.0231	0.0192	0.0152	0.0140
C17	0.0144	0.0172	0.0151	0.0178	0.0148	0.0111	0.0105
	0.0109	9TTA 0	2010-0	1510.0	0.0108	0.0075	0.0087
000	0.0147	0.0188	0,0000	0.0296	0,0033	1000.0	9500°0
C21	0.0093	0.0139	0.0140	0.0224	0.0212	0.0129	0-0181
C22	0.0067	0.0114	0.0100	0.0168	0.0165	0,0098	0.0143
C23	0.0042	0.0054	0.0064	0.0132	0.0121	0.0070	0.0107
C24	0.0041	0.0035	0.0046	0.00H4	0,0093	0.0045	0.0084
CIOH	0.1652	0.9792	0.4060	0.5810	0.3646	2.4633	0.000
CZUH	1.9991	1.0110	1.1077	1.1978	1,1310	0.4707	1.0139
N-C30H	0.6392	0.5249	0.4132	0.3878	0.3930	0.0767	0.3242
1-C3UR	1/00.0	1261.0	0,0838	0.0825	0.0468	0.2885	. 0.0147
A CTERNER A CTERNER	0.0200	101040	0000°0		001000	0.0100	0.0040
ACETIC ACID	0.2969	0.2430	0.2531	0.2588	0,0140	0-0071	0.455
			* > > 2 = >	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	キンシューン	4 - 2 2 + 2	>>>++>

.

5	300.0000 300.0000 1.1480 1.0660 15.5305 21.8437	0.3250 0.4292 0.0208	10.0000 74.0000 16.0000 57.0000	2.9521 100.1565
Z	300.0000 300.0000 1.1480 0.9740 18.5118 24.6998 21.6058	0.3917 0.4792 0.0417	9.0000 74.0000 17.0000 59.0000	2.9101 98.3262
W	300,0000 300,0000 1,1480 0,9840 18,1480 26,7399 26,7399	0.4042 0.5125 0.0292	9.0000 74.0000 17.0000 59.0000	2.9635 101.7996
	300,0000 300,0000 1.1480 0.9560 20.4224 30.1289 35.2756	0.4875 0.5292 0.0583	9.0000 80.0000 11.0000 62.0000	2.9879
×	300.0000 300.0000 1.1480 0.9410 20.9906 33.7209 27.3558	0.5333 0.5542 0.0583	9.0000 83.0000 8.0000 63.0000	2.8813 98.2925
ŗ	300,0000 300,0000 1,1480 0,9390 23,2711 34,1611 28,7161	0.6042 0.5H33 0.0667	9.0000 82.0000 9.0000	2,8882
п	300,0000 300,0000 1,1480 0,01720 28,3516 42,5080 35,4298	6 0 0 1 0 8 0 1 0 8 0 1 0 8 0 1 0 8 0 1 0 8 0 1 0 8 3 3 0 0 1 0 8 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9,0000 9,0000 9,0000	2.8698 97.7189
RUN #. = 3-29 PERTUD	SYSTEM PRESS, PSIG AVG CAT TEMP, DEG C FEED GAS, SCFH (32F TAIL GAS, SCFH (32F H2 CONVERSION CO CONVERSION H2+CO CONVERSION	VIELDS GM/HR UIL Aguruus Phase Wax Analysis	FIA % ANCMATICS ANCMATICS SATURATES BR #	D.P. 9 4AFERIAL RECOVERY
.

Page Intentionally Left Blank

SATISFACTION GUARANTEED

NTIS strives to provide quality products, reliable service, and fast delivery. Please contact us for a replacement within 30 days if the item you receive filling your order. if we have made an error in s defective or

E-mail: info@ntis.gov
Phone: 1-888-584-8332 or (703)605-6050

Reproduced by NTIS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at <u>http://www.ntis.gov</u>.

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000