Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers

R.L. Bain

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under contract No. DE-AC36-83CH10093

Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers

R.L. Bain

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under contract No. DE-AC36-83CH10093

Prepared under Task No. BF15.3436

January 1992

MATERIAL AND ENERGY BALANCES FOR METHANOL FROM BIOMASS USING BIOMASS GASIFIERS

Richard L. Bain January 14, 1992

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401-3393

MATERIAL AND ENERGY BALANCES FOR METHANOL FROM BIOMASS USING BIOMASS GASIFIERS

The objective of the Biomass to Methanol Systems Analysis Project (BF15.3436) is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. One step in this process is the development of integrated methanol production simulation models. This report summarizes the development of simulation models based upon the Institute of Gas Technology (IGT) for methanol production "Renugas" gasifier and the Battelle Columbus Laboratory (BCL) gasifier. The IGT "Renugas" gasifier is a high-pressure, oxygen-blown, fluid-bed gasifier which has been operated at the 10 ton per day (TPD) pilot plant scale of operation on a number of biomass feeds and the BCL gasifier is a low pressure indirectly heated gasifier which has also been operated at the 10-TPD scale. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of IGT and BCL gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.

The IGT model was used to perform a simulation for the Hawaii Natural Energy Institute (HNEI), assuming IGT's experiment 13-G as input data. The simulation indicated that approximately 100.5 million gallons of methanol per year can be produced from 2,000 d tons per day (dTPD) of bagasse with an IGT gasifier operating at 1526 °F and 319 psia. The BCL model was used to simulate and BCL gasifier/methanol synthesis system. The gasifier simulation included operation at 1675 °F, 20 psia, and a quench step. The simulation indicated that approximately 110.5 million gallons per year of methanol could be produced.

An addendum to this report will be issued by the end of the first quarter of 1992, in which the results of IGT gasifier operation at 1800 °F, and BCL gasifier operation with hot gas conditioning are shown.

<u>Table of Contents</u>

		rage
1.	Technology Description	1
2.	Analysis of IGT Biomass Gasification Data	11
3.	ASPEN Model for the IGT Gasifier System	12
4.	IGT Case Study	16
5.	Analysis of BCL Biomass Gasification Data	23
6.	ASPEN Model for the BCL Gasifier System	24
7.	BCL Case Study	27
8.	References	34
9.	Appendices	
	1. IGT Gasifier Data	36
	2. Least Squares Fit of Gasifier Variables	53
	3. IGT Gasifier - Conditions and Correlations	58
	4. ASPEN Input Data - IGT Gasifier	60
	5. ASPEN Program Listig - IGT Case	63
	6. Hawaii Material Balance Information	74
	7. BCL Gasifier Data	82
	8. BCL Least Squares Fits	98
	9. BCL: Feed Analysis and Yield Correlations	. 103
	10. ASPEN Input file: BCL Recycle Case	. 105
	11. ASPEN Program Listing - BCL Case	. 116

List of Figures

	Pa	ge
1.	Thermochemical Production of Methanol from Biomass	3
2.	Process Simulation Schematic - IGT Gasifier/	
	Methanol Synthesis	13
3.	Process Simulation Schematic - BCL Gasifier/	
	Methanol Synthesis, Part A	25 [°]
4.	Process Simulation Schematic - BCL Gasifier/	
	Methanol Synthesis, Part B	26

Technology Description

The thermochemical production of methanol from biomass involves the production of a synthesis gas rich in hydrogen and carbon monoxide which is then catalytically converted into methanol. Production of the synthesis gas is accomplished by thermal gasification.

The unit operations involved in methanol production from biomass are divided into the following major areas: 1) feed preparation, 2) gasification, 3) synthesis gas modification, and 4) methanol synthesis and purification. In order to understand the need for these processing steps a brief discussion of the chemistry of methanol production is required. Wood will be used as a typical biomass Wood is a complex mixture (Graboski and Bain 1979) of organic feedstock. The major types of compounds are lignin and compounds and polymers. carbohydrates (cellulose and hemicellulose) whose ratios and resulting properties are species dependent. Lignin, the cementing agent for cellulose is a complex polymer of phenylpropane units. Cellulose is a polymer formed from d(+)-glucose while the hemicellulose polymer is based on hexose and pentose sugars. Wood has low ash, nitrogen, and sulfur contents. In order to estimate yields during gasification the complex material must be reduced to a simplified chemical formula, such as $CH_{1,4}O_{0,6}$. Elements such as sulfur and nitrogen are typically present in very small amounts and do not need to be considered in terms of overall chemistry.

The combustion of wood can be ideally represented by:

$$CH_{1.4}O_{0.6} + 1.05 O_2 ----> CO_2 + 0.7 H_2O$$
 (1)

Oxygen blown gasification can be thought of as incomplete combustion or partial oxidation. Gasification using a minimum amount of oxygen can be represented by:

$$CH_{1.4}O_{0.6} + 0.2 O_2 \longrightarrow CO + 0.7 H_2$$
 (2)

In cases where no oxygen is used an "ideal" gasification reaction can be represented by:

$$CH_{1.4}O_{0.6}$$
 ----> 0.6 CO + 0.4 C + 0.7 H₂ (3)

This pyrolysis reaction is endothermic and heat is needed to make the reaction proceed. This heat is provided by the oxidation reactions shown above or by indirect heat transfer. While these ideal reactions are simple, actual gasification is more complex and intermediate compounds such as tars and methane are formed which must be further processed before the synthesis gas can be used to produce methanol.

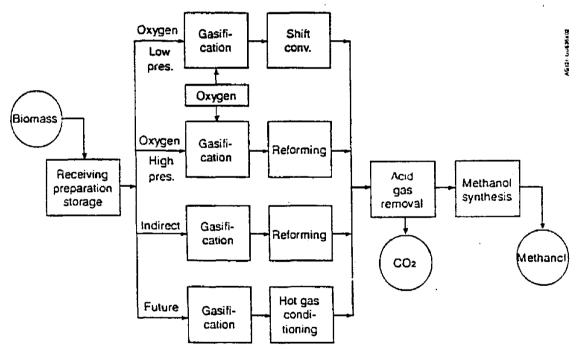
Methanol is formed catalytically by the following reaction:

$$CO + 2 H_2 < ---> CH_3OH$$
 (4)

It can be seen that two molecules of hydrogen are required for each molecule of carbon monoxide. Gasification may produce a gas with a hydrogen to carbon monoxide ratio as low as one-half. In this case water is added and some of the carbon monoxide is used to produce hydrogen by the catalytic shift conversion reaction:

$$CO + H_2O ----> CO_2 + H_2$$
 (5)

The methanol synthesis reaction is an equilibrium reaction and does not proceed to completion. In order to obtain economic yields unreacted gas is recycled to the synthesis reactor. While not detrimental to process chemistry, inert gases such as methane must be purged from the system, resulting in loss of yield and an economic penalty. Concentrations of methane larger than one or two percent typically result in unacceptable economic penalties. Therefore, synthesis gases containing high levels of methane are steam reformed prior to methanol synthesis. The primary catalytic reforming reaction is:


$$CH_4 + H_2O ----> CO + 3 H_2$$
 (6)

In addition the shift conversion reaction shown above also occurs in the reformer.

Carbon dioxide also reacts with hydrogen to produce methanol, but consumes more hydrogen per mole of methanol formed than when using carbon monoxide. Most of the carbon dioxide is therefore removed from the synthesis gas prior to methanol synthesis.

With this knowledge of chemistry as a basis the unit operations can be discussed. Figure 1 shows the major routes for production of methanol from biomass on a simplified basis. These routes differ primarily in the type of gasification process chosen.

Thermochemical Routes to Methanol from Biomass

The feed preparation section of a biomass to methanol process involves wood storage and handling, size reduction, and drying. Size reduction is process specific. Drying is performed to minimize feed degradation during storage and to optimize the overall process energy balance. Drying to 10% to 15% moisture content is accomplished using waste process heat. This waste heat may come from various unit operations in an integrated methanol production facility. For a system with an indirect gasifier, this waste heat comes from hot flue gases produced during char combustion. For a direct oxidative gasifier system the waste heat comes from reformer furnace flue gases. The heat required to dry biomass from 50% moisture to 10% moisture represents about 10% of the heating value of the biomass.

Gasifiers can be divided into three major classes: I) air gasifiers, 2) oxygen gasifiers, and 3) indirect gasifiers. This classification is based primarily upon the method of supplying the heat necessary to drive the endothermic pyrolysis reactions, the carbon-steam reaction and the carbon-carbon dioxide reaction. Gasification is an old technology for converting coal and biomass into a gas which can be used in various technical processes. Coal gasification is commercial technology used to produce substitute natural gas (Great Plains), gasoline and diesel fuel (Sasol), and methanol (Tennessee Eastman as an intermediate in acetic anhydride production and SASOL as an intermediate in formaldehyde production). Biomass gasification was used in Europe during World War II to supply energy for transportation, electricity and heat.

Biomass gasification has not been commercially developed in this country because of the abundant supplies of natural gas, petroleum, and coal. Because of the differences between coal and biomass, coal gasifiers are not directly usable for biomass gasification. Differences in reactivity (with biomass being more reactive) change required operating temperatures, pressures, and residence times. Difference in density between coal and biomass requires modification of the solids feeding systems. The ancillary facilities, such as utilities and waste treatment can be applied to biomass gasification except that biomass gasifiers do not require as extensive clean up for sulfur or nitrogen derived compound emissions as do coal gasifiers because of the low sulfur and nitrogen content of wood. A number of gasifiers are being developed in this country, in Canada, in

Europe, and in other countries to process biomass. Because of the high reactivity of biomass they are typically operated at lower temperatures than are coal gasifiers. To date, gasifier development has concentrated on production of low and medium BTU gas for use in electrical generation and as a substitute natural gas. Development has not been specific for methanol production.

Air gasifiers use the oxygen in air to provide process heat. A portion of the feed is burned, and the heat of combustion is used to gasify the remaining feed. The nitrogen present in air acts as a diluent in methanol production and leads to unattractive economics. Air gasification product can be used for electricity generation, and for ammonia synthesis.

In order to reduce the amount of inert gas in the gasifier product stream relatively pure oxygen can be used in place of air. While the use of oxygen will produce a gas suitable for downstream synthesis gas processing, oxygen is expensive and accounts for a large percentage of plant capital and operating costs. For example, oxygen costs \$40 to \$60 dollars per ton, and is typically used at the rate of 0.25 to 0.35 ton oxygen per ton of biomass in oxygen gasification. This translates to a cost of \$10 to \$21 per ton of biomass processed.

Oxygen gasifiers are operated at both low and high pressure. A low pressure oxygen (LPO) gasifer presently being evaluated for biomass gasification is the Koppers-Totzek (K-T) gasifier. The K-T gasifier (Probstein and Hicks 1982, Chem Systems 1990) is an entrained flow gasifier whose operation requires that the biomass be ground very fine, minus 30 mesh (minus ca. 0.02 inches). The required comminution adds appreciably to feed preparation costs. Operation at low pressure in the presence of oxygen produces little methane and tars. The hydrogen to carbon monoxide ratio is less than one, comparable that of indirect gasifiers. The Union Carbide Corporation Purox (Keenan 1977) process has been developed for municipal solid waste gasification. The hydrogen to carbon monoxide ratio in the produced gas is also less than one.

High pressure oxygen (HPO) gasifiers are being developed to improve on the economics of LPO gasifiers. Typically these gasifiers are fluid bed gasifiers

which are fed fairly large wood chips, e.g. minus 2 inches. Oxygen and steam are injected near or at the bottom of the reactor and react with the wood, char and synthesis gas. Fluid bed reactors have the advantage of good mixing of the feed solids, uniform bed temperature, and rapid equilibrium between solids and gases. However, operation at high pressure favors the formation of methane. Operation at high pressure reduces gasifier capital cost and downstream compression costs, but downstream processing to remove or reform tars and methane adds appreciably to capital and operating costs. The Winkler and Institute of Gas Technology (IGT) gasifiers are representative of HPO fluid bed gasifiers. The Texaco gasifier is a representative HPO entrained flow gasifier. The Winkler and Texaco gasifiers have been developed for coal. The IGT gasifier (Evans et al 1982) is designed for biomass operation and has been operated at the twelve ton per day scale.

Indirect (IND) gasifiers produce a solid carbon-rich char, see equation 3, which is reacted with air in a separate combustor to provide process heat. This heat is transferred to the gasifier by circulation of hot inert solids, or by indirect heat transfer through the walls of the gasifier or through the walls of heat exchange tubes. IND gasifiers typically produce a synthesis gas rich in carbon monoxide, and with low carbon dioxide levels. In order to produce sufficient char to provide all the heat necessary for gasification these gasifiers are normally operated at relatively low temperatures, 1300 to 1600 °F. At these temperatures synthesis gas yields are reduced and methane concentration is high. The addition of a catalyst may improve the hydrogen to carbon monoxide ratio Downstream reforming is required for methanol synthesis. substantially. Operation of developmental reactors has been directed to production of medium BTU gas, not toward methanol synthesis gas production. The Battelle-Columbus Laboratory (BCL) gasifier (Feldmann et al, 1988) and the University of Missouri-Rolla (UMR) gasifier (Flanigan et al 1988) are typical of IND gasifiers developed for biomass processing. Both of these gasifiers have been operated at the pilot scale.

The synthesis gas exiting the gasifier contains small amounts of tar and char which must be removed prior to downstream catalytic conversion operations. Typically, gasification systems use scrubbers to remove tars. While efficient in

contaminant removal scrubbers produce a dirty water stream which must be further processed. An alternative to scrubbing is hot gas cleanup. In coal gasification systems operated at high temperature tar removal is generally not required, and hot gas cleanup is directed toward removal of sulfur compounds. Hot gas cleanup systems are being developed for biomass gasifiers in Europe. The Studsvik MINO process (Rensfelt and Ekstrom 1989) in Sweden includes a catalytic tar conversion operation and has been operated at a pilot scale. In France the Cruesot Loire system (Philip 1986) uses a thermal tar conversion reactor. Research is ongoing in the United States in the area of hot gas cleanup for biomass gasifiers, but large pilot operations have not been undertaken to date.

All unit operations downstream of the gas cleanup operation are commercial technology, although potentially improved technologies are being investigated. Steam-methane and steam-naphtha reformers are the primary method of production of hydrogen by the petroleum industry and have been operated for many years. Likewise, shift conversion reactors have been operated commercially for many years as a part of steam-reformer systems. In 1989 approximately 7,345 million gallons of methanol production capacity existed worldwide (Crocco 1989) using thermal conversion operations. Eighty-six percent of this production capacity uses steam-reforming operations followed by catalytic methanol synthesis. The primary commercial methanol synthesis processes are licensed by ICI and Lurgi.

A liquid phase methanol synthesis concept is being investigated by Brookhaven National Laboratory (Mahajan et al 1989) in which a novel liquid phase catalyst is used to catalytically convert synthesis gas to methanol at low temperature (ca. 110-130 °C) and low pressure (ca. 180-360 psia). Single pass conversions of 90 percent of the limiting reactant, typically CO, with high selectivity, over 95 percent, to methanol have been reported. Another liquid phase methanol process is under development by Air Products and Chem Systems (Studer et al 1989) in which a solid catalysts is suspended in an organic solvent. The process has been tested at the PDU scale, up to 12 TPD of methanol production, for extended periods of time on CO rich gases. Thermal efficiencies are reported to be 90-94% for the synthesis step. These single pass methanol synthesis processes will most probably be best utilized in conjunction with syngas generation processes producing low methane content syngas, or in a combined process where the

unreacted methanol synthesis gas is used for electricity generation.

Technical development efforts for production of methanol from biomass are concentrated in the area of gasification. As stated before these efforts are primarily directed toward production of medium BTU gas for electrical generation or for fuel use and not for synthesis gas production. However, results obtained are directly applicable to gasification for methanol production. Gasification systems are being developed in the United States, in Canada, and in Europe. This discussion will concentrate on biomass gasifiers being developed in the United States.

Five gasifier systems are actively being developed in the United States for biomass gasification. These systems are listed below:

- Battelle Columbus Laboratories (BCL)
- Institute of Gas Technology (IGT)
- Manufacturing and Technology Conversion International Incorporated (MTCI)
- Syngas, Inc. (SGI)
- University of Missouri-Rolla (UMR)

BCL Gasifier

The BCL gasifier system (Feldmann et.al., 1988) is a dual bed IND gasifier system operated in an entrained flow mode. Heat for gasification is supplied by hot sand recirculating between a separate combustion vessel and the gasifier. Residual char remaining after gasification of the wood provides the fuel for the gasifier. The system has been operated at a 25 ton per day scale in pilot plant operation. The gasifier produces a synthesis gas with a low hydrogen to carbon ratio, high methane content and some tars. For methanol production the tars will have to be removed and the methane reformed to produce a suitable synthesis gas. The pilot system has been operated under conditions giving energy self sufficiency on a gasifier stand alone basis. It is possible that higher temperature operations are possible in an integrated plant where a portion of purge gases from the methanol synthesis loop can be used to make up shortfalls

in heat available from char combustion. At higher temperatures tar yield and methane content will both be reduced.

IGT Gasifier

The IGT gasifier (Evans et.al., 1988) is a HPO gasifier operated in the fluid bed mode. Oxygen and steam are introduced near the bottom of the fluid bed reactor. Oxygen reacts with a portion of the feed and gasification products to supply the heat required for gasification. The system is designed to produce a medium BTU gas from biomass at moderate temperatures, 1400° to 1800°F and high pressures, 100 to 350 psia. The IGT gasifier has been operated at a 12 tons per day scale. The product gas is high in methane and contains some tars. For methanol production tars will have to be removed and the gas reformed to reduce the methane concentration.

MTCI Gasifier

The MTCI gasifier (MTCI 1990) is an IND gasifier operated in the fluid bed mode at moderate temperatures, ca. 1200° to 1300°F and atmospheric pressure. Heat for the gasification reaction is supplied indirectly through heat exchange tubes placed in the fluid bed. A pulse combustion system is used to increase the rate of heat transfer from the combustion flue gas to the fluid bed. To date natural gas has been used as the fuel for combustion, but a portion of the produced gas would probably be used for commercial operations. In addition to the high heat transfer rate, operation of the system is characterized by the use of a catalytic fluidization solid which results in product gases having high hydrogen to carbon monoxide ratios. As for the previous gasifiers the product gas contains methane and tars and will require cleanup and reforming in commercial operations. Only limited pilot runs have been performed at a 0.4 ton per day scale. For methanol production tars will have to removed, and the gas reformed to produce a suitable synthesis gas, assuming operation at conditions comparable pilot operation conditions.

SGI Gasifier

The SGI gasifier (Reed et. al., 1988) is a stratified downdraft gasifier which can be operated using air or oxygen as a LPO or HPO gasifier. The system has been operated on a limited basis as a HPO gasifier at the 24 ton per day scale. Original development of the gasifier was performed by the Solar Energy Research Institute from 1981 to 1985. The technology was licensed to SynGas, Inc., in the mid 80's for commercial development. The unit operates as a moving bed gasifier with co-current flow of oxygen or air in a downward direction. The design produces a minimum of tars. The system is designed to produce a low to medium BTU fuel gas containing a low hydrogen to CO ratio, some methane, and some tars.

UMR Gasifier

The UMR gasifier (Flanigan et.al., 1988) is an IND gasifier operated as a fluid bed reactor with heat supplied via heat exchanger tubes internal to the bed. Heat is supplied by high temperature combustion flue gas. In pilot operations natural gas has been used for combustion fuel, but in commercial operation char or a portion of gasifier product gas would be used. The system has been operated at the 3.6 short ton per day scale at relatively low temperatures. Operation at low temperatures gives higher char and tar yields and lower gas yields than the other gasifiers under development. Temperature may be limited by maximum indirect heat transfer rates. The gas will have to be reformed and tar destruction will be required to make a suitable synthesis gas feed. Because of operation at low temperature the tar production in this gasifier is an order of magnitude larger than in the other gasifiers. Higher temperature or catal bed operation of the system would produce a product stream similar to that of MTCI gasifier.

To summarize technology status, a number of gasifiers are under development which have the potential to produce a synthesis gas suitable for methanol synthesis. These gasifiers are operating in the 4 to 25 ton per day scale. All systems under development are designed to produce a low to medium BTU fuel gas. None of the systems have been operated on an integrated process basis to determine operating parameters necessary for maximum methanol production. All downstream synthesis gas operations are commercial technology in which operating conditions and yields are known.

Analysis of IGT Biomass Gasification Data

The objective of modeling the IGT gasification experimental data was to put the gasifier yield data in a form which could be used as input information in the ASPEN material and energy balance simulation. The experimental data were taken from the 1988 IGT report to Pacific Northwest Laboratories (Evans et.al., 1988). The following procedure was used convert the experimental data:

- 1. The experimental gasifier results given by Evans were input into a Lotus Spreadsheet. The data are given in Appendix 1.
- 2. The experimental yield was modified to force a 100% material balance. The modified data are given in Appendix 1.
- 3. Yields and gas compositions were correlated using linear least squares fits as polynomial functions of temperature. The least squares results are given in Appendix 2. A summary of gasifier conditions, feed properties, and yield correlations is given in Appendix 3.
- 4. The yield correlation were then used to generate ASPEN input data. The gasifier reactor model used to represent the gasifier in the ASPEN simulation is a R-YIELD reactor in which a chemical reactor is simulated by specifying component yields. This type of reactor is used when reaction stoichiometry and kinetics are unknown but yields distribution data or correlations are available. The ASPEN input data are shown in Appendix 4.

ASPEN Model for the IGT Gasifier System

The IGT gasifier based system simulated for this study is given by Figure 2. The major process components simulated were:

- 1. Feed dryer
- 2. Gasifier with no quench
- 3. Preformer: This reactor operates much like a naphtha preformer where higher hydrocarbons are converted to methane. The preformer was simulated as a stoichiometric reactor
- 4. Reformer: In the reformer methane reacts with steam to produce hydrogen and carbon monoxide. This reactor was modelled as a RGIBBS reactor, assuming equilibrium based upon minimization of Gibbs Free Energy. The reactions included in the simulation were the steam reforming reaction, the water gas shift reaction, and the CO decomposition reaction to form carbon and carbon dioxide. A steam reforming lack of equilibrium was assumed by using a minus 15 °F approach temperature for the steam reforming reaction.
- 5. Acid gas removal and recycle: This module is not rigorously modelled in this present simulation. The product stream is cooled and separation is forced by the simulation program. This module should be changed in the future to simulate a Benfield or Catacarb unit. A portion of the recovered carbon dioxide is recycled to the preformer.
- 6. The methanol compressor is modelled as a centrifugal compressor.
- 7. Methanol synthesis: The methanol synthesis is simulated as an equilibrium reactor. The reactions used are the methanol reaction and the water gas shift reaction.

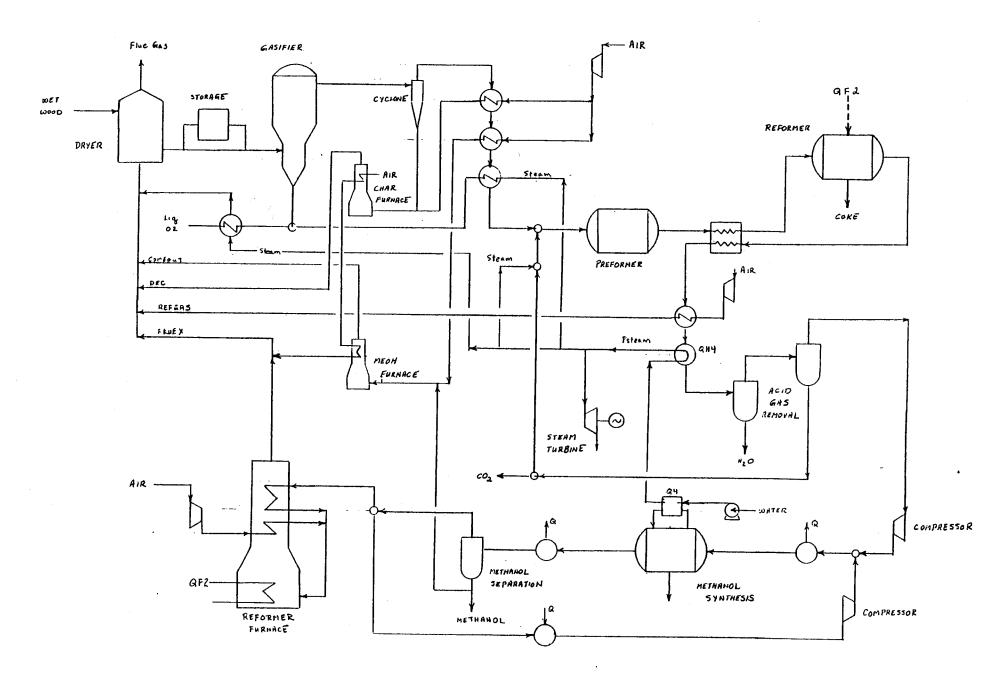


FIGURE 2 METHINOL SYNTHESIS WANG LOT GASTELER

8. Methanol recovery is simulated by cooling the methanol reactor product stream, and performing a flash calculation. The raw methanol stream is removed. Methanol purification is not simulated. A portion of the remaining gas is recycled to the methanol reactor, and the rest is sent to the reformer furnace.

- 9. Reformer furnace: Methanol synthesis purge gas is burned using a stoichiometric reactor. The assumed approach temperature between furnace flue gas and reformer exit temperature is 100 °F. The flue gas from the reformer furnace is used to raise process steam, then fed to the dryer.
- 10. Steam Generation: Water is heated using the heat given off in the methanol synthesis reaction, and in cooling excess water from the acid gas removal operation. The amount of excess steam is dependent upon heat recovery in the acid gas plant. Future changes in the simulation will improve the accuracy of this value, and affect the amount of electricity required.
- 11. Electricity Generation: Excess steam is fed to a steam turbine for production of process electricity.

A listing of the simulation program is given in Appendix 5:

IGT Case Study

The IGT simulation model was used to perform a simulation for the Hawaii Natural Energy Institute (HNEI). For this case study HNEI requested that IGT's experiment 13-G be used as input data. Therefore, the data from this experiment were normalized to ASPEN input form. The normalization procedure is given in Appendix 6. The preliminary analysis is given below. In summary, the simulation indicates that approximately 100.5 million gallons of methanol per year can be produced from bagasse using a 2000 dTPD IGT gasifier operating at 1526°F, and 319 psia. This production rate compares to 101.5 million gallons per year predicted by Chem Systems (Chem Systems, 1990) for the same gasifier operating at 1800°F and 500 psia.

Basis: 2000 dTPD Feed Feed Analysis defined per Hawaii System A data

- I. System Configuration:
 - a. Feed dryer
 - b. Gasifier with no quench
 - c. Preformer
 - d. Reformer
 - e. Acid gas removal
 - f. Compression
 - g. Methanol Synthesis
 - h. Purge Gas Combustion (Reformer heat input)
- II. Feed:

Total 1.333E+09 lb/yr HHV = 0.1439E+10 Btu/hr Carbon 0.6387E+09 lb/yr

III. Product Streams:

A. Methanol:

Overall
2582.411 lbmol/hr = 100.45 MM gal/yr = 0.66196E+09 lb/yr
49.65 % of dry wood
HHV = 64,290 Btu/lb = 0.8072E+09 Btu/hr = 56.10 %
Carbon
0.2481E+09 = 38.84 % of carbon in

B. Carbon Dioxide

Overall 0.89894E+09 lb/yr Carbon 0.24534E+09 lb/yr = 38.41 %

IV. Carbon Balance Check

lb/yr

%

```
Methanol 0.2481E+09 38.8
CO2 0.8453E+09 38.4
Flue Gas 0.1234E+09 19.3
Assoc. MeOH 0.0236E+09 3.7 (Assoc. CO, CO2, CH4)
Total 100.2
```

V. UNIT OPERATIONS

A. Dryer

 $T = 220^{\circ}F$

Qd = 0.008876E+09 Btu/hr = 0.62 % Qwg = 0.03265E+09 Btu/hr = 2.27 % Ocond = 0.2295E+09 Btu/hr = 15.95 %

B. Storage

Not used in this case

C. Gasifier

T = 1526°F, P = 319.1 psia

Qg = 0.0303E+09 Btu/hr = 2.11 % +2.7 % IGT correction = 4.81 %

D. Solid Separation

Ash = 0.0014E+09 = 0.10 %

E. Air Compressors

Air 1	3916	lbmol/hr
Air 2	50	
Airx	6000	
Refgasl	4000	
Ambair	5500	833.11 hp
	19466	lbmol/hr

Total air compressor horsepower:

 $(19466/5500) * (833) = 2948 \text{ hp} \approx 3000 \text{ hp}$

Cost estimate

Reference: Garrett, D.E., <u>Chemical Engineering Economics</u>, using figure on page 271

Use 3 compressors, 1000 hp ea, 150 psia rating, Add 1 compressor as spare

Purchase Price = \$60,000 (1987) Module factor = 2.6

No. units = 4

Installed Cost (1987\$) = 60,000 * 2.6 * 4 = \$624,000

F. Reformer Loop

1. Inlet Conditions

 $T = 1261 ^{\circ} F$

P = 319.1 psia

Steam Added = 6200 1bmole/hr

2. Preformer - Converts non-methane hydrocarbons

 $T = 1196 \cdot F$

3. Preheater

Tout = 1404°F

Q = 0.04773E+09 Btu/hrA = 1595 ft²

4. Reformer

 $T = 1600 \cdot F$

P = 319.1 psia

Q = -0.1744E + 09 Btu/hr

Gas Composition

Comp	Mole %	Mole % Dry
H2	26.38	47.39
CO	12.29	22.08
C02	16.68	29.96
H20	44.33	
CH4	0.31	0.56
H2/CO	2 15	

5. CO2 recycle

Product/Recycle = 2553/1258 = 2.03

Methanol Synthesis

1. Compressor 2

Pin = 319 psia Pout = 750 psia

Tin = 300°F Tout = 514°F η = 0.95 Hp = 6248 = 6250

Cost estimate:

Reference: Garrett, D.E., <u>Chemical Engineering Economics</u>, from figure on page 272

Use 3 compressors (2 + 1 spare) rated at 3200 hp ea

Base Cost (1987\$) = \$650,000

Number = 3

Module factor = 2.6

Stainless steel = 2.5

Pressure factor = 0.9495

This cost compares to 7.6 MM\$ in Chem Systems report for Pin = 500 psia.

- 2. Htr 5 (Recycle Preheat to eliminate condensation in recycle compressor) Q = -0.0038E+09 Btu/hr
- 3. Recycle Compressor; 30 HP
- 4. Htr 6 (Used to Balance compressor preheat)

Q = .00456E+09 Btu/hr

0.00456 > 0.00381 0.K.

5. Methanol Synthesis

T = 445°F, P = 750 psia

Q = 0.1144E+09 Btu/hr

Note: Q + Agas Cooler Q used for steam production

- 6. Product Cooling Q = 0.0825E+09 Btu/hr = 5.73 % Not used in present case
- 7. MeOH Separation

Q = 0.000408E+09 = 0.03 %

Raw Product Liquid Composition

Comp lbmol/hr

Mole %

```
H2
                     3.11
                                      0.10
CO
                     1.33
                                      0.005
C02
                   242.11
                                      8.36
H20
                   63.04
                                      2.17
CH4
                                      0.009
                     2.71
MeOH
                 2582.42
                                     89.21
```

- 8. Recycle/Purge = 4360/2147 = 2.03
- H. Reformer Combustor (Furnace)
 - 1. Air Compressor shown earlier in section II-E as ambair compressor.
 - 2. Air Preheater

$$Q = 0.0443E+09 Btu/hr$$

A = 472 ft²

3. Feed Gas Preheater

$$Q = 0.0111E+09$$

A = 169 ft²

4. Combustor

T = 1743 °F > 1700 °F (Assumed 100 °F approach in reformer furnace.

Excess Heat = 0.002667E+09 Btu/hr = 0.18 %

- I. Steam Balance
 - 1. Generated 18,650 lbmol/hr at 319.1 psia, 902.1°F.
 - 2. Steam G 5365.9 lb-mol/hr
 Steam 6200 lb-mol/hr
 Steam02 1800 lb-mol/hr
 Steam2 5284 lb-mol/hr
- J. Steam Turbine

Electricity = 0.02987E+09 Btu/hr = 2.08 % = 8.75 MW Generator Loss = 0.0016E+09 Btu/hr = 0.11 % Steam Condensation = 7.30 %

K. Preliminary Electrical

Water Pump 118.4 Hp
Air Comp 3000
MeOH Comp 6250
Recycle Comp 30

Subtotal 9398.4 Hp = 7 MW

Dryer/Conveyer/Feeder Acid Gas Misc

L. Energy Balance

Methano?	56.10
Dryer	0.62
Wet Gas	2.27
Condense 1	15.95
Gasifier	4.81
Ash	0.10
Water	4.06
MeOH Cool	5.73
W Turb	2.08
Gen. Loss	0.11
Comb Excess	0.05
Steam Cond	7.30
	99.31

Gas Composition, Major Streams

Comp \ Stream	Gasifier Product	Preformer Feed	Preformer Product	Reformer Product	Methanol Feed	Methanol Product	Recycle Gas
H2	17.11	11.22	12.81	26.38	66.38	50.13	72.39
co ·	8.75	5.74	7.10	12.28	24.16	7.71	11.13
CO2	21.37	19.82	19.41	16.68	5.98	11.52	12.92
H20	43.33	57.02	54.49	44.33	1.87	0.67	0.00
CH4	8.43	5.53	6.15	0.31	1.56	2.42	0.09
C2H4	0.01	0.01					
C2H6	0.62	0.41					
MEOH							
C6H6	0.1600	0.1100					
C6H6O	0.0080	0.0054					
C7H80	0.1600	0.1000					
C10H8	0.0070	0.0045					
C14H10	0.0050	0.0033					
lb-mole/hr	14221	21680	22130	24700	14570	9400	4359
T, deg F	1526	1261	1196	1600	445	445	32
P, psia	319	319	319	319	750	750	740
H, Btu/lb-mole	-74330	-86480	-84730	-66910	-21450	-45420	-28740
H/C	1.95	1.95	1.8	2.15	2.75	6.5	6.5

Analysis of BCL Biomass Gasification Data

The objective of modelling the BCL gasification data was to put the gasifier yield data in a form which could be input into the ASPEN process simulator. The experimental data were taken from the 1988 BCL report to Pacific Northwest Laboratories (Feldmann etal, 1988). The following procedure was used to convert the experimental data:

- 1. The experimental results were input into a Lotus Spreadsheet and normalized to force a 100 % material balance. The data are given in appendix 7.
- 2. Yields and gas compositions were correlated using linear least squares fits as polynomial function of temperature. The least squares results are given in Appendix 8. A summary of gasifier conditions, feed properties, and yield correlations is given in Appendix 9.
- 3. The yields correlations were then used to generate ASPEN input data.

 These input data a given in Appendix 10.

ASPEN Model for the BCL Gasifier

The BCL gasifier based system simulated for this study is given by Figures 3 and 4. The major process componenetsa simulated were:

- 1. Feed dryer
- 2. Gasifier with quench. The gasifier was modelled as a RYield reactor. The hot sand heating system was simulated by sand heating loop and char/tar/methanol combustion loop. Heat requirements were satisfied, but the hot sand stream was not actually mixed with the gasifier stream. A recycle gas stream was simulated in the same manner.
- 3. Reformer Compressor
- 4. Preformer/Reformer: The modules was simulated in the same manner as for the IGT case.
- 5. Acid gas removal and recycle: This module was simulated in the same manner as for the IGT case.
- Methanol compressor: This module was simulated as three stage centrifugal compressor with intercooling.
- 7. Methanol synthesi/recovery: Theses modules were simulated in the same manner as for the IGT case.
- 8. Reformer furnace: This module was simulated in the same manner as for the IGT case.
- 9. Steam Generation: This module was simulated in the same manner as in the IGT case.
- 10. Electricity Generation: There was no electricity generation in this simulation.

A listing of the simulation program is given in Appendix 11:

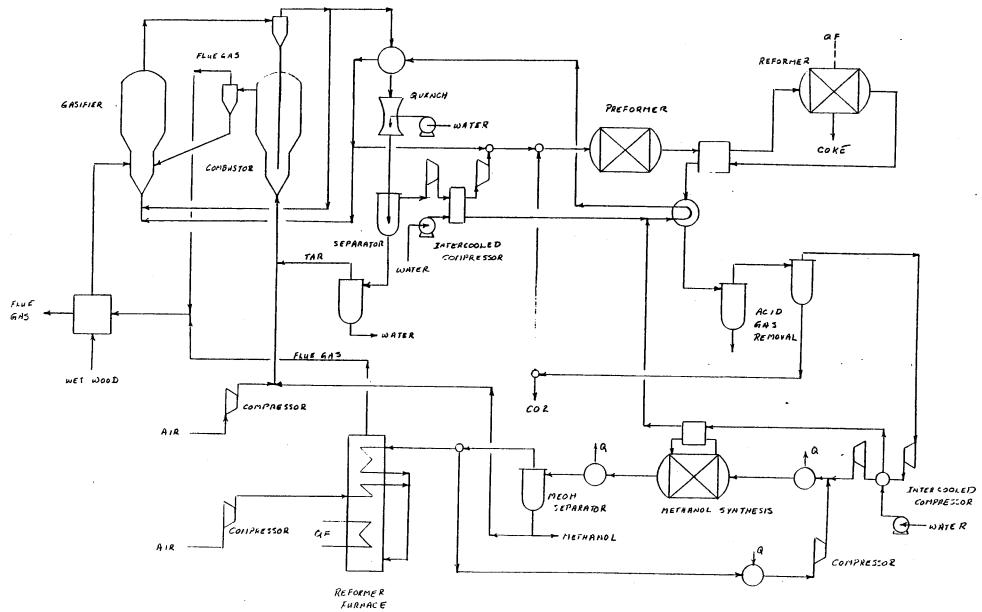
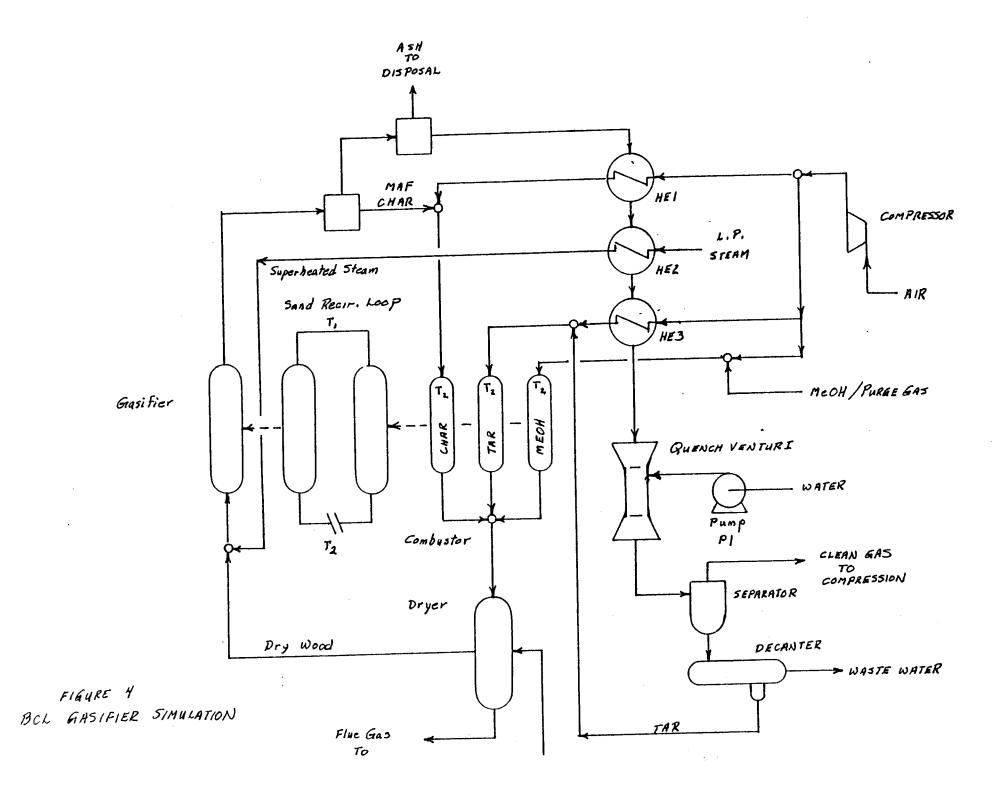



FIGURE 3: METHANOL SYNTHESIS USING BCL GASIFIER

Battelle Columbus Case Study

The BCL simulation model was used to perform a simulation of base condition yields in which the raw gas leaving the gasifier was quenched and tars removed before entering the reformer train. The preliminary analysis is given below. In summary, the simulation indicates that 110.5 million gallons of methanol per year can be produced from 2000 dTPD wood. This production rate compares with 123.8 million gallons per year estimated in 1990. The differences are caused primarily by a more detailed study of dryer and steam generation heat requirements which have indicated that a larger purge gas stream from the methanol synthesis loop is required to meet process heat duty.

I. System Configuration

- a. Dryer
- b. Gasifier with quench and product gas recycle
- c. Combustor
- d. Reformer Compressor
- e. Preformer
- f. Reformer
- g. Acid gas removal
- f. Methanol synthesis compressor
- g. Methanol synthesis
- h. Reformer furnace

II. Feed

Total 1.333E+09 lb/yr HHV = 1.437E+10 Btu/hr Carbon = 0.6784E+09 lb.yr

III. Product

- A. Methanol 2840 lbmol/hr = 110.5 MM gal/yr = 0.7281E+09 lb/yr 54.6 % of dry wood HHV = 64,290 Btu/gal = 0.8878E+09 Btu/hr = 61.78 % Carbon = 0.2729E+09 lb/hr = 40.23 %
- B. Carbon Dioxide
 Overall = 0.4966E+09 lb/yr
 Carbon = 0.1355E+09 lb/yr

IV. Carbon Balance Check

lb/yr %
Methanol = 0.2729E+09 = 40.23
Carbon Dioxide = 0.1355E+09 = 19.97

```
Reformer Flue Gas = 0.0633E+09 = 9.33
        Combustor Flue Gas = 0.1899E+09 = 27.85
        Assoc, MeOH
                             = 0.0232E+09 = 3.43
                                                       100.81
        The difference is caused by small lack of closure in gasifier
        carbon balance.
V. Dryer
    Temperature = 220°F
    Pressure = 14.7 psia
    Q_n = 0.00225E+09 Btu/hr = 0.16 %
VI. Gasifier
    Temperature = 1675 F
    Pressure = 20 psia
    Gasifier Feed:
                            166,667 lb/hr
         Dry wood
                             16.973 1b/hr
         Moisture
                        =
                             66,360 lb/hr (1000°F, 25 psia)
         Steam
                        =
                      = 6,000,000 \text{ lb/hr} (1975 \text{ F})
         Hot solids
         Solids/wood = 36 lb/lb
                        = 103,300 lb/hr (1675 F)
         Recycle Gas
     Quench
         Temperature = 100°F
         Pressure = 20 psia
         Water treatment rate = 310,000 gph = 5,168 gpm
VII.
         Combustor
     Circulation Material - SiO<sub>2</sub>
     Heat capacity = 0.2 Btu/1b/°F
     Circulation Rate = 6,000,000 lb/hr
     Combustion feeds:
                         25,435 1b/hr
         MAF char
                         1,541 lb/hr
         Tar
                     =
                            801 1b/hr
         Methanol
                     =
                     = 285.447 \text{ lb/hr}
         Air
         Compressor Requirements, 25 psia, 2,677 hp
     Compressor Cost estimate
         Reference: Garrett, D.E., Chemical Engineering Economics,
         using figure on page 271
         4 - 900 \text{ hp compressors } (3 + 1 \text{ spare})
         Purchase Price = $59,000 (1987$)
         Module factor = 2.6
         No. Units = 4
         Installed Cost = 59,000 * 2.6 * 4 = $613,600
 VIII.
         Reformer Compressor
```

Modelled as a 4 stage centrifugal compressor with intercooling.

Exit Temperature = 267.6°F

Exit Pressure = 200 psia

Intercooler Temperature drop = 75°F

Efficiency = 95 %

Cooling Required = 0.1223E+08 Btu/hr

Work Required = 8,393.53 Hp

Compressor Cost Estimate

Reference: Garrett, D.E., Chemical Engineering

Economics, using figure on page 272

4 - 2800 hp compressors (3 + 1 spare)

Purchase Price = \$600,000 (1987\$)

Purchase Price = \$600,000 (1987\$)
Module factor = 2.6
Stainless Steel = 2.5
Pressure factor = 0.7485
No. Units = 4
Installed Cost = 600,000*2.6*2.5*.7485*4
= \$11,676,000

IX. Reformer Loop

A. Inlet Conditions

Temperature = 267.6°F
Pressure = 200 psia
Steam Added = 8,000 lbmol/hr

- B. Preformer Converts non-methane hydrocarbons Temperature = 1000°F
- C. Preheater
 Temperature Out = 1571°F
 Q = 0.0937E+09 Btu/hr
 A = 16,152 ft²
- D. Reformer

Temperature = 1600° Pressure = 200 psia Q = -0.1112E+09 Btu/hr

Gas Composition

Comp	Mole %	Mole % dry
H2	34.04	50.24
CO	18.79	27.73
C O2	14.38	21.22
H20	32.24	
CH4	0.55	0.81

E. CO₂ Recycle

Product/Recycle = 1410/1154 = 1.22

X. Methanol Recycle

Pin

A. Methanol Compressor

= 200 psia Pout = 750 psia $= 425 \cdot F$ Tin Tout = 714.4°F Efficiency = 0.95Modelled as 3 stage centrifugal compressor with intercooling. Work Required = 11,727.3 Hp Heat Removed = 0.007599E+09 Btu/hr

Cost Estimate:

Reference: Garrett, D.E., Chemical Engineering Economics, using figure on page 272 No. Comp = 4 (3 + 1 spare) @ 3940 Hp eaBase Cost (1987 \$) = \$605,000Module Factor = 2.6 Stainless Steel = 2.5 Pressure factor = 0.9495 Cost = 605,000*4*2.6*2.5*0.9495 = \$14,935,600

- Heater 5 (Recycle Preheat to eliminate condensation in recycle В. compressor) Q = 0.002901E+09 Btu/hr
- C. Recycle Compressor: 22.3 Hp
- D. Htr 6 (Used to balance compressor preheat) Q = 0.01326E+09 Btu/hr > .002901E+09 (ok)
- E. Methanol Synthesis Temperature = 445° Pressure = 750 psia Q = -0.1282E + 09 Btu/hr Q used for steam production
- F. Product Cooling Q = 0.0826E+09 Btu/hr Not used in present case
- G. Methanol Separation Q = 0.0003882E + 09 Btu/hrRaw Product Liquid Composition Comp lbmole/hr Mole % H2 2.82 0.09 CO 3.09 0.10 CO2 233.45 7.46 H20 18.41 0.58 CH4 5.28 0.16 MEOH 2865.25 91.59

H. Recycle/Purge = 3247/1599 = 2.03

XI. Reformer Combustor

A. Air Compressor
Work Required = 832.3 Hp
Air Rate = 5500 lb-mole/hr
Exit Temperature = 135.1°F
Pressure = 20 psia
Cost

Reference: Garrett, D.E., Chemical Engineering Economics, using figure on page 271
No. Units = 3 (2+ 1 spare)
Base Cost = \$46,000 (1987 \$)
Module factor = 2.6
Cost = 46,000 * 2.6 * 3 = \$358,800

B. Air Preheater

Q = 0.04198E+09 Btu/hrA = 425 ft²

C. Feed Gas Preheater

Q = 0.005309E+09 Btu/hrA = 55.4 ft²

D. Combustor

T = 1730°F > 1700°F (Assumed 100°F approach temperature in reformer furnace.)
Excess heat = 0.001752E+09 Btu/hr

XII. Steam Generation

11,750 lb-mol/hr at 1036°F, 200 psia

Steam Required:

Gasifier: 3,684 lbmol/hr Reformer: 8,000 lbmol/hr

Total: 11,684 | bmol/hr

XIII. Preliminary Electrical

Quench Pump 17.61 Hp
Steam Gen Pump 47.60
Gasifier Air Compressors 2,677
Reformer Compressor 8,394
Methanol Compressor 11,727
Reformer Air Compressor 832

Subtotal 23,695 Hp = 17.7 MW

To Be added: Dryer/Conveyer/Feeder Acid Gas Misc

Gas Composition, Major Streams

Comp\Stream	Gasifier Product	Preformer Feed	Preformer Product	Reformer Product	Methanol Feed	Methanol Product	MeOH Recycle Gas
Н2	15.93	11.01	12.51	34.03	60.55	35.76	58.79
CO	24.89	17.20	18.78	18.78	31.25	14.21	23.32
C02	7.16	12.12	11.91	14.37	3.73	9.99	11.62
H20	40.30	51.64	48.83	32.24	2.20	0.23	0.01
CH4	8.80	6.09	7.94	0.55	2.21	3.81	6.16
C2H2	0.26	0.17		•			
C2H4	2.30	1.59					
C2H6	0.10	0.07					
C3H6	0.11	0.08					
C3H8	ľ						
МЕОН					0.02	35.98	0.09
С6Н6	0.06	0.00					
C10H8	0.04						
C14H10	0.03						
Lb-mole/hr	11125	16093	16384	18779	13707	7974	1599
T, deg F	1675	813	1000	1600	445	445	32
P, psia	20	200	200	200	750	750	740
H, Btu/lb-mole	-52973	-77542	-74467	-54061	-21578	-53171	-33244
H/C	0.64	0.64	0.67	1.81	1.94	2.51	2.52

References

Bain, R.L. "Methanol from Biomass: Assessment of Production Costs," Hawaii Natural Energy Institute Renewable Transportation Alternatives Workshop, Honolulu, HI, Jan 9-11, 1991.

Chem Systems "Assessment of Costs and Benefits of Flexible and Alternative Fuel Use in the U.S. Transportation Sector", by Chem Systems, Tarrytown, NY, for the U.S. Department of Energy, Washington, D.C., Report No. DOE/PE--0093, 46 pp, November 1989.

Evans, R.J., Knight, R.A., Onischak, M., and S.P. Babu, "Development of Biomass Gasification to Produce Substitute Fuels, Prepared by the Institute of Gas Technology, Chicago, Illinois, for the Pacific Northwest Laboratory, Richland, WA, PNL- Report No. PNL-6518, March 1988.

Feldmann, H.F., Paisley, M.A., Appelbaum, H.R., and D.R. Taylor, "Conversion of Forest Residues to a Methane-Rich Gas in a High-Throughput Gasifier", prepared by Battelle Columbus Division, Columbus, Ohio, for the Pacific Northwest Laboratory, Richland, WA, PNL Report no. PNL-6570, May 1988.

Flanigan V.J., O.C. Sitton and W.E. Huang, "The Development of a 20-inch Indirect Fired Fluidized Bed Gasifier," University of Missouri-Rolla for Pacific Northwest Laboratory, PNL-6520, Richland, WA, March 1988.

Graboski, M. and R.L. Bain, "Properties of Biomass Relevant to Gasification," Chapter 3 of <u>A Survey of Biomass Gasification - Volume 2</u>, Solar Energy Research Institute, SERI/TR-33-239, Golden, CO, July 1979.

Keenan, J.D., "Biochemical Sources of Fuel," in <u>Energy Technology</u> <u>Handbook</u>, ed D. M. Considine, McGraw-Hill Book Co., New York, NY, pp 4-14 to 4-15, 1977.

Mahajan, D., Sapienza, R.S., and T.E O'Hare, "Bench-Scale Laboratory Result - Novel Methanol Catalyst," Thirteenth Annual EPRI Conf, Fuel Science and Conversion, EPRI, Palo Alto, CA, 1989.

Manufacturing and Technology Conversion International, Inc. "Testing of an Advanced Thermochemical Conversion Reactor System," Pacific Northwest Laboratory, Richland, WA, PNL-7245, January 1990.

Philip, R.J. "Methanol Production from Biomass," National Research Council of Canada, NRCC No. 27143, Ottawa, Ontario, Canada, pp 29-32, August 1986.

Reed, T.B., B. Levie, and M.S. Graboski, "Fundamentals, Development and Scale-up of the Air-Oxygen Stratified Downdraft Gasifier," Pacific Northwest laboratory, Richland, WA, PNL-6600, June 1988.

Rensfelt, E. and C. Ekstrom, "Fuel from Municipal Waste in an Integrated Circulating Fluid-Bed Gasification/Gas Cleaning Process," In Energy form

<u>Biomass and Wastes XI</u>, ed D.L. Klass, Institute of Gas Technology, Chicago, IL, pp 891-906, 1989.

Simulation Sciences, Aspen/SP Users Manual, Denver, CO, 1990.

Studer, D.W., Brown, D.M., Henderson, J.L. and T.H. Hsiung, "Status of the Development of Methanol Synthesis by the 'LPMEOH'Process", DOE Indirect Liquefaction Contractors' Review Meeting, Pittsbugh, PA 13-15 Nov, 1989.

IGT GASIFIER DATA

Reference:

Evans, R. J., etal, "Development of Biomess Gasification to Produce Substitute fuels", IGT for PNL, March 1988.

27-Dec-91

Wood Type:

uppe:

WMC = Wisconsin Maple wood chips

PMC = Pennsylvania whole wood chips

90 red oak, rest chestnut, aspen black birch

WMC = Wisconsin whole wood chips

34 % maple, 33.5 % red oak, 19.6 % birch, 12.9 % pine and brush

Item \ Test	GT-1	GT-2	GT-4	GT-5	G7-6	GT-8
Gasifier Conditions						
Temperature, deg F	1500	1650	1800	1390	1500	1510
Pressure, psia	323.7	323.7	308.7	308.7	311.7	308.7
Wet Feed Rate, lb/hr	813.4	690.6	731.9	724.3	693.5	750.4
Moisture, wt %	8.35	9.50	9.70	10.47	10.72	11.15
Oxygen, lb/lb WW	0.21	0.25	0.34	0.17	0.24	0.22
Steam, lb/lb WW	0.79	0.71	0.60	0.77	0.86	0.65
Oxygen, lb/lb80W	0.23	0.28	0.38	0.19	0.27	0.25
Steam, lb/lb BDW	0.86	0.78	0.66	0.86	0.96	0.73
Total H2O, lb/lb BDW	0,953	0.890	0.772	0.977	1.083	0.857
Prod Gas, SCF/hr	33,446	27, 154	31,218	27,662	31,155	30,371
Gas Superficial Vel, ft/s	2.20	1.93	2.49	1.80	2.13	2.11
Feed	••••••					
Type	LINC .	WIC	LINC	MIC	MMC	UMC
Size	Chips	Chips	Chips	Chips	Chips	Chips
Proximate Analysis						
Moisture, wt %	8.35	9.50	9.70	10.47	10.72	11.15
Volatile Matter	77.23	76.26	76.10	75.45	75.24	74.87
Ash	0.45	0.44	0.44	0.44	0.44	0.44
Fixed Carbon (by diff)	13.97	13.79	13.76	13.64	13.61	13.54
Total	100.00	100.00	100.00	100.00	100.00	100,00
Ultimate Analysis						
Ash, wt % dry	1.40	0.50	0.50	0.50	0.50	0.50
Carbon	48.84	49.54	49.54	49.54	49.54	49.54
Hydrogen	6.10	6.11	6.11	6.11	6.11	6.11
Sulfur	0.00	0.02	0.02	0.02	0.02	0.02
Nitrogen	0.00	0.10	0.10	0.10	0.10	0.10
Oxygen (by diff)	43.66	43.73	43.73	43.73	43.73	43.73
Total	100.00	100.00	100.00	100.00	100.00	100.00
HHV, BTU/Lb	8371	8476	8476	8476	8476	8476
Yield, Forced closure			04 27		20. 25	
Gas, wt % of C	88.22	92.20	94.23	82.26	88.20	90.52
Tar/Oil, wt % of C	3.79	2.20	0.59	4.99	3.80	2.18
Char, wt % of C	7.99	5.60	5.18	12.75	8.00	7.30
Tar/oil, wt % maf feed	2.20	1.27	0.33	2.85	2.19	1.34

m \ Test	GT-1	GT-2	GT-4	GT-5	GT-6	GT-8
Cher, wt % (mef)	3.96	2.76	2.54	6.32	3.93	3.64
Gas Yield, Calc wt %	119.3	123.3	133.4	108.2	118.4	119.0
Gas C Yield, ut %	91.7	90.9	97.9	81.0	89.5	90.6
Dry Gas, SCF/lb BDW	17.97	18.58	20.91			17.7
Wet Gas, SCF/lb BOW	37.17	36.62	37.43	36.20	39.92	35.49
Composition, As Reported						•
H2, mole %	10.58	11.82	13.58	9.62	8.08	9.9
to	6.09	6.38	9.92	4.07	5 .3 6	6.6
CO2	15.63	17.15	15.49	15.92	13.98	15.0
CH4	7.39	7.39	5.29	6.20	5.9 5	6.7
C2H4 .	0.10	0.00	0.00	0.10	0.08	0.1
C2H6	0.27	0.03	0.00	0.84	0.45	0.3
C3H8	0.00	0.00	0.00	0.02	0.00	0.0
C6H6	0.08	0.29	0.00	0.21	0.12	0.2
N2	17.08	15.42	16.23	14.93	15.17	17.4
H20	42.78	41.52	34.96	48.09	45.44	39.0
AR	0.00	0.00	4.53	0.00	5.37	4.4
TOTAL	100.00	100.00	100.00	100.00	100.00	100.0
Vol. SCF/lb WW	41.12	39.32	42.65	38.19	44.92	40.4
Vol, SCF/Lb BOW	44.87	43.45	47.23	42.66	50.31	45.5
s Comp, inert free, Cókó free						
H2, mole %	12.77	14.02	17.14	11.34	10.18	12.8
co	7.35	7.57	12.52	4.80	6.76	8.
CO2	18.87	20.35	19.55	18.76	17.62	19.3
CH4	8.92	8.77	6.68	7.31	7.50	8.
C2H4	0.12	0.00	0.00	0.12	0.10	0.
C2H6	0.33	0.04	0.00	6.99	0.57	0.4
C3H8	0.00	0.00	0.00	0.02	0.00	0.9
K20	51.64	49.26	44.12	56.67	57.27	50.
TOTAL	100,00	100.00	100.00	100.00	100.00	100.
	74 (0	24.45	21 /7	34 FF	24 57	
Ave Mol Wt, lb/lb mole	21.49	21.65	21.47	21.55	21.57	21.
HHV, KJ/g mole	143.53	140.12	143.86	128.65	125.27	147.
, BTU/SCF (@ 60 deg F)	172.05	167.96	172.44	154.22	150.16	177.

Item \ Test	GT-1	GT-2	GT-4	GT-5	GT-6	GT-8
Gas Comp, dry/ inert free						
H2, mole %	26.41	27.64	30.67	26.16	23.83	25.62
co	15.20	14.92	22.40	11.07	15.81	17.03
CO2	39.02	40.10	34.98	43.30	41.24	38.64
CH4	18.45	17.28	11.95	16.86	17.55	17.42
C2H4	0.25	0.00	0.00	0.27	0.24	0.49
C2H6 !	0.67	0.07	0.00	2.28	1.33	0.80
C3H8	0.00	0.00	0.00	0.05	0.00	0.00
!		*****				
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
Ave Hol Wt, lb/lb mole	25.19	25.18	24.21	26.17	26.34	25.47
HHV, KJ/g mole	296.80	276.15	257.43	296.91	293.19	295.85
, BTU/SCF (2 60 deg F)	355.78	331.02	308.59	355.91	351.45	354.64
Mol C/mol Gas	0.745	0.724	0.6 9 5	0.765	0.777	0.757
H2/C0	1.74	1.85	1.37	2.36	1.51	1.50
(H2*3CH4)/(CO+CH4)	2.43	2.47	1.94	2.75	2.29	2.26
(H2-CO2)/(CO+CO2)	-0.23	-0.23	-0_08	-0.32	-0.31	-0.23
Gas Double Check						
H2, Lb/hr	18.7	16.9	22.4	14.0	13.3	16.0
co	150.5	128.0	228.8	83.2	123.4	148.8
CO2	606.9	540.7	561.4	511.3	505.7	530.3
CH4	104.3	84.7	69.7	72.4	78.3	86.9
C2H4	2.5	0.0	0.0	2.0	1.8	4.3
C2H6	7.1	0.6	0.0	18.4	11.1	7.5
C3H8	0.0	0.0	0.0	0.6	0.0	0.0
C6H6	5.5	16.2	0.0	12.0	7.7	13.1
N2	422.0	309.3	374.3	305.1	349.2	391.5
H20	679.6	535.5	518.3	631.8	672.4	562.5
Total	1997.1	1631.9	1774.9	1650.8	1762.9	1760.9
H2, mole/hr	9.276	8.383	11.111	6.944	6.597	7.937
co	5.373	4.570		2.970	4.406	5.312
CO2	13.790	12.286	12.756	11.618	11.491	12.050
CH4	6.502	5.281	4.345	4.514	4.882	5.418
C2H4	0.089	0.000		6.071	0.064	
C2H6	0.236	0.020	0.000	0.612	0.369	0.249

\ Test	ì	GT-1	GT-2	GT-4	GT-5	GT-6	GT-
C3H8		0.000	0.000	0.000	0.014	0.000	0.0
C6H6		0.070	0.207	0.000	0.154	0.099	0.10
N2		15.061	11.039	13.358	10.889	12.463	13.9
H2O		37.722	29.724	28.7 69	35.069	37.322	31.2
Total		88.120	71.509	78.508	72.854	77.692	76.4
(b bdw/hr	•	745.5	625	660.9	648.5	619.2	666
Vol. SCF/ lb bdw		44.85	43,41	45.07	42.62	47.60	43.
N2 Free vol		38.09	38.62	39.05	37.98	41.67	
N2,C6H6 Free vol		38.06	38.53	39.05	37.92	41.62	37.
Dry Gas Vol		21.14	25.62	26,08	22.97	23.86	23.
H2. mole %		10.53	11.72	14.15	9.53	8.49	10.
CO		6.10	6.39	10.40	4.08	5.67	6.
CO2		15.65	17.18	16,25	15.95	14.79	15.
CH4		7.38	7.38	5.53	6.20	6.28	7.
C2H4		0.10	0.00	0.00	0.10	0.08	0.
C2H6		0.27	0.03	0.00	0.84	0.48	0.
C3H8		0.00	0.00	0.00	0.02	0.00	Ð.
C6H6		0.08	0.29	0.00	0.21	0.13	0.
N2		17.09	15.44	17.02	14.95	16.04	18.
H20		42.81	41.57	36.64	48.14	48.04	40
TOTAL		100.00	100.00	100.00	100.00	100.00	100
Wet Gas							
H2, mole %		12.71	13.91	17.05	11,23	10.13	12
ထ		7.36	7.58	12.54	4.81	6.76	8
COZ		18.89	20.39	19.58	18.80	17.64	19
CH4		8. <i>9</i> 1	8.76	6.67	7.30	7.50	8
C2H4		0.12	0.00	0.00	0.12	0.10	0
C2H6		0.32	0.03	0.00	0.99	0.57	0
C3H8		0.00	0.00	0.00	0.02	0.00	0
H20		51.68	49.32	44.16	56.73	57.30	50

Item \ Test	GT+9	GT-10	GT-11	GT-16	GT-13	GT-14
Gasifier Conditions						-
Temperature, deg F	1500	1465	1500	1450	1520	1510
Pressure, psia	314.7	104.7	296.7	314.7	323.7	344.7
Wet Feed Rate, lb/hr	765.9	399.5	1029.7	768.6	742.1	826.9
Moisture, wt X	12.44	12.08	10.02	7.71	9.58	15.02
Oxygen, lb/lb WW	0.21	0.23	0.20	0.22	0.23	0.18
Steam, lb/lb W	0.50	0.62	0.48	0.74	0.53	0.00
Oxygen, lb/lb80W	0.24	0.26	0.22	0.24	0.25	0.21
Steam, lb/lb BDW	0.57	0.71	0.53	0.80	0.59	0.00
Total H2O, lb/lb BOW	0.713	0.843	0.645	0.885	0.692	0.177
Prod Gas, SCF/hr	25,103	17,918	34,407	30,164	27,220	27,772
Gas Superficial Vel, ft/s	1.70	3.59	2.47	1.99	1.81	1.73
Feed			*******		•••••	
Туре	LMC	LMC	LOC	UMC	PUC	PMC
Size	Chips	Chips	Chips	Chips	Chips	Chips
1	· ·	Oit i po	Stripo	GII I PO	wii i pu	cii i pa
Proximate Analysis					•	
Moisture, wt X	12.44	12.08	10.02	7.71	9.58	15.02
Volatile Matter	73.79	74.09	75.83	77.77	74.61	70.13
Ash	0.43	0.43	0.44	0.45	0.85	0.80
Fixed Carbon (by diff)	13.34	13.40	13.71	14.06	14.96	14.06

Total	100.00	100.00	100.00	100,00	100.00	100_00
Ultimate Analysis						
Ash, wt % dry	0.50	0.50	0.50	0.50	0.94	0.94
Carbon	49.54	49.54	49.54	49.54	48.51	48.51
Hydrogen	6.11	6.11	6.11	6,11	6.17	6.17
Sulfur	0.02	0.02	0.02	0.02	0.04	0.04
Nitrogen	0.10	0.10	0.10	0.10	0.12	0.12
Oxygen (by diff)	43.73	43.73	43.73	43.73	44.22	44.22
Total	100.00	100.00	100.00	100.00	100.00	100.00
HHV, BTU/L5	8476	8476	8476	8476	8330	8330
Yield, Forced closure						*******
Gas, wt % of C	88.49	95.35	87.38	90,18	89.92	85.99
Tar/Oil, wt % of C	3.47	0.63	4.42	4.12	0.02	6.09
Char, wt % of C	8.05	4.02	8.20	5.70	10.07	7.92
Tar/oil, wt % maf feed	1.84	0.34	2.34	2.10	0.87	3.20

Item \ Test	GT-9	GT-10	GT-11	GT-16	GT-13	GT-14
Char, wt % (maf)	4.06	2.03	4.11	2.75	4.95	3.95
	447.0	113.4	108.8	113.4	118.9	95.7
Gas Yield, Calc wt %	113.0	88.4	85.1	85.0	90.1	76.9
Gas C Yield, wt %	86.7	00.4	65. 1	٠.٠	,,,,,	
Dry Gas, SCF/lb BDW	16.21	16.50	16.14	16.76	18.47	12.98
Wet Gas, SCF/(b BOW	31.50	34.90	30.29	35.89	32.68	18.73
a a color to Descript			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Gas Composition, As Reported	9.81	7.52	10.37	10.52	13.84	5.60
H2, mole %	7.05	7.24	9.39	6.09	7.08	7.20
co i	17.64	11.89	15.61	15.89	17.28	13.26
CO2		4.87	7.30	6.17	6.82	5.83
CH4	7.96	0.45	0.27	0.12	0.01	0.36
C2H4 .	0.27		0.54	0.61	0.51	0.60
C2H6 j	0.56	0.37	0.00	0.00	0.00	0.00
C3H8	0.00	0.01	0.43	0.34	0.14	0.84
C6H6	0.44	0.60	11.71	15.28	13.16	46.37
N2 (8.64	22.85		44.98	35.02	14.53
H20	40.84	36.06	38.11		6.14	5.41
AR	6.79	8.14	6.27	0.00	D. 14	J.41
i i						100.00
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
11-1 COP (11-18)	32.78	44.85	33,41	39.25	36.68	33.59
Vol, SCF/lb WW Vol, SCF/lb BDW	37.44	51.01	37.13	42.53	40.57	39.53
Gas Comp, inert free, C6H6 free	11.66	10.99	12.71	12.47	17.18	11.82
H2, mole %	8.38	10.58	11.51	7.22	8.79	15.20
CO i	20.97	17.38	19.13	18.83	21,45	27.99
CO2	9.46	7.12	8.95	7.31	8.47	12.30
CH4	0.32	0.66	0.33	0.14	0.01	0.76
C2H4	0.52	0.54	0.66	0.72	0.63	1.27
C2H6	0.00	0.01	0.00	0.00	0.00	0.00
C3H8	48.54	52.71	46.71	53.31	43.47	30.67
H20	48.24	22.71	40.11	,,,,,	*****	
TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
TOTAL			•			
Ave Mol Wt, lb/lb mole	22,36	21.83	22.04	21.59	21.63	24.90
HHV, KJ/g mole	156.20	142.80	163.56	134.45	159.41	216.82
, 8TU/SCF (2 60 deg F)	187.24	171.17	196.06	161.17	191.08	259.91
	i i					

Item \ Test	GT-9	GT-10	GT-11	GT-16	GT-13	GT-14
	**********					,
**********************		***********				
Gas Comp, dry/ inert free						
H2, mole %	22.66	23.25		26.70		17.05
co _	16.29	22.38	21.60	15.46	15.55	21.92
co 2	40.75	36.75	35.90	40.33	37.94	40.37
CH4	18.39	15.05	16.79	15,66	14.98	17. <i>7</i> 5
C2H4	0.62	1.39	0.62	0.30	0.02	1.10
C2H6	1.29	1.14	1.24	1.55	1.12	1.83
C3H8	0.00	0.03	0.00	0.00	0.00	0.00

TOTAL	100.00	100.00	100.00	100.00	100.00	100.00
Ave Hol Wt, lb/lb mole	26.47	26.08	25.57	25.68	24.41	27.95
HHV, KJ/g mole	303.56	301.97	306.92	287.95	281.99	312.73
, BTU/SCF (2 60 deg F)	363.88	361.97	367.90	345.16	338.02	374.87
Mol C/mol Gas	0.793	0.794	0.780	0.752	0.708	0.859
H2/CO	1.39	1.04	1.10	1.73	1.95	0.78
(H2*3CH4)/(CO+CH4)	2.24	1.83	1.93	2.37	2.47	1.77
(H2-CO2)/(CO+CO2)	-0.32	-0.23	-0.21	-0.24	-0.14	-0.37

Gas Double Check						
H2, lb/hr	13.0	7.1	18.8	16.7	19.9	8.2
CO CO	130.7	95.8	238.7	135.7	142.4	147.7
CO2	514.1	247.3	623.5	556.5	546.1	427.5
CH4	84.4	36.8	106.0	78.6	78.4	68.4
C2H4	5.0	6.0	6.9	2.7	0.2	7.4
C2H6	11.1	5.2	14.7	14.6	11.0	13.2
C3H8	0.0	0.2	0.0	0.0	0.0	0.0
C6H6	22.7	22.1	30.4	21.1	7.8	48.0
N2	160.2	302.5	297.7	340.5	264.6	951.4
н20	486.9	306.9	622.8	644.4	452.7	191.7
	*****				****	
Total	1428.1	1029.9	1959.5	1810.8	1523.1	1863.5
H2, mole/hr	6.448	3.522	9.325	8.284	9.871	4.067
co	4.666	3.420	8.522	4.845	5.084	5.273
CO2	11.681	5.619	14.167	12.645	12.409	9.714
CH4	5.262	2.294	6.608	4.900	4.888	4.264
C2H4	0.178	0.214	0.246	0.096	0.007	0.264
C2H6	0.369	0.173	0.489	0.486	0.366	0.439

n \ Test	. GT-9	GT-10	GT-11	GT-16	GT-13	GT-1
	0.000	0,005	8_000		0.000	0.00
C3H8		0.283	0.389	0.270	0.100	0.61
C6H6	0.291 5.717	10.796	10.625	12 152	9.443	33.9
N2	27_026	17.035	34.569	35.768	25.128	10.64
H2O	27.020	17.037	J-1307			
Total	61.639					
Lb bdw/hr	* 670.6	351.2	926.5		671	702.
Vol. SCF/ lb bdw	34.87	46.84	34.78	42.49	38.05	37.
N2 Free vol	32,88	41.79	31.09	37.33	34.46	
N2,C6H6 Free vol	32.78	41.65	30.95	37.22		24.
Dry Gas Vol	23.35	33.67	18.93	22.02	24.86	20.
H2, mole %		8.12	10.98		14.67	5.
ထ	7.57	7.89		6.10	7.55	7.
C02	18.95	12.96	16.68		18.44	14.
CH4	8.54	5.29	7,78		7.26	6.
C2H4	0.29	0 40	0.26		0.01	. C.
C2H6	0.60	0.40	0.58	0.61	0.54	
C3H8		0.01	0.00	0.00	0.00	
C6H6	0.47	0.65	0.46	0.34	0.15	0.
N2	9.28	24 .9 0	12.51	15.30	14.03	49.
H2O	43.85	39.29	40.70	45.02	37.34	15.
TOTAL	100.00	100.00		100.00	100.00	100.
Wet Gas						
H2, mole %	11.59		12.61			
co	8.39	10,59	11.53		8.80	15.
CO2	21.00	17.41	19.16	18.87	21.49	
CH4	9.46	7.11	8.94		8.46	12.
C2H4	0.32	0.66	0.33	0.14	0.01	٥.
C2H6	0.66	0.54	0.66	0.72	0.63	1.
C3H8	0.00	0.01	0.00	0.00	0.00	
G200	4,00					
H20	48.58	52.77	46.76	53.37	43.51	30.

Item \ Test	GT • 15	GT-17	T12-1	712-2	T30-1a	T30-1b
Gasifier Conditions						
Temperature, deg f	1520	1530	1530	1500	1538	1562
Pressure, psia	320.7	320.7	314.7	116.7	323.7	323.7
Wet Feed Rate, lb/hr	673.4	648.8	643.9	352.9	427.5	748
Moisture, Wt %	14.47	26.74	4.94	7.72	10.80	10.80
Oxygen, lb/lb WW	0.25	0.33	0.25	0.26	0.26	0.23
Steam, lb/lb WW	0.41	0.46	0.61	0.69	1.18	0.63
Oxygen, lb/lb80W	0.29	0.45	0.26	0.28	0.29	0.26
Steam, lb/lb BDW	0.48	0.63	0.64	0.75	1.32	0.71
Total H2O, lb/lb BDV	0.649	0.993	0.694	0.831	1.444	0.827
Prod Gas, SCF/hr	28.271	33.016	24,603	15,693	23,003	27.695
Gas Superficial Vel, ft/s	1.90	2.23	1.69	2.87	1.55	1.88
ed						
Feed	PUC	PMC	VAIC	WC	UUC	WUC
Type Size	Chips			Chips	Chips	
Size	unips	Chips	Chips	crites	ctrips	Chips
Proximate Analysis						
Moisture, wt %	14.47	26.74	4.94	7.72	10.80	10.80
Volatile Matter	70.58	60.45	79.39	77.07	74.50	74.50
Ash	0.80	0.69	0.77	0.75	0.72	0.72
Fixed Carbon (by diff)	14.15	12.12	14.90	14.46	13.98	13.98
· ·						
Total	100.00	100.00	100.00	100.00	100.00	100.00
Ultimate Analysis						
Ash, wt % dry	0.94	0.94	0.82	0.82	0.82	0.82
Carbon	48.51	48.51	48.40	48.40	48.40	48.40
Hydrogen	6.17	6.17	6.31	6.31	6.31	6.31
Sulfur	0.04	0.04	0.03	0.03	0.03	0.03
Nitrogen	0.12	0.12	0.21	0.21	0.21	0.21
Oxygen (by diff)	44.22	44,22	44.23	44.23	44.23	44.23
Total	100.00	100.00	100.00	100.00	100.00	100.00
HHV, BTU/Lb	8330	8330	8389	8389	8389	8389
nav, blo/to				4507	420 7	
Yield, Forced closure						
Gas, wt % of C	90.24	96.68	90.18	87.37	92.95	93.79
Tar/Oil, wt % of C	4.28	0.00	5.46	5.33	3.07	2.98
Char, wt % of C	5.48	3.32	4.36	7.30	3.98	3.23
Tar/oil, wt % maf feed	2.26	0.00	2.97	2.88	1.61	1.57

tem \ Test	GT-15	GT-17	T12-1	T12-2	T3D-1a	T30-1
Char, wt % (maf)	2.75	1.65	2.17	3.62	1.98	1.62
Gas Yield, Calc wt %	112.4	136.1	119.2	107.2	129.7	175.5
Gas C Yield, wt %	86.5	97.8	91.5	87.5	94.5	85.9
Dry Gas, SCF/lb BOW	16.31	19.35	17.98	14.91	20.11	17.44
Wet Gas, SCF/lb BDW	31.04	41.00	32.38	34.75	48.98	34.7
ias Composition, As Reported						•
H2, mole %	8.14	7.96	12.05	5.90		12.30
co ¦		3.99	8.00	7.72	3.59	
CO2	12.93	13.42	17.06	11.52 4.58	13.86	17.3
CH4	4.79	2.72	1.21		4.79	6.5
C2H4		0.00	0.03	0.65		0.0
C2H6	0.27	0.09	0.22 0.00	0.56 0.01	0.17	
C3H8	0.00	0.00	0.00	0.01	0.00	0.0
CéHé		0.17	0.27	0.24	0.18	0.8
N2	28.24	37.53	19.18 35.82	27.64	18.63	15.5
H20	30.03	32.89	35.82	41.18	47.86	41.6
AR		0.00				
TOTAL	100.00	100.00	100.00	100.00	100.00	100.0
1						
Vol, SCF/Lb WW	41.98		38.21	44.47	53.81	37.0
Vol, SCF/lb BDW	49.08	65.81	40.20	48.19	60.33	41.5
ias Comp, inert free, CóHó free	42.27	40.70	44.04		47 (0	
H2, mole %	12.87		14.96			
co	10.89	6.40	9.93	4	4.42	6.6
COS	20.44	21.54 6.34 0.00	21.18	15.97 6.35	17.07 5.90 0.05	20.7 7.8
CH4	7.57	6.34	9.15	6.35	3.90	7.8
C2H4		0.00	0.04	0.70	V.V.	
C2H6	0.43	0.14 0.00	0.27	0.78	0.21 0.00	0.2
C3H8	0.00	0.00	0.00	0.01	0.00	
H20		52.79	44.47	37.10		
70741	100.00	100.00	100.00	100.00	100.00	100.0
TOTAL	100.00	100.00	100.00	100.00	100.00	100.0
Ave Mol Wt, lb/lb mole	22.29	22.10	21.98	21.99	20.66	21.5
HMV, KJ/g mole	146.16	113.35	157.12	135.36	107.31	135.2
, BTU/SCF (@ 60 deg F)	175.21	135.88	188.34	162.25	128.63	162.0

em \ Test	GT-15	GT-17	T12-1	T12-2	T30-1a	T30-11
s Comp, dry/ inert free						*******
H2, mole %	24.50	27.07	26.94	19.07	32.64	29.29
co .	20.74	13 57	17.89			13.29
CO2	38.92	27.07 13.57 45.63	38.14	24.95 37.23	41.58	41.24
CH4	14.42			14.80	14.37	15.62
C2H4	0.60	0.00	0.07	2 40	0.12	
	0.80	0.00 0.31	0.49	2.10 1.81	0.12 0.51	0.4
C2H6		0.31	0.49	1.01	0.00	
СЗН8	0.00	0.00	0.00	0.05	0.00	0.00
TOTAL		100.00			100.00	
Ave Moi Wt, Ub/Ib moie	26.16	26.67	25.15	27.28	24.47	25.14
HHV, KJ/g mole	278.29	240.12	282.94			
, BTU/SCF (2 60 deg F)	333.59	287.83	339.16	378.20	313.34	322.6
Mol C/mol Gas	0.769	0.732	0.736	0.849	0.680	0.71
H2/CO	1.18		1.51		3.03	2.2
(H2*3CH4)/(CO+CH4)		2 40	2 22	1 40		2.6
(H2-CO2)/(CO+CO2)	-0.24	2.49 -0.31	-0.20	-0.20	-0.17	-0.2
Gas Double Check						
Gas Double Check						
Gas Double Check	12.1	13.9	15.6	4.9	13.2	18.
	143.9	97.3	145.4	89.5	61.0	114.
H2, Lb/hr	143.9 424.4	97.3 514.4	145.4 487.3	89.5 209.9	61.0 370.1	114. 556.
H2, lb/hr co	143.9 424.4 57.2	13.9 97.3 514.4 55.1	145.4 487.3 76.5	89.5 209.9 30.3	61.0 370.1 46.5	114. 556. 76.
H2, lb/hr co co2	143.9 424.4	97.3 514.4 55.1 0.0	145.4 487.3 76.5 0.5	89.5 209.9 30.3 7.5	61.0 370.1 46.5 0.7	114. 556. 76. 0.
H2, lb/hr co co2 cH4	143.9 424.4 57.2	97.3 514.4 55.1 0.0 2.4	145.4 487.3 76.5 0.5 4.3	89.5 209.9 30.3 7.5	61.0 370.1 46.5	114. 556. 76. 0.
H2, lb/hr co co2 cH4 c2H4	143.9 424.4 57.2 4.2	97.3 514.4 55.1 0.0 2.4 0.0	145.4 487.3 76.5 0.5 4.3	89.5 209.9 30.3 7.5	61.0 370.1 46.5 0.7	114. 556. 76. 0. 4.
H2, lb/hr co co2 cH4 c2H4 c2H6	143.9 424.4 57.2 4.2 6.0	97.3 514.4 55.1 0.0 2.4 0.0	145.4 487.3 76.5 0.5 4.3	89.5 209.9 30.3 7.5	61.0 370.1 46.5 0.7 3.1	114. 556. 76. 0. 4. 0.
H2, lb/hr co co2 cH4 c2H4 c2H6 c3H8	143.9 424.4 57.2 4.2 6.0 0.0 28.5	97.3 514.4 55.1 0.0 2.4 0.0 11.6	145.4 487.3 76.5 0.5 4.3 0.0 13.7	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5	61.0 370.1 46.5 0.7 3.1 0.0 8.5	114. 556. 76. 0. 4. 0.
H2, Lb/hr CO CO2 CH4 C2H4 C2H6 C3H8 C6H6	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5 306.9	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9	114 556 76 0 4 0 46 319 547
H2, lb/hr CO CO2 CH4 C2H6 C3H8 C6H6 N2	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9	114. 556. 76. 0. 4. 0. 46. 319. 547.
H2, lb/hr CO CO2 CH4 C2H4 C2H6 C3H8 C6H6 N2 H2O	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5 306.9	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9	114 556 76 0 46 319 547
H2, lb/hr CO CO2 CH4 C2H4 C2H6 C3H8 C6H6 N2 H2O Total	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5 306.9 984.5	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9 1342.6	114 556 76 0 46 319 547 1683
H2, lb/hr CO CO2 CH4 C2H4 C2H6 C3H8 C6H6 N2 H2O Total	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2 1669.3	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7 2125.8	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6 	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5 306.9 984.5	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9 1342.6	114 556 76 0 46 319 547 1683
H2, lb/hr CO CO2 CH4 C2H4 C2H6 C3N8 C6H6 N2 H2O Total	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2 	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7 2125.8	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6 	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5 306.9 984.5 2.431 3.195 4.769	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9 1342.6 6.548 2.178 8.409	114 556 76 0 46 319 547 1683 8.92 4.07
H2, lb/hr CO CO2 CH4 C2H4 C2H6 C3H8 C6H6 N2 H2O Total H2, mole/hr CO CO2 CH4	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2 1669.3 6.002 5.137 9.643 3.566	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7 2125.8	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6 	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5 306.9 984.5 2.431 3.195 4.769	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9 1342.6 6.548 2.178 8.409 2.800	114 556 76 0 44 0 46 319 547 1683 4.07
H2, lb/hr CO CO2 CH4 C2H4 C2H6 C3N8 C6H6 N2 H2O Total	143.9 424.4 57.2 4.2 6.0 0.0 28.5 589.8 403.2 1669.3 6.002 5.137 9.643 3.566 0.150	97.3 514.4 55.1 0.0 2.4 0.0 11.6 915.4 515.7 2125.8 6.895 3.474 11.688 3.435 0.000	145.4 487.3 76.5 0.5 4.3 0.0 13.7 348.6 418.6 	89.5 209.9 30.3 7.5 7.0 0.2 7.8 320.5 306.9 984.5 2.431 3.195 4.769 1.889 0.267	61.0 370.1 46.5 0.7 3.1 0.0 8.5 316.6 522.9 1342.6 6.548 2.178 8.409 2.800	114 556 76 0 46 319 547 1683 8.92 4.07

item \ Test	1	GT-15	GT-17	T12-1	T12-2	T30-1a	130-1b
C3H8		0.000	0.000	0.000	0.005		0.000
C6H6		0.365	0.149	0.175		0.109	0.591
NZ		21.049	32.670	12.441	11.438	11,299	11.385
H20			28.625	23.235		29.024	30.373
neo							
Total		68.492	87.014	64.783	41.362	60.594	72. 96 5
lb bdw/hr	•	576	501.7	612.1			
Vol, SCF/ 1b bdw		45.11	65.80	40.15			
N2 Free vol		35.62	44.31	35.16			
N2,C6H6 Free vol		35.45	44.21	35.09	42.62		
Dry Gas Vol		25.36	25.37	25.76	34.41	35.91	23.92
H2, mole %		8.76	7,92	11.94	5.88	10.81	12.24
co		7.50	3.99	8.01	7.73	3.59	5.59
505		14.08	13.43	17.09	11.53	13.88	17.34
CH4		5.21	3.95	7.36	4.57	4.78	6.55
C2H4			0.00	0.03	0.65	0.04	
C2H6		0.29	0.09	0.22	0.56	0.17	0.20
C3H8		0.00	0.00	0.00	0.01	0.00	0.00
C6H6		0.53	0.17	0.27		0.18	0.81
N2		30.73	37.54	19.20	27.65	18.65	15.60
H20		32.68	32.90	35.87	41.18	47.90	41.63
TOTAL		100.00	100.00	103.00	100.00		100.00
Wet Gas							
H2, mole %		12.75	12 .7 2				
CO		10.91	6.41	9.95	10.71		
C02		20.48	21.57	21.23	15.99		
CH4		7.57	6.34	9.14	6.33		
C2H4		0.32	0.00	0.03	0.90		
C2H6		0.42	0.15	0.27	0.78		
C3H8		0.00	0.00		0.02	0.00	0.00
H20		47.54	52.82	44.54			
		100.00	100.00	100.00	100.00		
		100.00	:00.00	,			

Item \ Test	T12-3a	т12-3ь	T12-4a	T12-46
Gasifier Conditions	I			
Temperature, deg F	1672	1413	1509	1516
Pressure, psia	317.7	317.7		
the food Dote th/ho	708.1		83.7	98.7
Wet Feed Rate, lb/hr	9.14	708.1	375.4	375.4
Moisture, wt %		9.14	8.98	9.59
Oxygen, lb/lb WW	0.26	0.18	0.27	0.28
Steam, lb/lb WW	0.69	0.68	0.72	0.73
Oxygen, lb/lb8DW	0.29	0.20	0.30	0.31
Steam, Lb/Lb BDW	0.76	0.75	0.79	0.81
Total H2O, Lb/lb BDW	0.860	0.849	0.890	0.914
Prod Gas, SCF/hr	27,472	25,373	16,813	17,439
Gas Superficial Vel, ft/s	2.01	1.63	4.31	3.8
Feed	! 			
Туре	MALC	WWC	HUC	WWC
Size	Chips	Chips	Chips	Chips
Proximate Analysis				
Moisture, wt %	9.14	9.14	8.98	9.59
Volatile Matter	75.89	75.89	76.02	75.51
Ash	0.74	0.74	0.74	0.73
Fixed Carbon (by diff)	14.24	14.24	14.26	14.17

Total	100.00	100.00	100.00	100.00
Ultimate Analysis				
Ash, wt % dry	0.82	0.82	0.82	0.82
Carbon	48.40	48.40	48.40	48.40
Hydrogen	6.31	6.31	6.31	6.31
Sulfur	0.03	0.03	0.03	0.03
Nitrogen	0.21	0.21	0.21	0.21
Oxygen (by diff)	44.23	44.23	44.23	44.23
	*****	******		7716
Total	100-00	100.00	100.00	
HHV, BTU/Lb	8389	8389	8389	8389
nnv, Blu/to	9307	0307	0307	0307
Yield, Forced closure				
Gas, wt % of C	96.12	87-14	91.78	93.22
	2.16	6.72		
Tar/Oil, wt % of C			5.12	4.74
Char, wt % of C	1.72	6.14	3.10	2.04
Tar/oil, wt % maf feed	1.13	3.54	2.73	2.51

Item \ Test	T12-3a	T12-36	T12-4a	T12-4b
Char, wt % (maf)	0.86	3.09	1.57	1-04
Gas Yield, Calc wt %	125.7	105.2	111.4	115.1
Gas C Yield, wt %	95.3	83.5	88.8	91.5
Ory Gas, SCF/lb BDW	19.20	14.98	16.04	16.61
Wet Gas, SCF/lb BDW	36.40	33.24	36.28	37.15
Gas Composition, As Reported				
H2, mole %	12.69	8.55	7.49	7.38
CO	7,22	5.59	7.79	7.59
C02	17.42	15.72	11.98	11.93
CH4	7.60	6.95	4.32	4.61
C2H4	0.00	0.28	0.65	0.50
C2H6	0.02	0.90	0.35	0.30
C3H8	0.00	0.00	0.01	0.01
C6H6	0.41	0.57	0.47	0.40
N2	14.34	15.13	25.80	27.29
#20	40.30	46.31	41.14	39.99
AR	0.00	0.00	0.00	0.00

TOTAL	100.00	100.00	100.00	100.00
Vol, SCF/lb WW	38.80	35.83	44.79	46.45
Vol, SCF/lb BDW	42.70	39.43	49.21	51.38
Gas Comp, inert free, C6H6 free				
H2, mole %	14.89	10.14	10.16	10.21
ထ	8,47	6.63	10.57	10.50
CO2	20.43	18.65	16.25	16.50
CH4	8,91	8.24	5.86	6.38
C2H4	0.00	0.33	0.88	0.69
C2H6	0.02	1.07	0.47	0.41
C3H8	0.00	0.00	0_01	0.01
н20	47.27	54.93	55.80	55.30
TOTAL	100.00	100.00	100.00	100.00
Ave Hol Wt, lb/lb mole	21.62	21.90	21.70	21.72
HMV, KJ/g mole	146.26	142.50	131.25	132.18
, BTU/SCF (2 60 deg F)	175.32	170.82	157,33	158.44
	1			

Item \ Test	T12-3a	T12-3b	112-4a	T12-4b
A - A -	************			********
Gas Comp, dry/ inert free	28.23	22.51	22.98	22.83
H2, mole %	16.06	14.71	23.90	23.48
CO CO2	38.75	41.38	36.76	36.91
CH4	16.91	18.29	13.26	14.26
C2H4	0.00	0.74	1.99	1.55
C2H6	0.00	2.37	1.07	0.93
C2NO C3N8	0.00	0.00	0.03	0.93
Conc	0.00	0.00	0.43	0.03
TOTAL	100.00	100.00	100.00	100.00
IUIAL	100.00	100.00	100.00	100.00
Ave Mol Wt, lb/lb mole	24.85	26.64	26.36	26.30
HHV. KJ/g mole	277.39	316.22	296.93	295.72
. BTU/SCF (2 60 deg F)	332.51	379.05	355.93	354.48
Mol C/mol Gas	0.718	0.806	0.801	0.797
H2/CO	1.76	1.53	0.96	0.97
(H2*3CH4)/(CO+CH4)	2.39	2.34	1.69	1.74
(H2-CO2)/(CO+CO2)	-0.19	-0.34	-0.23	-0.23
			*	
Gas Double Check				
H2, lb/hr	18.4	11.4	6.6	6.8
co ·	146.5	104.8	96.8	97.8
CO2	555.6	463.1	233.8	241.5
CH4	88.1	74.4	30.7	33.9
C2H4	0.0	5.2	8.1	6.4
C2H6	0.4	18.1	4.7	4.1
C3H8	0.0	0.0	0.2	0.2
C6H6	23.2	29.8	16.3	14,4
N2	291.0	283.6	320.5	351.6
H20	525.8	558.0	328.5	331.2
Total	1649.0	1548.4	1046.2	1087.9
H2, mole/hr	9.127	5.655	3.274	3.373
CO	5.230	3.742	3.456	3.492
CO2	3.230 12.624	3.742 10.523	3.430 5.312	5.492 5.487
CH4	12.024	4.638	1.914	2.113
C2H4	0.000			
		0.185	0.289	0.228
C2H6	0.013	0.602	0.156	0.136

					•
Item \ Test	}	T12-3a	T12-36	T12-4a	T12-4b
C3H8		0.000	0.000	0.005	0.005
C6H6		0.297	0.382	0,209	0.184
N2		10.385	10.121	11.438	12.548
H20		29,185	30.972	18.234	18.384
			*		
Total	•	72.355	66.820	44.286	45.951
lb bdw/hr	•	643.4	643.4	341.7	339.4
Vol, SCF/ lb bdw		42.67	39.40	49.17	51.37
N2 Free vol		38.24	35_41	43.55	44.92
N2,C6H6 Free vol		38.11	35.26	43.45	44.83
Dry Gas Vol		25.66	23.06	34.48	35.38
H2, mole %		12.61	8.46	7.39	7.34
co		7.23	5.60	7.80	7.60
CO2		17.45	15.75	12.00	11.94
CH4		7.59	6.94	4.32	4.60
C2H4		0.00	0.28	0.65	0.50
C2H6		0.02	0.90	0.35	0.30
C3H8		0.00	0.00	0.01	0.01
CéHé		0.41	0.57	0.47	0.40
N2		14.35	15.15	25.83	27.31
H20		40.34	46.35	41.17	40.01

TOTAL		100.00	100.00	100.00	100.00
Wet Gas					
H2, mole %		14.80	10.04	10.03	10.15
ထ်		8.48	6.64	10.59	10.51
CO2		20.47	18.68	16.28	16.52
CH4		8.91	8.24	5.86	6.36
C2H4		0.00	0.33	0.88	0.69
C2H6		0.02	1.07	0.48	0.41
C3H8		0.00	0.00	0.01	0.01
H2O		47.32	55.00	55.86	55.34
		100.00	100.00	100.00	100.00

LEAST SQUARES FIT OF 1GT GASIFIER VARIABLES

1.	Hydrogen Regression	Output:	
		output.	1_3528E+01
	Constant		1.9229E+00
	Std Err of Y Est		4.0984E-01
	R Squared		2.0000E+01
	No. of Observations		
	Degrees of Freedom	•	1.7000E+01
	X Coefficient(s)	1.7467E-02 -	2.6444E-07
	Std Err of Coef.	1.1374E-01	3.5693E-05
	Std Elli of coef.	10.00.40	
	t Value	0.153573727 -	0.00740873
	f Agrae	0.151262835	0.007299769
	t Probability	0.439884279	0.497087863
		5.902804634	
	f Value	0.111111111	
		0.013071895	
		2.278572097	
		0.011346303	
	F Probability	0.011346303	
II.	co		
	Regression	output:	-3.6349E+01
	Constant		
	Std Err of Y Est		1.9910E+00 1.7282E-01
	R Squared		
	No. of Observations		2.0000E+01
	Degrees of Freedom		1.7000E+01
	X Coefficient(s)	4.8316E-02	-1.2257E-05
	Std Err of Coef.	1.1776E-01	3.6957E-05
	t Value	0.410289657	-0.33166456
		0.403258929	0.326259783
	t Probability	0.343378747	0.372113796
	•		
	F Value	1.775929734	
		0.111111111	
		0.013071895	
		0.847891091	
	F Probability	0.198249442	
	•		
111	. co2		
	Regressio	n Output:	
	Constant		-5.1963E+01
	Std Err of Y Est		1.7287E+00
	R Squared		1.1919E-01
	No. of Observations		2.0000E+01
	Degrees of Freedom		1.7000E+01
	X Coefficient(s)	8.4609E-02	-2.4793E-05
	Std Err of Coef.	1.0225E-01	3.2089E-05
	t Value	0.827472113	
		0.807215849	
	t Probability	0.209771196	0.225217863
	• · · •=== · · · · ·		
	F Value	1.150177777	•
	• • • • • •	0.111111111	
		0.013071895	}
		0.409678427	•
	F Probability	0.341020	
	FFIODEDICITY		

IV. СН4 Regression Output: -4.3123E+01 Constant Std Err of Y Est 1.1366E+00 R Squared 5.0808E-02 2.0000E+01 No. of Observations Degrees of Freedom 1.7000E+01 6.4007E-02 -2.0016E-05 6.7229E-02 2.1098E-05 X Coefficient(s) Std Err of Coef. t Value 0.952071729 -0.94868564 0.925810784 0.922603153 0.177272269 0.178107135 t Probability F Value 0.454980481 0.111111111 0.013071895 -0.37599196 F Probability 0.646529332 V. C2H4 Regression Output: Constant 2.0095E+00 Std Err of Y Est 2.8460E-01 R Squared 1.2421E-01 No. of Observations 2.0000E+01 Degrees of Freedom 1.8000E+01 X Coefficient(s) -1.1442E-03 Std Err of Coef. 7.1612E-04 t Value -1.59778852 1.522536506 t Probability 0.063937262 F Value 2.552928155 0.22222222 0.012345679 1.154218815 F Probability 0.124205188 ٧1. C2H6 Regression Output: Constant 2.6517E+01 Std Err of Y Est 1.3753E-01 R Squared 8.1572E-01 No. of Observations 2.0000E+01 Degrees of Freedom 1.7000E+01 X Coefficient(s) -3.0323E-02 8.6568E-06 Std Err of Coef. 8.1347E-03 2.5529E-06

t Value

F Value

t Probability

F Probability

-3.72755965 3.390956626

3.09446958 2.888209082 0.000985775 0.001937095

37.62440422 0.111111111 0.013071895 4.75231605

1.0337E-06

VII. C3H8 Regression Output: 4.9248E-02 Constant 6.8449E-03 Std Err of Y Est 1.4156E-01 R Squared 2.0000E+01 No. of Observations 1.8000E+01 Degrees of Freedom -2.9673E-05 X Coefficient(s) 1.7223E-05 Std Err of Coef. -1.72285127 t Value 1.632937739 0.051241018 t Probability VIII. H20 Regression Output: 2.2154E+02 Constant 3.8295E+00 Std Err of Y Est 3.4412E-01 R Squared No. of Observations 2.0000E+01 1.7000E+01 Degrees of Freedom -1.8940E-01 5.0717E-05 X Coefficient(s) 2.2650E-01 7.1083E-05 Std Err of Coef. -0.83621181 0.713482906 t Value 0.81557067 0.69778619 0.207372995 0.242655542 t Probability 4.459693009 F Value 0.111111111 0.013071895 1.919489163 0.027461344 F Probability Tar IX. Regression Output: 2.2739E+01 Constant 6.7970E-01 Std Err of Y Est 4.3102E-01 R Squared 2.0000E+01 No. of Observations 1.7000E+01 Degrees of Freedom -2.0584E-02 4.5476E-06 X Coefficient(s) 4.0202E-02 1.2617E-05 Std Err of Coef. -0.51201629 0.360446762 t Value 0.502552864 0.354469465 0.307639255 0.361493418 t Probability 6.439100545 F Value 0.111111111 0.013071895 2.392352073 0.008370372

F Probability

X. Char

•	•	
Regress	าดก	Output:

Constant	1.2722E+01
Std Err of Y Est	1.2802E+00
R Squared	1.7921E-01
No. of Observations	2.0000E+01
Degrees of Freedom	1.8000E+01

X Coefficient(s) -6.3858E-03 Std Err of Coef. 3.2212E-03 t Value -1.98241538

1.856189302 t Probability 0.03171339

XI. Dry Gas

Regression Output:

Constant	0.0000E+00
Std Err of Y Est	4.8097E+00
R Squared	9.0780E-03
No. of Observations	2.0000E+01
Degrees of Freedom	1.8000E+01

X Coefficient(s) 3.0627E-02 -8.8818E-06 Std Err of Coef. 1.1270E-02 7.3156E-06

t Value 2.717485525 -1.21409508 2.44104567 1.173450083 t Probability 0.00732236 0.120307621

F Value 0.164900645 0.222222222

0.012345679 -0.49619202 0.690104404

F Probability 0.69010440

XII. Wet Gas

Regression Output:

Constant	0.0000E+00
Std Err of Y Est	3.9164E+00
R Squared	7.3226E-03
No. of Observations	2_0000E+01
Degrees of Freedom	1.8000E+01

X Coefficient(s) 4.5549E-02 -1.3377E-05 Std Err of Coef. 9.1773E-03 5.9570E-06

t Value 4.963198082 -2.24559468 3.771229671 2.073913012 t Probability 0.000081352 0.019043819

F Value 0.132778899 0.222222222 0.012345679 -0.57618809

F Probability 0.717735648

IGT Gasifier - Conditions and Correlations

Gasifier Condi Temp Press H2O	tions 1390-1800 84-345	deg F psia				
Feed Steam Oxygen	5-27 0-1.32 0.19 - 0.45	wt % lb/ lb BDW lb/ lb BDW				
Feed Rate H2O total	375-1030 0.841 +/- 0.115	wet lb/hr	lb/lb BDW			
Average Feed C	omposition					
M, %	10	.87				
ν _ν *		.60				
A		.61				
FC		.92				
Ultimate,	dry		MW	Moles	N	u
A, X		.70 use silica		0.0116	0.003	0.17
c c	48	.94	12.01	4.0749	1.000	12.01
H	6	. 19	1.008	6.1409	1.507	1.52
\$	0	.03	32.06	0.0009	0.000	0.01
N	0	.14	14.01	0.0100	0.002	0.03
0		.00	16	2.7500	0.675	10.80
HHV, BTU/l	b 8	416 				24.54
Correlations						
Variable	Units	Independent Variable	Units	A	8	C
Dry Gas	wt %	Temp	deg F	-2.3134E+02	3.8070E-01	-9.9300E-05
Carbon conv to	wt %	Temp	deg F	-1.6987E+02		-8.0899E-05
Gas Volume	scf/lb BDW	Temp	deg F	0.0000E+00	3.0627E-02	-8.8818E-06
Char Yield	wt %(maf/maf)	Temp	deg F	1.2772E+01	-6.3860E-03	0.0000E+00
Tar/oil yield		Тетр	deg F	2.2739E+01	-2.0584E-02	4.5476E-06
H2	mole %	Temp	deg F	-1.3528E+01		-2.6444E-07
CO	mole %	Temp	deg F	-3.6349E+01	4.8316E-02	-1.2257E-05
CO2	mole X	T emp	deg F	-5.1963E+01		-2.4793E-05
H20	mole %	Temp	deg F		-1.8940E-01	5.0717E-05
CH4	mole %	Temp	deg F	-4.3123E+01		-2.0016E-05
C2H4	mole %	Temp	deg F		-1.1442E-03	0.0000E+00
C2H6	mole %	Temp	deg F		-3.0323E-02	8.6568E-06
C3H8	mote %	Temp	deg F	4.9250E-02	-2.9673E-05	0.0000E+00

APPENDIX A

ASPEN INPUT DATA - IGT GASIFIER

Temperature			1400	1450	1500	1550	1600	1650	1700	1750	1800
		MW									
Steam	lb/hr	18.016	140,166.667	140,166.667	140,166.667	140,166,667	140,166,667	140,166.667	140.166.667	140,166,667	140.166.667
Oxygen	lb/hr	31.9988	36,138.333	38,117.500	40,096.667	42,075.833	44,055.000	46,034.167	48,013.333	49,992.500	51,971.667
H2	lb/hr	2.0158	3,195.131	3,468.716	3,750.140	4,040.455	4,340.918	4,653.034	4,978.265	5,318.881	5.678.002
со	lb/hr	28.01055	31,041.374	34,064.700	36,908.209	39,577.625	42,078.301	44,415.580	46,591.764		
CH4	lb/hr	16.04275	17,743.797	18,686.065	19,419.220	19,940.709	20,246.813				
C2H4	lb/hr	28.0539	1,743.222	1,505.895	1,268.112	1,028.705	786.580		289.740		
C2H6	lb/hr	30.0697	4,731.149	3,452.768	2,365.675	1,468.567	762.119	248.769	0.000	0.000	0.000
C3H8	lb/hr	44.09665	51.813	42.045	32.228	22.316	12.263	2.024	0.000	0.000	
co2	lb/hr	44.00995	120,058.896	125,348,700	130,043,414	134,140,526	137,637,150	140,529.900			
H20	lb/hr	18.016	153,217.469	148,368.805	144,267,373	140,913.981	138,309.090	136,452.887	135.284.957	134,828,561	135.092.552
Char	lb/hr		6,431.017				4,287,345		3,215.509		
Benzene	lb/hr	78.1143	1,189.449	1,029.510	879.112	738.255	606.939	485,163	372,929		
Naphthalene	lb/hr	128.1747	1,189.449	1,029.510	879.112	738.255	606.939	485.163	372.929		177.083
Anthracene	lb/hr	178.2351	1,189.449	1,029.510	879.112	738.255	606,939	485.163	372.929	270.235	
o-cresol	lb/hr	108.14065	1,189.449	1,029.510	879.112	738.255	606.939	485.163	372.929	270.235	
In	lb/hr		342,971.667	344,950.833	346,930.000	348,909.167	350,888.333	352,867.500	354,846.667	356,825.833	358.805.000
Out	lb/hr							352,867.500			
Diff	lb/hr		(0.000)		(0.000)		0.000	(0.000)		0.000	
Steam											
as steam	lb/hr		119840.55	119840.55	119840.55	119840.55	119840.55	119840.55	119840.55	119840.55	119840.55
as moisture	lb/hr		20326.12	20326.12	20326.12	20326.12	20326.12	20326.12	20326.12	20326.12	

For Ryield Reactor	1400	1450	1500	1550	1600	1650	1700	1750	1800
Temp Feed Oxygen lb-mole/hr Steam lb-mole/hr 10.87% M Feedlb/hr	1129.365 6651.896 186992.782	1191.217 6651.896 186992.782	1253.068 6651.896 186992.782	1314.919 6651.896 186992.782	1376.770 6651.896 186992.782	1438.622 6651.896 186992.782	1500.473 6651.896 186992.782	1562.324 6651.896 186992.782	1624.175 6651.896 186992.782
Oxygen lb/hr Steam lb/hr 10.87% M Feedlb/hr	36139.689 119840.551 186992.782 342973.022	38118.929 119840.551 186992.782 344952.263	40098.170 119840.551 186992.782 346931.504	42077.411 119840.551 186992.782 348910.745	44056.652 119840.551 186992.782 350889.985	46035.893 119840.551 186992.782 352869.226	48015.134 119840.551 186992.782 354848.467	49994.375 119840.551 186992.782 356827.708	51973.616 119840.551 186992.782 358806.949
Total lb/hr Yield H2 lb/lb feed C0 CH4 C2H4 C2H6 C3H8 C02 H20 Char Benzene Naphthalene Anthracene o-cresol Total	9.3160E-03 9.0507E-02 5.1735E-02 5.0827E-03 1.3795E-02 1.5107E-04 3.5005E-01 4.4673E-01 1.8751E-02 3.4681E-03 3.4681E-03 3.4681E-03 1.0000E+00	1.0056E-02 9.8752E-02 5.4170E-02 4.3655E-03 1.0009E-02 1.2189E-04 3.6338E-01 4.3011E-01 1.7090E-02 2.9845E-03 2.9845E-03 2.9845E-03 1.0000E+00	1.0809E-02 1.0638E-01 5.5974E-02 3.6552E-03 6.8189E-03 9.2894E-05 3.7484E-01 4.1584E-01 1.5447E-02 2.5340E-03 2.5340E-03 2.5340E-03	1.1580E-02 1.1343E-01 5.7151E-02 2.9483E-03 4.2090E-03 6.3958E-05 3.8446E-01 4.0387E-01 1.3824E-02 2.1159E-03 2.1159E-03 2.1159E-03 1.0000E+00	1.1992E-01 5.7701E-02 2.2417E-03 2.1720E-03 3.4948E-05 3.9225E-01 3.9417E-01 1.2218E-02 1.7297E-03 1.7297E-03 1.7297E-03	1.2587E-01 5.7621E-02 1.5322E-03 7.0499E-04 5.7360E-06 3.9825E-01 3.8670E-01 1.0631E-02 1.3749E-03 1.3749E-03 1.3749E-03	1.0510E-03 1.0510E-03 1.0510E-03 1.0510E-03	1.4906E-02 1.3624E-01 5.5523E-02 9.1462E-05 0.0000E+00 0.0000E+01 7.5095E-03 7.5733E-04 7.5733E-04 7.5733E-04 9.9999E-01	1.5825E-02 1.4072E-01 5.3483E-02 0.0000E+00 0.0000E+00 4.0551E-01 3.7650E-01 5.9744E-03 4.9353E-04 4.9353E-04 4.9353E-04 9.9999E-01
For Wwood at 50 % M Total H2O H2O as M Wwood	166666.667 146340.551 20326.115 186992.782	8122.810							

```
TITLE 'GASIFIER - REFORMER - METHANOL SYNTHESIS - HNEI CASE A'
GASIFIER - RYIELD MODEL
; REFORMER - EQUILIBRIUM MODEL. METHANOL - EQUILIBRIUM MODEL
;UPDATED: DECEMBER 5, 1991
           ENG
IN-UNITS
OUT-UNITS SI TEMPERATURE = C PRESSURE = BAR
HISTORY MSG-LEVEL PROPERTIES=4 SIMULATION=4 STREAMS=4 SYSTEM=4
                MAX-TIME=600
RUN-CONTROL
              SIZE-RESULTS = 0
SIM-OPTIONS
STREAM-REPORT
     STREAMS ALL
                        BASES = MOLE MOLE-FRAC
     FLOW-FRAC MIXED
     INTENSIVE-PROPS MIXED PROPS=TEMP PRES MW ENTH DENS BASE =MOLE
     FLOW-FRAC CISOLID BASES = MASS
     INTENSIVE-PROPS CISOLID PROPS=TEMP PRES ENTH DENS BASE=MASS
                        BASES = MASS
     FLOW-FRAC NCPSD
     INTENSIVE-PROPS NCPSD PROPS=TEMP PRES ENTH DENS BASE=MASS
                                             *********
                 COMPONENTS AND PROPERTIES
 ******
              SYSOPO / SYSOP3R LOOP2
PROPERTIES
 COMPONENTS
              H2
  H2
   CO
              CO
              CO2
   C02
              H20
   H20
              METHANE
   CH4
               ACETYLENE
   C2H2
               ETHYLENE
   C2H4
               ETHANE
   C2H6
               PROPYLENE
   C3H6-2
               C3H8
   C3H8
               CH40
   MEOH
               02
   02
   N2
               N2
               AR
   AR
                                  Benzene
               C6H6
   C6H6
                                  Phenol
               C6H60
   C6H60
                                  Naphthalene
   C10H8
               C10H8
                               ; Anthracene
               C14H10-1
   C14H10-1
                                  0-cresol
               C7H8O-4
   C7H80-4
   C
               C
               02SI
   02SI
   CHAR
   WOOD
  ALIAS
```

```
H2
               H2
  CO
               CO
  C02
               C<sub>0</sub>2
  H20
               H20
  CH4
               CH4
  C2H2
               C2H2
  C2H4
               C2H4
  C2H6
               C2H6
  C3H6-2
               C3H6-2
  C3H8
               C3H8
  MEOH
               CH40
               02
  02
  N2
               N2
  AR
               AR
  C6H6
               C6H6
  C6H60
               C6H60
  C10H8
               C10H8
  C14H10-1
               C14H10-1
  C7H80-4
               C7H80-4
               C
  02SI
               02SI
  CHAR
  WOOD
Attr-Comps CHAR
                      Proxanal Ultanal Sulfanal Coalmisc Genanal
Attr-Comps WOOD
                      Proxanal Ultanal Sulfanal Coalmisc Genanal
Prop-Sources
   Global ASPENPCD Comps= CH4 H2 H2O CO2 CO O2 C6H6 C2H2 C2H4 AR &
                              C2H6 C3H6-2 C3H8 C6H6O C7H8O-4 N2 MEOH &
   Global
           DIPPR
                       Comps= C10H8 C14H10-1 C 02SI
Nc-props wood enthalpy hcjlboie / density dnstygen
Nc-props char enthalpy hcjlboie / density dnstygen
Prop-data
   comp-list
                              boow
                                        char
      cval dengen 1
                          1
                               440
                                        1000
Prop-data
   Prop-List
                  BOIEC
                                                  S
                          C
                                      Н
                                                         0
                                                                 N
                                                                        BIAS
                       154.8761
                                   122.50632
                                                 0.0
                                                        0.0
                                                                0.0
                                                                         0.0
      Pval
             Wood
      Pva1
             Char
                       154.8761
                                   122.50632
                                                        0.0
                                                                0.0
                                                                         0.0
                                                 0.0
Prop-Data
   Prop-List MW / SPGR / DHSFRM / DGSFRM / VSPOLY / CPSPO1
   PVAL C 12.01115 / 2.2 / 0. / 0. / 0.0053 0.0 0.0 0.0 0.0 0.0 3000. /& 1.7154e+4 4.268 0.0 0.0 -2.786e+8 0.0 3000.0
   Pval 02SI 60.086 / 2.2 / 0. / 0. / .02726 0. 0. 0. 0. 3000. / & 37713 0. 0. 0. 0. 0. 3000.
;
```

·****	****	FLOWSHEET	****	*****	*****
•					
FLOWSHEET DRY CHNG	IN = FLUE4		OUT = FLUEX		
CHNGF		,	OUT = GASREF	D -+-08 9	
DRYER	IN = WWOOD	DEC COMOUT FL	UEX GASREF ADDAI	K STOZA &	QDRYER
DIVILIN			ONI = MEIGNO	DWOOD	QSTORE
STORE	IN = DWOOD	•	OUT = DWOOD2		QWG
WGCHECK	IN = WETGAS	5	OUT = COOLGAS		QWG
FLOWSHEET GASE	ER		AUT CTOOR	OXY2	
02HEAT	IN = STEAM	02 OXY	OUT = STO2A	UNIZ	
FEEDMIX		G2 DWOOD2 OXY2	OUT = FEEDG		QGAS
GASIFIER	IN = FEEDG		OUT = GPROD OUT = SOLID1	GAS1	qui io
SOLSEP	IN = GPROD		OUT = SOLIDI	GAS1B	
SOLSP2	IN = GAS1		OUT = GASIC	AIR1B	
HEAT1	IN = GAS1B	AIR1	OUT = AIR3	KIKIO	WCHAR
CHCOMP2	IN = AIR2	4100	OUT = GASID	AIR3A	
HEAT2	IN = GAS1C		OUT = DECFD	71211011	
CM	IN = SOLID		OUT = DEC		Qdec
CDECOMP	IN = DECFD		OUT = ADDAIR		_
AMIX	IN = AIRX		OUT = COMIN		•
CMIX	IN = AIR3A	-	OUT = COMOUT		Qmeth
COMBUST	IN = COMIN		OUT = GASIE	STEAMG2	
HEAT3	IN = GAS1[) SILMIU	99.		
FLOWSHEET LOC	IN = GAS1	•	Out = Gasc		
Change	IN = GAST	STEAM RCO2	OUT = CFEED		
INLET	IN = GESC		OUT = FEED2		
REAC1 HTR2	IN = HPRO		OUT = HPROD2	Refin	0110
REFORM	IN = Refi		OUT = HPROD	COKE	QH3
HTR3	IN = HPRO		OUT = AGAS	REFGAS	0114
HTR3A	IN = AGAS		OUT = AGAS1	11147CD	QH4
H2OCOND	IN = AGAS	1	OUT = AGAS2	WWATER	awa t
WCOOL	IN = WWAT		OUT = WATOUT	OLIATO	qwat
Q1SEP	IN = QWAT	,	OUT = QWAT1	QWAT2	
COZCOND	IN = AGAS	2	OUT = CGAS	LIQ	
CO2SEP	IN = LIQ		OUT = PCO2	RCO2	
FLOWSHEET LO	OP2		Out - Case?		
Change2	In = Cgas	}_	Out = Cgas2 OUT = GAS4		W1
COMP2	IN = Cgas	52	OUT = RECYCL	F2	QH5
HTR5	IN = REC	CLE	OUT = GAS4A	· • •	Ŵ1A
COMP3	IN = REC		OUT = GAS4B	•	
MXIM	IN = GAS		OUT = GAS5	•	Q3
HTR6	IN = GAS		OUT = GASM	LIQM	Q4
MEOH	IN = GAS		OUT = GASM2	\	Q5
COOL	IN = GASI		OUT = Gasrl	METHANOL	Q6
CONDENSE	IN = GAS		OUT = PURGE	RECYCLE	
MSPLIT	IN = GAS	LT.			
FLOWSHEET COL	IN = AMB MROZI	ΔTR	OUT = COMAII		WAIR1
AIRCOMP	IN = AND IN = FLU	E2 COMAIR	OUT = FLUE3	COMAIR2	
HCOM1	IN = FLU		OUT = FLUE4	PURGEH	
HCOM2	111 - 150				

```
OUT = COMGAS
              IN = COMAIR2 PURGEH
   MCOMB
                                       OUT = FLUEGAS
              IN = COMGAS QH3
   ADCOMB
FLOWSHEET CHECK
                                                                 WP1
                                        OUT = WATER2
              IN = WATER
    PUMP1
              IN = WATER2 Q3 Q4 QWAT1
                                        OUT = WATER3
    WHTR1
                                        OUT = Psteam
              IN = WATER3 QH4 QFL2
    WHTR2
                                                       PSTEAM3
                                        OUT = PSTEAM2
              IN = PSTEAM
    STEAMSEP
                                                                 WTURB
                                        OUT = PSTEAM4
               IN = PSTEAM2
    TURBINE
                                                                 OH20
                                        OUT = COOLH20
               IN = PSTEAM4
    STC00L
                                                                 OFL2
                                        OUT = FLUE2
               IN = FLUEgas
    REFCOOL
                                        ********
                 STREAM SPECIFICATIONS
.
******
Def-Subs-Attr PSD PSD
   in-units Length = MU
   intervals 10
   size-limits 0/4/5/6.4/8/10.1/12.7/16/20.2/32/50.8
Def-Stream-Class Mixcinc
   Definition Substreams=Mixed Cisolid Ncpsd
Def-Streams Mixcinc Dry Gasfer/mixcisld Loop1/Conven Loop2
 Def-Streams HEAT QH4 QH5 Q3 Q4 Q5 Q6 QDRYER QSTORE QGAS Qdec Qmeth &
     QH3 QFL2 QWG QH20 qwat QWAT1 QWAT2
 DEF-STREAMS WORK WI WIA WAIRI WP1 Wchar WTURB
 STREAM STEAM
     Substream Mixed TEMP =900 PRES = 319.088 MOLE-FLOW = 6200
     MOLE-FRAC H2O 1.00
     Substream Mixed Temp = 900 Pres = 319.088 Mass-flow = 96666.666
 Stream SteamG
     Mass-frac H20 1.00
  Stream SteamO2 Mixed Temp= 900 Pres = 319.088 Mole-flow = 1800
     Mole-frac H2O 1.00
     Substream Mixed Temp = -300 Pres = 319.088 Mass-flow = 41666.666
  Stream Oxy
     Mole-frac 02 1.0
  Stream water
      Substream Mixed Temp = 60 P=25 Mole-flow= 18650
      Mole-frac H2O 1.00
  Stream Refgasl
      Substream Mixed Temp = 80 Pres=25 Mole-flow = 4000
      Mole-frac 02 0.21 / N2 0.79
  Stream Ambair
```

```
Substream Mixed Temp=80 Pres=14.696 Mole-flow = 5500
   Mole-frac 02 0.21 / N2 0.79
Stream Airl
   Substream Mixed Temp=80 Pres = 14.696 Mass-flow=100
   Mass-frac 02 0.2329 / N2 0.7671
Stream Air2
   Substream Mixed Temp = 80 Pres = 14.696 Mole-flow = 50
   Mole-frac 02 0.21 / N2 0.79
Stream Airx
    Substream Mixed Temp = 80 Pres = 14.696 Mole-flow =6000
    Mole-frac 02 0.21 / N2 0.79
Stream Meth
   Substream Mixed Temp = 80 Pres = 14.696 Mole-flow =0.01
   Mole-frac MEOH 1.0
Stream Wwood Mixed Temp=80 Pres=14.696 Mass-flow= 150905.294
    Mass-flow H2O 150905.294
    Substream NCPSD Temp=80 Pres=14.696 Mass-flow=186428.038
    Mass-flow Wood 186428.038 / Char le-10
Subs-attr PSD Frac=0.593 0.001 0.011 0.026 0.033 0.04 0.052 &
                     0.072 0.140 0.032
    Comp-Attr Wood Proxanal (10.60 14.8 82.1 3.1)/
                          (3.1 47.9 6.2 0.60 0.0 0.01 42.19)/
                  Ultanal
                  Sulfanal (0.004 0.003 0.003)/
                  Coalmisc (8628. 0.0 0.0 0.0 0.0)/
    Ultanal (0.0 93.68 6.0 0.0 0.0 0.05 0.27)/
                  Sulfanal (.02 .02 .01)/
                  Coalmisc (15244 0.0 0.0 0.0 0.0)/
                  Blocks *************************
Block Chng Clchng
Block Chngf Clchng
Block Dryer Flash2
  Param Temp = 220 Pres = 14.696 maxit = 100
Block Store Heater
  Param Temp=220
Block WGCHECK Heater
  Param Temp = 80 V=1
```

```
Block O2Heat Heatx
   Param Opt=2 Flowdir=0 Tcold=600
Block Feedmix Mixer
   Param Pres=319.088
Block Gasifier Ryield
   Properties Option=SYSOPO
   Param Temp=1526 Pres=319.088
                                              Val=1.51109E-02/
                             Comp = H2
   Massyield Ssid = Mixed
                                              Val=1.07374E-01/
             Ssid = Mixed
                             Comp = CO
                             Comp = CO2
                                              Val=4.11858E-01/
             Ssid = Mixed
                                              Val=5.92536E-02/
             Ssid = Mixed
                             Comp = CH4
                                              Val=0.0000E-00/
             Ssid = Mixed
                             Comp = C2H2
                                              Val=1.22623E-04/
             Ssid = Mixed
                             Comp = C2H4
             Ssid = Mixed
                             Comp = C2H6
                                               Val=8.28036E-03/
             Ssid = Mixed
                             Comp = C3H6-2
                                              Val=0.0000E-00/
                             Comp = C3H8
                                              Val=0.0000E-00/
             Ssid = Mixed
                             Comp = C6H6
                                               Val=5.80442E-03/
             Ssid = Mixed
                             Comp = C6H60
                                               Val=6.59455E-03/
             Ssid = Mixed
                             Comp = C10H8
                                               Val=3.87915E-04/
             Ssid = Mixed
                                              Val=3.87915E-04/
             Ssid = Mixed
                             Comp = C14H10-1
                             Comp = C7H80-4
             Ssid = Mixed
                                               Val=3.87915E-04/
                                               Val=3.41829E-01/
             Ssid = Mixed
                             Comp = H20
                                               Val=1.53194E-02/
             Ssid = Cisolid Comp = O2SI
                                              Val=2.72938E-02/
             Ssid = Ncpsd
                             Comp = Char
             Ssid = Ncpsd
                             Comp = Wood
                                              Val=0.0
Block Solsep Sep2
          Subs=Ncpsd
                        Stream=Solidl
                                       Comp=Char
                                                       Frac=1.0/
   Frac
          Subs=Mixed
                        Stream=Gasl
                                        Comp=C14H10-1 Frac=0.9995
   Flash-specs Gas1 Pres=319.088
Block Solsp2 Sep2
          Subs=Cisolid Stream=Solid2 Comp=02SI
                                                      Frac=1.0 /
   Frac
                                        Comp=C14H10-1 Frac=0.9995
          Subs=Mixed
                        Stream=Gaslb
   Flash-specs Gas1b Pres=319.088
Block Heatl Heatx
   Param Option=1 Fdir=0 Thot=1490
Block Chcomp2 Compr
   Param Type = 1 Pres = 25 EP = 0.90
Block Heat2 Heatx
   Param Opt=1 Fdir=0 Thot=1489.9
Block Heat3 Heatx
   param opt = 1 Fdir=0 Thot = 1489
Block CM Mixer
```

```
Block Cdecomp Ryield
   Param Pres = 25 Temp=2000
                                       Val = 0.249712543/
  Massyield Ssid = Mixed Comp=CO2
                                       Val = 0.039009473/
             Ssid = Mixed Comp=H20
                                       Val = 0.711277984
             Ssid = Mixed Comp=N2
Block Amix Mixer
Block Cmix Mixer
Block Combust Rstoic
   Param Pres = 20 Maxit = 500 T = 2000
   Stoich 1 Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
           1 Mixed MEOH 1.0
Block Change Clchng
Block Inlet MIXER
     PARAM
           PRES = 319.088
BLOCK REAC1 RSTOIC
     PARAM PRES = 319.088
                                -1
                                     / H2O -1 / CO 1 / CH4 1
            1 MIXED C2H2
     STOICH
                                     / H2O -1 / CO 1 / CH4 1 / H2 1
             2 MIXED C2H4
                                -1
     STOICH
                                     / H2O -1 / CO 1 / CH4 1 / H2 2
             3 MIXED C2H6
                                -1
     STOICH
                                    / H2O -1 / CO 1 / CH4 2
                                -1
                       C3H6-2
             4 MIXED
     STOICH
                                     / H2O -3 / CO 3 / CH4 3
                                -1
             5 MIXED
                       C6H6
     STOICH
                                     / H2O -10 / CO 10 / H2 14
/ H2O -14 / CO 14 / H2 19
                                -1
            6 MIXED
                       C10H8
     STOICH
                       C14H10-1 -1
            7 MIXED
     STOICH
                                     / H2 2 / CO 1
                       MEOH
                                -1
               MIXED
     STOICH
            8
                                     / H2O -5 / CO 6 / H2 8
                                -1
            9 MIXED
                       C6H60
     STOICH
                                     / H2O -6 / CO 7 / H2 10
      STOICH 10 MIXED C7H8O-4
                                -1
                                1.00
          1 MIXED C2H2
      CONV
                                1.00
           2 MIXED
                     C2H4
      CONV
           3 MIXED
                                1.00
                    C2H6
      CONV
                                1.00
                    C3H6-2
      CONV 4 MIXED
                                1.00
              MIXED
                     C6H6
      CONV
           5
                                1.00
      CONV 6
             MIXED
                     C10H8
                     C14H10-1
                                1.00
          7
              MIXED
      CONV
                                1.00
      CONV 8 MIXED
                     MEOH
                                1.00
      CONV 9
                     C6H60
              MIXED
      CONV 10 MIXED C7H8O-4
                                1.00
 Block Htr2 Heatx
    Param Opt=1 Fdir=0 Thot=1400
 BLOCK REFORM RGIBBS
      PARAM TEMP = 1600. PRES = 319.088 maxit=500 nr=3
      PROD H2 1 / CO 1 / H2O 1 / CH4 1 / CO2 1 / C 0
              1 CO2 -1 / H2 -1 / H2O 1 / CO 1
       STOI
                          / C 1 / CO2 1
              2 CO -2
       STOI
                          / H2O -1 / CO 1 / H2 3
       STOI
              3 CH4 -1
```

```
DELT 3 -15.
Block Htr3 HeatX
  Param Opt=1 Fdir=0 Thot=1300
Block Htr3A Heater
  Param Temp=450
BLOCK H2OCOND Sep2
  Frac Subs=Mixed Stream=Agas2 Comp=H2 CO CO2 CH4 H2O FRAC=1.0 1.0 1.0 1.0 &
            0.025/
       Subs=Mixed Stream=Wwater Comp=H2 CO CO2 CH4 H2O Frac=0.0 0.0 0.0 &
            0.0 0.975
   Flash-Specs Agas2 Temp=450 P=319.088 Maxit = 300 Tol=0.001 V=1/
               Wwater Temp=450 P=319.088 Maxit = 300 Tol=0.001 V=1
Block Wcool Heater
  Param Temp = 80
Block Qlsep Fsplit
  Frac Qwat1 0.75 / Qwat2 0.25
BLOCK CO2COND Sep2
   Frac Subs=Mixed Stream=Cgas Comp=H2 CO CH4 H2O CO2 FRAC=1.0 1.0 1.0 1.0 &
            0.075/
       Subs=Mixed Stream=Liq Comp=CO2 Frac=0.925
   Flash-Specs Cgas Temp=450 P=319.088/
               Liq
                     Temp=450 P=319.088
Block CO2SEP Fsplit
   Frac PC02 0.67 / RC02 0.33
Block Change2 Clchng
BLOCK COMP2 COMPR
    PARAM TYPE = 1 PRES = 750 EP = 0.95
Block HTR5 Heater
     Param Temp=150
BLOCK COMP3 COMPR
     PARAM TYPE = 1 PRES = 750
                                  EP=0.95
BLOCK HTR6 HEATER
     PARAM TEMP = 445 PRES =750
BLOCK MEOH Rgibbs
     PARAM TEMP = 445 PRES =750 NR=3 IDEL = 1 Maxit=500
     Prod CO 1 / H2O 1 / MEOH 1 / CO2 1 / H2 1 / CH4 1
     STOI 1 CO -1 / H2 -2 / MEOH 1
     STOI 2 CO2 -1 / H2 -1 / CO 1 / H2O 1
     STOI 3 CO -1 / H2 -3 / CH4 1 / H2O 1
```

```
EXSP 3 0.1E-30
     DELT 1
              +10.0
Block Cool Heater
     Param Temp=35
BLOCK CONDENSE FLASH2
     PARAM TEMP = 32 PRES = 740
BLOCK MSPLIT FSPLIT
     FRAC PURGE 0.33 / RECYCLE 0.67
     Param npk=1 kph=1
BLOCK MIXM MIXER
     PARAM KPH = 1
Block Aircomp Compr
   Param Type = 1 Pres=20 EP=0.90
Block Hcoml Heatx
   Param Opt=1 Fdir=0 Thot=1000
Block Hcom2 Heatx
   Param Opt=1 Fdir=0 Thot=900 DPC=20
Block Mcomb Mixer
    Param Pres=20 Maxit = 500 Tol=0.001 NPK=1 kph=1
 Block Adcomb Rstoic
    Param Pres=20 Maxit=500 Test=1800 Tol=0.001
    Stoich 1 Mixed CO -1 / O2 -0.5 / CO2 1
Stoich 2 Mixed CH4 -1 / O2 -2 / CO2 1 / H2O 2
              Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
    Stoich 3
    Stoich 4 Mixed H2 -1 / 02 -0.5 / H2O 1
          1 Mixed CO
                               1.00
    Conv
                               1.00
           2 Mixed CH4
    Conv
           3 Mixed MEOH
                               1.00
    Conv
           4 Mixed H2
                               1.00
    Conv
 Block Refcool Heater
    Param Temp=1700
 Block Pumpl Pump
    Param Pres=319.088 Type=1 Eff=0.9
 Block Whtrl Heater
 Block Whtr2 Heater
 Block Steamsep Fsplit
    Mole-flow Psteam2 5284.1
     Def-key ID=1 Subs=Mixed Comp=H20
```

```
Block Turbine Compr
  Param Type=3 Pres = 15.0 ES = 9.95
Block Stcool Heater
  Param Temp = 80
******
                     Design Specifications
                      Fortran Blocks
Fortran Set-Air
  Properties Sysop0
  Define FA Mass-flow Stream=Solid1
                                      Substream=Ncpsd
                                                     Comp=Char
  Define FB Mass-flow Stream=Air1
                                      Substream=Mixed
                                                      Comp=02
  Define FC Mass-flow Stream=Air1
                                      Substream=Mixed
                                                      Comp=N2
       FB = 2.968741*FA
       FC = 9.777148*FA
F
  Flash-specs Airl Kode=2 Temp=80 Pres=25
  Execute after solsep
```

APPENDIX 6

HAWAII MATERIAL BALANCE INFORMATION

I CCU. Dayasse	F	eed	:	Bac	ıa	sse
----------------	---	-----	---	-----	----	-----

Proximate Analysis,	Dry				
VM, %	82.1				
FC	14.8				
Ash	3.1				
	100.0				
Ultimate Analysis					
	Dry		MAF		
C, %	47.90		49.43		
H	6.20		6.40		
	0.60		0.62		
N S O	0.01		0.01		
Ŏ	42.19		43.54		
Ash	3.10		73.57		
ASII	3.10				
	100.00		100.00		
Heating Value	100.00		100.00		
Given	10 100	k 1 /ka			
	19,100			/NDC1	
Corr.	19,021	KJ/Kg		(NREL	CORRELATION)

Process Information

11101 mas 011	System A	System B	•
Conditions			
Temperature, C	830	750	
· F	1526	1382	
Pressure, Bars	22	10	
, psia	319.1	145.0	
Steam/Feed, 1b/1b	0.58	1.2	
Oxygen/Feed, 1b/1b	0.25	0.00	
Feed Moisture, % wet	10.60	5.00	

Product Composition	System A	System B
Char Composition	60.00 *	87.4
C, %	3.84 *	5.6
H H	0.21 *	0.3
0	35.95 *	6.7
Ash	35.95	
Tar Composition	69.2	69.2
C, %		6.7
Н	6.7	24.1
0	24.1	
Gas Composition	17 15	33.46
H2	17.15	9.03
CO	8.77	15.84
CO2	21.41	4.96
CH4	8.45	0.00
C2H4	0.01	0.00
C2H6	0.63	0.00
C3H8	0.00	0.00
C6H6	0.17	36.71
Н20	43.41 *	
	100.00	100.00
Yield Structure	1 05	1.68
Gas (m3/kg bagasse)	1.05	59.322
(ft3/1b bagasse)	37.076	03.012
Carbon Conversion, %	07 415 +	75.0
To Gas	87.415 *	25.0
To Char	10.401 *	0.0
To Liquid	2.184 *	0.0
· .	100.000	
* = changed from original o	lata	·

System A Analysis

Basis: Feed: Temp: Press:	83,333.333 1526 319.088	deg F
System Input: Dry Bagasse, 1b Carbon, 1b/hr Hydrogen Nitrogen Sulfur Oxygen Ash Moisture, 1b/hr H (MW=1.0079) O (MW=15.9994 Steam, 1b/hr H (MW=1.0079) O (MW=15.9994 Oxygen, 1b/hr Total In, 1b/hr C H N S O Ash	Check	83,333.333 39,916.667 5,166.667 500.000 8.333 35,158.333 2,583.333 9,880.686 1,105.593 8,775.093 48,333.333 5,408.229 42,925.104 20,833.333 162,380.685 39,916.667 11,680.489 500.000 8.333 107,691.863 2,583.333
Che	ck	162,380.685

System O	utput							
Gas	Comp	HU	Mole %	Wt	ut X	C	H	0
uas	H2 CO CO2 CH4 C2H4 C2H6 C3H8 C6H6 H2O	2.0158 28.0105 44.0099 16.0427 28.0539 30.0697 44.0966 78.1143 18.0152	5 8.77 5 21.41 5 8.45 0 0.01 0 0.63 5 0.00 0 0.17 0 43.41	34.5710 245.6525 942.2530 135.5612 0.2805 18.9439 0.0000 13.2794 782.0398	1.5912 11.3069 43.3702 6.2396 0.0129 0.8720 0.0000 0.6112 35.9959	0.0000 105.3378 257.1587 101.4942 0.2402 15.1340 0.0000 12.2514 0.0000	34.5710 0.0000 0.0000 34.0670 0.0403 3.8099 0.0000 1.0281 87.5059	0.0000 140.3147 685.0943 0.0000 0.0000 0.0000 0.0000 0.0000 694.5340
			100.0000	2172.5815	100.0000	491.6164	161.0221	1519.9430
	MW ut % C ut % H ut % O	21.72 22.62 7.41 69.90 check 100.00	12 50					

Product Yield Gas Char Tar	, based on carbor Total 154,201.985 6,919.554 1,259.798	Carbon 34,893.154 4,151.732 871.780	Hydrogen 11,428.767 265.711 84.406	0xygen 107,880.064 14.531 303.611		
Out Error, %	162,381.337 0.000	39,916.667 (0.000)	11,778.885 0.842	108,198.206 0.470		
Char Yield, b	ased on ash and o 7,185.906 li					
Gas Yield , b	pased on vol and h 186,989.401 176,914.179 173,573.336	1W ST= ST= ST=	60	deg F deg F deg F		
Tar Compositi Component C10H8 C14H10O C7H8O C6H6O	on MW 128.1747 178.2351 108.14065 95.0742	wt % 5 5 5 85	wt 640.874 891.176 540.703 8,081.307	1b C 600.558 840.781 420.390 6,125.687	1b H 40.316 50.395 40.316 514.029	1b H 0.000 0.000 79.997 1,441.592
	ANALYSIS	100.000 MODEL	10,154.059	7,987.415	645.056	1,521.589
WT % C WT % H WT % O	69 . 2 6.7 24.1	78.66 6.35 14.99				

Reported Tar Analysis must contain water. It is much different than reported IGT analyses

```
Case A
IGT input file, oxygen case
              Feed
                                83,333.333
                Dry feed
                                 9,880.686 Associated water to gasifier
                Moisture 1
                                48,333.333
                Steam
                                20,833.333
                0xygen
                               162,380.685
                Total
                                73,452.647 Associated water removed in dryer
              Dryer Moisture
               Product
                                            1b/1b gasifier
                             1b/hr
              Component
                                                  feed
                                              1.51109E-02
                                 2,453.723
                 H2
                                              1.07374E-01
                                17,435.529
                 CO
                                              4.11858E-01
                                66,877.716
                 C02
                                              5.92536E-02
                                  9,621.647
                 CH4
                                              1.22623E-04
                                     19.912
                 C2H4
                                              8.28036E-03
                                  1,344.570
                 C2H6
                                              0.00000E+00
                                      0.000
                 C3H8
                                              5.80442E-03
                                    942.526
                 C6H6
                                              3.41829E-01
                                 55,506.362
                 H20
                                               3.87915E-04
                                     62.990
                 C10H8
                                               3.87915E-04
                                     62.990
                 C14H100
                                               3.87915E-04
                                     62.990
                 C7H80
                                               6.59455E-03
                                  1,070.828
                 C6H60
                                               4.26132E-02
                                  6,919.554
                 Char
                                               1.00000E+00
                                162,381.337
```

Total

Case A Air input file

Total

Basis: air at 80 deg F, 14.696 psia, 20 % RH

	50 deg / , 14.	oro para, zo a kii	l	
Air Compositio	n			
Component	MW	Mole %	wt	wt X
Oxygen	31,9988		661.095	22.94
Nitrogen	28.0134	77.01	2,157.312	74.87
Argon	39.948		36.752	1.28
CO2	44.00995		1.320	0.05
H2O	18.0152	1.38	24.861	0.86
	1010152	1130		
			2,881.341	100.00
Feed				
Dry feed	83,333.333			
Moisture 1	9,880.686	Associated water	to gasifier	
Steam	48,333.333			
Air				
Oxygen	20,833.333			
Nitrogen	67,984.154			
Argon	1,158.184			
CO2	41.607			
H20	783.453			
Total	232,348.084			
Moisture 2	73,452.647	Associated water	removed in dryer	
Product	lb/hr	lb/lb gasifier		
110000	(10/111	feed		
H2	2,453.723			
CO	17,435.529			
CO2	66,919.323			
CH4	9,621.647			
C2H4	19.912			
C2H6	1,344.570	5.78688E-03		
C3H8	0.000	0.00000E+00		
СбНб	942.526	4.05653E-03		
H2O	56,289.815			
C10H8	62.990	2.71101E-04		
C14H100	62,990	2.71101E-04		
C7H8O	62.990			
C6H6O	1,070.828	4.60872E-03		
N2	67,984.154	2.92596E-01		
7A	1,158.184	4.98469E-03		
Char	6,919,554	2.97810E-02		

232,348.735 1.00000E+00

APPENDIX 7

BCL Gasifier Data

ltem/Test	71	74	75	76	77	78	79	80	81	82
a tetu mudiking	*							4470	45/0	1429
Gasifier Conditions	* 1280	1504	1562	1359	1466	1382	1445	1470	1548 5.0	6.8
Temperature, deg F	* 3.8	6.2	8.2	8.4	7.8	7.0	5.8	5.2		8.12
Pressure, psig	* 14.42	15.69	6.88	9.00	9.00	10.79	10.00	10.00	8.12	782
Moisture, wt %	* 486	588	700	916	777	1046	786	580	408	719
let Wood Rate, lb/hr	* 416	496	652	834	707	933	707	522	375 160	152
Dry wood Rate, lb/hr	* 139	173	315	169	204	218	160	160	413	437
litrogen Rate, lb/hr	* 389	404	401	461	415	371	406	412		0.608
Steam Rate, lb/hr	* 0.935	0.815	0.615	0.553	0.587	0.398	0.574	0.789	1.101 1.189	0.695
Steam Rate, 1b/1b BDW	* 1.103	1.000	0.689	0.651	0.686	0.519	0.686	0.900		0.698
Total H2O Rate, lb/lb BDW	* 1.135	1.012	0.693	0.659	0.694	0.530	0.688	0.908	1.195	14.710
Total H2O, lb/lb MAF wood Total H2O, SCF/lb MAF wood	* 23.896	21.318	14.595	13.870	14.614	11.151	14.499	19.128	25.158	14.710
									- •	m !
Feed	* Red Oak	Red Oak	Red Oak	Red Oak	Red Oak	Red Oak	Bir+Map	Bir+Map	Bir+Map	Bir+Map
Туре		chips	chips							
Size	* chips	Citips	Cirrps		•					07 70
Proximate Analysis	* 81.07	70.42	82.82	83.38	83.38	80.47	83.99	84.48	83.63	83.30
Volatile Matter, wt % dry	* 2.76	1.21	0.63	1.14	1.14	2.03	0.36	0.87	0.44	0.44
Ash		28.37	16.55	15.48	15.48	17.50	15.65	14.65	15.93	15.93
Fixed Carbon	* 16.17	20.31	10.33							
Proximate Analysis	* 4/ /2	15.69	6.88	9.00	9.00	10.79	10.00	10.00	8.12	8.12
Moisture, wt %	* 14.42	59.37	77.12	75.88	75.88	71.79	75.59	76.03	76.84	76.54
Volatile Matter	* 69.38 * 2.36	1.02	0.59	1.04	1.04	1.81	0.32	0.78	0.40	0.40
Ash	~ 2,30	23.92	15.41	14.09	14.09	15.61	14.09	13.19	14.64	14.64
Fixed Carbon	* 13.84	23.72	13.71	14.07						
Ultimate Analysis	* 27/	1.21	0.63	1.14	1.14	2.03	0.36	0.87	0.44	0.44
Ash, wt % dry	* 2.76	57.75	50.08	49.77	49.77	49.50	49.85	50.14	51.13	51.13
Carbon	* 49.34	5.58	6.05	5.99	5.99	5.86	6.12	6.10	5.73	5.73
Hydrogen	* 5.93	0.44	0.21	0.20	0.20	0.25	0.10	0.03	0.14	0.14
Nitrogen	* 0.07	0.44	0.08	0.02	0.02	0.03	0.03	0.03	0.02	0.02
Chtorine	* 0.03	0.87	0.00	0.00	0.00	0.01	0.08	0.03	0.03	0.03
Sul fur	* 0.13	34.12	42.95	42.88	42.88	42.32	43.46	42.80	42.51	42.51
Oxygen (diff)	* 41.74	34.14	76.73	72.00						

		 74	 75	76	77	78	79	80	81	82
Item/Test	· · · · · · · · · · · · · · · · · · ·			•••••					44 40	0.03
Product Gas	*	7	43.01	8.50	10.84	9.94	10.25	10.59	11.08	9.82
Rate, SCF/lb MAF	* 7.66	10.74	13.94	8.40	10.72	9.74	10.21	10.50	11.03	9.78
Rate, SCF/ Lb BDW	* 7.45	10.61	13.85	8.40	10.72	• • • • • • • • • • • • • • • • • • • •				40.7/
Dry N2 Free Comp	*			41.44	18.15	14.94	17.20	20.81	23.79	19.36
Dry M2 Free Comb	* 13.25	20.59	20.51	14.66		49.13	48.15	44.17	41.91	45.23
H2, mole %	* 49.52	43.98	43.80	49.18	46.27	14.21	12.75	14.78	15.42	14.57
CO	* 16.32	14.24	17.08	14.39	13.93	16.47	16.38	15.36	14.42	15.83
CO2	* 16.10	15.90	14.41	16.59	16.30		0.00	0.00	0.00	0.00
CH4	* 0.00	0.00	0.00	0.00	0.00	0.00	4.78	4.28	4.15	4.31
C2H2	* 3.81	4.80	3.94	4.18	4.63	4.30		0.60	0.31	0.70
C3N/	* 1.00	0.49	0.26	1.00	0.72	0.95	0.74		****	
C2H4								100.00	100.00	100.00
	* 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	,,,,,,,
	*	100100			27 567	24.451	23.636	23.142	22.576	23.431
41 411 1-	* 25.273	23.046	23.694	24.539	23.587	173,636.13	176,380.20	168,097.18	162,677.77	170,256.79
MW, lb/lbmole	* 167,980.25	172,079.84	159,299.31	173,419.53	173,909.87		7,462.25	7,263.83	7,205.81	7,266.36
HHV, Btu/lb mole	* 6,646.70	7,466.86	6,723.13	7,067.12	7,373.04	7,101.47	464.89	443.06	428.78	448.75
HHV, Btu/lb	* 442.75	453.56	419.87	457.09	458.38	457.66	404.07	773.00		
HHV, Btu/SCF @ 60 deg F	- 446.13	4,31,50	*****				40.4000	10.0978	9.6894	10.2875
·		10.1734	10.0521	10.8725	10.4737	10.8473	10.6082		0.4292	0.4391
c, lb/lbmole	* 10.9974	0.4414	0.4242	0.4431	0.4440	0.4436	0.4488	0.4363	0.0255	0.0271
c, lb/lb gas	* 0.4351		0.0265	0.0287	0.0276	0.0286	0.0280	0.0266		0.2663
C, lb/SCF	* 0.0290	0.0268		0.2436	0.2992	0.2842	0.2866	0.2819	0.2830	51.8484
C, Lb/Lb MAF wood	* 0.2220	0.2880	0.3693	48.3842	59.4410	56.2467	57.2847	55.7244	55.0996	71.0404
C Conv to Gas, X	* 43.7590	49.2647	73.2849	40.30-2	37. · · · · ·					4 2//4
C COM to say is	*			1.1934	1.2532	1,1960	1.2446	1.2476	1.2470	1.2446
H, lb/lb mole	* 1.1303	1.2792	1.1690		0.0531	0.0489	0.0527	0.0539	0.0552	0.0531
H, lb/lb gas	* 0.0447	0.0555	0.0493	0.0486	0.0033	0.0032	0.0033	0.0033	0.0033	0.0033
H, (D)(D gas	* 0.0030	0.0034	0.0031	0.0031		0.0313	0.0336	0.0348	0.0364	0.0322
H, Lb/SCF	* 0.0228	0.0362	0.0430	0.0267	0.0358	52.3849	54.7423	56.5903	63.2747	55.9704
H, Lb/Lb MAF Wood	* 37.4196			44.1250	59.0955	72.3047	J7.77EJ	20121		
H Conv to Gas, wt %	*									
	*							0.0166	0.0150	0.0174
Tar Estimate	* 0.0204	0.0159	0.0148	0.0188	0.0167	0.0184	0.0171	Ų.U100	0.0150	••••
Yield, lb/lb maf feed	# U.U2U4	0.0137	0.0							
Eq Tar=0.04600002*Temp	*								0 00774	0.004355
Como	*	0.00700	0.00369	0.004705	0.00417	0.00459	0.004275			
C3H6, LB/lb maf wood	* 0.0051				0.00417	0.00459	0.004275			
C6H6	* 0.0051				0.00417		0.004275			
C10H8	* 0.0051			*****	0.00417			0.00415	0.00376	0.004355
C14H10	* 0.0051	0.00398	0.00369	0.004702	0.00711					0.0407
C 1411 IV	*				0.0120	0.0133	0.0123	0.0120	0.0109	
it out and wood	* 0.0147								0.0042	
lb C/lb maf wood	* 0.0057	0.0044	0.0041						0.0108	
Lb H/Lb maf wood	0.0143									
IP C/IP quantities	* 0.0055			0.0052	0.0046	0.0050	0.0047	5.5010		
lb H/lb dry wood	0.0032									

tem/Test		71	74	75	76	77	78	79	80	81	82
asis: 1 lb dry wood											
har estimate, Let C=86,	H=4, O=										
b Ash	*	0.0276	0.0121	0.0063	0.0114	0.0114	0.0203	0.0036	0.0087	0.0044	0.0044
b C	*										
n	.*	0.4934	0.5775	0.5008	0.4977	0.4977	0.4950	0.4985	0.5014	0.5113	0.5113
ut in Gas	*	0.2159	0.2845	0.3670	0.2408	0.2958	0.2784	0.2856	0.2794	0.2817	0.2651
ut in Tar	*	0.0143	0.0114	0.0106	0.0134	0.0119	0.0130	0.0123	0.0119	0.0108	0.0125
ut in Char	*	0.2632	0.2816	0.1232	0.2435	0.1900	0.2036	0.2006	0.2101	0.2188	0.2337
	*										
in char	*	0.0188	0.0201	0.0088	0.0174	0.0136	0.0145	0.0143	0.0150	0.0156	0.0167
in gas	*	0.0222	0.0358	0.0427	0.0264	0.0354	0.0307	0.0335	0.0345	0.0363	0.0321
in tar	*	0.0055	0.0044	0.0041	0.0052	0.0046	0.0050	0.0047	0.0046	0.0042	0.0048
In	*	0.1828	0.1677	0.1376	0.1328	0.1367	0.1166	0.1380	0.1617	0.1904	0.1351
in Steam	*	0.1363	0.1074	0.0820	0.0838	0.0831	0.0664	0.0854	0.1076	0.1343	0.0815
ь н20	*	1.2177	0.9601	0.7328	0.7485	0.7427	0.5935	0.7631	0.9620	1.2005	0.7286
	*										
b in	*										
ry Wood	*	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
ater	*	1.1034	1.0000	0.6887	0.6511	0.6860	0.5188	0.6860	0.9004	1.1893	0.6954
	*			•••••							
b Out	*										
as	*	0.4962	0.6445	0.8651	0.5435	0.6662	0.6276	0.6363	0.6403	0.6564	0.6038
86	*	0.0198	0.0157	0.0147	0.0186	0.0165	0.0180	0.0170	0.0165	0.0150	0.0173
har	*	0.3372	0.3434	0.1512	0.2978	0.2349	0.2598	0.2396	0.2559	0.2618	0.2793
20	*	1.2177	0.9601	0.7328	0.7485	0.7427	0.5935	0.7631	0.9620	1.2005	0.7286
losúre	*	98.46	98.19	104.45	97.42	98.48	98.69	98.22	98.65	97.46	96.09
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7U. 17		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,0.0,
later Conversion %	*	-10.37	3.99	-6.41	-14.97	-8.27	-14.40	-11.24	-6.84	-0.94	-4.77
later Conver., lb/lb dry	ade	-0.1144	0.0399	-0.0442	-0.0975	-0.0567	-0.0747	-0.0771	-0.0616	-0.0112	-0.0332

Item/Test		83	84	. 85	86	87	88	89	90	91	92
Gasifier Conditions	*	• • • • • • • • • • • • • • • • • • • •									
lemperature, deg F	*	1465	1395	1422	1451	1408	1436	1371	1436	1374	1388
Pressure, paig	*	4.4	4.1	3.4	2.6	2.6	2.4	2.8	2.7	3.6	4.1
loisture, wt %	*	12.37	3.65	10.00	2.00	4.70	3.70	15.00	5.50	10.00	10.00
let Wood Rate, lb/hr	*	457	418	397	425	425	413	348	420	275	275
ry wood Rate, lb/hr	*	400	403	3 57	417	405	398	296	397	248	248
litrogen Rate, lb/hr	*	119	105	226	221	222	86	101	124	124	124
iteam Rate, lb/hr	*	430	432	467	447	422	426	436	419	429	434
team Rate, lb/lb BDW	*	1.075	1.072	1.308	1.072	1.042	1.070	1.473	1.055	1.730	1.750
Total H2O Rate, lb/lb BDW	*	1.218	1.109	1.420	1.091	1.091	1.108	1.649	1.113	1.839	1.859
otal H2O, lb/lb MAF wood	*	1.225	1.115	1.427	1.101	1.098	1.115	1.662	1.124	1.851	1.87
otal H2O, SCF/tb MAF wood	*	25.803	23.477	30.047	23.190	23.125	23.479	35.004	23.682	38.984	39.41
eed	*		•••••								
уре	*	Bir+Map	Bir+Map	Bir+Map	Hard Chips	S Oal					
Size	*	chips	chips	chips	chips	chips	chips	chips	chips	chips	chip
roximate Analysis	*										
/olatile Matter, wt % dry	*	84.42	84.50	84.09	83.41	84.16	85.65	83.47	84.33	85.07	85.0
Ash	*	0.63	0.50	0.46	0.91	0.61	0.61	0.81	0.99	0.67	0.6
ixed Carbon	*	14.95	15.00	15.45	15.66	15.23	13.74	15.72	14.68	14.26	14.2
Proximate Analysis	*										
loisture, wt %	*	12.37	3.65	10.00	2.00	4.70	3.70	15.00	5.50	10.00	10.0
Volatile Matter	*	73.98	81.42	75.68	81.74	80.20	82.48	70.95	79.69	76.56	76.5
Ash	*	0.55	0.48	0.41	0.89	0.58	0.59	0.69	0.94	0.60	0.6
Fixed Carbon	*	13.10	14.45	13.91	15.35	14.51	13.23	13.36	13.87	12.83	12.83
Jitimate Analysis	*										
Ash, ut % dry	*	0.63	0.50	0.46	0.91	0.61	0.61	0.81	0.99	0.67	0.6
Carbon	*	50.95	50.37	50.41	49.63	40.12	49.63	49.84	49.69	49.81	49.8
lydrogen	*	5.70	5.88	6.13	6.00	6.23	6.42	5.30	6.33	6.05	6.0
litrogen	*	0.13	0.19	0.39	0.31	0.13	0.16	0.16	0.13	0.11	0.1
Chlorine	*	0.02	0.03	0.03	0.03	0.03	0.06	0.02	0.02	0.02	0.0
Sulfur	*	0.02	0.00	0.00	0.00	0.03	0.04	0.00	0.00	0.01	0.0
Dxygen (diff)	*	42.55	43.03	42.58	43.12	52.85	43.08	43.87	42.84	43.33	43.3

		84	 85	86	87	88	89	90	91	92
Item/Test	83	. 04								
	*			==	10.30	10.28	10.21	10.04	9.98	9.75
Product Gas	* 8.97	10.96	8.24	10.72		10.22	10.13	9.94	9.91	9.68
Rate, SCF/lb MAF	* 8.91	10.91	8.20	10.62	10.24	10.22	101.5			
Rate, SCF/ 1b BDW	. 0.71	,				40 27	18.21	20.47	19.38	20.04
Dry N2 Free Comp	* 20 92	19.81	19.19	18.41	16.65	18.54	10.21	43.51	43.80	43.01
H2, mole %		42.23	43.61	46.46	47.38	45.36	44.51	14.27	14.95	14.92
CO	± 42.57		14.82	12.65	13.26	13.62	15.04		16.42	16.58
CO2	* 15.30	16.11		17.06	17.01	16.65	16.61	16.12		0.24
	* 15.91	15.75	17.13	0.00	0.00	0.28	0.23	0.27	0.24	4.51
CH4	* 0.00	0.00	0.00		4.89	4.83	4.53	4.65	4.41	
C2H2	* 4.88	4.83	4.48	4.79		0.72	0.87	0.71	0.80	0.70
C2H4	* 0.42	1.27	0.77	0.63	0.81					
C2H6	*						100.00	100.00	100.00	100.00
	* 100.00	100.00	100.00	100.00	100.00	100.00	100.00			
	* 100.00	100.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					23.055	23.413	23.216
	*	07 500	23.361	23.222	23.787	23.389	23.711		173,419.49	173,817.92
MW, lb/lbmole	* 23.127	23.582		177,736.95	178,315.86	177,401.01	174,714.40		113,417.47	7,487.10
HHV, Btu/lb mole	* 170,824.08	173,830.25	174,553.95	7 (57 77	7,496.37	7,584.82	7,368.60	7,559.36	7,406.92	
HMV, BEUVED MOLE	* 7,386.34	7,371.39	7,472.04	7,653.77		467.58	460.50	459.35	457.09	458.14
HHV, Btu/lb	* 450.25	458.17	460.08	468.47	469.99	401.50				
HHV, Btu/SCF & 60 deg F	- 4,00.25					40 /075	10.5001	10.2287	10.3380	10.2587
•	40 4750	10.3644	10.3368	10.4509	10.6959	10.4845		0.4437	0.4415	0.4419
c, lb/lbmole	* 10.1350	0.4395	0.4425	0.4500	0.4497	0.4483	0.4428		0.0272	0.0270
C, lb/lb gas	* 0.4382		0.0272	0.0275	0.0282	0.0276	0.0277	0.0270	0.2719	0.2636
C, Lb/SCF	* 0.0267	0.0273		0.2953	0.2904	0.2841	0.2826	0.2707		52.5732
C, CD/SCT	* 0.2396	0.2994	0.2245		71.9350	56.8910	56.2359	53.9345	54.2292	36.3136
C, lb/lb HAF wood	* 46.7337	59.1438	44.3299	58.9572	11.9330	2010711				
C Conv to Gas, %	*				4 0/75	1.2889	1.2766	1.2984	1.2837	1.3014
	* 1.2853	1.3058	1.3046	1.2901	1.2675		0.0538	0.0563	0.0548	0.0561
H, lb/lb mole	* 0.0556	0.0554	0.0558	0.0556	0.0533	0.0551	0.0034	0.0034	0.0034	0.0034
H, lb/lb gas		0.0034	0.0034	0.0034	0.0033	0.0034		0.0344	0.0338	0.0334
H. 1b/SCF	* 0.0034	0.0377	0.0283	0.0365	0.0344	0.0349	0.0344		55.4382	54.9090
H, 1b/1b MAF wood	* 0.0304		46.0101	60.2010	54.8977	54.0659	64.2950	53.7418	JJ.430C	
H Conv to Gas, wt %	* 52.9750	63.8333	40.0101	00.2010	•					
	*				0.0475	0.0173	0.0186	0.0173	0.0185	0.0182
Tar Estimate	* 0.0167	0.0181	0.0176	0.0170	0.0178	0.0113	0.0100			
Yield, lb/lb maf feed	- 0.0101	••••								
Eq Tar=0.04600002*Temp	•						0.001/15	0.00432	0.00463	0.00456
Comp		0.00/535	0.00439	0.004245	0.00446				• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
C3H6, LB/lb maf wood	* 0.004175			****		0.00432		0.00432		
	* 0.004175						0.004645	0.00432		
C6H6	* 0.004175	0.004525	0.00439						0.00463	0.00456
C10H8	* 0.004175			0.004245	0.00446	0.00438	0.00.019			
C14H10	* 0.004113	••				0.0495	0.0134	0.0125	0.0134	0.0132
		0.0131	0.0127	0.0123	0.0129					
lb C/lb maf wood						0.0048				
th H/th maf wood	* 0.0046						0.0133			·
th C/th dry wood	* 0.0120			-				0.0048	0.0051	0.0050
to C/to dry wood	* 0.0046	0.0050	0.0049	0.0047	0.0047					
th H/th dry wood	******									

sis: 1 lb dry wood ar estimate, let C=86, H=4, O= Ash C * t in Gas *										
ar estimate, Let C=86, H=4, O= Ash C										
Ash # .							0.004	0.0000	0.0067	0.0067
c *	0.0063	0.0050	0.0046	0.0091	0.0061	0.0061	0.0081	0.0099	0.0007	0.0001
*						0.4047	0.4984	0.4969	0.4981	0.4981
	0.5095	0.5037	0.5041	0.4963	0.4012	0.4963		0.2680	0.2701	0.2619
t in uas	0.2381	0.2979	0.2235	0.2926	0.2886	0.2823	0.2803	0.2000	0.0133	0.0131
t in Tar *	0.0120	0.0130	0.0126	0.0121	0.0128	0.0124	0.0133			0.2232
t in Char *	0.2594	0.1928	0.2680	0.1915	0.0998	0.2016	0.2048	0.2165	0.2147	0.2232
*								0.0455	0.0153	0.0159
in char *	0.0185	0.0138	0.0191	0.0137	0.0071	0.0144	0.0146	0.0155		
in gas *	0.0302	0.0375	0.0282	0.0361	0.0342	0.0347	0.0341	0.0340	0.0335	0.0332
in tar	0.0046	0.0050	0.0049	0.0047	0.0049	0.0048	0.0051	0.0048	0.0051	0.0050
In *	0.1932	0.1829	0.2202	0.1821	0.1844	0.1882	0.2375	0.1879	0.2662	0.2685
in Steam *	0.1399	0.1266	0.1680	0.1276	0.1382	0.1343	0.1836	0.1336	0.2123	0.2143
+ H2O *	1.2502	1.1314	1.5014	1.1405	1.2347	1.2003	1.6412	1.1943	1.8969	1.9152
* H2U	112342									
in *										4 0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
y Wood "	1,2175	1.1092	1.4202	1.0911	1.0914	1.1080	1.6486	1.1134	1.8387	1.8589
ter *	112117									
Out *									- 444	0.500/
	0.5433	0.6778	0.5050	0.6502	0.6418	0.6299	0.6329	0.6041	0.6117	0.5926
s	0.0166	0.0180	0.0175	0.0168	0.0177	0.0172	0.0184	0.0171	0.0184	0.0181
ir "	0.3115	.0.2318	0.3199	0.2345	0.1235	0.2432	0.2491	0.2647	0.2593	0.2692
er *	1.2502	1.1314	1.5014	1.1405	1.2347	1.2003	1.6412	1.1943	1.8969	1.9152
.0 · · · · · · · · · · · · · · · · · · ·	95.68	97.62	96.85	97.65	96.48	99.17	95.96	98.43	98.15	97.77
osure	,,,,,,,									
A Conversion Y	-2.69	-2.00	-5.72	-4.52	-13.14	-8.32	0.45	-7.27	-3.16	-3.03
ter Conversion % * iter Conver., lb/lb dry wood*	-0.0327	-0.0222	-0.0813	-0.0493	-0.1434	-0.0922	0.0074	-0.0809	-0.0582	-0.0563

Item/Test		93	94	101	102	103	104	105	106	107	109
Gasifier Conditions	*										
.Temperature, deg F	*	1290	1328	1623	1512	1507	1651	1627	1544	1650	1500
Pressure, psig	*	3.4	3.2	7.0	5.6	5.6	3.4	6.0	3.8	4.8	3.8
Moisture, wt X	*	40.00	35.00	5.50	4.42	5.74	4.59	4.59	4.00	5.00	3.00
Wet Wood Rate, lb/hr	*	340	518	450	390	370	420	424	306	357	312.5
Dry wood Rate, lb/hr	*	204	337	425	373	349	401	405	294	339	303
Nitrogen Rate, lb/hr	*	128	62	108	134	107	99	0	4	93	113
Steam Rate, lb/hr	*	430	417	468	432	407	447	372	449	439	345
Steam Rate, lb/lb BDW	*	2.108	1.237	1.101	1.158	1.166	1.115	0.919	1.527	1.295	1.139
.Total H2O Rate, lb/lb BDW	*	2.775	1.774	1.160	1.204	1.226	1.162	0.965	1.568	1.348	1.170
.Total H2O, lb/lb MAF wood	*	2.793	1.785	1.174	1.211	1.242	1.167	0.970	1.579	1.355	1.206
.Total H2O, SCF/lb MAF wood	*	58.813	37.585	24.729	25.501	26.157	24.584	20.424	33.245	28.539	25.402
.Feed	*									,	
.Type	*	S Oak	Sawdust	Sawdust	Kard	Hard	Hard	Hard	Hard	Hard	hog
.Size	*	chips	powder	pouder	chips	chips	chips	chips	chips	chips	chips
.Ultimate Analysis '	•		•	·	-						
. Volatile Matter, wt % dry	*	81.92	80.65	83.80	85.20	84.20	85.6 0	85.60	85.26	85.37	70.29
, Ash	*	0.65	0.57	1.21	0.59	1.26	0.45	0.45	0.67	0.52	3.00
. Fixed Carbon	*	17.43	18.78	14.99	14.21	14.54	13.95	13.95	14.07	14.11	12.82
Proximate Analysis	*										
. Moisture, wt %	*	40.00	35.00	5.50	4.42	5.74	4.59	4.59	4.00	5.00	3.00
. Volatile Matter	*	49.15	52.42	79.19	81.43	79.37	81.67	81.67	81.85	81.10	68.18
. Ash	*	0.39	0.37	-1.14	0.56	1.19	0.43	0.43	0.64	0.49	2.91
. Fixed Carbon	* *	10.46	12.21	14.17	13.58	13.71	13.31	13.31	13.51	13.40	12.44
.Ultimate Analysis	*										
. Ash, wt % dry	*	0.65	0.57	1.21	0.59	1.26	0.45	0.45	0.67	0.52	3.00
. Carbon	*	53.92	53.11	50.22	50.50	50.37	51.30	51.30	50.82	50.84	45.36
. Hydrogen	*	6.53	6.50	5.90	5.93	6.00	6.12	6.12	6.08	6.07	5.63
Nitrogen	*	0.21	0.18	0.06	0.18	0.19	0.11	0.11	0.14	0.22	0.18
. Chlorine	*	0.04	0.04	0.02	0.01	0.01	0.03	0.03	0.03	0.03	0.03
, Sulfur	*	0.04	0.03	0.09	0.01	0.02	0.10	0.10	0.20	0.40	0.02
. Oxygen (diff)	*	38.61	39.57	42.50	42.78	42.15	41.89	41.89	42.06	41.92	45.78

1+om/Toc+	93	94	101	102	103	104	105	106	107	109
.ltem/Test									44 07	9.96
.Product Gas	* 0.03	4 71	14.45	12.02	11.78	13.83	14.57	12.99	14.93	
. Rate, SCF/lb MAF	* 8.82	6.31	14.28	11.95	11.63	13.77	14.50	12.90	14.85	9.66
Rate, SCF/ Lb BDW	* 8.76	6.27	14.20	11175	••••					04 5/
Dry N2 Free Comp	*	44.04	24.58	21.90	20.87	24.87	25.48	22.47	26.39	21.54
. H2, mole %	* 14.16	16.81		41.96	42.72	41.05	40.21	43.17	41.09	48.38
. co	* 51.75	50.92	40.75	13.99	14.02	13.70	13.41	12.54	12.55	9.07
. co2	* 12.02	10.53	13.21		16.86	15.61	16.45	16.65	15.65	15.19
. CH4	* 16.26	15.61	16.75	16.74	0.35	0.57	0.40	0.34	0.49	0.27
. C2H2	* 0.00	0.25	0.37	0.29		4.09	3.84	4.47	3.69	4.96
. C2H4	* 4.74	4.96	4.06	4.60	4.71	0.11	0.21	0.36	0.14	0.59
	* 1.07	0.92	0.28	0.52	0.47					
. с2н6	*						100.00	100.00	100.00	100.00
•	* 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	,,,,,,,,	*
•	+ 100,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					24 7/2	22 404	21.280	22.053
•	* 24.331	23.474	21.730	22.560	22.816	21.862	21.562	22.186		179,033.91
. MW, lb/lbmole	* 178,535.45	180,020.76	172,478.48	175,057.09		168,996.57	170,142.73	175,303.26		8,118.18
. HHV, Btu/lb mole	* 7,337.81	7,669.10	7,937.28	7,759.78	7,707.15	7,730.09	7,890.86	7,901.58	7,913.10	471.89
. HHV, Btu/lb	* (,33/.61	474.49	454.61	461.41	463.48	445.43	448.45	462.05	443.84	4/1.07
HHV, Btu/SCF @ 60 deg F	* 470.57	4/4.47	7,71.01	401141						40 4070
	*	40 7700/	9.6245	10.0305	10.1686	9.5969	9.4852	9.9332	9.3603	10.1230
. C, lb/lbmole	* 11.0082	10.7284		0.4446	0.4457	0.4390	0.4399	0.4477	0.4399	0.4590
C, lb/lb gas	* 0.4524	0.4570	0.4429	0.0264	0.0268	0.0253	0.0250	0.0262	0.0247	0.0267
c, lb/scf	* 0.0290	0.0283	0.0254		0.3157	0.3498	0.3643	0.3401	0.3683	0.2657
C, lb/lb MAF wood	* 0.2559	0.1784	0.3666	0.3178	61.8916	67.8860	70.6859	66.4734	72.0746	56.8290
C Conv to Gas, X	* 47.1527	33.4046	72.1085	62.5560	01.0710	07.0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
. C CONT to Gas,	*			4 ===4	4 7250	1.3137	1.3524	1.3330	1.3300	1.2877
Н. lb/lb mole	* 1.1968	1.2288	1.3589	1.3391	1.3258	0.0601	0.0627	0.0601	0.0625	0.0584
H, tb/tb mote	* 0.0492	0.0523	0.0625	0.0594	0.0581		0.0036	0.0035	0.0035	0.0034
. H, tD/tD gas	* 0.0032	0.0032	0.0036	0.0035	0.0035	0.0035	0.0519	0.0456	0.0523	0.0338
H, Lb/SCF	* 0.0278	0.0204	0.0518	0.0424	0.0412	0.0479		74.5649	85.7767	58.2422
H, lb/lb MAF wood	* 42.3292	31.2628	86.6569	71.1204	67.7431	77.8950	84.4807	[4.3047	03.1101	20121-
H Conv to Gas, Ht %	*	2								
	*					, = ==		0.0454	0.0130	0.0160
. Tar Estimate	* 0.0202	0.0194	0.0135	0.0158	0.0159	0.0130	0.0135	0.0151	0.0130	. 0.0100
Yield, lb/lb maf feed	- 0.0202	0.0174	••••							
Eq Tar=0.04600002*Temp										0.007
Сопр		0.00/0/	0.003385	0.00394	0.003965	0.003245	0.003365	0.00378		0.004
C3H6, LB/lb maf wood	* 0.00505	0.00486		0.00394	0.003965	0.003245	0.003365	0.00378		0.004
C6H6	* 0.00505	0.00486		0.00394	0.003965	0.003245		0.00378	0.00325	
C10H8	* 0.00505	0.00486		0.00394	0.003965	0.003245		0.00378	0.00325	0.004
C14H10	* 0.00505	0.00486	0.003385	0.00374	0.003703	0,000	••••			
, 0111110	*				0.0415	0.0094	0.0097	0.0109	0.0094	
. Lb C/lb maf wood	* 0.0146					0.0036				
the Hylb maf wood	* 0.0056									
tb f/tb mar wood	0.0145		0.0097			0.0093				
. IP HAIP GLA MOOD	* 0.0056			0.0044	0.0044	0.0036	0.0037			
. ID HAID OILA MOOD										

tem/Test	93	94	101	102	103	104	105	106	107	109
Basis: 1 lb dry wood										
Char estimate, Let C=86, H=4, C) =									
lb Ash	* 0.0065	0.0057	0.0121	0.0059	0.0126	0.0045	0.0045	0.0067	0.0052	0.0300
lb C	*									
In	* 0.5392	0.5311	0.5022	0.5050	0.5037	0.5130	0.5130	0.5082	0.5084	0.4536
Out in Gas	* 0.2542	0.1774	0.3621	0.3159	0.3117	0.3483	0.3626	0.3378	0.3664	0.2578
Out in Tar	* 0.0145	0.0140	0.0097	0.0113	0.0113	0.0093	0.0097	0.0108	0.0093	0.0112
Out in Char	* 0.2705	0.3397	0.1304	0.1778	0.1806	0.1554	0.1407	0.1595	0.1326	0.1846
	*									
Η in char	* 0.0193	0.0243	0.0093	0.0127	0.0129	0.0111	0.0101	0.0114	0.0095	0.0132
H in gas	* 0.0276	0.0203	0.0511	0.0422	0.0406	0.0477	0.0517	0.0453	0.0521	0.0328
H in tar	* 0.0056	0.0054	0.0037	0.0044	0.0044	0.0036	0.0037	0.0042	0.0036	0.0043
H In	* 0.3758	0.2636	0.1888	0.1940	0.1972	0.1912	0.1692	0.2363	0.2115	0.1872
H in Steam	* 0.3232	0.2136	0.1246	0.1348	0.1393	0.1289	Ó.1037	0.1753	0.1464	0.1369
lb H2O	* 2.8885	1.9089	1.1139	1.2044	1.2451	1.1517	0.9272	1.5671	1.3084	1.2237
	*									
Lb in	*									
Dry Wood	* 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Water	* 2.7745	1.7745	1.1600	1.2038	1.2264	1.1621	0.9654	1.5680	1.3481	1.1700
	*									
Lb Out	*									
Gas	* 0.5619	0.3882	0.8176	0.7105	0.6995	0.7933	0.8243	0.7545	0.8331	0.5616
Tar	* , 0.0201	0.0193	0.0134	0.0157	0.0157	0.0129	0.0134	0.0150	0.0129	0.0155
Char	* 0.3247	0.4054	0.1655	0.2151	0.2251	0.1873	0.1700	0.1944	0.1612	0.2472
H2O	* 2.8885	1.9089	1.1139	1.2044	1.2451	1.1517	0.9272	1.5671	1.3084	1.2237
Closure	* 100.55	98.10	97.70	97.36	98.16	99.22	98.45	98.56	98.62	94.38
Water Conversion X	* -4.11	-7.57	3.98	-0.05	-1.53	0.90	3.96	0.06	2.94	-4.59
Water Conver., lb/lb dry wood	* -0.1140	-0.1344	0.0461	-0.0006	-0.0187	0.0104	0.0382	0.0010	0.0396	-0.0537

Item/Test		110	111	112	117	118	119	120	121	122	123
Gasifier Conditions	*					• • • • • • • • • • • • • • • • • • • •					
Temperature, deg F	*	1579	1350	1313	1725	1609	1684	1610	1553	1765	1512
Pressure, psig	*	3.6	6.2	6.2	5.2	6.2	5.2	6.8	14.4	6.0	10.4
Moisture, wt %	*	9.70	5.00	5.00	7.80	7.80	0.82	5.82	5.82	0.00	4.40
Wet Wood Rate, lb/hr	*	407.5	1207	1405	270.3	1239	434.8	1362.3	1988.4	497.9	1897
Dry wood Rate, lb/hr	*	368	1147	1335	249	1142	431	1283	1873	498	1814
Nitrogen Rate, lb/hr	*	101	109	109	96	0	102	0	. 0	. 0	0
Steam Rate, lb/hr	*	331	346	346	370	374	367	378	423	110	34
Steam Rate, lb/lb BDW	*	0.899	0.302	0.259	1.486	0.327	0.852	0.295	0.226	0.221	0.019
Total H2O Rate, lb/lb BDW	*	1.007	0.354	0.312	1.571	0.412	0.860	0.356	0.287	0.221	0.064
Total H2O, lb/lb MAF wood	*	1.008	0.356	0.313	1.577	0.414	0.861	0.357	0.288	0.222	0.065
Total H2O, SCF/lb MAF wood	*	21.231	7.487	6.592	33.202	8.714	18.131	7.512	6.058	4.668	1.364
eed	. *			••••••		••••••					
Type	*	pine	pine	pine	pine	pine	pine	pine	pine	pine	pine
Size	*	chips	chips	chips	chips	chips	chips	chips	chips	chips	chips
roximate Analysis	*	•	•	•	•	•					
Volatile Matter, wt % dry	*	85.04	84.34	84.34	84.79	84.79	85.35	85.35	85.35	84.27	84.27
Ash	*	0.13	0.44	0.44	0.32	0.32	0.07	0.07	0.07	0.44	0.4
Fixed Carbon	*	14.83	15.22	15.22	14.89	14.89	14.58	14.58	14.58	15.29	15.29
Proximate Analysis	*										
Moisture, wt %	*	9.70	5.00	5.00	7.80	7.80	0.82	5.82	5.82	0.00	4.40
Volatile Matter	*	76.79	80.12	80.12	78.18	78.18	84.65	80.38	80.38	84.27	80.56
Ash	*	0.12	0.42	0.42	0.30	0.30	0.07	0.07	0.07	0.44	0.42
Fixed Carbon	*	13.39	14.46	14.46	13.73	13.73	14.46	13.73	13.73	15.29	14.62
Iltimate Analysis	*										
Ash, wt % dry	*	0.13	0.44	0.44	0.32	0.32	0.07	0.07	0.07	0.44	0.44
Carbon	*	51.27	52.44	52.44	52.55	52.55	52.89	52.89	52.89	52.02	52.02
Hydrogen	*	6.19	6.36	6.36	6.42	6.42	6.29	6.29	6.29	6.13	6.13
Nitrogen	*	0.13	0.14	0.14	0.14	0.14	0.18	0.18	0.18	0.23	0.23
Chlorine	*	0.02	0.01	0.01	0.01	0.01	0.03	0.03	0.03	0.01	0.01
Sulfur	*	0.13	0.27	0.27	0.24	0.24	0.02	0.02	0.02	0.01	0.01
Oxygen (diff)	*	42.13	40.34	40.34	40.32	40.32	40.52	40.52	40.52	41.16	41.16

.Item/Test	110	111	112	117	118	119	120	121	122	123
Product Gas	*								45.55	
. Rate, SCF/lb MAF	* 13.03	9.65	9.35	16.14	12.99	14.43	14.53	11.78	15.25	10.95
. Rate, SCF/ 1b BDW	* 13.01	9.61	9.31	16.09	12.95	14.42	14.52	11.77	15.18	10.90
. Dry N2 Free Comp	*									
. H2, mole %	* 22.99	16.18	15.20	27.97	20.96	24.66	20.23	18.46	26.96	17.10
	* 46.43	49.46	50.72	43.29	47.69	46.67	48.71	49.41	46.34	50.63
. co2	* 9.62	12.43	12.30	10.46	9.30	9.03	9.16	9.56	8.50	9.65
. CH4	* 14.99	16.05	15.86	14.12	15.92	14.85	15.78	16.24	14.37	16.48
. C2H2	* 0.41	0.17	0.18	0.50	0.26	0.45	0.23	0.17	0.34	0.14
	* 5.22	4.60	4.20	3.66	5.43	4.18	5.60	5.30	3.03	4.84
. C2H4	* 0.34	1.35	1.54	0.00	0.44	0.16	0.53	0.86	0.46	1.16
. С2Н6	*		*****	••••	••••	••••				*****
•	* 100.00	100.24	100.00	100.00	100.00	100.00	100.24	100.00	100.00	100.00
. MW, lb/lbmole	* 21.781	23.966	24.159	20.715	22.151	21,264	22.405	22.814	20.647	23.160
. HHV, Btu/lb mole	* 178,361.52	179,406.51		166,089.73	182,065.71	172,877.09	183,340.82	183,835.63	167,884.14	183,620.70
. HHV, Btu/lb	* 8.188.98	7,485.85	7,364.16	8,017.76	8,219.31	8,130.04	8,183.09	8,057.84	8,131.32	7,928.27
. HHV, Btu/SCF @ 60 deg F	* 470.11	472.87	468.93	437.77	479.88	455.66	483.24	484.54	442.50	483.98
. HHV, Btu/SCF & BU deg F	*	4/2.0/	400173	:	,					
. C. lb/lbmole	* 9.9669	10.8317	10.8965	9.1513	10.2299	9.6245	10.3740	10.5542	9.2330	10.6947
. C, lb/lb gas	* 0.4576	0.4520	0.4510	0.4418	0.4618	0.4526	0.4630	0.4626	0.4472	0.4618
. C, lb/SCF	* 0.0263	0.0285	0.0287	0.0241	0.0270	0.0254	0.0273	0.0278	0.0243	0.0282
. C, tb/tb MAF wood	* 0.3423	0.2755	0.2685	0.3893	0.3503	0.3661	0.3973	0.3277	0.3711	0.3087
	* 66.6771	52.3055	50.9829	73.8455	66.4383	69.1626	75.0651	61.9149	71.0278	59.0746
. C Conv to Gas, %	*	32.3033	301,02,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	337.1332					
. H, lb/lb mole	* 1,3070	1.2437	1,2119	1.2907	1.3151	1.2831	1.3064	1.2960	1.2796	1.2772
. H, lb/lb gas	* 0.0600	0.0519	0.0502	0.0623	0.0594	0.0603	0.0583	0.0568	0.0620	0.0551
. H, lb/scf	* 0.0034	0.0033	0.0032	0.0034	0.0035	0.0034	0.0034	0.0034	0.0034	0.0034
. H, tb/lb MAF wood	* 0.0449	0.0316	0.0299	0.0549	0.0450	0.0488	0.0500	0.0402	0.0514	0.0369
. H Conv to Gas, wt %	* 72.4239	49.5211	46.7529	85.2531	69.9111	77.5283	79.4883	63.9270	83.5375	59.8692
•	*									
. Tar Estimate	*					A A455	A A454	6 04/0	0 040 7	0.0450
. Yield, lb/lb maf feed	* 0.0144	0.0190	0.0197	0.0115	0.0138	0.0123	0.0138	0.0149	0.0107	0.0158
Eq Tar=0.04600002*Temp	*									
Comp	*									
. C3H6, LB/lb maf wood	* 0.003605	0.00475	0.004935	0.002875	0.003455	0.00308	0.00345	0.003735	0.002675	0.00394
. C6H6	* 0.003605	0.00475	0.004935	0.002875	0.003455	0.00308	0.00345	0.003735	0.002675	0.00394
C10H8	* 0.003605	0.00475	0.004935	0.002875	0.003455	0.00308	0.00345	0.003735	0.002675	0.00394
. C14H10	* 0.003605	0.00475	0.004935	0.002875	0.003455	0.00308	0.00345	0.003735	0.002675	0.00394
	*									
. lb C/lb maf wood	* 0.0104	0.0137	0.0143	0.0083	0.0100	0.0089	0.0100	0.0108	0.0077	0.0114
. lb H/lb maf wood	* 0.0040	0.0053	0.0055	0.0032	0.0038	0.0034	0.0038	0.0042	0.0030	0.0044
	0.0104	0.0137	0.0142	0.0083	0.0099	0.0089	0.0100	0.0108	0.0077	0.0113
. lb C/lb dry wood	* 0.0040	0.0053	0.0055	0.0032	0.0038	0.0034	0.0038	0.0042	0.0030	0.0044
. lb H/lb dry wood	- V.0040	0.0000	0.000	V. UJJE	J. 1355					

.item/Test	110	111	112	117	118	119	120	121	122	123
Basis: 1 lb dry wood Char estimate, Let C=86, H=4, O	= * 0.0013	0.0044	0.0044	0.0032	0.0032	0.0007	0.0007	0.0007	0.0044	0.0044
. LD C . In . Out in Gas . Out in Tar . Out in Char	* 0.5127	0.5244	0.5244	0.5255	0.5255	0.5289	0.5289	0.5289	0.5202	0.5202
	* 0.3419	0.2743	0.2674	0.3881	0.3491	0.3658	0.3970	0.3275	0.3695	0.3073
	* 0.0104	0.0137	0.0142	0.0083	0.0099	0.0089	0.0100	0.0108	0.0077	0.0113
	* 0.1604	0.2365	0.2429	0.1292	0.1664	0.1542	0.1219	0.1907	0.1430	0.2016
Hin char Hin gas Hin tar Hin Hin Steam	* 0.0115	0.0169	0.0173	0.0092	0.0119	0.0110	0.0087	0.0136	0.0102	0.0144
	* 0.0448	0.0315	0.0297	0.0547	0.0449	0.0488	0.0500	0.0402	0.0512	0.0367
	* 0.0040	0.0053	0.0055	0.0032	0.0038	0.0034	0.0038	0.0042	0.0030	0.0044
	* 0.1746	0.1032	0.0985	0.2400	0.1103	0.1592	0.1028	0.0951	0.0860	0.0685
	* 0.1143	0.0496	0.0459	0.1729	0.0497	0.0960	0.0402	0.0371	0.0216	0.0131
	* 1.0211	0.4429	0.4104	1.5452	0.4446	0.8576	0.3596	0.3314	0.1931	0.1167
Lb in Dry Wood Water	* 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	* 1.0068	0.3540	0.3116	1.5715	0.4124	0.8603	0.3564	0.2875	0.2207	0.0645
Lb Out Gas Tar Char H2O Closure	* 0.7471	0.6069	0.5928	0.8784	0.7560	0.8082	0.8574	0.7079	0.8262	0.6655
	* 0.0144	0.0189	0.0197	0.0115	0.0138	0.0123	0.0138	0.0149	0.0107	0.0157
	* 0.1901	0.2826	0.2901	0.1552	0.1990	0.1821	0.1441	0.2250	0.1727	0.2415
	* 1.0211	0.4429	0.4104	1.5452	0.4446	0.8576	0.3596	0.3314	0.1931	0.1167
	* 98.30	99.81	100.10	100.73	100.07	100.00	101.37	99.36	98.52	97.64
Water Conversion % Water Conver., lb/lb dry wood	* -1.42	-25.14	-31.70	1.68	-7.80	0.32	-0.90	-15.30	12.50	-80.92
	* -0.0143	-0.0890	-0.0988	0.0263	-0.0322	0.0027	-0.0032	-0.0440	0.0276	-0.0522

.Item/Test		136	137	138	139	140	141	142	Avg ^	Std
Gasifier Conditions	*						*****	••••••		********
. Temperature, deg F	*	1857	1839	1851	1316	1786	1687	1749		
. Pressure, psig	*	6.3	7.6	6.7	13.1	3.6	5.2	3.8		
. Moisture, wt X	*	5.92	7.71	8.01	13.67	12.30	33.85	10.00	9.2426	7.9281
. Wet Wood Rate, lb/hr	*	391	429	336	2116	300	551	447		
Dry wood Rate, lb/hr	*	368	396	309	1827	263	364	402		
Nitrogen Rate, lb/hr	*	88	80	86	86	87	86	84		
. Steam Rate, lb/hr	*	365	368	355	377	321	335	333		
Steam Rate, Lb/Lb BDW	*	0.992	0.929	1.149	0.206	1.221	0.920	0.828	0.9259	0.4474
. Total H2O Rate, lb/lb BDW	*	1.054	1.013	1.236	0.365	1.361	1.434	0.940	1.0387	0.5054
Total H2O, lb/lb MAF wood	*	1.058	1.017	1.239	0.381	1.418	1.466	0.942	1.0481	0.5096
Total H2O, SCF/lb MAF wood	*	22.283	21.424	26.095	8.025	29.859	30.865	19.848	22.0740	10.7316
Feed	*		**********	*******						•
Туре	*	pine	pine	pine	saudust	bark	hogfuel	pine		
Size	*	chips	chips	chips	Powder	chips	chips	chips		
Proximate Analysis	*	•	•	•		•	•	•		
Volatile Matter, wt % dry	*	84.39	87.08	85.70	80.45	80.23	81.02	85.70	83.44	3.17
Ash	*	0.35	0.46	0.23	4.33	3.99	2.15	0.23	0.89	0.93
Fixed Carbon	*	15.26	12.47	14.07	15.22	15.78	16.83	14.07	15.37	2.22
Proximate Analysis	*									
Moisture, wt %	*	5.92	7.71	8.01	13.67	12.30	33.85	10.00	9.24	7.93
Volatile Matter	*	79.39	80.37	78.84	69.45	70.36	53.59	77.13	75.80	7.83
. Ash	*	0.33	0.42	0.21	3.74	3.50	1.42	0.21	0.79	0.81
. Fixed Carbon	*	14.36	11.51	12.94	13.14	13.84	11.13	12.66	13.88	1.80
Ultimate Analysis	*									
Ash, wt % dry	*	0.35	0.46	0.23	4.33	3.99	2.15	0.23	0.89	0.93
Carbon	*	52.48	51.55	51.58	53.10	50.35	50.73	51.58	50.89	2.36
. Hydrogen	*	5.99	5.98	5.78	6.04	5.83	5.71	5.78	6.04	0.26
Nitrogen	*	0.05	0.11	0.06	0.17	0.11	0.33	0.06	0.17	0.08
Chlorine	*	0.01	0.02	0.02	0.03	0.03	0.03	0.02	0.03	0.01
. Sulfur	*	0.48	0.02	0.01	0.02	0.07	0.05	0.01	0.09	0.16
Oxygen (diff)	*	40.64	41.86	42.32	36.31	39.62	41.00	42.32	41.90	2.48

	136	137	138	139	140	141	142	Avg	Std
Item/Test		•••••					45.07		
Product Gas		21.08	21,43	9.85	19.60	14.84	15.97		
Rate, SCF/lb MAF	* 20.02	20.98	21.38	9.42	18.82	14.52	15.93		
Rate, SCF/ lb BDW	* 19.95	20.90	21.30						
Dry N2 Free Comp	*		77 00	13.03	30.48	32.25	27.86		
H2, mole %	* 35.57	33.31	33.89	54.79	40.41	36.03	45.30		
	* 39.74	41.64	42.42		10.89	14.75	9.19	•	
, CO	* 10.43	9.65	8.95	12.13		12.33	13.83	•	
, co2	* 12.54	12.93	12.80	14.74	13.43	0.48	0.44		
. CH4	* 0.39	0.47	0.35	0.00	1.08		3.38		
. c2H2	* 1.33	2.00	1.59	3.63	3.25	4.16	0.00		
C2H4	* 0.00	0.00	0.00	1.68	0.46	0.00	0.00		
C2H6									
•	*		100.00	100.00	100.00	100.00	100.00		
•	* 100.00	100.00	100.00	100.00					
•	*		40.005	24.836	20.212	20.504	20.576		
MW, lb/lbmole	* 18.925	19.340	19.095	172,383.40	144 BAO A3	158 585.36	165.255.73		
. MW, (D) (Dillote	* 150,310.65	155,850.24		1/2,383.40	8,255.98	7,734.41	8,031.32		
HHV, Btu/lb mole	* 7,942.41	8,058.52	8,057.48	6,940.82	0,233.70	417.99	435.57		
HHV, Btu/lb	* 396.18	410.78	405.52	454.36	439.83	411.77	425151		
HHV, Btu/SCF & 60 deg F	*	••••				0.4040	9.1237		
•	* 7.9454	8.3069	8.1736	11.0839	8.9255	8.6949	0.4434		
c, lb/lbmole	* 0.4198	0.4295	0.4281	0.4463	0.4416	0.4241			
. c, lb/lb gas		0.0219	0.0215	0.0292	0.0235	0.0229	0.0240		
c. lb/scf	* 0.0209	0.0217	0.4617	0.2878	0.4611	0.3401	0.3840		
. C. Lb/Lb MAF wood	* 0.4193	0.4615	89.3010	51.8457	87.9240	65.5988	74.2841		
C Conv to Gas, %	* 79.6095	89.1214	69.3010	31.0451	••••				
. C Colle to and in	*			1.1049	1.3365	1.3246	1.2643		
· u thath male	* 1.2841	1.2829	1.2704		0.0661	0.0646	0.0614		
H, lb/lb mole	* 0.0678	0.0663	0.0665	0.0445	0.0035	0.0035	0.0033		
H, lb/lb gas	* 0.0034		0.0033	0.0029		0.0518	0.0532		
H, Lb/SCF	* 0.0678		0.0718	0.0287	0.0690	88.7851	91.8614		
H, 16/16 MAF Wood	* 112.7208		123.8576	45.4344	113.7019	00.7031	71,0014		
H Conv to Gas, Wt %	+ 112.7200	11010111							
To Patimata	*				0.0107	0.0123	0.0110		
. Tar Estimate	* 0.0089	0.0092	0.0090	0.0197	0.0103	0.0123	5.5.10		
Yield, lb/lb maf feed	*								
Eq Tar=0.04600002*Temp	•			•		a 0070/E	0.002755		
Comp	* 0.002215	0.002305	0.002245	0.00492					
C3H6, LB/lb maf wood			• • • • • • • •		0.00257		0.002755		
C6H6	* 0.002215						0.002755		
C10H8	* 0.002215					0.003065	0.002755		
C14H10	* 0.002215	0.002305	0.002243	0.00772					
. 017010	*			0.04/3	0.0074	0.0089	0.0080		
. It out hood wood	* 0.0064	0.0067							
th C/lb maf wood	* 0.0025	0.0026	0.0025						
th H/th maf wood	0.0064		0.0065	0.0136					
lb C/lb dry wood	* 0.0025				0.0027	0.0033	. 0.0031		
th H/th dry wood	~ 0.002.	, 0.30%							•

ltem/Test		136	137	138	139	140	141	142	Avg	Std
Basis: 1 lb dry wood							•••••••		***	
Char estimate, Let C=86, H=4,	0=									
lb Ash	*	0.0035	0.0046	0.0023	0.0433	0.0399	0.0215	0.0023		
lb C	*									
In	*	0.5248	0.5155	0.5158	0.5310	0.5035	0.5073	0.5158		
Out in Gas	*	0.4178	0.4594	0.4606	0.2753	0.4427	0.3328	0.3832		
Out in Tar	*	0.0064	0.0066	0.0065	0.0136	0.0071	0.0087	0.0079		
Out in Char	*	0.1006	0.0495	0.0487	0.2421	0.0537	0.1659	0.1247		
	*			•						
H in char	*	0.0072	0.0035	0.0035	0.0173	0.0038	0.0118	0.0089		
H in gas	*	0.0675	0.0709	0.0716	0.0274	0.0663	0.0507	0.0531		
H in tar	*	0.0025	0.0026	0.0025	0.0052	0.0027	0.0033	0.0031		
H In	*	0.1779	0.1731	0.1961	0.1012	0.2106	0.2176	0.1630		
H in Steam	*	0.1007	0.0961	0.1186	0.0512	0.1377	0.1517	0.0980		
lb H2O	*	0.9001	0.8586	1.0596	0.4577	1.2310	1.3556	0.8754		
	*									
Lb in	*									
Dry Wood	*	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
Water	*	1.0543	1.0126	1.2362	0.3645	1.3612	1.4341	0.9403		
	*									
Lb Out	*									
Gas	*	0. 99 51	1.0696	1.0761	0.6169	1.0025	0.7848	0.8641		
Tar	*	0.0088	0.0092	0.0090	0.0188	0.0099	0.0120	0.0110		
Char	*	0.1219	0.0628	0.0596	0.3281	0.1030	0.2166	0.1490		
H2O	*	0.9001	0.8586	1.0596	0.4577	1.2310	1.3556	0.8754		
Closure	*	98.62	99.38	98.57	104.18	99.37	97.33	97.90	98.56	1.79
Water Conversion %	*	14.63	15.21	14.29	-25.57	9.56	5.47	6.90		
Water Conver., lb/lb dry wood	*	0.1543	0.1540	0.1766	-0.0932	0.1302	0.0785	0.0649		

APPENDIX 8

BCL LEAST SQUARES FITS

1.	Dry Gas Yield, SCF/MA		
	Regressic Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	on Output:	28.99260129 0.947115477 0.938118681 37 34
	X Coefficient(s) Std Err of Coef.	-0.04332509 0.020685743	0.000020966 6.5312E-06
	t Value	-2.09444215 2.015061631	3.210111277 2.969444219
	t Probability	0.021949226	0.0014916
	F Value	257.7194211 0.111111111 0.006535948 8.838240047	
	F Probability	1.4827E-17	
2.	Gas Yield, lb/lb dry w	юod	
		on Output:	0.155529322 0.059060263 0.872020662 37 34
	X Coefficient(s) Std Err of Coef.	-0.00022057 0.001289922	
	t Value	-0.1709956 0.169701795	0.923630659
	t Probability	0.432622395	
	f Value	115.8339428 0.11111111 0.00653594 7.64188391	8 9
	F Probability	4.3112E-14	,
3.	Tar Yield, lb/lb dry Regressio	wood on Output:	
	Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom		0.045494068 0.000118381 0.9985358 37 35
	X Coefficient(s) Std Err of Coef.	-1.9759E-05 1.2789E-07	
	t Value	-154.495416	_
	t Probability	8.2946848 5.6747E-1	-

TABLE 7 (CONT.)

.	Char Yield, lb/lb dry (Regression	OUTDUT:	
	Constant Std Err of Y Est R Squared	0.755025269 0.046192661 0.654807013	
	No. of Observations Degrees of Freedom	37 34	
	X Coefficient(s) Std Err of Coef.	-0.00030212 -3.1178E-08 0.001008884 3.1854E-07	
	t Value	-0.29946257 -0.0978786 0.29706482 0.097152064	
	t Probability	0.383208421 0.461302946	
	F Value	32.24781398 0.111111111 0.006535948 5.388529103	
	F Probability	3.8988E-08	
5.	H2, mole %		
	_	n Output: 17.9961	
	Constant Std Err of Y Est	1.5945	
	R Scuared	0.9178	
	No. of Observations Degrees of Freedom	37.0000 34.0000	
	X Coefficient(s) Std Err of Coef.	-0.02644794 0.00001893 0.034824711 0.000010995	
	t Value	-0.7594591 1.721579457 0.750697843 1.67285326	
	t Probability	0.226417374 0.047178091	
	F Value	189.8141747 0.111111111	
		0.006535948	
		8.407872216	
	F Probability	2.6612E-16	
6.	CO, mole % Regression Output:		
	-	133.4394	
	Constant Std Err of Y Est	2.4738	
	P Squared	0.3974	
	No. of Observations	37.0000 34.0000	
	Degrees of Freedom		
	X Coefficient(s) Std Err of Coef.	-0.10290149 0.000028792 0.054029627 0.000017059	
	t Value	-1.9045382 1.687769178 1.842043231 1.641333522	
	t Probability	0.032734507 0.05036407	
	F Value	11.21026844 0.111111111 0.006535948	
	F Probability	3.51363458 0.000221109	

```
CO2, mole %
                   Regression Output:
                                                   -9.5251
     Constant
                                                    1.8040
     Std Err of Y Est
                                                    0.4174
     R Squared
                                                   37.0000
     No. of Observations
                                                   34.0000
     Degrees of Freedom
                                0.037888569 -1.4927E-05
     X Coefficient(s)
                                0.039401634 0.000012441
     Std Err of Coef.
                                0.961598939 -1.19987957
     t Value
                                0.948103907 1.178645015
0.171538376 0.119269716
     t Probability
     F Value
                                 12.17966128
                                 0.111111111
                                 0.006535948
                                 3.654061653
                                 0.000129184
     F Probability
     CH4, mole %
                   Regression Output:
                                                  -13.8203
     Constant
     Std Err of Y Est
                                                    0.7822
     R Squared
                                                    0.6933
                                                   37.0000
     No. of Observations
                                                   34,0000
     Degrees of Freedom
     X Coefficient(s)
                                 0.044178788 -1.6167E-05
     Std Err of Coef.
                                 0.0170848
                                              5.3943E-06
                                 2.585853318 -2.99706996
2.449242287 2.796085158
0.007157811 0.002586159
     t Value
     t Probability
                                 38.43244924
      F Value
                                 0.111111111
                                 0.006535948
                                 5.708786026
                                  6.6430E-09
      F Probability
9. C2H2, mole %
                   Regression Output:
                                              -4.31140373
      Constant
                                               0.056156337
      Std Err of Y Est
                                               0.716618516
      R Squared
      No. of Observations
                                                         22
                                                          19
      Degrees of Freedom
                                 0.005449933 -1.5610E-06
0.001564876 4.8968E-07
      X Coefficient(s)
      Std Err of Coef.
                                 3.482660609 -3.18792205
2.992308924 2.794416185
0.001384292 0.002599547
      t Value
      t Probability
                                 24.02371458
      F Value
```

0.11111111 0.011695906 4.291022394

8.9728E-06

F Probability

10. C2H4, mole %

		Out of the same of the	
	Regression Constant	output:	38.2576352
	Std Err of Y Est		.322371315
	R Squared	(.876167713 37
	No. of Observations Degrees of Freedom		34
	pegrees of recom		
	X Coefficient(s)	0.058434712	
	Std Err of Coef.	0.007040842	2.2231E-06
	t Value	8.299392915	-8.93736877
	• • • • • • • • • • • • • • • • • • • •	5.806651565	6.016020731
	t Probability	3.8117E-09	1.1365E-09
	F Value	120.2824517	
		0.111111111	
		0.006535948 7.703145134	
	F Probability	2.8817E-14	
	•		
1.	C2H6, mole %		
	Regression	n Output:	
	Constant		11.11368612
	Std Err of Y Est		0.134430177
	R Squared No. of Observations		0.852017036 37
	Degrees of Freedom		34
			7 44497 04
	X Coefficient(s)	-0.01166677	3.0640E-06 9.2702E-07
	Std Err of Coef.	0.00293606	7.2/UZE-UI
	t Value	-3.97361304	3.305165152
		3.553365071 0.000190275	
	t Probability	0.000190273	0.001181700
	f Value	97.87808856	
		0.111111111	
		0.006535948 7.363029758	
	F Probability	2.6634E-13	
	, ,,,,,,,,		
12.	H2O Conv, %	on Output:	
	Constant	ni odepati.	0.289594752
	Std Err of Y Est		0.032742674
	R Squared		0.841575638 47
	No. of Observations Degrees of Freedom		44
	pegrees or recom		
	X Coefficient(s)	-8.9048E-04	4.3384E-07
	Std Err of Coef.	3.8863E-04	1.8809E-07
	t Value	-1.5128183	2.306574776
			8 2.227133353
	t Probability	0.06876703	7 0.012969253
	F Value	116.8675309	
		0.111111111	
		0.005050505	
	F Probability	8.237266254 8.3280E-16	
	FIGURE		

FEED ANALYSIS AND YIELD CORRELATIONS

Feed				
Proximate Analysi	s			
Volatile Matt		83.44		
Ash		0.89		
Fixed Carbon		15.37		
Proximate Analysi	•			
		9.24		
Moisture, wt		75.80		
Volatile Matt	er-			
Ash		0.79		
Fixed Carbon		13.88		
Ultimate Analysis		Dry	MAF	
Ash, wt % dry	•	0.89		
Carbon		50.89	51.35	
Hydrogen		6.04	6.10	
Nitrogen		0.17	0.17	
Chlorine		0.03	0.03	
Sulfur		0.09	0.09	
Oxygen (diff)	•	41.90	42.28	
HHV, Btu/lb	'	******		
IGT		8,726		
Boie	2	8,539		
		8,608		
New		3,500		
Total Water, lb/l	b dry wood	0.500		
Feed Moisture, %		9.243		
Feed Moisture, it	VID dry wood	0.102		
		0.102		
Steam, lb/lb dry		1.500		
Total feed, lb/lb	gry wood			
Plant Size, dTPD		2000		
Dry wood rate		166,666.667		
Moisture, lb/	/hr	16,972.993		
Steam, lb/hr		66,360.340		
Total, lb/hr	_	250,000.000		
Variable	Units	A	В	С
H2O Conversion	lb/lb Dry wood		-8.9048E-04	
Dry Gas	SCF/Ib MAF wood		-4.3325E-02	
Gas	lb/lb dry wood		-2.2057E-04	3.7617E-07
Tar	lb/lb dry wood	4.5494E-02	-1.9759E-05	
Char	lb/ln dry wood	7.5503E-01	-3.0212E-04	-3.1178E-08
H2	mole %	1.7996E+01	-2.6448E-02	1.8930E-05
CO	mole %	1.3346E+02	-1.0290E-01	2.8792E-05
CO2	mole %	-9.5251E+00	3.7889E-02	-1.4927E-05
CH4	mole %	-1.3820E+01		-1.6167E-05
C2H2	mole %	-4.3114E+00		-1.5610E-06
C2H4	mole %	-3.8258E+01		-1.9868E-05
C2H6	mole %		-1.1667E-02	
CENO	HILL A	1.11146701	1.10016-02	J. 0070L 00

 $X = A + BT + CT^2$

APPENDIX 10

ASPEN INPUT FILE: BCL RECYCLE CASE

	1300	1325	1350	1375	1400
	/ TTOOC 07	4.7025E-03	5.0966E-03		5.9853E-03
H2, lb/lb total feed	4.3388E-03		1.9830E-01	2.0447E-01	2.1092E-01
CO	1.8679E-01	1.9242E-01	9.5561E-02	9.9345E-02	1.0313E-01
CO2	8.8040E-02	9.1789E-02		4.1285E-02	4.3078E-02
CH4	3.6046E-02	3.7766E-02	3.9513E-02	9.4574E-04	1.1074E-03
C2H2	4.8608E-04	6.3477E-04	7.8808E-04	1.9976E-02	2.1246E-02
C2H4	1.5982E-02	1.7335E-02	1.8669E-02		3.8805E-03
C2H6	4.6650E-03	4.4820E-03	4.2899E-03	4.0892E-03	2.9719E-03
C3H6	3.3012E-03	3.2189E-03	3.1366E-03	3.0542E-03	2.9719E-03
C6H6	3.3012E-03	3.2189E-03	3.1366E-03	3.0542E-03	2.9719E-03
C10H8	3.3012E-03	3.2189E-03	3.1366E-03	3.0542E-03	
C14H10	3.3012E-03	3.2189E-03	3.1366E-03	3.0542E-03	2.9719E-03
- - · ·	4.4407E-01	4.3801E-01	4.3167E-01	4.2505E-01	4.1813E-01
H2O	5.9191E-03	5.9191E-03	5.9191E-03	5.9191E-03	5.9191E-03
Ash	2.0046E-01	1.9406E-01	1.8764E-01	1.8119E-01	1.7471E-01
Char, MAF	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00
Total	1,00002.00	***************************************			•
4 41 6	2.1524E-03	2.3328E-03	2.5283E-03	2.7400E-03	2.9692E-03
H2, moles/lb feed	6.6684E-03	6.8695E-03	7.0796E-03	7.2996E-03	7.5302E-03
CO_	2.0005E-03	2.0856E-03	2.1713E-03	2.2573E-03	2.3433E-03
CO2		2.3541E-03	2.4630E-03	2.5734E-03	2.6852E-03
CH4	2.2469E-03	2.4378E-05	3.0266E-05	3.6321E-05	4.2532E-05
C2H2	1.8668E-05	6.1790E-04	6.6547E-04	7.1207E-04	7.5734E-04
C2H4	5.6969E-04		1.4269E-04	1.3602E-04	1.2908E-04
C2H6	1.5517E-04	1.4908E-04	8.0307E-05	7.8199E-05	7.6091E-05
C3H6	8.4523E-05	8.2415E-05	4.0153E-05	3.9099E-05	3.8046E-05
C6H6	4.2261E-05	4.1207E-05			2.7992E-05
C10H8	3.1094E-05	3.0319E-05	2.9543E-05		1.6674E-05
C14H10	1.8522E-05	1.8060E-05	1.7598E-05		2.3210E-02
H20	2.4650E-02	2.4314E-02			2.36:02 02
	******			7 05435 03	3.9826E-02
	3.8638E-02	3.8919E-02	3.9210E-02	3.9512E-02	3.90200-02
#2 ×	5.57	5.99	6.45	6.93	7.46
H2, mole %	17.26		18.06		18.91
60	5.18			5.71	5 .8 8
CO2	5.82				6.74
CH4	0.05			0.09	0.11
C2H2	1.47	7723		1.80	1.90
C2H4	0.40			0.34	0.32
C2H6	0.22				0.19
C3H6					
C6H6	0.11				
C10H8	0.08				
C14H10	0.05			•	
H20	63.80		r 01.1	, 27.71	
	400 (no 100.		0 100.00
	100.0	00 100.	100.		

Recycle Gas, Assume Có+remove	ed, Sat with I	H2O at 20 ps	ia, 100 deg F		
	1300	1325	1350	1375	1400
MF	0.36	0.37	0.39	0.40	0.42
Dry Gas			• • • • • • • • • • • • • • • • • • • •	01.10	0.42
H2, mole %	15.49	16.07	16.68	17.31	17.96
co	47.99	47.32	46.70	46.10	45.55
CO2	14.40	14.37	14.32	14.26	14.17
CH4	16.17	16.22	16.25	16.25	16.24
C2H2	0.13	0.17	0.20	0.23	0.26
C2H4	4.10	4.26	4.39	4.50	4.58
C2H6	1.12	1.03	0.94	0.86	0.78
C3H6	0.61	0.57	0.53	0.49	0.46
	V.U.	0.57	0.33	0.47	0.40
Total	100.00	100.00	100.00	100.00	100.00
p* H2O at 100 deg F =	0.9487				
f H20	0.047435				
Sat Gas Analysis					
H2, mole %	14.75	15.31	15.89	16.48	17.11
co	45.71	45.08	44.48	43.92	43.39
CO2	13.71	13.69	13.64	13.58	13.50
CH4	15.40	15.45	15.47	15.48	15.47
C2H2	0.13	0.16	0.19	0.22	0.25
C2H4	3.91	4.05	4.18	4.28	4.36
C2H6	1.06	0.98	0.90	0.82	0.74
C3H6	0.58	0.54	0.50	0.47	
H20	4.74	4.74	4.74	4.74	0.44
		7./7	4./4	4.74	4.74
Total	100.00	100.00	100.00	100.00	100.00

	1425	1450	1475	1500	1525
		7.0252E-03	7.6089E-03	8.2394E-03	8.9202E-03
H2, lb/lb total feed	6.4850E-03	2.2483E-01	2.3233E-01	2.4025E-01	2.4860E-01
CO	2.1770E-01	1.1065E-01	1.1436E-01	1.1802E-01	1.2160E-01
CO2	1.0690E-01	4.6714E-02	4.8549E-02	5.0388E-02	5.2227E-02
CH4	4.4890E-02	1.4415E-03	1.6130E-03	1.7868E-03	1.9624E-03
C2H2	1.2728E-03	2.3629E-02	2.4717E-02	2.5718E-02	2.6615E-02
C2H4	2.2468E-02	2.3029E-U2	3.2140E-03	2.9813E-03	2.7452E-03
C2H6		3.4421E-03	2.7249E-03	2.6426E-03	2.5603E-03
СЗН6	2.8896E-03	2.8072E-03	2.7249E-03	2.6426E-03	2.5603E-03
C6H6	2.8896E-03	2.8072E-03	2.7249E-03	2.6426E-03	2.5603E-03
C10H8	2.8896E-03	2.8072E-03	2.7249E-03	2.6426E-03	2.5603E-03
C14H10	2.8896E-03	2.8072E-03	3.9566E-01	3.8760E-01	3.7924E-01
H20	4.1093E-01	4.0344E-01		5.9191E-03	5.9191E-03
Ash	5.9191E-03	5.9191E-03	5.9191E-03	1.4854E-01	1.4193E-01
Char, MAF	1.6821E-01	1.6168E-01	1.5512E-01	1.40346-01	1141732 01
Total	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00
		- 40545 07	3.7746E-03	4.0874E-03	4.4251E-03
H2, moles/lb feed	3.2171E-03	3.4851E-03		8.5769E-03	8.8751E-03
co c	7.7722E-03	8.0266E-03	8.2945E-03	2.6816E-03	2.7629E-03
CO2	2.4291E-03	2.5143E-03	2.5985E-03	3.1409E-03	3.2555E-03
CH4	2.7981E-03	2.9119E-03	3.0262E-03	6.8622E-05	7.5365E-05
C2H2	4.8883E-05	5.5360E-05	6.1946E-05	9.1672E-04	9.4871E-04
C2H4	8.0088E-04	8.4228E-04	8.8106E-04		9.1312E-05
C2H6	1.2189E-04	1.1449E-04	1.0691E-04	9.9167E-05	6.5551E-05
C3H6	7.3983E-05	7.1875E-05	6.9767E-05	6.7659E-05	3.2776E-05
CéHé	3.6992E-05	3.5938E-05	3.4884E-05	3.3830E-05	2.4115E-05
C10H8	2.7217E-05	2.6441E-05	2.5666E-05	2.4891E-05	1.4364E-05
C14H10	1.6212E-05	1.5750E-05	1.5288E-05	1.4826E-05	2.1051E-02
H2O	2.2810E-02	2.2394E-02	2.1963E-02	2.1515E-02	2.10516-02
1124					4.1622E-02
	4.0153E-02	4.0494E-02		4.1227E-02	
H2, mole %	8.01	8.61	9.24	9.91	10.63
	19.36	19.82	20.30	20.80	21.32
CO	6.05	6.21	6.36	6.50	6.64
CO2	6.97			7.62	7.82
CH4	0.12	0.14		0.17	0.18
C2H2	1.99	2.08	2.16		2.28
C2H4	0.30				0.22
C2H6	0.18			0.16	
C3H6	0.09			0.08	
C6H6	0.07			0.06	
C10H8	0.04				
C14H10	56.81				50.58
H20	20.01				
	100.00	100.00	100.00	100.00	100.00

Recycle Gas					
	1425	1450	1475	1500	1525
MF	0.43	0.45	0.46	0.48	0.49
Dry Gas					••••
H2, mole %	18.64	19.34	20.06	20.81	21.59
CO	45.02	44.54	44.09	43.67	43.29
CO2	14.07	13.95	13.81	13.65	13.48
CH4	16.21	16.16	16.09	15.99	15.88
C2H2	0.28	0.31	0.33	0.35	0.37
C2H4	4.64	4.67	4.68	4.67	4.63
C2H6	0.71	0.64	0.57	0.50	0.45
C3H6	0.43	0.40	0.37	0.34	0.45
Total	100.00	100.00	100.00	100.00	100.00
Sat Gas Analysis					
H2, mole %	17.75	18.42	19.11	19.83	30 5/
CO	42.89	42.43	42.00		20.56
CO2	13.40	13.29		41.60	41.24
CH4	15.44	15.39	13.16	13.01	12.84
C2H2	0.27		15.32	15.23	15.13
C2H4		0.29	0.31	0.33	0.35
C2H6	4.42	4.45	4.46	4.45	4.41
C3H6	0.67	0.61	0.54	0.48	0.42
H20	0.41	0.38	0.35	0.33	0.30
neu	4.74	4.74	4.74	4.74	4.74
Total	100.00	100.00	100.00	100.00	100.00

	1550	1575	1600	1625	1650
			1.1303E-02	1.2226E-02	1.3220E-02
	9.6550E-03	1.0448E-02	2.7669E-01	2.8721E-01	2.9839E-01
en i	2.5743E-01	2.6678E-01	2./009E-01	1.3479E-01	1.3769E-01
cn2	1.2509E-01	1.2846E-01	1.3171E-01		6.1195E-02
CH4	5.4059E-02	5.5879E-02	5.7680E-02		2.8428E-03
C2U2	2.1391E-03	2.3163E-03	2.4932E-03	2.8812E-02	2.8909E-02
C2U/	2.7392E-02	2.8031E-02	2.8512E-02	1.7935E-03	1.5622E-03
C2116	2.5068E-03	2.2677E-03	2.0294E-03	2.2309E-03	2.1486E-03
CZUL	2.4779E-03	2.3956E-03	2.3133E-03	2.23095-03	2.1486E-03
CLUL	2.4779E-03	2.3956E-03	2.3133E-03	2.2309E-03	2.1486E-03
C10H8	2.4779E-03	2.3956E-03	2.3133E-03	2.2309E-03	2.1486E-03
O TOTAL	2.4779E-03	2.3956E-03	2.3133E-03	2.2309E-03	
C14H10	3.7060E-01	3.6168E-01	3.5246E-01	3.4296E-01	3.3317E-01
H2O	5.9191E-03	5.9191E-03	5.9191E-03	5.9191E-03	5.9191E-03
Ash	1.3530E-01	1.2864E-01	1.2196E-01	1.1524E-01	1.0851E-01
Char, MAF	1133350	• • • • • • • • • • • • • • • • • • • •			
Total	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00
		5.1830E-03	5.6073E-03	6,0649E-03	6.5583E-03
H2, moles/lb feed	4.7897E-03	9.5241E-03	9.8780E-03	1.0254E-02	1.0653E-02
CO	9.1904E-03	9.52412-05	2.9926E-03	3.0627E-03	3.1286E-03
CO2	2.8422E-03	2.9190E-03	3.5954E-03	3.7060E-03	3.8145E-03
CH4	3.3697E-03	3.4831E-03	9.5752E-05	1.0250E-04	1.0918E-04
C2H2	8.2152E-05	8.8958E-05	1.0163E-03	1.0270E-03	1.0305E-03
C2H4	9.7642E-04	9.9919E-04		5.9658E-05	5.1962E-05
C2H6	8.3384E-05	7.5430E-05	6.7502E-05	5.7120E-05	5.5012E-05
C3H6	6.3443E-05	6.1336E-05	5.9228E-05	2.8560E-05	2.7506E-05
C6H6	3.1722E-05	3.0668E-05	2.9614E-05		2.0238E-05
C10H8	2.3340E-05	2.2564E-05	2.1789E-05	2.1013E-05	1.2055E-05
C14H10	1.3903E-05	1.3441E-05	1.2979E-05	1.2517E-05	1.8494E-02
H20	2.0572E-02	2.0076E-02	1.9565E-02	1.9037E-02	1.04745-02
NEO					4.3954E-02
	4.2038E-02	4.2477E-02	4.2941E-02	4.3433E-02	
	11.39	12.20	13.06	13.96	14.92
H2, mole %	21.86				24.24
co	6.76			7.05	7.12
CO2	8.02	7.721			8.68
CH4	0.20				0.25
C2H2	2.32				
C2H4					0.12
C2H6	0.20				
C3H6	0.15			·	
C6H6	0.08				
C10H8	0.00				
C14H10	0.03	0.0			
H2O	48.94			43.0	
	100.0	100.0		100.00	100.00

Pervola and	1550	1575	1600	1625	1650
Recycle gas					
MF	0.51	0.53	0.54	0.56	0.58
Dry Gas					
H2, mole %	22.38	23.21	24.05	24.9 2	25.82
CO	42.95	42.64	42.37	42.14	41.94
CO2	13.28	13.07	12.84	12.59	12.32
CH4	15.75	15.60	15.42	15.23	15.02
C2H2	0.38	0.40	0.41	0.42	0.43
C2H4	4.56	4.47	4.36	4.22	4.06
C2H6	0.39	0.34	0.29	0.25	0.20
C3H6	0.30	0.27	0.25	0.23	0.22
Total	100.00	100.00	100.00	100.00	100.00
Sat Gas Analysis					
H2, mole %	21.32	22.11	22.91	23.74	24.59
CO	40.91	40.62	40.36	40.14	39.95
CO2	12.65	12.45	12.23	11.99	11.73
CH4	15.00	14.86	14.69	14.51	14.30
C2H2	0.37	0.38	0.39	0.40	0.41
C2H4	4.35	4.26	4.15	4.02	3.86
C2H6	0.37	0.32	0.28	0.23	
C3H6	0.28	0.26	0.24		0.19
H2O	4.74	4.74		0.22	0.21
	7.14	4.74	4.74	4.74	4.74
Total	100.00	100.00	100.00	100.00	100.00

	1675	1700	1725	1750	1775
			4 44045 03	1.8041E-02	1.9491E-02
H2, lb/lb total feed	1.45/55		1.6696E-02	3.5096E-01	3.6641E-01
	3.1029E-01		3.3650E-01	1.4683E-01	1.4832E-01
CU .	1.4038E-01		1.4498E-01	6.7624E-02	6.9043E-02
CO2	6.2892E-02		6.6118E-02	3.4956E-03	3.6418E-03
CH4	3.0135E-03		3.3412E-03	2.6700E-02	2.5336E-02
C2H2 C2H4	2.8776E-02	2.8384E-02	2.7704E-02	7.2710E-04	5.5464E-04
	1.3374E-03	1.1215E-03	9.1710E-04	1.8193E-03	1.7370E-03
C2H6	2.0663E-03	1.9839E-03	1.9016E-03	1.8193E-03	1.7370E-03
C3H6	2.0663E-03	1.9839E-03	1.9016E-03	1.8193E-03	1.7370E-03
C6H6	2.0663E-03	1.9839E-03	1.9016E-03	1.8193E-03	1.7370E-03
C10H8	2.0663E-03	1.9839E-03	1.9016E-03	7.81935-03	2.7991E-01
C14H10	3.2309E-01	3.1273E-01	3.0207E-01	2.9113E-01	5.9191E-03
H20	5.9191E-03	5.9191E-03	5.9191E-03	5.9191E-03	7.4431E-02
Ash	1.0174E-01	9.4955E-02	8.8139E-02	8.1298E-02	7.443 IE-0E
Char, MAF	1101712				1.0000E+00
m . •	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00	1.00002*00
Total	100000			a ave== 07	9.6690E-03
L et b. dood	7.0904E-03	7.6641E-03	8.2827E-03	8.9497E-03	1.3081E-02
H2, moles/lb feed	1.1078E-02	1.1530E-02	1.2013E-02	1.2529E-02	3.3701E-03
CO	3.1897E-03	3.2451E-03	3.2943E-03	3.3363E-03	4.3037E-03
CO2	3.9203E-03	4_0228E-03	4.1213E-03	4.2152E-03	1.3987E-04
CH4	1.1573E-04	1.2213E-04	1.2832E-04	1.3425E-04	
C2H2	1.0257E-03	1.0118E-03	9.8751E-04	9.5174E-04	9.0312E-04
C2H4	4.4484E-05	3.7303E-05	3.0505E-05	2.4185E-05	1.8449E-05
C2H6	5.2904E-05	5.0796E-05	4.8688E-05	4.6580E-05	4.4472E-05
C3H6	2.6452E-05	2.5398E-05	2.4344E-05	2.3290E-05	2.2236E-05
C6H6	1.9462E-05	1.8687E-05	1.7911E-05	1.7136E-05	1.6360E-05
C10H8	1.1593E-05		1.0669E-05	1.0207E-05	9.7453E-06
C14H10	1.7934E-02		1.6768E-02	1.6160E-02	1.5537E-02
H20	1.77542 02				
	4.4509E-02	4.5099E-02	4.5727E-02	4.6398E-02	4.7115E-02
	45 67	16.99	18.11	19.29	20.52
H2, mole %	15.93 24.89			27.00	27.76
CO CO	24.09 7.17			7.19	7.15
CO2					
CH4	8.81		•		
C2H2	0.26 2.30				1.92
C2H4					
C2H6	0.10		•		
C3H6	0.13		,		0.05
C6H6	0.0	•			0.03
C10H8	0.0	•	•		
C14H10	0.0		•		32.98
H20	40.2	y 30.4			
	100.0	0 100.0	0 100.0	0 100.0	100.00

Recycle Gas					
•	1675	1700	1725	1750	1775
MF	0.60	0.61	0.63	0.65	0.67
Dry Gas		•			
H2, mole %	26.74	27.68	28.65	29.65	30.67
CO	41.78	41.65	41.56	41.51	41.49
CO2	12.03	11.72	11.40	11.05	10.69
CH4	14.78	14.53	14.26	13.96	13.65
C2H2	0.44	0.44	0.44	0.44	0.44
C2H4	3.87	3.65	3.42	3.15	2.86
C2H6	0.17	0.13	0.11	0.08	0.06
C3H6	0.20	0.18	0.17	0.15	0.14
Total	100.00	100.00	100.00	100.00	100.00
Sat Gas Analysis					
H2, mole %	25.47	26.37	27.29	20.2/	20.24
CO	39.79	39.67	39.59	28.24 39.54	29.21
CO2	11.46	11.17	10.86		39.52
CH4	14.08	13.84		10.53	10.18
C2H2	0.42	0.42	13.58	13.30	13.00
C2H4	3.68		0.42	0.42	0.42
C2H6	0.16	3.48	3.25	3.00	2.73
C3H6		0.13	0.10	0.08	0.06
H2O	0.19	0.17	0.16	0.15	0.13
1120	4.74	4.74	4.74	4.74	4.74
Total	100.00	100.00	100.00	100.00	100_00

	1800	1825	1850
H2, lb/lb total feed	2.1055E-02	2.2742E-02 4.0069E-01	2.4562E-02 4.1973E-01
CO	3.8296E-01	1.5005E-01	1.5018E-01
CO2	1.4941E-01	7.1564E-02	7.2633E-02
CH4	7.0362E-02	3.9029E-03	4_0139E-03
C2H2	3.7782E-03	2.1361E-02	1.8656E-02
C2H4	2.3571E-02	2. 130 IE-02	1.7925E-04
C2H6	4.0320E-04	2.7665E-04 1.5723E-03	1.4900E-03
C3H6	1.6546E-03	1.5/23E-03	1.4900E-03
C6H6	1.6546E-03	1.5723E-03	1.4900E-03
C10H8	1.6546E-03	1.5723E-03	1.4900E-03
C14H10	1.6546E-03	1.5723E-03	2.4450E-01
H20	2.6839E-01	2.5659E-01	
Ash	5.9191E-03	5.9191E-03	5.91918-03
Char, MAF	6.7538E-02	6.0619E-02	5.3674E-02
Total	1.0000E+00	1.0000E+00	1.0000E+00
	4 04/55 03	1.1282E-02	1.2185E-02
H2, moles/lb feed	1.0445E-02	1.4305E-02	
co	1.3672E-02	3.4094E-03	
COS	3.3949E-03	4.4608E-03	
CH4	4.3859E-03	1.4989E-04	1.5415E-04
C2H2	1.4510E-04		
C2H4	8.4022E-04		
C2H6	1.3411E-05		
C3H6	4.2364E-05		
C6H6	2.1182E-05	2.0128E-05	
C10H8	1.5585E-05	1.4809E-05	
C14H10	9.2834E-06	8.8215E-06	
H20	1.4898E-02	1.4243E-02	1.33722-02
			/ 05945-02
	4.7883E-02	4.8704E-02	4.9586E-02
H2, mole %	21.81		
CO	28.55		
CO2	7.09		
CH4	9.16		
C2H2	0.30		
C2H4	1.75		
C2H6	0.0		
C3H6	0.09		
C6H6	0.0		
C10H8	0.0	3 0.0	
C14H10	0.0	2 0.0	
H20	31.1		
NEU			
	100.0	0 100.0	0 100.00

Recycle Gas			
•	1800	1825	1850
MF	0.69	0.71	0.73
Dry Gas			
H2, mole %	31.71	32.78	33.87
CO	41.51	41.56	41.66
CO2	10.31	9.91	9.49
CH4	13.32	12.96	12.59
C2H2	0.44	0.44	0.43
C2H4	2.55	2.21	1.85
C2H6	0.04	0.03	0.02
C3H6	0.13	0.12	0.11
Total	100.00	100.00	100.00
Sat Gas Analysis			
H2, mole %	30.21	31.22	32.27
co	39.54	39.59	39.68
CO2	9.82	9.44	9.04
CH4	12.68	12.35	11.99
C2H2	0.42	0.41	0.41
C2H4	2.43	2.11	1.76
C2H6	0.04	0.03	0.02
C3H6	0.12	0.11	0.10
H20	4.74	4.74	4.74
	****	••••	
Total	100.00	100.00	100.00

APPENDIX 11

```
NEW
TITLE 'INDIRECT GASIFIER - REFORMER - METHANOL SYNTHESIS'
:GASIFIER - BATTELLE COLUMBUS - RYIELD MODEL
;Low steam case
;REFORMER - EQUILIBRIUM MODEL. METHANOL - EQUILIBRIUM MODEL
; VERSION 2 - SAND RECYCLE, STEAM GENERATION
;UPDATED: November 4, 1991
IN-UNITS
           ENG
OUT-UNITS ENG
HISTORY MSG-LEVEL PROPERTIES=4 SIMULATION=4 STREAMS=4 SYSTEM=4
RUN-CONTROL
                MAX-TIME=600
SIM-OPTIONS
                SIZE-RESULTS = 0
STREAM-REPORT
     STREAMS ALL
     FLOW-FRAC MIXED BASES = MOLE MOLE-FRAC
     INTENSIVE-PROPS MIXED PROPS=TEMP PRES MW ENTH DENS BASE =MOLE
     FLOW-FRAC CISOLID BASES = MASS
     INTENSIVE-PROPS CISOLID PROPS=TEMP PRES ENTH DENS BASE=MASS
     FLOW-FRAC NCPSD BASES
                                MASS
     INTENSIVE-PROPS NCPSD PROPS=TEMP PRES ENTH DENS
*****
                 COMPONENTS AND PROPERTIES
                                             **********
              SYSOPO / SYSOP3R LOOP2
PROPERTIES
COMPONENTS
  H2
              H2
  CO
              CO
  C02
              CO2
  H20
              H20
  CH4
              METHANE
  C2H2
              ACETYLENE
  C2H4
              ETHYLENE
  C2H6
              ETHANE
  C3H6-2
              PROPYLENE
  MEOH
              CH40
  02
              02
  N2
              N<sub>2</sub>
  C6H6
              C6H6
                                 Benzene
  C10H8
              C10H8
                                 Naphthalene
  C14H10-1
              C14H10-1
                                 Anthracene
  C
              C
 02SI
              02SI
  CHAR
  WOOD
ALIAS
 H2
              H2
```

```
CO
 CO
               C02
 C02
 H20
               H20
               CH4
 CH4
               C2H2
 C2H2
               C2H4
 C2H4
               C2H6
 C2H6
               C3H6-2
 C3H6-2
               CH40
 MEOH
               02
 02
               N2
 N2
               C6H6
 C6H6
               C10H8
  C10H8
                C14H10-1
  C14H10-1
                C
  C
                02SI
  02SI
  CHAR
  WOOD
                       Proxanal Ultanal Sulfanal Coalmisc Genanal
Attr-Comps CHAR
                       Proxanal Ultanal Sulfanal Coalmisc Genanal
Attr-Comps WOOD
Prop-Sources
   Global ASPENPCD Comps= CH4 H2 H2O CO2 CO O2 C6H6 C2H2 C2H4 &
                                C2H6 C3H6-2 N2 MEOH &
                        Comps= C10H8 C14H10-1 C 02SI
    Global DIPPR
Nc-props wood enthalpy hcjlboie / density dnstygen
Nc-props char enthalpy hcjlboie / density dnstygen
Prop-data
                                           char
                                 wood
    comp-list
                                           1000
                                  440
                            1
       cval dengen 1
 Prop-data
                    BOIEC
    Prop-List
                                                                             BIAS
                                                              0
                                                                      N
                                                      S
                                         Н
                            C
                                                                     0.0
                                                                              0.0
                                                             0.0
                                                     0.0
                                      122.50632
                         154.8761
              Wood
        Pval
                                                                              0.0
                                                                     0.0
                                                             0.0
                                                     0.0
                                      122.50632
                         154.8761
        Pval Char
    Prop-List MW / SPGR / DHSFRM / DGSFRM / VSPOLY / CPSPO1
PVAL C 12.01115 / 2.2 / 0. / 0. / 0.0053 0.0 0.0 0.0 0.0 0.0 3000. /&
1.7154e+4 4.268 0.0 0.0 -2.786e+8 0.0 3000.0
 Prop-Data
     Pval 02SI 60.086 / 2.2 / 0. / 0. / .02726 0. 0. 0. 0. 3000. / & 37713 0. 0. 0. 0. 0. 3000.
                                                ************
   ******
                                FLOWSHEET
  FLOWSHEET DRY
                   IN = WWOOD DRYGAS QNET OUT = WETGAS DWOOD
                                                                             QDRYER
      DRYER
                                                                             OSTORE
                                               OUT = DWOOD2
                   IN = DWOOD
      STORE
```

```
FLOWSHEET GASFER
               IN = STEAMG2 DWOOD2
    FEEDMIX
                                       OUT = FEEDG
               IN = FEEDG
    GASIFIER
                                       OUT = GPROD
                                                                  OGAS
    SOLSEP
               IN = GPROD
                                       OUT = SOLID1 GAS1
    SOLSP2
               IN = GAS1
                                       OUT = SOLID2 GAS1B
    HEAT1
               IN = GAS1B
                           AIR1
                                       OUT = GAS1C
                                                      AIR1A
    HEAT2
                           STEAMG
               IN = GAS1C
                                       OUT = GASID
                                                      STEAMG2
    HEAT3
               IN = GAS1D
                                       OUT = GAS1E AIRT2
                             AIRT
    PUMPA
               IN = CWATER
                                       OUT = CWATER2
                                                                  WPA
    HEAT3A
               IN = GAS1E
                                       OUT = GAS1F
                                                                  QHT3A
    HEAT4
               IN = GAS1F
                                       OUT = GAS1G
                                                                  QHT4
    AQUENCH
               IN = GAS1G
                             CWATER2
                                       OUT = scrub
   AQUENCH
AHTR
AQSEP
AQSEP2
AQSEP3
GASMIX1
RGHTX
RGCOMP
               IN = SCRUB
                                       OUT = SCRUB2
                                                                  0scrub
               IN = SCRUB2
                                       OUT = GAS
                                                     LIQUOR
                                                                  QSEP
              IN = LIOUOR
                                       OUT = WASTE
                                                     TARS
              IN = WASTE
                                       OUT = SGAS
                                                     WASTE2
                                       OUT = SUMGAS
              IN = GAS
                             SGAS
               IN = RCG3
                                                     RCG2
                             RCG1
                                       OUT = RCG4
              IN = RCG
                                       OUT = RCG1
                                                                  WCRCG
    RGHEAT
               IN = RCG2
                                       OUT = RCG3
                                                                  ORCG
              IN = RGWAT
IN = RCG4
IN = RCG5
    RPUMP
                                       OUT = RGWAT2
                                                                  WPRCG
    RQUENCH
                             RGWAT2
                                       OUT = RCG5
    RGHTR
               IN = RCG5
                                       OUT = RCG6
                                                                  ORCG3
    RGSEP
               IN = RCG6
                                       OUT = RCG7
                                                     RCGLIQ
               IN = RCGB
IN = QGAS QRCG
    GASHT
                                       OUT =
                                                                  QGASFER
FLOWSHEET HOTSAND
               IN = SAND1 QGASFER
    HSAND
                                       OUT = SAND2
                                                                  QSAND1
               IN = SAND2
    CSAND
                                       OUT = SAND3
                                                                  QSAND2
    CHCOMP
               IN = AIR2
                                       OUT = AIR3
                                                                  WCHAR
    CM
               IN = SOLID1
                             AIR1A
                                       OUT = DECFD
    CDECOMP
               IN = DECFD
                                       OUT = DEC
                                                                  Qdec
    CMIX IN = AIR3 M
COMBUST IN = COMIN
               IN = AIR3 METH qht3a
                                       OUT = COMIN
                                       OUT = COMOUT
                                                                  Qmeth
    CHCOM2
               IN = AIRTAR
                                       OUT = AIRT
                             TARS
                                                                  WAIRT
   MIXTAR
               IN = AIRT2
                                       OUT = TARC
               IN = TARC
   COMTAR
                                       OUT = TARP
                                                                  QTAR
               IN = DEC COMOUT TARP OUT =
IN = QDEC QMETH QTAR OUT =
   SUMGAS
                                       OUT = DRYGAS
   SUMQ1
                                                               QCHAR
FLOWSHEET LOOP1
   Change
           IN = SUMGAS
                                       Out = Gasc
   COMPI
               IN = GASC
                                       OUT = HPGAS WC1 WC1A WC1B WC1C &
                                                    QC1 QC2 QC3
    INLET
               IN = HPGAS STEAM RCO2 OUT = CFEED
   HTR
               IN = HPROD2 CFEED
                                       OUT = HPROD3 FEED1
   REAC1
              IN = FEED1
                                       OUT = FEED2
                                                                  0F
               IN = HPROD
                                   OUT = HPROD2 Refin
   HTR2
                             FEED2
                            OUT = HENOL

OUT = AGAS

OUT = AGAS2 W

OUT = AGAS2A

OUT = QHW1 (
   REFORM
              IN = Refin
                                                     COKE
                                                                 0H3
   HTR3
               IN = HPROD3
                                                                 QH4
   H2OCOND
              IN = AGAS
                                                     WWATER
              IN = AGAS2
   HWCOOL
                                                                 OHW
   QHWSEP
              IN = QHW
                                                     OHW2
              IN = AGAS2A
   CO2COND
                                                     LIQ
```

```
RC<sub>0</sub>2
                                       OUT = PCO2
               IN = LIQ
    CO2SEP
FLOWSHEET LOOP2
                                       Out = Cgas2
               In = Cgas
    Change2
                                                                  OH.
                                        OUT = RGAS
               IN = CGAS2
    HTR4
                                        OUT = GAS4 W1 W1A W1B QC5 QC6
               IN = RGAS
    COMP2
                                                                  OH5
                                        OUT = RECYCLE2
               IN = RECYCLE
    HTR5
                                                                  WLA
                                        OUT = GAS4A
               IN = RECYCLE2
    COMP3
                                       OUT = GAS4B
                              GAS4A
               IN = GAS4
    MIXM
                                                                  03
                                        OUT = GAS5
               IN = GAS4B
    HTR6
                                                                   04
                                                      LIQM
                                        OUT = GASM
               IN = GAS5
    MEOH
                                                                   Q5
                                        OUT = GASM2
               IN = GASM
    COOL
                                                      METHANOL
                                                                   06
                                        OUT = Gasrl
               IN = GASM2
    CONDENSE
                                                      RECYCLE
                                        OUT = PURGE
               IN = GASR1
    MSPLIT
FLOWSHEET COMBUST
                                                                   WAIR1
                                        OUT = COMAIR
                IN = AMBAIR
    AIRCOMP
                                                       COMAIR2
                                        OUT = FLUE3
                              COMAIR
                IN = FLUE2
    HCOM1
                                                       PURGEH
                                        OUT = FLUE4
                              PURGE
                IN = FLUE3
    HCOM2
                                        OUT = COMGAS
                              PURGEH
                IN = COMAIR2
     MCOMB
                                        OUT = FLUEGAS
                IN = COMGAS QH3 QF
     ADCOMB
 FLOWSHEET CHECK
                                                                   WP1
                                         OUT = WATER2
                IN = WATER
     PUMP1
                IN = QC1 QC2 QC3 QC5 QC6 QHT4 QHW1 &
     SUM02
                                         OUT = QSUM
                                         OUT = WATER3
                IN = WATER2 QSUM
     WHTR1
                                          OUT = Psteam
                IN = WATER3 Q4 QFLUE QH4
     WHTR2
                                                                   OFL2
                                         OUT = FLUE2
                IN = FLUEgas
     REFCOOL
                                                                   QFLUE
                                         OUT = FLUE5
                IN = FLUE4
     REFCOOL2
                                           *********
                   STREAM SPECIFICATIONS
 Def-Subs-Attr PSD PSD
    in-units Length = MU
     intervals 10
    size-limits 0/4/5/6.4/8/10.1/12.7/16/20.2/32/50.8
  Def-Stream-Class Mixcinc
     Definition Substreams=Mixed Cisolid Ncpsd
  Def-Streams Mixcinc Dry Gasfer Hotsand/mixcisld Loop1/Conven Loop2
  Def-Streams HEAT QH QH4 QH5 Q3 Q4 Q5 Q6 QDRYER QSTORE QGAS Qdec Qmeth &
      QH3 QSEP Qscrub QF QFL2 QSAND1 QSAND2 Qchar QC1 QC2 QC3 QC5 Qht3a &
      QC6 Qtar Qflue QRCG QRCG3 QGASFER Qht4 Qhw Qhw1 Qhw2 QSUM Qchar
  DEF-STREAMS WORK WI WLA WCI WAIRI WPI Wchar Wairt WPA WCIA WCIB WCIC &
      WIA WIB WCRCG WPRCG
  STREAM STEAM
                 Mixed TEMP =1000 PRES = 300 MOLE-FLOW = 8000
      Substream
                  H20 1.00
      MOLE-FRAC
  Stream SteamG
```

```
Substream Mixed Temp = 1000 Pres = 25 Mass-flow = 66360.340
    Mass-frac H20 1.00
Stream Cwater
    Substream Mixed Temp=50 P=14.7 Mole-flow=10000
    Mole-frac H2O 1.00
Stream water
    Substream Mixed Temp = 50 P=25 Mole-flow= 11750
    Mole-frac H2O 1.00
Stream Ambair
   Substream Mixed Temp=80 Pres=14.7 Mole-flow = 5500
   Mole-frac 02 0.21 / N2 0.79
Stream Airl
   Substream Mixed Temp=80 Pres = 25 Mass-flow=100
   Mass-frac 02 0.2329 / N2 0.7671
Stream Air2
   Substream Mixed Temp = 80 Pres = 14.7 Mole-flow = 200
   Mole-frac 02 0.21 / N2 0.79
Stream Meth
   Substream Mixed Temp = 80 Pres = 14.7 Mole-flow =25
  Mole-frac MEOH 1.0
Stream Airtar
   Substream Mixed Temp = 80 Pres=14.7 Mole-flow = 1250
  Mole-frac 02 0.21/ N2 0.79
Stream RCG
   Substream Mixed Temp=100 Pres=20 Mole-flow = 4900.0
   Mole-frac H2 0.2547 / CO 0.3979 / CO2 0.1146 / CH4 0.1408 / &
            C2H2 0.0042 / C2H4 0.0368 / C2H6 0.0016 / &
            C3H6-2 0.0019 / H20 0.0474
Stream Rowat
  Substream Mixed Temp = 50 P = 14.696 Mole-flow = 1000
  Mole-frac H20 1.0
Stream Wwood Mixed Temp=80 Pres=14.7 Mass-flow= 149693.674
   Mass-flow H20 149693.674
   Substream NCPSD Temp=80 Pres=14.7 Mass-flow=183639.660
   Mass-flow Wood
                    183639.660
                                    / Char le-10
   Subs-attr PSD Frac=0.593 0.001 0.011 0.026 0.033 0.04 0.052 &
                      0.072 0.140 0.032
   Comp-Attr Wood
                   Proxanal (9.24 15.37 83.44 0.89)/
                   Ultanal (0.89 50.89 6.04 0.17 0.03 0.09 41.90)/
                   Sulfanal (0.03 0.03 0.03)/
                   Coalmisc (8539. 0.0 0.0 0.0 0.0)/
                   Genanal (100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)
```

```
Proxanal (0.0 80.0 20.0 0.0)/
   Comp-Attr Char
                  Ultanal (0.0 86.0 4.0 0.0 0.0 0.03 9.97)/
                   Sulfanal (.01 .01 .01)/
                  Coalmisc (14336. 0.0 0.0 0.0 0.0)/
                   Genanal (100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)
Stream Sandl
                    Temp=1975 P=25 Mole-flow=0.01
  Substream Mixed
  Mole-frac N2 1.00
  Substream Cisolid Temp=1975 P=25 Mass-flow=6E+6
  Mass-frac 02SI 1.00
                        **********
***** Blocks
Block Dryer Flash2
   Block Store Heater
   Param Temp=220
Block Feedmix Mixer
   Param Pres=20
Block Gasifier Ryield
   Properties Option=SYSOPO
   Param Temp=1675 Pres=20
                                             Val=1.4293E-02/
                            Comp = H2
   Massyield Ssid = Mixed
                                             Val=3.1029E-01/
                            Comp = CO
             Ssid = Mixed
                                             Val=1.4038E-01/
                            Comp = CO2
             Ssid = Mixed
                                             Val=6.2892E-02/
                            Comp = CH4
             Ssid = Mixed
                                             Val=3.0135E-03/
                             Comp = C2H2
             Ssid = Mixed
                                             Val=2.8776E-02/
                             Comp = C2H4
             Ssid = Mixed
                                             Val=1.3374e-03/
                             Comp = C2H6
             Ssid = Mixed
                                             Val=2.0663E-03/
                             Comp = C3H6-2
             Ssid = Mixed
                                             Va1=2.0663E-03/
                             Comp = C6H6
             Ssid = Mixed
                                             Va1=2.0663E-03/
                             Comp = C10H8
             Ssid = Mixed
                                             Val=2.0663E-03/
                             Comp = C14H10-1
             Ssid = Mixed
                                             Va1=3.2309E-01/
                             Comp = H20
             Ssid = Mixed
                                             Va1=5.9191E-03/
                             Comp = 02SI
             Ssid = Cisolid
                                             Val=1.0174E-01/
                             Comp = Char
              Ssid = Ncpsd
                                             Val=0.0
                             Comp = Wood
              Ssid = Ncpsd
 Block Solsep Sep2
                                                     Frac=1.0/
                                       Comp=Char
                         Stream=Solidl
           Subs=Ncpsd
    Frac
                                       Comp=C14H10-1 Frac=0.995
                        Stream=Gas1
           Subs=Mixed
    Flash-specs Gasl Pres=20
  Block Solsp2 Sep2
                                                    Frac=1.0 /
                                       Comp=02SI
                         Stream=Solid2
           Subs=Cisolid
    Frac
                                       Comp=C14H10-1 Frac=0.995
                         Stream=Gas1b
           Subs=Mixed
    Flash-specs Gaslb Pres=20
  ;
```

```
Block Heatl Heatx
   Param Option=1 Fdir=0 Thot=1100
Block Heat2 Heatx
   Param Option=1 Fdir=0 Thot=1075
 Block Heat3 Heatx
   Param Option=1 Fdir=0 Thot=1025
Block Heat3A Heater
   Param Temp=1010
Block Heat4 Heater
   Param Temp = 600
Block PumpA Pump
   Param Pres=20 Type=1 Eff=0.9
Block AQuench mixer
Block Ahtr Heater
   Param Temp = 100
Block AQsep Flash2
   Param Pres=20 Temp=100
Block Agsep2 Sep2
   Frac Subs=Mixed
                    Subs=Mixed
                   Stream=Waste Comp= H2 CO CO2 CH4 C2H2 C2H4 C2H6 C3H6-2 &
                    H2O Frac= 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Block Aqsep3 Sep2
   Frac Subs=Mixed Stream=Sgas Comp= H2 CO CO2 CH4 C2H2 C2H4 C2H6 C3H6-2 &
                   FRAC = 1.0 1.0 1.0 1.0 1.0 1.0 1.0/
        Subs=Mixed Stream=Waste2 Comp=H2O Frac=1.0
Block Gasmixl Mixer
Block Change Clchng
Block Rghtx Heatx
  Param Opt=1 Fdir=0 Thot=400
Block Rgcomp Compr
  Param Type=1 Pres=25 EP=0.85
Block Rgheat Heater
  Param Temp=1675
Block Roump Pump
  Param Type=1 Pres=20 Eff=0.90
```

```
Block Rquench Mixer
  Param Pres=20
Block Rightr Heater
   Param Temp=300
Block Rgsep Flash2
   Param Pres=345 Temp=200
Block Gasht Mixer
Block Hsand Heater
   Param Temp=1675 Pres=25
Block Csand Heater
   Param Temp=1975 Pres=25
Block Chcomp Compr
   Param Type = 1 Pres = 25 EP = 0.90
 Block CM Mixer
 Block Cdecomp Ryield
    Param Pres = 25 Temp=2075
                                        Val = 0.267717/
    Massyield Ssid = Mixed Comp=CO2
                                        Val = 0.030371/
               Ssid = Mixed Comp=H20
                                        Val = 0.701912
               Ssid = Mixed Comp=N2
 Block Cmix Mixer
 Block Combust Rstoic
    Param Pres = 20 Maxit = 500 T = 2075
    Stoich 1 Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
           1 Mixed MEOH 1.0
  Block Chcom2 Compr
     Param Type=1 Pres=25 EP=0.90
  Block MixTar Mixer
  Block Comtar Rstoic
     Param Temp=2075 Pres=25
                                                 / CO2 6
                                                            / H20 3
                                         -7.5
                                -1 / 02
                 Mixed C6H6
                                                 / CO2 10 / H2O 4
     Stoich 1
                                -1 / 02
                                         -12
                 Mixed C10H8
                                                 / CO2 14 / H2O 5
     Stoich 2
                 Mixed C14H10-1 -1 / 02
                                         -16.5
     Stoich 3
                                 1.0
     Conv 1 Mixed C6H6
     Conv 2 Mixed C10H8
                                 1.0
     Conv 3 Mixed C14H10-1
                                 1.0
  Block Sumgas Mixer
   Block SumQ1 Mixer
```

```
Block Compl Mcomp
   Specs Nstage=4 Pfinal=200
   Param kode=0 Type=1 EP=0.95 DELT=75
Block Inlet MIXER
BLOCK HTR Heatx
   Param Opt=1 Fdir=0 Thot=900
BLOCK REAC1 RSTOIC
     PARAM TEMP = 1000
     STOICH 1
                MIXED C2H2
                                -1 / H2O -1 / CO 1 / CH4 1
                                -1 / H2O -1 / CO 1 / CH4 1 / H2 1
-1 / H2O -1 / CO 1 / CH4 1 / H2 2
            2
                MIXED C2H4
     STOICH
             3
                MIXED C2H6
     STOICH
                                -1 / H2O -1 / CO 1 / CH4 2
            4
                MIXED C3H6-2
     STOICH
                                -1 / H2O -3 / CO 3 / CH4 3
     STOICH 5
               MIXED C6H6
                                -1 / H2O -10 / CO 10 / H2 14
-1 / H2O -14 / CO 14 / H2 19
     STOICH 6
                MIXED C10H8
     STOICH
            7
               MIXED C14H10-1 -1
                                     / H2 2 / CO 1
             8 MIXED MEOH
     STOICH
                                -1
     CONV 1 MIXED C2H2
                                1.00
           2
              MIXED C2H4
     CONV
                                1.00
     CONV
           3
             MIXED C2H6
                                1.00
     CONV
              MIXED C3H6-2
                                1.00
     CONV
             MIXED C6H6
                                1.00
     CONV
           6 MIXED C10H8
                                1.00
           7
     CONV
              MIXED C14H10-1
                                1.00
     CONV 8 MIXED MEOH
                                1.00
Block Htr2 Heatx
   Param Opt=1 Fdir=0 Thot=1050
BLOCK REFORM RGIBBS
     PARAM TEMP = 1600. maxit=500 nat=4
     PROD H2 1 / CO 1 / H2O 1 / CH4 1 / CO2 1 / C 0
                        / H2 -1 / H2O 1 / CO 1
/ C 1 / CO2 1
             1 CO2 -1
      STOI
             2 CO -2
      STOI
             3
               CH4 -1
                          / H2O -1 / CO 1 / H2 3
      STOI
      DELT
                -15.
Block Htr3 Heater
   Param Temp=425
BLOCK H2OCOND Sep2
   Frac Subs=Mixed Stream=Agas2 Comp=H2 CO CO2 CH4 H2O FRAC=1.0 1.0 1.0 1.0 &
        Subs=Mixed Stream=Wwater Comp=H2 CO CO2 CH4 H2O Frac=0.0 0.0 0.0 &
             0.0 0.95
    Flash-Specs Agas2 Temp=425 P=200 Maxit = 300 Tol=0.001/
                 Wwater Temp=425 P=200 Maxit=300 Tol=0.001
Block Hwcool Heater
```

```
Param Temp = 80
Block Qhwsep Fsplit
  Frac Qhwl 0.75 / Qhw2 0.25
BLOCK CO2COND Sep2
  Frac Subs=Mixed Stream=Cgas Comp=H2 CO CH4 H2O CO2 FRAC=1.0 1.0 1.0 1.0 &
            0.05/
       Subs=Mixed Stream=Liq Comp=CO2 Frac=0.95
   Flash-Specs Cgas Temp=425 P=200/
               Liq Temp=425 P=200
Block CO2SEP Fsplit
   Frac PCO2 0.55 / RCO2 0.45
Block Change 2 Clchng
BLOCK HTR4 HEATER
     PARAM TEMP = 425 PRES = 200
BLOCK COMP2 MCOMP
     SPECS NSTAGE=3 PFINAL=750
     PARAM KODE=0 TYPE = 1 EP = 0.95 DELT=50
Block HTR5 Heater
     Param Temp=150
BLOCK COMP3 COMPR
     PARAM TYPE = 1 PRES = 750 EP=0.95
 BLOCK HTR6 HEATER
     PARAM TEMP = 445 PRES =750
 BLOCK MEOH Requil
     PARAM TEMP = 445 PRES =750 NR=3 Mxo1=600 Mxi1=600
     STOI 1 CO -1 0/ H2 -2 0/ MEOH 1 0
      STOI 2 CO2 -1 0/ H2 -1 0/ CO 1 0/ H2O 1 0
      STOI 3 CO -1 0/ H2 -3 0/ CH4 1 0/ H20 1 0
      EXSP 3 0.1E-08
      DELT 1 +0.0001
 Block Cool Heater
      Param Temp=35
 BLOCK CONDENSE FLASH2
      PARAM TEMP = 32 PRES = 740
 BLOCK MSPLIT FSPLIT
      FRAC PURGE 0.3300 / RECYCLE 0.6700
      Param npk=1 kph=1
 BLOCK MIXM MIXER
```

```
PARAM KPH = 1
 Block Aircomp Compr
    Param Type = 1 Pres=20 EP=0.90
 Block Hcoml Heatx
    Param Opt=1 Fdir=0 Thot=950
 Block Hcom2 Heatx
    Param Opt=1 Fdir=0 Thot=850 DPC=20
 Block Mcomb Mixer
    Param Pres=20 Maxit = 500 Tol=0.001 NPK=1 kph=1
Block Adcomb Rstoic
    Param Pres=20 Maxit=500 Test=1800 Tol=0.001
   Stoich 1 Mixed CO -1 / O2 -0.5 / CO2 1
             Mixed CH4 -1 / 02 -2 / CO2 1 / H2O 2 Mixed MEOH -1 / 02 -1.5 / CO2 1 / H2O 2
    Stoich 2
   Stoich 3
             Mixed
   Stoich 4 Mixed H2 -1
                             / 02 -0.5 / H2O 1
   Conv
           1 Mixed CO
                               1.00
           2 Mixed CH4
   Conv
                               1.00
   Conv
           3 Mixed MEOH
                               1.00
   Conv
          4 Mixed H2
                               1.00
Block Refcool Heater
   Param Temp=1700
Block Refcool2 Heater
   Param Temp=250
Block Pumpl Pump
   Param Pres=200 Type=1 Eff=0.9
Block Sumq2 Mixer
Block Whtrl Heater
Block Whtr2 Heater
                       Design Specifications
Design-spec Three
   Define C Strm-attr-var Stream=Qscrub Attribute=Heat Variable=Duty
   Spec C to O
   Tol-spec 50
   Vary Stream-var Stream=Cwater Variable=mole-flow
   Limits 0 1E+06
Design-spec RG
  Define R Strm-attr-var Stream=Qrcg3 Attribute=Heat Variable=Duty
   Spec R to 0
```

```
Tol-spec 100
  Vary Stream-var Stream=Rgwat Variable=Mole-flow
  Limits 0 0.1e+07
,
***********
                       Fortran Blocks
Fortran Set-Air
  Properties Sysop0
                                         Substream=Ncpsd Comp=Char
  Define FA Mass-flow Stream=Solid1
                                         Substream=Mixed Comp=02
  Define FB Mass-flow Stream=Airl Define FC Mass-flow Stream=Airl
                                         Substream=Mixed Comp=N2
        FB = 2.5085984*FA
        FC = 8.2617314*FA
F
   Flash-specs Airl Kode=2 Temp=80 Pres=25
   Execute after solsep
;
```

	Form Approved			
REPORT DOCUMEN			OMB NO. 0704-0188	
Public reporting burden for this collection of ir gathering and maintaining the data needed, a collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 222	nformation is estimated to average 1 hour p and completing and reviewing the collection as for reducing this burden, to Washington I 202-4302, and to the Office of Management	er response, including the time for reviewin, of information. Send comments regarding t leadquarters Services, Directorate for Infori and Budget, Paperwork Reduction Project	g instructions, searching existing data sources, his burden estimate or any other aspect of this mation Operations and Reports, 1215 Jefferson (0704-0188), Washington, DC 20503.	
AGENCY USE ONLY (Leave blank)	2. REPORT DATE January 1992	3. REPORT TYPE AND DATES COVI Technical Report	ERED	
4. TITLE AND SUBTITLE Material and Energy Balance	s for Methanol from Biomass U	Jsing Biomass Gasifiers	5. FUNDING NUMBERS BF15.3436	
6. AUTHOR(S) R.L. Bain			DF 10.3430	
7. PERFORMING ORGANIZATION NAM National Renewable Energy L 1617 Cole Blvd. Golden, CO 80401-3393	` ,		8. PERFORMING ORGANIZATION REPORT NUMBER NREL/TP-510-17098	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STA National Technical Informa U.S. Department of Commo 5285 Port Royal Road Springfield, VA 22161	12b. DISTRIBUTION CODE			
13. ABSTRACT (Maximum 200 words) The objective of the Biomass to Methanol Systems Analysis Project is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. This report summarizes the development of simulation models for methanol production based upon the Institute of Gas Technology (IGT) "Renugas" gasifier and the Battelle Columbus Laboratory (BCL) gasifier. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.				
14. SUBJECT TERMS			15. NUMBER OF PAGES	
Biomass to methanol; simula	ation models; methanol; bioma	ss; biomass gasifiers	16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL	