Assessing Pollutant Emissions from Natural Gas-Derived FT-Diesel

Bob McCormick and Teresa Alleman National Renewable Energy Laboratory

Presented at DOE EPAct Rulemaking Workshop October 16, 2002 Washington, DC

> 303-275-4432 robert_mccormick@nrel.gov

Overview

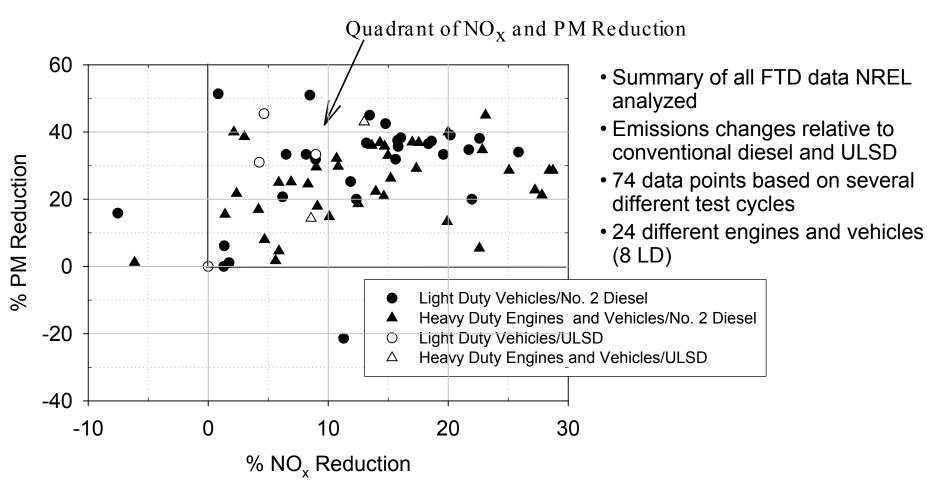
- NREL has reviewed public data on vehicle criteria air pollutant emissions
- Sources include published papers and data submitted by petitioners
- Provide limited data on criteria pollutant emissions, mostly for pre-1998 vehicles and engines
- All existing data is for conventional vehicles and engines rather than AFVs
- In most tests NO_x and PM are reduced significantly relative to conventional No. 2 diesel
- FT fuel meeting certain defined parameter limits will reduce pollutant emissions with a high degree of probability

Example Fuel Properties

Comparison to No. 2 Diesel

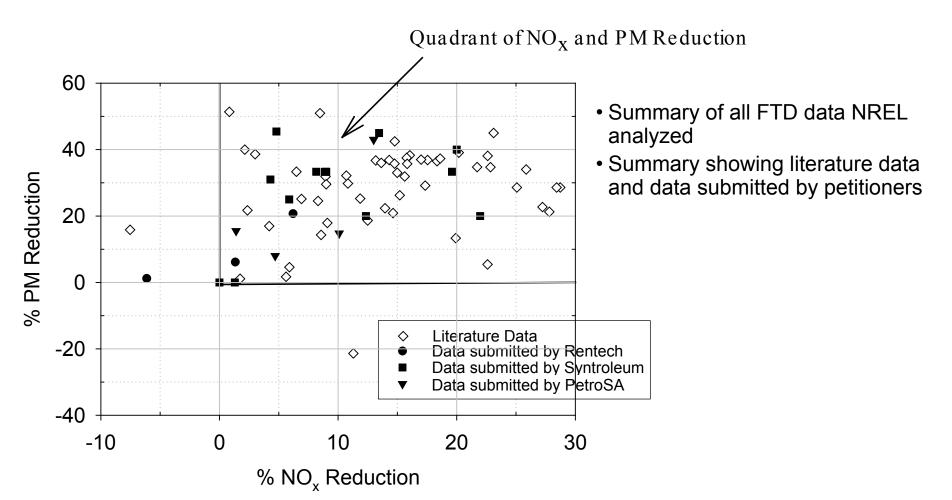
Property	Method	Typical No. 2	Direct F-T	PetroSA COD]
HHV, MJ/kg	D240	43-48	45-48	45-48	← Similar energy content
Density, 15°C	D4052	0.8464	0.7695-0.7905	0.8007-0.8042	0,
Distillation, °C	D86				but lower density
IBP		174	159-210	230	
50%		253	244-300	254	
90%		312	327-334	323	
FBP		344	338-358	361	
Cetane number	D613	44.9	>74	~50	←Higher Cetane Number
Sulfur, ppm	D5453	300	<1	<1	←Higher Cetane Number ←Ultra-low sulfur
Total Aromatics	D5186	~30	0.1-2	~10	←Near zero or low aromatic
Hydrogen, wt%	D5291	13-13.5	~15	~14.4	High hydrogen content
Cloud Point, °C	D2500	-15	0	-15	Lubricity and cold flow
Lubricity		good to poor	poor	poor	

- Direct FT=FT distillate produced directly through FT reaction and subsequent refining
- PetroSA (formerly Mossgas) COD=Blend of FT fuel and oligomerized olefins



Uncertainty in Fuel Properties

- •Tested fuels are not representative of what will actually be produced:
 - •Many fuels produced at pilot scale, fuel properties may change with scale up
 - •Post-processing (distillation, isomerization, cracking,...) will likely be required to meet customer requirements and ASTM D975
- Many studies do not present detailed properties of both FTdiesel and base fuel used for comparison


NO_x and PM Summary-HD/LD

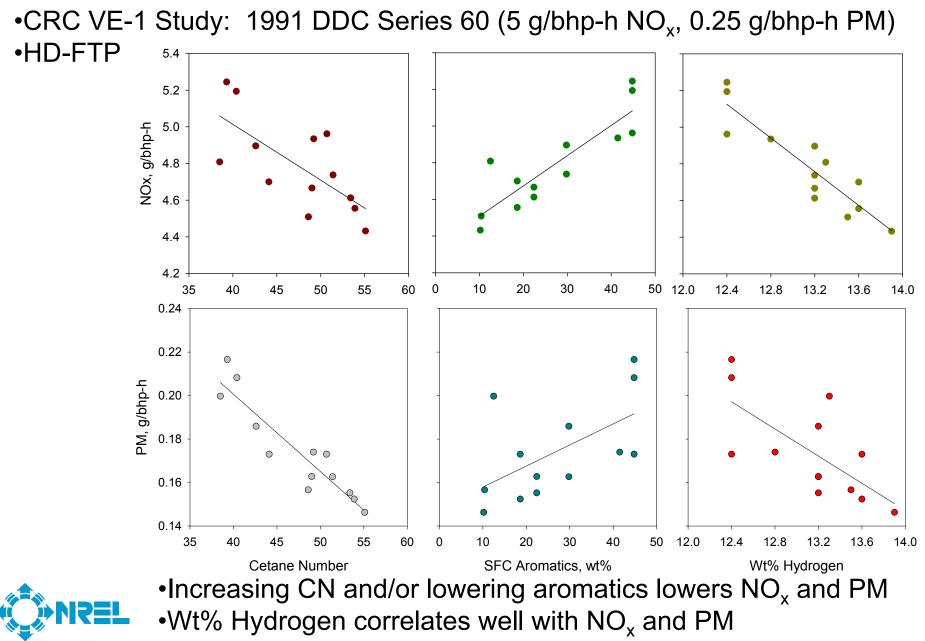
- Few data points relative to ULSD also show reductions
- Higher scatter in LD PM data because of generally lower emission levels (smaller engines)
- LD are over-represented as ~95% of diesel use is HD

NO_x and PM Summary-Petitioner Data

- Most tests show a reduction in emissions
- •On average NO_x reduced by 12%, PM by 27%
- Petitioners' data falls within the range of literature data, has similar level of scatter

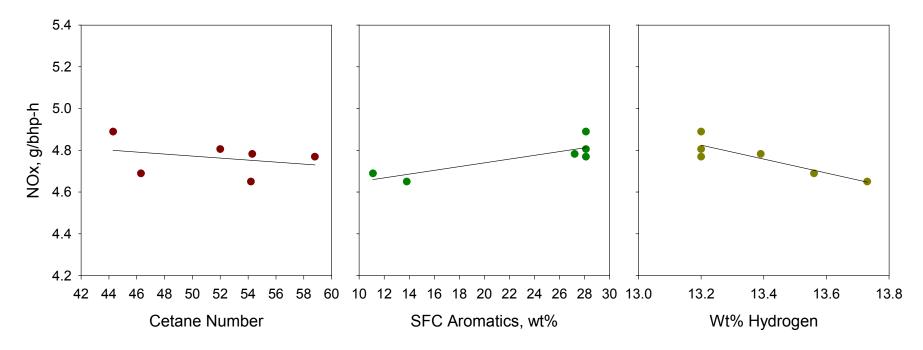
Limitations of FT-Emissions Data

- Fuels tested may not be representative of what will actually be produced
- Experimental error not quantified in all studies, significance difficult to determine
- Data exists for limited range of model years, engine sizes, and engine technology
- Emissions data not available for a representative sample of diesel vehicle fleet
- Data may not be adequate to show substantial environmental benefit across entire diesel vehicle fleet


Fuel Property Effects on Emissions

Well known fuel property impacts on emissions

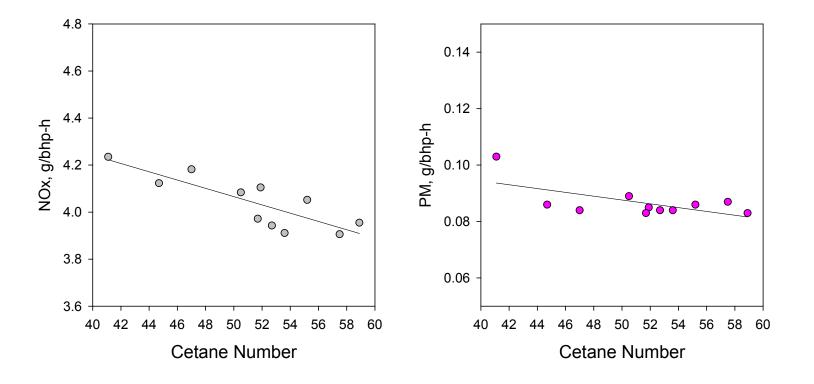
- Low sulfur content
 - Reduces PM
 - Enables exhaust catalyst and trap systems
- Increasing cetane number
 - Can reduce NO_x , 2-5% for an increase of 10 CN in some engines
 - But has no effect on NO_x for other engines
 - Effect on PM is also engine dependent
 - Can assist in cold starting and reduce white smoke
- Reducing aromatic content
 - Can reduce NO_x by 0-5% for a reduction from 30 to 10%
 - Reduction in polyaromatics may account for most of this effect
 - Magnitude of NO_x reduction is engine dependent
 - PM reductions observed in some engines


Fuel Effects in 1991 Engine

Fuel Effects in 1994 Engine

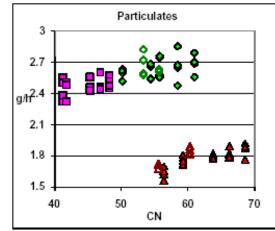
•CRC VE-10 Study: 1994 DDC Series 60 (5 g/bhp-h NO_x, 0.1 g/bhp-h PM) •HD-FTP

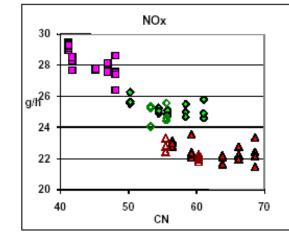
•All fuel effects on NO_x are much less significant


•No fuel effect on PM emissions

Fuel Effects in 1998 Engine

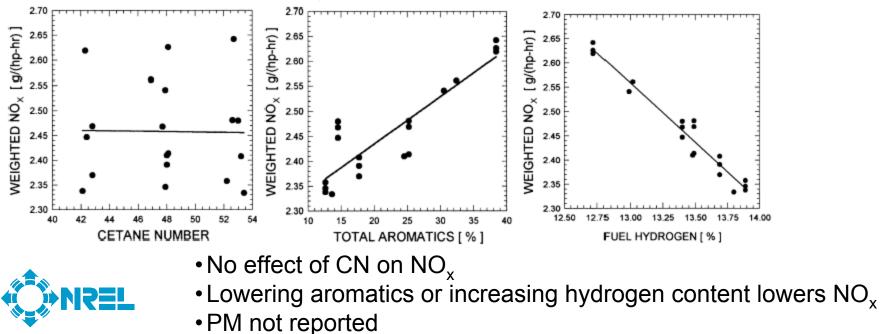
•CRC VE-10 Study: 1998 DDC Series 60 (4 g/bhp-h NO_x, 0.1 g/bhp-h PM)
•HD-FTP, CN varied only


•CN correlates well with NO_x but not PM



Fuel Effects in Engines with EGR (2004)

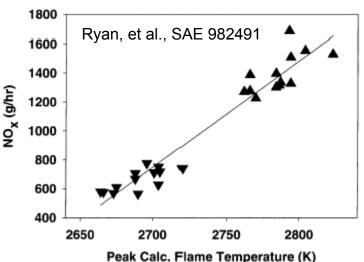
SAE 2001-01-3522, Rover L LD engine, 4-mode SS test:



2.5 g/bhp-h NOx+HC 0.1 g/bhp-h PM

Increasing CN lowers NO_x
May increase PM

SAE 2000-01-1858, Cat 3176 HD Engine, 8-mode SS tests:


Fuel Effects Overview

- •Effect of fuel properties is not the same for engines of different emissions levels and different technology:
 - •1991 calibration: $\triangle 10 \text{CN} \rightarrow 4\% \text{ NO}_x$, $\triangle 15\%$ aro $\rightarrow 4\% \text{ NO}_x$
 - •1994 calibration: $\triangle 10 \text{CN} \rightarrow 1\% \text{ NO}_x$, $\triangle 15\% \text{ aro } \rightarrow 2\% \text{ NO}_x$
 - •1998 calibration: $\triangle 10 \text{CN} \rightarrow 2\% \text{ NO}_x$
 - •Engines with EGR: $\triangle 10CN \rightarrow 0-4\% NO_x$, $\triangle 15\% aro \rightarrow 4\% NO_x$
- •Cetane Number is not consistently associated with emissions reductions, but high CN has advantages for cold starting and white smoke emissions
- •Effect of aromatic and hydrogen content changes with model year but is consistently positive
- Aromatic content, hydrogen content, and density are likely to be highly correlated with one another
- •Wt% hydrogen does not capture differences between normal, iso, and cylco-alkanes

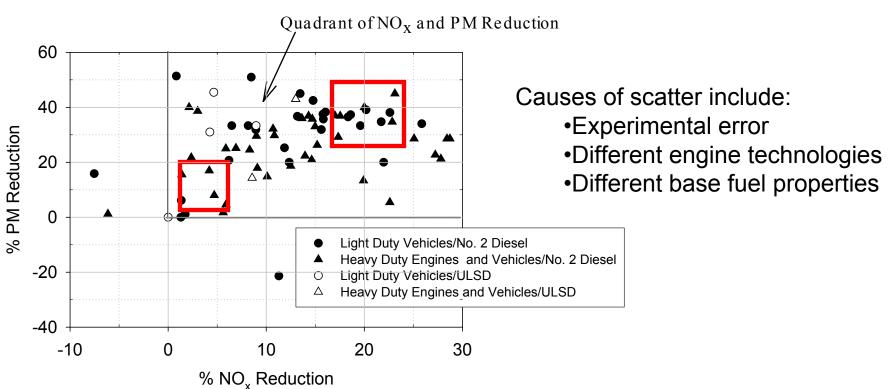
Fuel Effects Conclusion

- Reducing aromatic content is consistently associated with emissions reductions
 - •In both old and new engines
 - •Likely this is related to reduction in adiabatic flame temperature which is higher for aromatics
 - Poly-aromatics may have a larger effect than mono-aromatics

Emissions reductions observed for FT-diesel may be most reliably correlated with the low total and poly-aromatic content
In older engines the high CN may also be important

Additional Data Needs

- Emissions on a much wider range of engines, including post-2002 engines with EGR and prototype engines with advanced catalytic exhaust treatment
 - In two studies not connected to this rulemaking, NREL plans to conduct tests of FT-diesel in three 2000 MY vehicles and one 2002 MY engine with EGR during FY03
- Emissions studies with detailed fuel composition data
 - Analysis for normal, iso, and cyclo-alkanes as well as for total and polyaromatics
- Speciated emission studies
- Data on durability of fuel systems and potential impacts on engine components associated with emissions



Summary

- •Pollutant emissions data available for a limited set of engine models, not fully representative of in-use fleet
- •However, available data show significant PM and NO_x reductions for FT relative to conventional diesel in most tests
- •Additional data on the emissions impact from newer engines as well as emissions durability is desirable
- •It is not clear based on emissions testing data for FT alone that significant emissions reductions will be achieved
- •Emissions reductions may be more directly related to fuel properties of FT-diesel

Summary-II

Where will emissions benefits of future FT-fuels and engine technologies fall?

Specification of minimum fuel properties can provide emission benefits across all technologies.

DOE Seeks Comment on Fuel Parameters for Generic Designation

Examples:

- •Maximum aromatics 1-15%?
 - •Separate specification on polyaromatics?
- •Other hydrocarbon composition limits (n-paraffin?)
- •Cetane number
- •Sulfur <15ppm?
- •Hydrogen content?
- •Conformity to ASTM D975-02
- •Other properties?

