

INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION

Technical Progress Report for the Period July 1 to September 30, 1997

By K. C. Kwon

December 1997

Work Performed Under Contract no DE-FG21-94MC31206-14

For U.S. Department of Energy Federal EnergyTechnology Center Morgantown, West Virginia

By Tuskegee University Tuskegee, Alabama

F O S S I Investigation on Durability and Reactivity of Promising Metal Oxide Sorbents during Sulfidation and Regeneration

> Technical Progress Report for the Period July 1 to September 30, 1997

> > K. C. Kwon

December 1997

Work Performed Under Contract No.: DE-FG21-94MC31206

For U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880 Morgantown, West Virginia 26507-0880

> By Tuskegee University Tuskegee, Alabama 36088

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

	Page
DISCLAIMER	iii
LIST OF TABLES	V
LIST OF FIGURES	vi
MILESTONES	1
EXECUTIVE SUMMARY	1
INTRODUCTION	1
EXPERIMENTAL SETUP/PROCEDURE	2
RESULTS AND DISCUSSION	3
CONCLUSION	12
PUBLICATION	13
PLANS ON FUTURE EXPERIMENTS	13

LIST OF TABLES

Table		Page
1	Experimental conditions for the reaction of hydrogen sulfide with the TU-188 sorbent in the presence of moisture, nitrogen and hydrogen.	3
2	Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 300 scc/min gas flow rate and 530°C.	4
3	Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 300 scc/min gas flow rate and 530°C.	5
4	Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 100 scc/min gas flow rate and 530°C.	6

LIST OF FIGURES

Figure		Page
1	A differential reactor assembly	2
2	Effects of concentrations of H_2S on its absorption into 0.1-g TU-188 sorbent with 10 vol % moisture and 15 vol % H_2 at 300 scc/min gas flow rate and 530°C.	7
3	Effects of moisture concentrations on absorption of 5000-ppm H ₂ S into 0.1-g TU-188 sorbent with 15 vol $\%$ H ₂ and 300 scc/min gas flow rate at 530°C.	8
4	Effects of moisture concentrations on absorption of 5000-ppm H ₂ S on 0.1-g TU-188 sorbent with 300 scc/min gas flow rate and 15 vol $\%$ H ₂ at 530°C.	8
5	Effects of hydrogen concentrations on absorption of 50 vol $\%~H_2S$ into 0.1-g TU-188 sorbent with 10 vol $\%$ moisture and 300 scc/min gas flow rate at 530°C.	9
6	Effects of hydrogen concentrations on absorption of 5000-ppm H ₂ S into 0.1-g TU-188 sorbent with 10 vol $\%$ water and 100 scc/min gas flow rate at 530°C.	9
7	Effects of hydrogen concentrations on absorption of 5000-ppm H ₂ S into 0.1-g TU-188 sorbent with 10 vol $\%$ water and 100 scc/min gas flow rate at 530°C.	10
8	Left-side values of the unreacted core model against absorption durations.	11
9	Effects of hydrogen concentrations on absorption of 5000-ppm H_2S into 0.1-g TU-188 sorbent with 10-volume $\%$ moisture and 300 scc/min gas flow rate at 530°C	11
10	Effects of residence time of gas and hydrogen concentrations on absorption of 5000-ppm H ₂ S into 0.1-g TU-188 sorbent with 10 vol % moisture at 530°C.	12

SCHEDULE AND MILESTONES

EXECUTIVE SUMMARY

The main objectives of this research project during this quarter are to investigate effects of hydrogen, moisture, concentrations of H_2S , and residence time of reaction gas mixtures on equilibrium absorption as well as dynamic absorption of H_2S into the TU-188 sorbent at 530°C, and to evaluate effective diffusivity of H_2S through the sorbent particles, using the newly-fabricated differential reactor.

INTRODUCTION

A differential micro reactor was fabricated with a titanium grade-2 tube. The volume of reactor is 1.64 cm³. The fresh formulated metal oxide sorbent TU-188 in the form of 1-mm cylindrical rod were crushed to obtain 100 - 200 mesh (74 –140 μ m) particles, and were reacted with simulated coal gases containing hydrogen sulfide in the 1.64 cm³ titanium Grade-2 differential micro reactor for 5- 25000 seconds at 530°C. Absorption amounts of hydrogen sulfide into the sorbent were analyzed with an electronic balance. The range for the space (residence) time of the reaction gas mixture in the reactor was 0.12 - 0.36 s (300 - 100 cc/min) under the reaction conditions.

Figure 1. A Differential Reactor Assembly

EXPERIMENTAL SETUP/PROCEDURE

A differential reactor mainly consists of one 10-cm-long $\frac{1}{4}$ -inch titanium grade-2 tubing and two 1/4" external column end fittings. A differential reactor assembly mainly consists of four mass flow meters for gases, one differential reactor, one preheater, one high pressure liquid pump for water, one four-way switch valve, one muffle furnace, three filters for gases, four check valves, and one water collection bottle (see Figure 1). The reactor was loaded with 0.1-g 74-140 μ m TU-188 sorbent particles. The reactor, loaded with the sorbent particles, was placed inside the muffle furnace to be heated at a desired temperature. Nitrogen was introduced into the sorbent-loaded reactor during preheating the reactor. When the temperature of the reactor was raised at the desired temperature, a reaction mixture was introduced into the reactor for a desired reaction duration, by switching nitrogen with the reaction mixture.

RESULTS AND DISCUSSION

Research activities and efforts of this research project were concentrated on absorbing hydrogen sulfide into TU-188 sorbent at various operation conditions to understand effects of moisture, hydrogen, concentration of H₂S, and space velocity of gas on absorption of hydrogen sulfide into the sorbent, using a newly designed differential reactor.

Experiments on absorption of wet hydrogen sulfide into the sorbent were carried out for 5 – 25000 seconds at 530°C (see Table 1) to evaluate effects of moisture concentrations, hydrogen concentrations, space time, H₂S concentrations on dynamic absorption of hydrogen sulfide into the sorbent. A typical simulated coal gas mixture consists of 2500 – 7500 ppm hydrogen sulfide, 0 – 10 vol % moisture, 0- 33 vol % hydrogen, and nitrogen as remainder. The volumetric feed rate of the simulated coal gas mixture to the reactor is 100 –300 cm³ /min at room temperature and 1 atm. The temperature of the reactor is controlled in the furnace oven at 530°C. The pressure of the reactor is maintained at 104 psia. Experimental data of absorption of H₂S into the TU-188 sorbent at various absorption duration's were shown in Tables 2 - 4.

TABLE 1. Experimental conditions for the reaction of hydrogen sulfide with the TU-188 sorbent in the presence of moisture, nitrogen and hydrogen.

Reactor Volume, cm ³ :	8
Temperature, °C:	530
Reaction Time, s:	5 -25000
Space Time, s: under the absorption conditions	0.12 - 0.36
Particle Size, µm	74 - 140
Amount of Sorbent, g	0.1
Gas Flow Rate, cc/min at room temperature	100 - 300
Hydrogen, vol %	0 - 33
Moisture, vol %:	0 - 10
Concentration of H ₂ S, ppm	2500 - 7500
Nitrogen, vol %	10 - 40

A series of experiments on absorption of H₂S into the sorbent were carried out for 5 – 150 seconds at 105 psia and 530°C to find effects of H₂S concentrations on initial reaction of H₂S with the sorbent. The concentrations of moisture and hydrogen are maintained at 10-vol % and 15 vol %, respectively. The concentrations of hydrogen sulfide in the simulated coal gas mixture are 2500 –7500 ppm. Absorption of H₂S decreases with increased concentrations of H₂S for short absorption durations of 5 – 150 seconds (see Figure 2). These observations may indicate that hydrogen sulfide absorbed into the porous matrix of the sorbent retards transfer of H₂S into micro pores of the sorbent with increased concentrations of H₂S.

Table 2. Weight gain of 0.1-g TU-188 sorbent in reaction with H₂S at 300 scc/min gas flow rate and 530° C.

Run # 1		Absorption Duration, s	Weight Gain, g	Run # 2		Absorption Duration, s	Weight Gain,
							g
		0	0			0	0
H ₂ S Concentration, ppmv :	5000	4.7	0.0002	H ₂ S Concentration, ppmv :	7500	5.17	0.0003
H2O Concentration, vol %	10	30.28	0.0002	H2O Concentration, vol %	10	15.57	0.0002
H ₂ Concentration, vol %:	15	50.74	0.0006	H ₂ Concentration, vol %:	15	30.81	0.0003
N2 Concentration, vol %:	74.5	75.46	0.0008	N2 Concentration, vol %:	74.25	51.29	0.0004
		106.06	0.001			75.43	0.0006
		151.3	0.0015			105.75	0.0008
						150.8	0.001

		Absorption	Weight			Adsorption	Weight
Run # 3		Duration, s	Gain, g	Run #4		Duration, s	Gain, g
		0	0			0	0
H ₂ S Concentration, ppmv :	2500	5.14	0.0002	H ₂ S Concentration, ppmv :	2500	4.88	0.0004
H ₂ O Concentration, vol % :	10	15.68	0.0004	H ₂ O Concentration, vol % :	10	14.83	0.0004
H ₂ Concentration, vol %:	15	31.12	0.0006	H ₂ Concentration, vol %:	15	35.07	0.0007
N2 Concentration, vol %:	74.75	76.7	0.0009	N2 Concentration, vol %:	74.75	74.66	0.001
		107.03	0.0008			114.59	0.001
		152.06	0.0011			153.76	0.0013

		Absorption	Weight			Absorption	Weight
Run # 5		Duration, s	Gain, g	Run # 6		Duration, s	Gain, g
		0	0			0	0
H ₂ S Concentration, ppmv :	5000	5.54	1E-04	H ₂ S Concentration, ppmv :	5000	5.11	0.0002
H ₂ O Concentration, vol % :	6.5	14.9	0.0007	H ₂ O Concentration, vol % :	3.5	15.46	1E-04
H ₂ Concentration, vol %:	15	34.83	0.0005	H ₂ Concentration, vol %:	15	35.01	0.0003
N2 Concentration, vol %:	78	74.01	0.0008	N ² Concentration, vol %:	81	74.65	0.0006
		113.4	0.0014			115.11	0.0005
		153.9	0.0016			155.22	0.0007

		Absorption	Weight		Absorption	Weight
Run 22		Duration, s	Gain, g	Run 23	Duration, s	Gain, g
		0	0		0	0
H ₂ S Concentration, ppmv :	5000	61.73	0.000693	H ₂ S Concentration, ppmv : 5000	30.43	0.0008
H2O Concentration, vol % :	10	92.02	0.000690	H ₂ O Concentration, vol % : 10	55.31	0.0008
H ₂ Concentration, vol %:	10	152.12	0.000783	H ₂ Concentration, vol %: 30	115.74	0.0012
N2 Concentration, vol %:	79.5	272.54	0.001270	N ₂ Concentration, vol %: 59.5	236.17	0.0016
		512.39	0.001744		586.27	0.0026
		992.83	0.002691		1187.16	0.0031
		1952.26	0.003187		2397.26	0.0042
		3752.26	0.003790		4197.26	0.0049
		5552.26	0.003693		7797.26	0.0054
		9152.26	0.004300		11457.27	0.0057
		12752.26	0.004007]	15057.27	0.0063
		16352.26	0.003713	1	18657.27	0.0064
		19952.26	0.003719		22257.27	0.0063

Table 3. Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 300 scc/min gas flow rate and 530°C.

Bup 7	Absorption	Weight	Dup #9	Absorption	Weight
	Duration, s	Gain, g 0	Kull # o	0	Gain, g 0
H ₂ S Concentration, ppmv : 5000	5.49	1E-04	H ₂ S Concentration, ppmv : 5000	5.48	0.0004
H ₂ O Concentration, vol % : 0	15.49	1E-04	H ₂ O Concentration, vol % : 10	15.95	0.0007
H ₂ Concentration, vol %: 15	35.96	0.0004	H ₂ Concentration, vol %: 25	35.99	0.0007
N2 Concentration, vol %: 84.5	114.78	0.0005	N ₂ Concentration, vol %: 63.5	76.26	0.0014
	155.27	0.0004		114.04	0.0011
				153.24	0.0013

	Absorption	Weight		Absorption	Weight
Run # 9	Duration, s	Gain, g	Run 10	Duration, s	Gain, g
	0	0		0	0
H ₂ S Concentration, ppmv : 5000	5.11	0.0002	H ₂ S Concentration, ppmv : 5000	5.82	0.0001
H ₂ O Concentration, vol % : 10	15.46	1E-04	H ₂ O Concentration, vol % : 10	16.58	0.0003
H ₂ Concentration, vol %: 5	35.01	0.0003	H ₂ Concentration, vol %: 33	36.61	1E-04
N ₂ Concentration, vol %: 84.5	74.65	0.0006	N ₂ Concentration, vol %: 56.5	76.93	0.0008
	115.11	0.0005		116.34	0.0011
	155.22	0.0007			

Pup 11	Absorption	Weight	Pup 12	Absorption	Weight
	0	0 0		0	0 Oain, g
H ₂ S Concentration, ppmv : 5000	5.71	0.0003	H ₂ S Concentration, ppmv : 5000	20.57	0.0002
H ₂ O Concentration, vol % : 10	16.28	0.0003	H2O Concentration, vol % : 10	41.4	0.0005
H ₂ Concentration, vol %: 15	36.62	0.0003	H ₂ Concentration, vol %: 0	62.23	0.0008
N ₂ Concentration, vol %: 74.5	76.67	0.0016	N ₂ Concentration, vol %: 89.5	83.04	0.0009
	117.14	0.0014		104.16	0.0011
	157.01	0.0013		124.73	0.001
				145.86	0.0012

	Absorption	Weight			Absorption	Weight
Run 13	Duration, s	Gain, g	Run 14		Duration, s	Gain, g
	(0 0			0	0
H ₂ S Concentration, ppmv : 500	0 20.3	5 1E-04	H ₂ S Concentration, ppmv : 50	000	20.35	1E-04
H ₂ O Concentration, vol % : 10	42.8	6 0.0005	H ₂ O Concentration, vol % : 10	0	42.86	0.0005
H ₂ Concentration, vol %: 5	63.5	3 0.0003	H2 Concentration, vol %: 3	3	63.53	0.0003
N ₂ Concentration, vol %: 84.	5 84.3	4 0.0009	N ₂ Concentration, vol %: 50	6.5	84.34	0.0009
	104.4	6 0.0011			104.46	0.0011
	124.43	3 0.0012			124.43	0.0012
	144.9	7 0.0015			144.97	0.0015

Table 4. Weight gain of 0.1-g TU-188 sorbent in reaction with H_2S at 100 scc/min gas flow rate and 530°C.

Run 15	Absorption Duration, s	Weight Gain, g	Run 16	Absorption Duration, s	Weight Gain, g
	0	0		0	0
H ₂ S Concentration, ppmv : 5000	19.74	0.0005	H ₂ S Concentration, ppmv : 5000	20.22	1E-04
H ₂ O Concentration, vol % : 10.5	39.99	0.0005	H ₂ O Concentration, vol % : 10.5	40.43	0.0005
H ₂ Concentration, vol %: 33	60.13	0.0006	H ₂ Concentration, vol %: 7	60.41	0.0002
N ₂ Concentration, vol %: 56	80.33	0.001	N ₂ Concentration, vol %: 82	80.91	0.0004
	100.33	0.0013		101.08	0.0005
	120.77	0.0018		121.46	0.0005
	136.68	0.002		141.2	0.0007

	Absorption	Weight		Absorption	Weight
Run 17	Duration, s	Gain, g	Run 18	Duration, s	Gain, g
	0	0		0	0
H ₂ S Concentration, ppmv : 5000	20.76	1E-04	H ₂ S Concentration, ppmv : 5000	20.11	1E-04
H ₂ O Concentration, vol % : 10.5	40.18	0.0004	H ₂ O Concentration, vol % : 10.5	40.15	0.0002
H ₂ Concentration, vol %: 33	60.37	0.0009	H ₂ Concentration, vol %: 20	60.32	0.0002
N ₂ Concentration, vol %: 56	80.63	0.0012	N ₂ Concentration, vol %: 69	80.11	0.0005
	100.77	0.001		96.62	0.0007
	121.31	0.0015		120.32	0.0006
	141.31	0.0016		140.92	0.0009

Run 19		Absorption Duration, s	Weight Gain, g	Run 20	Absorption	Weight Gain g
		0	0	Hun 20	0	0
H ₂ S Concentration, ppmv : 5	6000	20.47	0	H ₂ S Concentration, ppmv : 5000	20.6	0
H2O Concentration, vol % : 1	0.5	60.96	0	H ₂ O Concentration, vol % : 10.5	41.4	0
H2 Concentration, vol %: 4	10	80.91	0.0002	H ₂ Concentration, vol %: 30	101.82	1E-04
N2 Concentration, vol %: 4	19	101.69	0.0004	N ₂ Concentration, vol %: 59	222.24	0.0003
		122.2	0.0009		522.65	0.0005
		142.3	0.0009		1122.63	0.0016
		751.77	0.0017		2342.68	0.0026
		1996.77	0.0028		3581.25	0.0037
		4477.77	0.0043		4780.69	0.0039
		6877.77	0.0053		7180.79	0.0049
		8091.07	0.0055		8398.86	0.0052
		9292.3	0.0061		9599.2	0.0049
		10521.31	0.0056		10810.5	0.0053
		11739.98	0.0062		12010.5	0.0053

5	Absorption	Weight	Absorption	Weight
Run 21	Duration, s	Gain, g	Duration, s	Gain, g
	0	0	2820.58	0.0022
H ₂ S Concentration, ppmv : 5000	59.94	1E-04	4028.58	0.003
H ₂ O Concentration, vol % : 10.5	180.33	1E-04	5270.27	0.0035
H ₂ Concentration, vol %: 10	420.41	0.0007	7669.27	0.0037
N ₂ Concentration, vol %: 79	1021.1	0.0014	8915.67	0.004
	1621.14	0.0018	10115.96	0.0039

A series of experiments on absorption of H_2S into the sorbent were carried out for 5 – 150 seconds at 105 psia and 530°C to find effects of moisture concentrations on initial reaction of H_2S with the sorbent. The concentrations of H_2S and hydrogen are maintained at 5000 ppm and 15 vol %, respectively. The concentrations of moisture in the simulated coal gas mixture are 0 – 10 vol %. Initial absorption of H_2S into the sorbent increases with increased concentrations of moisture for short absorption durations of 5 – 150 seconds (see Figures 3 and 4). These facts may indicate that moisture, ligher than H_2S , inhances mobility of H_2S through the porous matrix of the sorbent.

A series of experiments on absorption of H_2S into the sorbent were carried out for 5 - 150 seconds at 105 psia at 530°C to find effects of hydrogen concentrations on initial reaction of H_2S with the sorbent. The concentrations of H_2S and moisture are maintained at 5000 ppm and 10 vol %, respectively. The concentrations of hydrogen in the simulated coal gas mixture are 0 - 33 vol %. Initial absorption of H_2S into the sorbent increases with increased concentrations of hydrogen for short absorption durations of 5 - 150 seconds at 300 scc/min total gas flow rate as well as 100 scc/min total gas flow rate (see Figures 5 and 6). These results may suggest that a reducing gas such as hydrogen increases active surface area accessible to H_2S by the reaction of hydrogen with the porous metal oxide matrix of the sorbent and enlarging pore diameters of the sorbent.

A series of experiments on absorption of H_2S into the sorbent were carried out for 30 - 12000 seconds at 105 psia at 530°C to find effects of hydrogen concentrations on effective diffusivity of H_2S with the sorbent. The concentrations of H_2S and moisture are maintained at 5000 ppm and 10 vol %, respectively. The concentrations of hydrogen in the simulated coal gas mixture are 10 - 40 vol %. The total gas flow rate of gas is maintained at 100 scc/min.

The experimental data, shown in Figure 7, were applied to the unreacted core model (see Equation 1) to find the effective diffusivity of hydrogen sulfide into the sorbent.

$$\left[1 - 3\left(\frac{r_{C}}{R}\right)^{2} + 2\left(\frac{r_{C}}{R}\right)^{3}\right] = \frac{6b dC_{Ag}}{r_{R}R^{2}}t$$
(1)

where rc:	radius of the unreacted core.
R:	geometric average radius of a particle.
b:	stoichiometry.
δ:	effective diffusivity
C _{Ag} :	concentration of an active gas
ρв:	bulk density of particles
t.	reaction duration

The effective diffusivity of H₂S into the sorbent is 1.07×10^{-3} cm²/s in the presence of 10-vol % hydrogen. The effective diffusivity of H₂S into the sorbent is 0.65×10^{-3} cm²/s in the presence of 30-vol % hydrogen. The effective diffusivity of H₂S into the sorbent is 0.51×10^{-3} cm²/s in the presence of 40-vol % hydrogen. The magnitude of these diffusivity values of H₂S are agreeable with the value obtained from the unreacted-core cylindrical rod model, where the experimental data were obtained from the 35-cc batch reactor at 500°C. These experimental data indicate that hydrogen concentrations affect significantly intraparticle diffusivity of H₂S into the sorbent (see Figure 8).

A series of experiments on absorption of H_2S into the sorbent were carried out for 30 - 25000 seconds at 105 psia and 530°C to find effects of hydrogen concentrations on

equilibrium absorption of H₂S with the sorbent. The concentrations of H₂S and moisture are maintained at 5000 ppm and 10-vol %, respectively. The equilibrium absorption of hydrogen sulfide in the sorbent increases with increased hydrogen concentrations (see Figures 7 and 9). These experimental results may explain that a reducing gas such as hydrogen increases absorption capacity of the sorbent by the reaction of hydrogen with the porous metal oxide matrix of the sorbent. The reaction of hydrogen with the sorbent may result in increasing pore sizes as well as active surface areas of the sorbent in favor of absorption of H₂S. These observations appear to be agreeable with those shown in Figures 5 and 6.

A series of experiments on effects of space (residence) times on dynamic absorption of H_2S into the sorbent were conducted at the 100 scc/min (0.36 s residence time) and the 300 scc/min (0.12 s residence time). Decreased residence time results in increased dynamic absorption of H_2S into the sorbent. These observations may suggest that transfer rate of H_2S from the reactive gas mixture toward the surface of the porous solid sorbent particles affect significantly dynamic absorption of H_2S into the sorbent. These data may indicate that space times do not affect equilibrium absorption capacity of the sorbent in the presence of H_2S as an absorbed reactive gas.

CONCLUSIONS

The following conclusions were drawn based on the experimental data, generated from the differential reactor sysem, and their interpretations,

- •Hydrogen sulfide absorbed into the porous matrix of the sorbent retards transfer of H₂S into micro pores of the sorbent with increased concentrations of H₂S.
- •Moisture, ligher than H₂S, inhances mobility of H₂S through the porous matrix of the sorbent..
- •A reducing gas such as hydrogen increases active surface area accessible to H₂S by the reaction of hydrogen with the porous metal oxide matrix of the sorbent and enlarging pore diameters of the sorbent.
- •Hydrogen concentrations affect significantly intraparticle diffusivity of H₂S into the

sorbent .

•A reducing gas such as hydrogen increases absorption capacity of the sorbent by the reaction of hydrogen with the porous metal oxide matrix of the sorbent. The reaction stinfiych ogenswifth the sorbent infayore softabs on prices ing hose sizes as well as active

 $\bullet Space$ times do not affect equilibrium absorption capacity of the sorbent in the presence

of H₂S as an absorbed reactive gas.

PUBLICATION

Reaction Kinetics on Removal of Hydrogen Sulfide with Metal Oxide Sorbents at High Temperature and Pressure", Separation Science and Technology, V. 32, No. 1-4, Pg. 775-792, 1997.

PLANS ON FUTURE EXPERIMENTS

Effects of moisure concentrations, H_2S concentrations, absorption temperatures, particle sizes on equilibrium absorption as well as dynamic absorption of H_2S into metal oxide sorbents, using the differential reactor.