LIST OF ACID GAS REMOVAL PROCESSES

. TYPE	SOLVE	NT		MODE
AD = Adsorption AB = Absorption CD = Cryogenic Distillation		al Solvent al Solvent		= Selective S = Non-selective
NAME OF PROCESS	TYPE	SOLVENT	MODE	MAJOR CONTAMINANTS REMOVED
1 Activated Carbon 2 ADIP 3 Alkazid 4 Amisol 5 Benfield	AD AB AB AB AB	C C C/P C	NS NS S,NS S,NS NS	H2S,cil H2S,CO2 H2S,CO2 H2S,CO2 H2S,CO2
6 Catacarb 7 Chemsweet 8 CNG 9 Estasolvan 10 Flexsorb SE	AB AD AB AB AB	C C P C	NS S S,NS S	H2S,C02 H2S H2S,C02 H2S,C02,oi1 H2S,C02
11 Fluor Econamine 12 Fluor Solvent 13 Giammarco-Vetrocoke 14 MEA 15 MDEA	AB AB AB AB AB	C P C C C	NS NS S NS S,NS	H2S,C02 H2S,C02,oil H2S,C02 H2S,C02 H2S,C02 H2S,C02
16 Molecular Sieves 17 Purisol 18 Rectisol 19 Ryan Holmes 20 Seaboard	AD AB AB CD AB	P P CD C	S,NS S,NS S,NS S S	H2S H2S,CO2 H2S,CO2 H2S,CO2,C2+ H2S
21 Selexol 22 Sepasolv MPE 23 SNPA - DEA 24 Stretford 25 Sulfiban	AB AB AB AB AB	P P C C	S,NS S,NS NS S NS	H2S,CO2,oil H2S,CO2,oil H2S,CO2 H2S H2S,CO2
26 Sulfinol 27 Tripotassium Phosphat 28 Vacuum Carbonate 29 Zinc Oxide	AB AB AB AD	C/P C C C	NS . S S S	H2S,C02 H2S H2S H2S

2-1

ACTIVATED CARBON

CALGON CORPORATION, PITTSBURGH, PENNSYLVANIA UNITED CATALYSTS, INC., LOUISVILLE, KENTUCKY

- o Adsorption process for removal of H₂S and other low molecular weight sulfur compounds from industrial gases, using beds of carbon impregnated with 5-10% of metallic oxides.
- o No pressure limitation; temperature limit for the feed gas is 150°F. Regeneration of bed at 450-500°F.'
- o Process is considered most applicable for desulfurizing gas from 30 ppm H₂S to 0.2 ppm.
- o More than 60 commercial plants using the process are in operation in U.S.A.

ADIP PROCESS

SHELL DEVELOPMENT COMPANY, HOUSTON, TEXAS

- o Process uses an aqueous solution of di-isopropanolamine (DIPA) to remove H₂S from industrial gases. Process is also used for treating LPG and NGL.
- o Absorber Pressure: 255 PSIG Temperature: 100 to 140⁰F

Regenerator Pressure: Near Atmospheric Temperature: 250 to 275 F

o Process can reduce H₂S content in natural gas to less than 5 ppmv and in synthesis gas to less than 100 ppmv.

2-2

o More than 150 plants have been built worldwide.

ALKAZID

DAVY MCKEE AG, WEST GERMANY

о	For the selective absorption of H ₂ S and for the simultaneous removal of H ₂ S and CO ₂ at atmospheric or higher pressures. Two different solvents: Alkazid "M" and Alkazid "DIK".
0	Absorption: Pressure: 0 to 1000 PSIG Temperature Ambient or below ambient
0	Purification: At low pressure, removal to 85 ppm $\rm H_2S$ with CO_2 in feed gas; to 320 ppm $\rm H_2S$ without CO_2 in feed gas.
ο	More than 100 plants in operation; none in U.S.
0	Suitable for synthesis gas, water gas, natural gas and hydrogen.
AM	ISOL
LU	RGI KOHLE UND MINERALOELTECHNICK GMBH., W. GERMANY
0	Process for selective desulfurization or complete removal of CO_2 , H_2S , COS and other organic sulfur compounds from synthesis gas, using a mixture of alkanolamine (MEA, DEA) with methanol as a solvent.
0	Absorption:

o Absorption: Temperature: Pressure:

Ambient Above 200 PSIA

Regeneration: Temperature: Below 212⁰F Pressure: Little more than atmospheric

o One plant onstream and two under construction with a total throughput of 73 MM SCFD.

BENFIELD

BENFIELD CORPORATION, PITTSBURGH, PA

- o For the removal of H₂S and CO₂ from feed gas mixture; provides H₂S-rich stream suitable for recovery of elemental sulfur. Hot potassium carbonate solution with Benfield additives is used for absorption.
- o Absorber Pressure: 100 to 2000 PSIG Temperature: Ambient to 400⁰F
- o Purification Levels: H₂S: From 10% in feed to ppm level in product gas

CO₂: From 25-45% in feed to ppm level in product gas

- o More than 500 units have been licensed, including over 210 for purifying SNG, reformed and partial oxidation gases.
- o Removes most of the COS, HCN and CS₂; is not guaranteed for removal of thiophene.

CATACARB

بستمص

EICKMEYER AND ASSOCIATES, OVERLAND PARK, KS

- o For removal of CO₂, H₂S and COS from gas streams. Raw gas is scrubbed in a packed or trayed absorber with a potassium salt solution containing a very active, stable and non-toxic catalyst.
- o Absorption Pressure: 40 to 1000 PSIG Temperature: 100 to 260°F
- o Process can reduce H_2S to about 4 ppm and CO_2 to as low as 50 ppm.
- o About 100 plants are in operation.
- o Sour acid gases require further processing to recover sulfur.

CHEMSWEET

C-E NATCO, TULSA

- o A chemical adsorption system used for the continuous removal of $\rm H_2S$ and other sulfurous gases from natural gas.
- o Chemsweet powder is a mixture of zinc oxide and zinc acetate. The sour gas is bubbled through a water slurry of Chemsweet powder.
- o Hydrogen sulfide, mercaptans, and carbonyl sulfide react instantaneously with zinc acetate to form insoluble zinc sulfide and zinc mercaptide. The zinc oxide replenishes the zinc acetate as it is consumed.
- o Operating pressure: 75 to 1400 psig.

Operating temperature: Ambient

The CO, content of the gas does not have an impact on the process chemistry because the pH of the Chemsweet slurry is too high to produce zinc carbonate.

o Over 60 commercial installations in the U.S.

CNG

300

CONSOLIDATED NATURAL GAS RESERCH COMPANY

- o The CNG process is a cryogenic physical absorption process that removes acid gases (CO₂, H_2S , COS and other trace contaminants) from medium to high pressure gas streams containing substantial amounts of CO₂, such as synthesis gas produced by coal gasification or heavy oil partial oxidation, and natural gas in enhanced oil recovery projects.
- o The process has three novel features:
 - (i) Absorption of sulfur-compounds and trace contaminants with pure liquid CO_2 .
 - (ii) Regeneration of pure CO₂ with simultaneous concentration of H₂S and trace contaminants by triple-point crystallization.
 - (iii) Absorption of CO_2 with a slurry of organic liquid containing CO_2 .
- o The sulfur absorber operates at $-67^{\circ}F$, slightly above the triple point of CO₂. The feed gas pressure can range from 300 to 1500 psia. The triple-point crystallizer operates at pressures and temperatures near the triple point of CO₂. The CO₂ absorber operates at temperature range between $-67^{\circ}F^{\circ}$ and $-112^{\circ}F^{\circ}$.
- o The process is currently in advanced stages of development at the bench scale level. Future plans call for a 2-3 ton/day PDU.

ESTASOLVAN

INSTITUT FRANCAIS DU PETROLE, FRANCE AND FRIEDRICH UHDE, GMBH, W. GERMANY

- o Process uses tributylphosphate as solvent and incorporates simultaneous absorption of acid gases and LPG in the solvent, followed by separation of the absorbed components by fractional distillation.
- o Solvents have high capacity for acid gases and good selectivity for $H_{0}S$ with respect to CO_{0} .
- o Demonstrated in two pilot plants, but as yet no commercial application.

FLEXSORB SE

EXXON RESEARCH AND ENGINEERING COMPANY, FLORHAM PARK, NEW JERSEY

- o A chemical absorption system that uses a hindered amine solution that can selectively remove H_2S .
- o The process can be applied to sour low BTU fuel gas from Flexicoking and Claus Plant Tail Gas.
- o The process operates under conditions similar to MDEA systems and uses the same equipment. However, it requires 41% of the MDEA circulation rate and 51% of its energy for regeneration.
- o The process has been commercially tested at an Exxon refinery in a Claus Tail Gas clean-up unit, which had been designed to operate using MDEA solution.

FLUOR ECONAMINE

FLUOR ENGINEERS AND CONSTRUCTORS, INC., IRVINE, CA

- o Diglycolamine (DGA) is the solvent used to absorb H_2S and CO_2 from sour gas.
- o Absorber: Temperature: 90-220 Pressure: About

90-220⁰F About 900 PSIG

Regenerator: Temperature: Pressure:

250-280⁰F 5-15 PSIG

- o Process can be designed to reduce H₂S concentration to 4 ppm and CO₂ to 50 ppm. DGA also removes COS.
- o More than 30 plants processing six billion SCFD of natural gas are in operation.

301

. 2-6

FLUOR SOLVENT

FLUOR ENGINEERS AND CONSTRUCTORS, INC. IRVINE, CA

- Process uses propylene carbonate (C₃H₆CO₃) for physical absorption of H₂S, CO₂ and other organic solfur compounds. Desorption of acid gases is carried out by reducing solvent pressure in several stages. Economics favor high absorber pressure.
- o Pressure: 850 1000 PSIG
- o Reduces H_S level to less than 4 $\,$ ppmv and the CO_2 level to less than 0.3% vol %.
- o A total of 9 plants (5 on natural gas, 1 in hydrogen production, and 3 in ammonia production) are in operation.

GIAMMARCO - VETROCOKE

GIOMMARCO-VETROCOKE OF MARGHERA, ITALY

- o The process is used for the removal of H₂S by scrubbing the sour gas with a solution of alkali arsenates and arsenites; sodium carbonate is the alkali usually applied.
- o Pressure: 1100 PSIG in the absorber.
- o. Reduces H₂S level to 0.15 ppm or less.
- o Approximately 50 plants have been built.

MEA

ALL ENGINEERING COMPANIES IN THE GAS PURIFICATION FIELD

- Monoethanolamine (MEA) has been the solvent for many years to remove (non-selectively) $\rm H_2S$ and $\rm CO_2$ from natural and synthesis 0 gases.
- Absorber 0 110-160[°]F Temperature: Not sensitive Pressure:
- Regenerator 0 Temperature: Pressure:
 - $205 250^{\circ}F$ Near atmospheric
- MEA can reduce H_2S content to less than than 0.1% (V). 1 ppm and CO₂ to less 0
- o Development of "Amine Guard" inhibitors by Union Carbide made the MEA process more attractive by reducing corrosion and lowering energy requirements.

MDEA

0

ALL ENGINEERING COMPANIES IN THE GAS PURIFICATION FIELD

- Process uses an aqueous solution of methyl-diethanolamine (MDEA) 0 to remove H2S by chemical absorption from industrial gases.
 - Absorber 80-125°F Temperature: Pressure:

0-1000 PSIG

Stripper

Temperature:	240-250°F
Pressure:	7-10 PSIG

- o H₂S can be reduced to 4 ppm at low pressures. Process can not rémove Mercaptans.
- o At least 20 units in the U.S. and several in Europe are operating.
- o Several companies have developed their own proprietary corrosion inhibitors and offer different versions of an activated MDEA systems. Most improvements have been made in two areas improving H_oS selectivity and reducing energy consumption.

The following gives the various licensors of MDEA process:

Dow Chemical U.S.A:	Selectamine Process Gas/Spec FT-1 Technology
Union Carbide: BASF:	H-S Process Activated MDEA Process
Shell Oil Co.:	SAGA Process

MOLECULAR SIEVE

UNION CARBIDE CORPORATION, TARRYTOWN, NEW YORK

- o Process to dehydrate and to remove carbon dioxide and sulfur compounds from natural gas, LPG and NGL. Process involves two or more fixed bed adsorbers and regeneration facilities.
- o Normal Adsorption Pressure: 2 Temperature: 6
 - 200 to 1200 PSIG 60 to 120°F
- o Sour natural gas can be desulfurized to 4 ppmv. CO₂ removal with molecular sieves is most attractive when the product must have a very low CO₂ content and the feed has less than 1.5% CO₂.
- o Sieve life ranges from 2 to 10 years for desulfurization and carbon dioxide removal, and from two to six years for dehydration.
- o More than 60 LNG plants use molecular sieves for drying and purification.

PURISOL

LURGI KOHLE AND MINERALOELTECHNICK GMBH, FRANKFURT, W. GERMANY

- o A physical absorption process that offers high solubility at high acid gas partial pressures. The process uses n-methyl-2pyrolidine (NMP) as the solvent to absorb CO, H₂S and other acid gases. The absorption is reversed by reducing the pressure.
- o Absorber Pressure: Low to 1000 PSIG Temperature: 80-105°F

304

- o Typically reduces $H_{p}S$ to 4 ppmv and CO_{p} to 2-3 vol%.
- o Five plants are in operation, processing about 440 MM SCFD of feed gas.
- o Process is typically used for removal of acid gases from natural gas, hydrogen and synthesis gas.

RECTISOL

LURGI KOHLE UND MINERALOELTECHNICK GMBH, FRANKFURT, W. GERMANY

- o Process uses methanol for removal of acid gases by physical absorption at relatively low temperatures and high pressures. Acid gases are separated from the solvent by decreasing the pressure or by stripping. High solubility of H₂S in the solvent allows selective removal of H₂S.
- o Pressure: 300 to 2000 PSIG Temperature: -100 to 0°F
- o Purification Levels H₂S and COS: 1 ppm CO₂: 1 ppm
- o More than 37 plants with a total capacity of 6 billion SCFD are in operation.
- o Used mainly in coal or oil gasification processes that produce fuel gas, synthesis gas for ammonia, methanol or SNG.

RYAN-HOLMES .

KOCH PROCESS SYSTEMS, INC.

- o The Ryan-Holmes Processes is a cryogenic distillation process used for separating acid gases (such as CO₂ and sulfur compounds) from natural gas streams. An NGL-based additive is introduced to a near the top of the distillation column to enhance the distillation.
- o The distillation columns operate between 350 to 650 psia. The operating temperatures can range from -120°F to 40°F. Acid gas contents (mainly CO₂) in the feed can range from 30% to 90%.
- o Koch Process Systems has licensed four applications of the Ryan/Holmes technology in enhanced oil recovery projects. These processes have not yet been applied, or proven to process synthesis gases from coal gasification units.

SEABOARD

KOPPERS COMPANY, INC.

- Process is based upon the absorption of hydrogen sulfide by a dilute sodium carbonate solution and regeneration by air stripping.
- o Process is capable of removing 85 to 95% of the $\rm H_2S$ in the feed gas in a single stage.
- o Main drawbacks are:
 - Occurrence of side reactions caused by oxygen in the air
 - The disposal of foul air containing H₂S.

SELEXOL

NORTON COMPANY, STOW, OHIO

- o The solvent of the Selexol process is a dimethyl ether of polyethyleneglycol, which has a high physical absorption capacity for sulfur-based compounds including H₂S, COS and mercaptans, as well as for CO₂. The solvent is regenerated by stripping with steam or inert²gas.
- o Pressure: 500 to 1000 PSIG Temperature: 50 to 200°F.
- o Purification Levels H₂S, COS and mercaptans: 1 ppm. CO₂ can be retained or reduced to any required level.
- o 23 plants are with a total capacity of 1240 MM SCFD gas are in operation.
- o Highly selective for sulfur compounds. The solvent is physically and chemically stable, and is not degraded by impurities.

SEPASOLV MPE

BASF AKTIENGESELLSCHAFT

- Sepasolv MPE is a physical solvent used for the removal of acid gases (CO₂, H₂S, COS and mercaptans) from natural gas and synthesis gas produced via coal gasification or heavy oil partial oxidtion.
- Sepasolv MPE is a mixture of oligoethylene glycol and methyl isopropyl ethers. The Sepasolv MPE and the Selexol solvents are very similar in chemical structure and physical properties. Thus, their application range is almost identical. The solutions can be exchanged in most plants without any equipment modifications.
- o There are four operating plants, three of which are for the selective removal of H₂S from CO₂ containing natural gases and one is for the combined removal of H₂S and CO₂ from natural gas. Two of these plants had previously used Selexol.

SNPA-DEA

RALPH M. PARSONS CO., PASADENA, CALIFORNIA

- Diethanolamine is the solvent in this process for treating high pressure natural gases with high concentrations of acidic components, especially COS and CS₂. (SNPA stands for Societe National des Petroles d'Aquitaine).
- o Absorber Pressure: 600 to 1100 PSIG
- o The process can reduce H_2S to less than 3 ppm and CO₂ to 500 ppm in natural gas. COS and CS₂ do not deteriorate the solution.
- o The process has been used to treat over 5 billion SCFD of sour gas.
- o The solvent is mildly corrosive.

STRETFORD

PEABODY PROCESS SYSTEMS, STAMFORD, CONNECTICUT

o Typical aqueous solvent contains sodium carbonate, anthraquinone - disulfonic acid (ADA) and vanadium as sodium metavanadate. $\rm H_{2}S$ is removed by chemical absorption.

0	Absorber
	Temperature
	Pressure:

90 to 120⁰F Atmospheric to 100 PSIG

- H₂S can be reduced to 1 ppm. Process does not remove any significant amount of CO₂. Complete removal of HCN can be obtained.
 COS and CS₂ are not reduced to a significant degree.
- o Main problem connected to process is the treatment and disposal of effluent streams containing sodium thiocyanate and sodium thiosulfate (from HCN).
- o Over 50 plants are currently in operation worldwide.

SULFIBAN

BLACK, SIVALLS AND BRYSON, INC., HOUSTON, TEXAS

- o Process uses an aqueous solution of monoethanolamine (MEA) with proprietary inhibitors to remove H₂S from industrial gases.
- o Absorber Temperature: 100⁰F Pressure: 0 - 1000 PSIG

porthhet .		^
Temperature:		200 - 250 ⁰ F
Pressure:	•	7-10 PSIG

- Process can reduce H₂S to about 1 ppmv, or remove more than 98% of H₂S in feed. Does not remove hydrocarbons from the feed gas.
 Solvent degradation occurs if COS and HCN are present in the feed gas.
- o Plants to process more than 1.75 MM SCFD of sour gas have been built.

SULFINOL

SHELL DEVELOPMENT COMPANY, HOUSTON, TEXAS

- o Process removes H₂S, CO₂, COS and organic sulfur from natural gas and synthesis²gas. The solvent consists of an alkanolamine, water and an inert organic compound, tetrahydrothiophene dioxide ("Sulfolane").
- o Pressure in the absorber may vary from slightly above atmospheric to 1400 PSIG. High pressure operation favors physical absorption.
- o Reduces H_2S level to 1 ppmv and CO_2 level to less than 50 ppmv.
- o Over 140 units are in operation or under construction, most of them for natural gas treating. Single location capacities vary from 15 to 500 MM SCFD.

TRIPOTASSIUM PHOSPHATE

SHELL DEVELOPMENT COMPANY, HOUSTON, TEXAS

- Process uses a tripotassium phosphate solution to remove H₂S.
 Principal advantages are non-volatility of the active component in the solution, insolubility in hydrocarbon liquids and nonreactivity with COS and other trace impurities.
- o Suitable for high temperature applications.
- o Process has been displaced by ethanolamine processes.

VACUUM CARBONATE

KOPPERS COMPANY, INC.

- o Process is an outgrowth of the Seaboard process. Use of vacuum distillation for regeneration of the alkali-carbonate solution reduced steam requirement to about one-sixth.
- o Process has been primarily applied to remove H₂S from coke oven gases.
- o Absorber Pressure: 15-20 PSIG Stripper Pressure: 2-215 PSIA
- o 93% of HCN and 5 to 7% of CO, are also removed with $\rm H_{2}S.$

ZINC OXIDE

UNITED CATALYSTS, INC., LOUISVILLE, KENTUCKY KATALCO, OAKBROOK, ILLINOIS

- An adsorption process, primarily used as a sulfur guard, reduces H₂S to 0.2 to 0.5 ppm level before the gas is contacted with a sulfur-sensitive (e.g., nickel-based methanation) catalyst.
- o Temperature: 660 to 840°F Pressure: Atmospheric to over 720 PSIG
- o Mercaptans and about 60% of thiophenes are also removed at about 600 to $750\,^{\rm O}F$.
- o More than 100 commercial plants are in operation worldwide.

STATUS SUMMARY

SELEXOL ACID GAS REMOVAL

General Information 1.0 2.0 Process Development Solvent Characteristics 3.0 Process Description 4.0 Commercial Design Data 5.0 Advantages and Disadvantages 6.0 7.0 Commercial Installations 8.0 References

310

1.0 GENERAL INFORMATION

Developer: Allied Chemical Corporation Morristown, New Jersy

Licensor: Norton Chemical Process Products P. O. Box 350 Akron, Ohio 44309

Type:

A physical absorption process which uses the dimethyl ether of polyethylene glycol as the solvent to remove acid gases such as CO₂, H₂S, COS and mercaptans from a variety of feed gases, including natural gas as well as synthesis gases from coal gasification and partial oxidation units.

Conditions:

The absorbers have been designed and operated between 370 and 1400 psia with acid gas concentration ranging between 5 and 65 vol%. The absorber operating temperature range is $20-100^{\circ}$ F.

Applications:

The process has been applied to:

- (i) Selective removal of H₂S from raw synthesis gas generated in coal gasification or heavy oil partial oxidation processes.
- (ii) Selective H₂S removal or bulk CO₂ removal from sour natural gas.
- (iii) Removal from synthesis gas produced via reforming of natural gas and/or fuel oil.
- (iv) Removal of CO₂ from landfill gas to upgrade its heating value.

Process Schemes:

Many variations of the process are possible depending on the specific application. For typical coal-to-SNG applications, the most often used scheme is the selective removal of H₂S. Exact process configuration depends on the raw gas conditions, downstream processing and integration with sulfur recovery systems.

Status:

About 30 commercial and pilot installations with capacities up to 275 MMSCFD have been operating or are under construction. A list of these installations is included in Section 7.0.

3-2

2.0 PROCESS DEVELOPMENT

- o In early 1960's, Allied Chemical Corporation investigated the use of dimethyl ethers of polyethylene glycols (DMPEG) for the removal of CO₂ from ammonia synthesis gas.
- o In 1965, the first commercial size unit was installed at Allied Chemical's Omaha ammonia plant.
- o Between 1965 and 1969, the SELEXOL process was under the following different tradenames:
 - 1965 DMPEG process 1966 - PEGASOL process 1967 - Solvent process 1969 - SELEXOL process
- o During 1969, the SELEXOL process was first applied to the selective removal of H₂S from natural gas in the NEAG II plant in West Germany.
- o In 1976, steam stripping was first used to regenerate H₂S loaded SELEXOL solvent in the Dueste II plant.
- o In 1978, the SELEXOL process was installed and operated at two coal gasification pilot plants: (1) U.S. Department of Energy's BiGas Pilot plant and (2) Texaco Inc's pilot plant at Montebello, California.
- o In 1982, the first commercial installation of the SELEXOL process for coal gasification application was operated at Tennessee Valley Authority's coal-to-ammonia plant. The unit is presently not operational due to lack of funding for the entire facility's operation.
- The Selexol process is also being utilized for the Cool Water coal gasification project for combined cycle application. The plant has been started up successfully according to the latest reports.

3.0 SOLVENT CHARACTERISTICS

0	Physical and Chemical Properties (Source: Ref. 1 & 2)
	Freeze Point $-8 \text{ to } -20^{\circ}\text{F}$ Flash Point 304°F Vapor Pressure @ 77°F $.0007 \text{ mmHg}$ Specific Heat @ 77°F $.49 \text{ BTU/lb}^{\circ}\text{F}$ Density @ 77°F $.58 \text{ cp}$ Viscosity @ 77°F $.11$ Surface tension @ 77°F $.34.3 \text{ dynes/cm}$ Heat of solution @ 77°F $160 \text{ Btu/lb solute}$ H_2S $190 \text{ Btu/lb solute}$ H_4 75 Btu/lb solute
	Typical Molecular Weight 280
0	Typical Composition (Source: Ref. 2)
	Compound Wt%
	Triethylene glycol-dimethylether12Tetraethylene glycol - dimethylether24Pentaethylene glycol - dimethylether25Hexaethylene glycol-dimethylether19Heptethylene glycol - dimethylether11Octaethylene glycol - dimethylether6Nenaethylene glycol - dimethylether3
0	Bunsen Coefficients, (Source: Ref. 2)
	(cm ³ gas/cm ³ solution at 68°F, 1 atm.)
	H ₂ S 30.5
	co ₂ 3.4

∴ 313

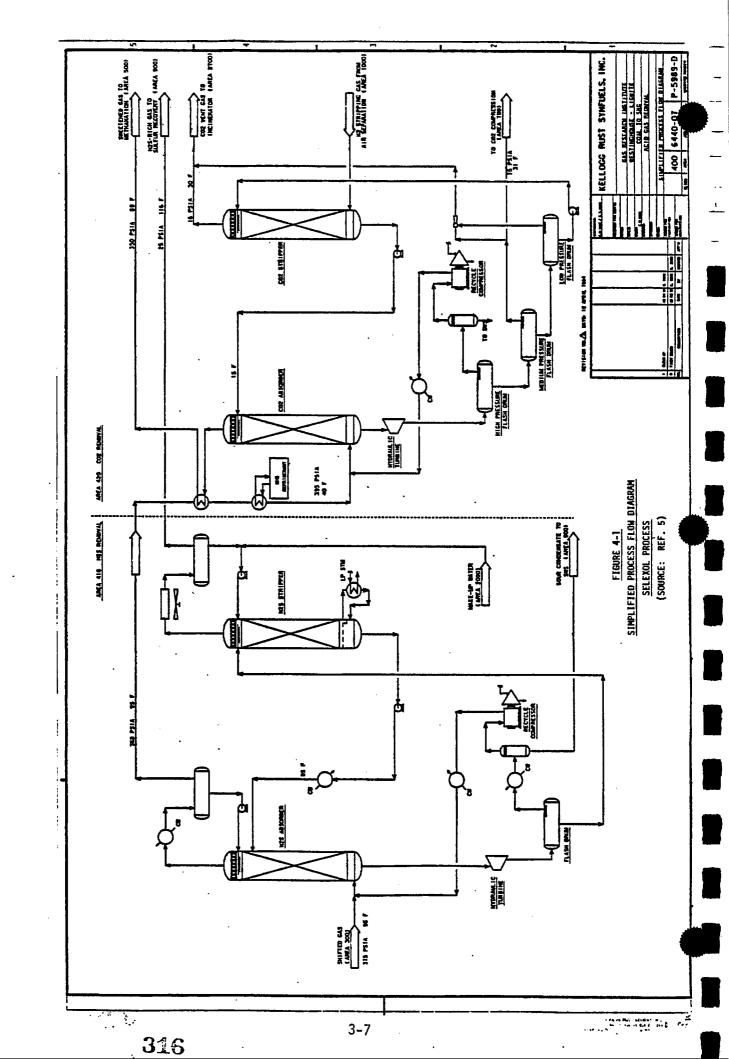
O Relative Solubility of various gases (Source: Ref. 3)

Hydrogen		0.2
Carbon Monoxide		0.4
Methane		1.0
Ethane		6.4
Ethylene		7.3
Carbon Dioxide		15.0
Ethane		15.3
i-Butane		28.0
n-Butane		35.0
	Carbonyl Sulfide	
i-Pentane	Sarbonyi Sairide	35.0
Acetylene		67.0
Ammonia		68.0
n-Pentane		73.0
n rentane	Hudromen Oul Et de	83.0
n-Hexane	Hydrogen Sulfide	134.0
Innexalle		165.0
	Methyl Mercaptan	340.0
n-Heptane	• • • • • • • • •	360.0
	Carbon disulfide	360.0
	Sulfur Dioxide	1,400.0
Benzene		3,800.0
•	Thiophene	8,100.0
Water		11,000.0
Hydrogen Cyanide	9	18,000.0

· .

4.0 PROCESS DESCRIPTION

Depending on the process application, many different process schemes of the SELEXOL process are used in a coal-to-SNG plant. Typically, the removal of acid gas is accomplished in two stages: selective H_2S removal followed by bulk CO_2 removal as shown in Figure 4-1.

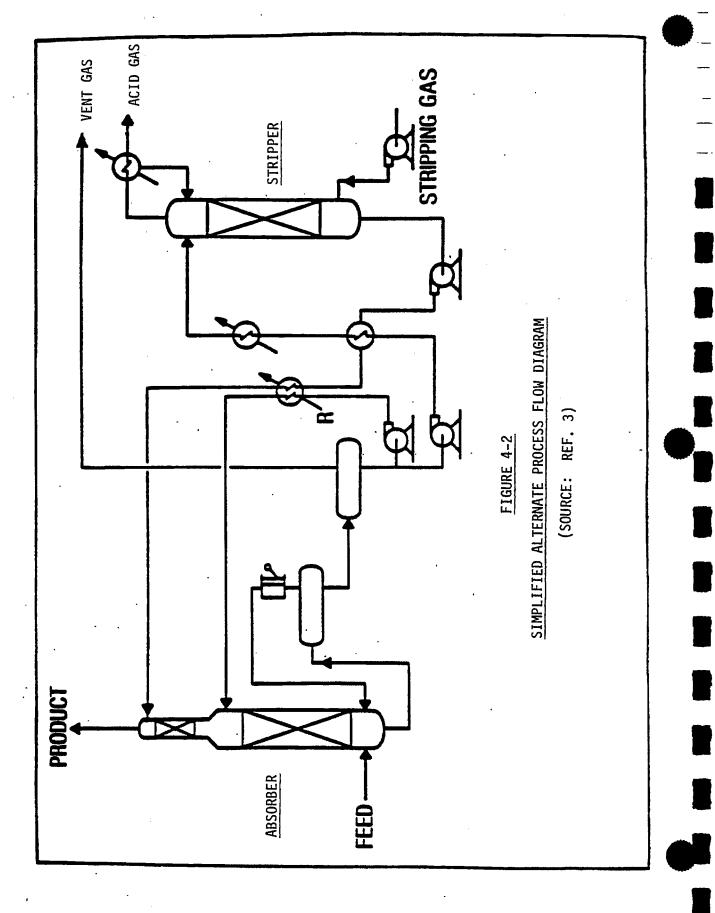

In the first stage, H_2S is selectively absorbed from the raw synthesis gas using a lean Selexol solution. The H_2S -loaded Selexol solution is flashed to a lower pressure in a series of flash steps to remove the less soluble components from the rich solution. The flashed vapors are recycled to the absorber. The liquid is then sent to an H_2S stripper, which is used to strip out the dissolved gases consisting mainly of H_2S and CO_2 . The heat input to the stripper is provided by a Steamheated reboiler. Stripper off-gases are sent to the Claus sulfur recovery unit, while the cooled lean solution is recycled to the H_2S absorber.

Synthesis gas from the H_2S absorber is further processed in the CO₂ removal section to reduce its CO₂ concentration to typically 1 vol. %, in the order to make it suitable for feeding to a methanation unit. This 1% CO₂ concentration may have to be adjusted to a level such that specifications for pipeline gas are met after methanation.

The synthesis gas leaving the H_oS absorber is cooled against CO_o absorber overhead and ammonia refrigerant before entering the CO_o absorber. The gas is contacted with the lean Selexol solution, giving a synthesis gas containing approximately 1 vol.% CO_o, which is sent to the methanation section. Rich solution from the CO_o absorber is flashed to a lower pressure in a series of flash steps. Vapors from the high pressure flash are recycled and mixed with the feed gas while those from a medium pressure flash consist of high purity CO_o gas, which can be either vented or used as lockhopper gas. The Selexol solution from the low pressure flashdrum which still contains a significant quantity of CO_o is then sent to a CO_o stripper to reduce the CO_o level in the lean Selexol to less than 1 vol.%. Nitrogen of steam is used as the stripping gas. The overhead gas from the stripper is combined with gases flashed off the low pressure flashdrum and sent to a catalytic incinerator to combust the hydrocarbons present in this gas and is then vented to the atmosphere. The lean solution is recycled back to the CO_o absorber.

A packaged refrigeration unit is provided to satisfy the requirements for chilling in the CO₂ removal stage.

An alternate process scheme (Fig.4-2) for the simultaneous removal of H_2S , COS and CO₂ is sometimes used when it involves the removal of a large amount of CO₂ and a relatively small amount of H_2S stream i.e., CO_2/H_2S ratio in the feed is high.


However non-selective, this process cannot produce a concentrated H_2S stream for Claus processing. In this split cycle scheme, all the acid gases, H_2S , COS and CO₂ are removed in a single absorber. The absorber has two Sections: a lower section, fed by partially regenerated solvent, and an upper section, fed by fully regenerated solvent. COS and CO₂ are removed in the lower section with solvent which has only been flash-regenerated, and H_2S is removed in the upper section with fully regenerated solvent. The solvent flow in the upper section is much lower than in the lower section. Thus, the cost of regeneration is much less as compared to a selective scheme where the whole stream is fine-regenerated. This split-cycle scheme was employed at the TVA Coal-to-Ammonia facility.

5.0 COMMERCIAL DESIGN DATA

A summary of the design data for a selective Selexol acid gas removal system for a 250 Billion BTU/day coal-to-SNG plant is shown in Table 5-1. The feed gas is from the gasification of N. Dakota Lignite in Westinghouse gasifiers.

A set of operating data for a non-selective Selexol acid gas removal system for the TVA coal-to-ammonia facility is shown in Table 5-2. The feed gas is from the gasification of Illinois No. 6 coal in a Texaco gasifier.

Table 5-3 gives the calculation of contribution to levelized cost of gas for a selective Selexol system using data given in Table 5-1.

318

DESIGN DATA FOR A SELEXOL ACID GAS REMOVAL SYSTEM IN A 250 BILLION BTU/DAY CDAL-TD-SNG PLANT TABLE 5-1

÷.,

		÷						
STREAM	FEED GAS	N2 STRIPPING GAS	MAKE-UP Water	SWEETENED GAS	MEDIUM PRESSURE	CO2 VENT	H2S-RICH GAS	SOUR CONDENSATE
COMPONENT .	%TON	VOL%	WT%	VOL%	VOL%	%TON	%10A	WT%
CARBON MONOXIDE		0.00	0.00	20.92	0.34		0.01	
HYDROGEN	42.20	0.00	0.00	67.08	0.14	0.03	0000	
CARBON DIDXIDE	37.00	0.00	0.00	1.08	98.51	RO. 26	69.06	
METHANE	6.52	0.00	0.00	10.16	0.94	0.22	PO 0.	Ndd CE
ARGON	0.08	0.00	0.00	0.12	00.00		200	
NITROGEN	0.40	100.00	00.0	0.63	00.0	10 10		200
HYDROGEN SULFIDE	0.38	0.00	00.00	2 PPM	13 PPM	NG BC		
CARBONYL SULFIDE	6 PPM	0.00	00.0	2 PPM	Mdd L	MOD	10 07 DDM	
WATER	0.22	0.00	100.00	0.01	0.07	0.30	6.05	99.97
TOTAL FLOW MOLES/HR	134,654	9.713	1,725	84,264	6,748	50,780	2,135	2.165
TEMPERATURE F	95	17	110	95 95	Ē	ŗ	110	
PRESSURE PSIA	375	18	25	368	75	20	25	ល ពេ ពេ ពេ
UTILITIES CONSUMPTION:								
Electricity Steam Drivers Net	1,665	33			ž			
Steam # 60 ps ig	374,000	Lbs/Hr						
Solvent Makerin 9 20 F Solvent Makerin		Gpm MMBTU/Hr Cols/Hr				· · ·		
		-						

Source : Ref. 5

. · · .

· 2.

.

319

(Mid-1982) (Mid-1982)

\$ 114.8 MM \$ 1.3 MM

TOTAL EQUIPMENT INSTALLED COST Royalties

1

TABLE 5-2

DESIGN DATA FOR A NON-SELECTIVE SELEXOL AGR SYSTEM AT TVA COAL-TO AMMONIA PLANT

Stream	Feed gas 、	Acid gas to Holmes- Stretford	Sweetened Gas (Note 1)	CO2 Product
Flowrate, Moles/hr	1,966	464	1,718	139
Pressure, psia	450.0	25.0	412.0	38.0
Temp,deg F	58.0	105.0	655.0	105.0
Composition	(Vol %)			
C0 H2 N2/AR C02 C0S H2S H20	2.70 56.60 0.50 39.20 8 ppm 0.79 0.21	0.00 1.20 11.40 83.80 33 ppm 3.40 0.20	2.60 63.40 20.80 13.20 < 1 ppm < 1 ppm 0.00	0.30 1.80 0.00 97.30 13 ppm 0.60 0.00

Note: 1. Product gas composition from SELEXOL AGR after addition of 353 lbmoles/hr N2 and preheated to ZnO beds feed temperature.

TABLE 5-3

CALCULATION OF CONTRIBUTION TO GAS COST . SELEXOL (SELECTIVE) AGR SYSYTEM

Coal Type Evaluator Project Report No. Date Published Plant Capacity	N.Dakota lignite (Westinghouse Gasifie Kellogg Rust Synfuels,Inc. Contract No. 5082-222-0754(6440-07) To be published 250 Billion Btu/day SNG	rs) !
CAPITAL COSTS :	\$ MM (Mid-1982)	
Instàlled Equipment Contingency @ 15%	114.8 17.2	
Direct Facility Constr Investment Home-Office costs @ 12%	132.0 15.8	
Total Facility Constr Investment	147.8	
Royalties Initial Solvent Charge	1.3 14.0	-
Total Plant Investment	163.1	
OPERATING COSTS :	· •	\$/hr
	22,000 Kw @ \$0.05/Kwh	1439.9 1100.0 228.0 330.7
TOTAL .		3098.6
Total Operating Cost, \$	MM/yr at 100 % Stream factor = 27.1 MM s	\$/Yr

CONTRIBUTION TO GAS COSTS :

	Specific Cost,	Charge Rate,	Contribution,
	\$/MM Btu-Yr	Year	\$/MM Btu
Capital Related	1.99	0.089	0.18
Operating	0.33		0.33
Total		÷	0.51

6.0 ADVANTAGES/DISADVANTAGES

- o Advantages
 - The SELEXOL solvent is 100% organic, biodegradable, essentially non-toxic, and non-fouling.
 The SELEXOL solvent is chemically and thermally stable;
 - The SELEXOL solvent is chemically and thermally stable; the installation of a solvent reclaimer is not necessary.
 - The SELEXOL solvent has a very low corrosion rate on mild steel; the process operates at or near ambient conditions, hence essentially all the equipment can be of carbon steel construction
 - High H₂S selectivity with respect to CO₂ can provide a rich H₂S stream to minimize cost and increase efficiency of Claus sulfur recovery plant.
 - Simultaneous dehydration and CO2 removal from the feed gas to produce pipeline quality gas.

o Disadvantages

322

- The SELEXOL solvent has a relatively high solubility for hydrocarbons heavier than ethane.
- hydrocarbons heavier than ethane. In the presence of H_2S , solvent regeneration by air stripping can cause sulfur deposition. The relative solubility of H₂S in SELEXOL is approximately 4 times that of COS, so most of the COS will be removed together with CO2. This might cause a problem if a sulfur-free CO, stréam is required in the process. Also, the COS content of the CO2-rich stream may not allow it to be vented directly to the atmosphere. Depending on the economics, there are two possible solutions: 1) a COS hydrolysis reactor to convert COS to H₂S upstream of the SELEXOL plant; or 2) design the absorber for COS removal, which would result in a higher SELEXOL circulation rate and a lower H₂S concentration in the acid gas stream. In certain cases, an incinerator to combust COS to SO₂ may be sufficient, since environmental regulations² typically permit more SO₂ to be vented as compared to COS.
- Hydrocarbon Losses for Selective SELEXOL Process (Ref. 5 & 6)

Component	Losses, as % of Feed
со	0.3 - 0.5
H ₂	<0.1
СН ₄	0.5
$C_n H_m (C_2 +)$	5.6

7.0 COMMERCIAL INSTALLATIONS

There are 30 Selexol plants that are operating or are under construction for various applications including natural gas treatment, synthesis gas purification, CO_2 for Enhanced Oil ecovery, coal gasification, and landfill gas treatment.

A list of these installations is shown below in Table 7-1.

8.0 REFERENCES

- 1. Clare, R. T. and J. P. Valentine, "Acid Gas Removal using the SELEXOL Process"; Paper presented at the 2nd Quarterly Meeting of the Canadian Natural Gas Processors Association, June 1975, Edmonton, Alberta.
- 2. Woelfer, W., "Construction and Operation of a SELEXOL Natural Gas Purification Plant"; Paper presented at the 27th Canadian Chemical Engineering Conference, October 1977, Calgary, Alberta.
- 3. Sweeny, J. W., "Gas Treating with a Physical Solvent"; paper presented at the AIChE 1984 Winter National Meeting, March 1984, Atlanta, Georgia.
- 4. Norton Chemical Process Products "SELEXOL Solvent Process Installations", Bulletin SIL 1, 5M-160726-12.82.
- 5. Cover, A. E. et al., "Design and Economics of a Lignite-to-SNG Facility using Westinghouse Gasifier", July 1984, Gas Research Institute Contract No. 5802-222-0754.
- Cover, A. E. et al., "Design and Economics of a Lignite-to-SNG Facility using Lurgi Gasifiers", July 1984. Gas Research Institute Contract No. 5802-222-0754.
- 7. Waitzman, D. A. et al., "Progress Report on Ammonia Production from Coal by Utilization of Texaco Gasification Process"; paper presented at the 1983 Fall Annual Meeting of the AIChE, November 1983, Washington, D. C.

<u>3</u>23

TABLE 7-1 (SOURCE: REF. 4)

NORTON

CHEMICAL PROCESS PRODUCTS

 \sim 324

Bulk CO₂ Removal — Synthesis Gas

Start Up	Owner & Location	Contractor	Description	
1965	Allied Corporation Omaha, Nebraska	Allied Corporation Morristown, New Jersey	CO ₂ from 18% to 0.5% CO ₂ purity 99.5% to urea 45 MMSCFD @ 565 psia Air stripping, no steam required. Carbon steel. Original solvent charge Reforming of natural gas to NH ₃	
1977		Allied Corporation Morristown, New Jersey	Expansion to 69 MMSCFD	
1975	Ammoniaque Synthetique et Derives S.A. (ASED) Willebroek, Belgium	Davy Powergas GmbH Cologne, W. Germany	CO ₂ from 33% to <1% Operation to 50 ppm CO ₂ at reduced capacity. H ₂ S from 200 ppm to <4 ppm HCN from 100 ppm to <10 ppm 47 MMSCFD @ 370 psia Partial oxidation of fuel oil Replaced H ₂ O wash	
1982	Shell Oil Company Carson, California	M. W. Kellogg, Houston, Texas/ C. F. Braun, Alhambra, California	CO ₂ from 19% to 200 ppm Hydrogen purification from hydrocarbon reforming Air stripping 48 MMSCFD @ 940 psia	
1983	Sherritt Gordon Mines Fort Saskatchewan Alberta, Canada	M. W. Kellogg Houston, Texas	CO ₂ from 18% to <0.1% New low energy ammonia plant 70% recovery of CO ₂ at 98% + purity 130 MMSCFD @ 465 psia	
1984	C-I-L. Inc. Courtright, Ontario Canada	ICI, England/ Uhde, Dortmund, West Germany	CO ₂ from 18% to <0.1% New low energy ammonia plant <25 MM Btu/Short ton Air stripping 150 MMSCFD @ 447 psia	
1984	UCAM Geleen, Netherlands	Kellogg Continental Amsterdam, Netherlands	CO ₂ from 18.17% to <0.10% 99% purity CO ₂ to urea plant New low energy ammonia plant Air stripping 178 MMSCFD @ 468 psia	

Start Up	Owner & Location	Contractor	Description
1969	Valero Transmission Co. Six Shooter, Texas Grey Ranch Plant	Fish Engineering Houston, Texas	CO ₂ from 43% to <3.5% H ₂ S from 18 ppm to <4 ppm H ₂ O from saturation to <7#/MMSCF 275 MMSCFD @ 1000 psia No stripping, no refrigeration.
1974	Lone Star Gas Co. Ft. Stockton, Texas Pikes Peak Plant	Davy Powergas, Inc. Houston, Texas:	CO ₂ from 43% to <3.5% H ₂ S from 30 ppm to 4 ppm Maintains H ₂ O @ <7#/MMSCF 50 MMSCFD @ 1000 psia No stripping, no refrigeration.
1975	·	Davy Powergas, Inc. Houston, Texas	Expansion to 100 MMSCFD
1977	Northern Natural Gas Co. FL Stockton, Texas Mitchell Plant	Ortlott Corp. Midland, Texas	CO ₂ from 28% to <3.5% H ₂ S from 16 ppm to <4 ppm H ₂ O from saturation to <7#/MMSCF 144 MMSCFD @ 900 psia No stripping, vacuum regeneration
1980	Columbia Gas Trans. Co. Kanawha, W. Virginia	Stearns Roger Inc. Denver, Colorado	CO ₂ from 65% to <3% H ₂ S from 16 ppm to <4 ppm H ₂ O from saturation to <7#/MMSCF 30 MMSCFD @ 800 psia No stripping, vacuum regeneration
1979	Getty Synthetic Fuels Monterey Park, California	Ortioff Midland, Texas	CO ₂ from 45% to <3% H ₂ O from saturation to <7#/MMSCF 8 MMSCFD @ 500 psia Landfill gas to pipeline
1980	Getty Synthetic Fu els Chicago, Illinois	Ortioff Midland, Texas	CO_2 from 38% to <3% H ₂ S from 8 ppm to <5 ppm H ₂ O from saturation to <7#/MMSCF 5 MMSCFD @ 375 psia Landfill gas
1982	Getty Synthetic Fuels Staten Island, New York	C-E Lummus Bloomfield, New Jersey	CO ₂ from 43% to <3%% H ₂ S from 8 ppm to <5 ppm H ₂ O from saturation to <7#/MMSCF 15 MMSCFD @ 450 psia Landfill gas
1981	Shell Canada Resources Cranberry Field Alberta, Canada	Cord Projects Ltd. Calgary, Alberta Canada	CO_2 from 3.4% to <2% H ₂ S from 100 ppm to 16 ppm H ₂ O to <4 lbs/MMSCF 15 MMSCFD @ 1264 psia
984	Marathon Oil U.K. Brae Field, North Sea	Matthew Hali Ltd. London, England	CO ₂ from 35% to <2% H ₂ S from 85 ppm to <4 Vacuum regeneration 127 MMSCFD @ 700 psia

Bulk CO₂ Removal — Natural Gas

Selective Sulfur Removal — Natural Gas

Slart Up	Owner & Location	Contractor	Description	
1969	Northern Natural Gas Co. FL Stockton, Texas Oates Plant	Fish Engineering Houston, Texas	H ₂ S from 100 ppm to <4 ppm CO ₂ from 18% to <2.5% Maintains H ₂ O @ <7#/MMSCF 130 MMSCFD @ 1000 psia Flash gas stripping — split flow	

• .

Copyright®Norton Company 1982

325

Selective Sulfur Removal - Natural Gas (Continued)

Start Up	Owner & Location	Contractor	Description
1970	Norddeutsche-Erdgas- Aufbereitungs-GmbH Mobil, Esso, Shell Sulingen, West Germany NEAG II Plant	Davy Powergas GmbH Cologne, W. Germany	H ₂ S from 4000 ppm to <2 ppm CO ₂ from 7% to >5% COS from 130 ppm to 70 ppm Maintains H ₂ O @ <7#/MMSCF 62 MMSCFD @ 1000 psia CH ₄ gas stripping Replaced potassium carbonate
1973		Mobil Oil A.G. West Germany	H ₂ S from 9.2% to <2 ppm CO ₂ from 9.5% to 8% COS from 130 ppm to 70 ppm RSH from 100 ppm to <1 ppm 80% H ₂ S to Claus plant Maintains H ₂ @ <7#/MMSCF 62 MMSCFD @ 1090 psia CH ₄ gas stripping Replaced Alkazid
1975		Mobil Oil A.G. West Germany	Expansion to 67 MMSCFD
1970	Wintershall AG Barnstorf, W. Germany Dueste I Plant	Davy Powergas GmbH Cologne, W. Germany	H_2S from 7% to <1000 ppm CO_2 from 9% to 5% Maintains $H_2O @ <7#/MMSCF$ 32 MMSCFD @ 1000 psia Inent gas stripping Replaced propylene carbonate and glycol-amine
1973		Wintershall AG	Expansion to 45 MMSCFD 15 MMSCFD to <2 ppm H ₂ S
1976	Wintershall AG Ruetenbrock, W. Germany	Comprimo b.v. Amsterdam, Netherlands	H_2S from 60 ppm to <2 ppm CO ₂ from 5% to 4% Maintains H_2O @ <7#/MMSCF 45 MMSCFD @ 1400 psia Inert gas stripping
1977	Wintershall AG Barnstorf, W. Germany Dueste II Plant	Comprimo b.v. Arnsterdam, Netherlands Comprimo b.v.	H ₂ S from 7% to <2 ppm CO ₂ from 9% to 5% COS from 118 ppm to 60 ppm RSH from 100 ppm to <1 ppm 68% H ₂ S to Claus plant Maintains H ₂ O @ <7#/MMSCF 45 MMSCFD @ 1000 psia Steam stripping
1979		Amsterdam, Netherlands	Expansion to 90 MMSCFD
1980	PanCanadian Petroleum Ltd. Alberta, Canada Mortey Gas Field	MHG and Propak Calgary, Canada	H ₂ S from 6.7% to <8 ppm H ₂ O removal to <4#/MMSCF Hydrocarbon dewpoint is 15°F @ 800 psig 12 MMSCFD @ 965 psia Steam stripping 89% H ₂ S to Claus plant
1983	TPAO Dodan, Turkey	Williams Brothers Tulsa, Oklahoma	H ₂ S from 0.37% to 50 ppm 60 MMSCFD @ 700 psia
1983	Westates italo Company Campo Reggente, Foggia, Italy	Tecnimont Milan, Italy	H_2S from 0.1% H_2S to 1.3 ppm Total Sulfur from 0.1525% to 33 ppm CO ₂ from 5% to 4.45% 15.9 MMSCFD @ 1152 psia

Selective Sulfur Removal — Synthesis Gas

Start Up	Owner & Location	Contractor	Description
1976	ERDA/AGA Homer City, Pennsylvania Bi-Gas Pilot Plant	Stearns Roger Inc. Denver, Colorado	H_2S from 7000 ppm to <4 ppm CO_2 from 31% to <1% 35% H_2S to Claus plant <20 ppm H_2S to CO_2 vent 11 MMSCFD @ 1500 psia max. Steam stripping Gasification of coal to SNG
1978	Texaco, Inc. Montebello, California Pilot Plant	Texaco, Inc. Montebello, Calif.	93.5% H_2 S, COS removed Off gas combusted 1.2 MMSCFD Steam stripping Coal gasification to gas turbine
1980	Tennessee Valley Auth. Muscle Shoals, Alabama	Brown & Root Houston, Texas	CO_2 from 42% to 19½% H ₂ S, COS from 1% to <1 ppm Sulfur off-gas to Stretford CO ₂ purity to 99% to urea 18 MMSCFD @ 445 psia Nitrogen stripping Texaco coal gasification to NH ₃
1983	Osaka Gas Company Osaka, Japan	Ube Industries Tokyo, Japan	Pilot plant 2.5 MMSCFD
1984	Cool Water Coal Gasification Program Daggett, California	Bechtel Houston, Texas	0.23% MSCFD, H ₂ S and COS to 73 ppm 19.8%, CO ₂ to 15.3% 71.6 MMSCFD @ 513 psia
1983	Ministry of National Planning of Somalia Mogadishu, Somalia	Technipetrol Rome, italy -	$35\% CO_2$ to $0.1\% CO_2$ 0.86% H ₂ S to 1 ppm total sulfur 12.2 MMSCFD @ 600 psia 98.5% CO ₂ stream to urea Nitrogen stripping Acid Gas to incineration
1984	International Coal Refining Company Daviess County, Kentucky	Ralph M. Parsons Pasadena, California	H ₂ S from 1.3% to 1 ppm COS from 60 ppm to 3 ppm CO ₂ from 41% to 0.2% 137 MMSCFD @ 720 psia 26% H ₂ S to Claus plant
1984	Electric Power Development Company, Japan	Kawasaki Heavy Industries Kobe, Japan	Pilot Plant 0.6 MMSCFD

Pending Installation and Major Studies

Natural gas treatment on an offshore platform. Coal gasification to low Btu industrial gas and combined cycle power generation. Coal liquefaction programs. CO₂ for enhanced oil recovery. Grass roots low energy ammonia plants. Coal or peat to methanol projects.

NORTON

Norton Chemical Process Products SELEXOL Solvent Process P.O. Box 2189R 10 Madison Avenue Morristown, New Jersey 07960 Telephone: (201) 898-0207 Telex: 4574193-NORTON MT

Norton Chemical Process Products (Europe) Ltd. SELEXOL Solvent Process Bredewater 26 2715 CA Zoetermeer Holland Telephone: 079-217200 Telex: 33666

3-18

Norton Chemical Process Products Norton Japan Co., Ltd. SELEXOL Solvent Process Kogen Building No. 17-2, 6-Chome, Shimbashi Minato-Ku, Tokyo 105 Japan Telephone: (03) 434-8971 Telex: J27429 NRCPPD

Printed in U.S.A. Bulletin SIL 1 5M-160726-12/82

STATUS SUMMARY

i

.

RECTISOL ACID GAS REMOVAL

.

328

.1.0	General Information
2.0	Process Development
3.0	Solvent Characteristics
4.0	Process Description
5.σ	Commercial Design Data
6.0	Advantages and Disadvantages
7.0	Commercial Installations
8.0	References

4 – 1

1.0 GENERAL INFORMATION

Developers: Lurgi Gesellschaft fur Waermetechnik mhH, Frankfurt am Main, Federal Republic of Germany

and

Linde Aktiengesellschaft, Munchen, Federal Republic of Germany.

Licensors: Lotepro Corporation 1140 Avenue of the Americas New York NY 10036

Type:

A physical absorption process which uses methanol as the solvent to remove acid gases (CO₂, H₂S and COS)and other impurities (NH₂, HCN, gumformers and higher hydrocarbons) from synthesis gases produced via coal gasification or heavy oil partial oxidation.

Conditions: Temperatures are maintained in the range of -100 to 0° F in the absorbers, and up to approximately 150° F on the regenerator with steam reboiler. The process has been designed and operated between 315 to 2500 psia with acid gas concentration ranging between 5 and 45 vol[%].

Applications: Rec

Rectisol has been applied to:

- (i) removal of CO₂, H₂S, COS, NH₃, HCN, gumformers higher hydrocarbons³ and other impurities from gases produced via coal gasification.
- (ii) Removal of CO₂, H₂S, COS, HCN from synthesis gas produced by partial oxidation of hydrocarbons.

Process Schemes:

Several variations of process are possible depending on the specific application for a typical coal-to-SNG application the most often used schemes are (1) selective removal of H₂S and (2) Non-selective or bulk removal of acid gases. Selection of schemes depends on several factors including coal type, integration with sulfur recovery system and downstream processing.

Status:

More than 70 units are in operation or under contruction for the production of synthesis gas, H₂ or towngas mainly based in either partial oxidation of oil or coal gasification. The Rectisol process has been used at the Sasol plants and more recently in the Great Plains Coal Gasification Associates' coal-to-SNG plant in North Dakota, and the coal-to-chemicals plant by Tennessee Eastman in Tennessee.

2.0 PROCESS DEVELOPMENT

Prior to 1950, Lurgi and Linde had collected laboratory data on the solubilities of various gases in methanol.In 1950, a 200 Nmhr pilot plant was erected by Lurgi and Linde at Ruhrchemie AG's Oberhausen-Holten plant site.

The Rectisol Process was first commericialized in 1957 at Sasol I. Three scrubbing units, each with $60,000 \text{ Nm}^3/\text{hr}$ raw gas capacity, were installed.

3.0 SOLVENT CHARACTERISTICS

o Physical and Chemical Properties

Freeze Point Flash Point	-143.0 °F 1.2°F	<u>.</u> .
Molecular Weight	32.0	
Vapor Pressure @ -60oF	0.5	mm Hg
Specific Heat , liquid * 0 -60°F Density 0 -60°F	0.57	Btu/1b ^o F
Density @ -60°F	7.14	lb/gal
Viscosity* @ -60 ⁰ F	2.50	CP
Thermoconductivity @ -60°F	0.13	Btu/hr-ft ^o F
Surface tension* @ -60°F	28.50	dynes/cm

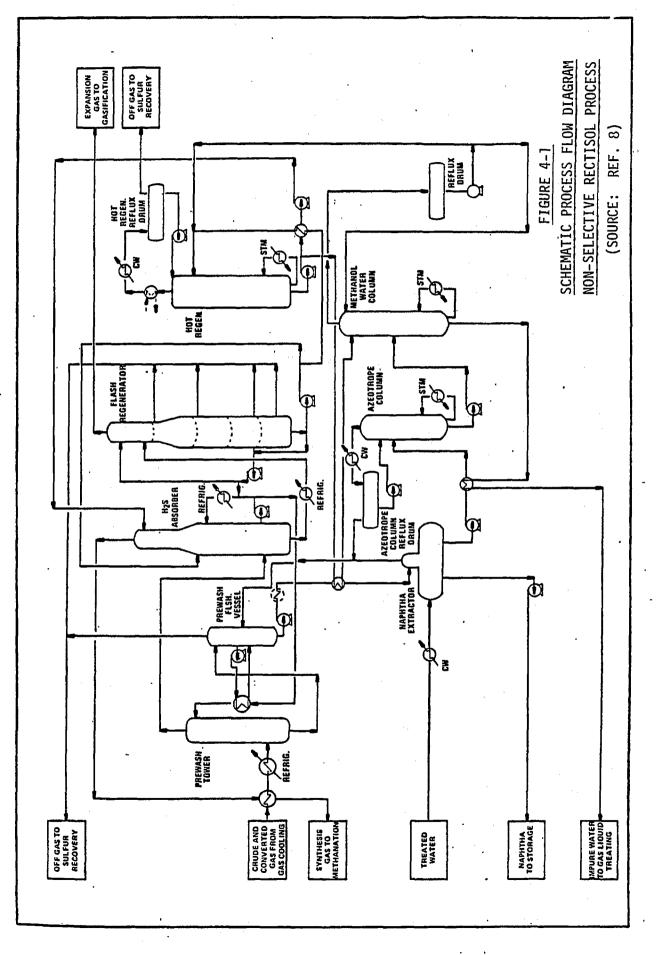
o Solubilities of gases in methanol at $-60^{\circ}F$

	LB mols (gas in solution) Tons (methanol)/atm. (partial pressure of gas)	<u>Relative Solubilities</u>
^H 2	0.006	0.071
N ₂ CO	0.006	0.071
cō	0.032	.0.381
СНЦ	0.084	1.000
сн _ц со ₂	4.229	5.035
cos	15.000	178.571
H ₂ S	29.900	355.952

4 - 4

331

*Approximate Readings (Reference 1)


4.0 PROCESS DESCRIPTION

Depending on the process application, many different process schemes of the Rectisol Process can be used. In a typical coal to SNG plant, the H_2S , CO_2 and COS can either be selectively removed or simultaneously removed. The feed gas composition, the downstream processing, and the sulfur recovery system should all be considered in the process scheme selection.

NON-SELECTIVE RECTISOL PROCESS

Figure 4-1 describes a non-selective H₂S, COS, and CO₂ removal scheme for processing a feed gas stream originating from Lurgi gasifiers.

- Feed Gas Cooling and Prewash The feed gas is cooled by the purified synthesis gas, flash gases and refrigerant. The condensed gas liquor is collected in condensate separators. The cooled feed gas enters the prewash tower where it is washed with a small quantity of methanol to remove the naphtha, HCN, and water.
- o H₂S, COS and CO₂ Removal The main gas stream leaving the prewash tower is scrubbed in the main wash section of the H₂S absorber where most of the H₂S, COS, and CO₂ are removed using flash regenerated methanol. An intermediate chilling loop in the middle section of the absorber is used to remove the heat of absorption. From the main section, the gas flows to the fine wash section in the top of the H₂S absorber where it is scrubbed with fully regenerated methanol to remove the remaining sulfur compounds and CO₂ to the specified level. The sweet gas then exits the Rectisol unit by heat exchange with the feed gas.
- o Flash Regeneration The rich methanol leaving the bottom of the main section of the absorber is regenerated in the flash regenerator. The laden methanol is flashed in several successive stages down to a slight vacuum, where dissolved gases are released. Gas from the first flash stage is recycled to the gasification section and used as lockhopper gas so that the bulk of the co-absorbed CH_4 , CO and H_2 are not lost. The other flash gases are sent to a sulfur recovery unit that can handle acid gases with a low sulfur content. A portion of the bottoms of the flash regenerator is used as the semi-lean solution used in the middle section of the absorber, while the remainder is further regenerated by steam.
- Hot Regeneration Before the flash regenerated methanol enters the hot regenerator, it is heated up by the hot regenerated methanol. In the hot regenerator, the dissolved gases are stripped out by vapors generated by a steam heated reboiler. The fully regenerated methanol is used in the top section (fine wash section) of the

4-6

··· . 333

absorber. The off gas leaving the hot regenerator is sent to a sulfur recovery unit.

Naphtha and Methanol Recovery - The liquid from the bottom 0 of the prewash tower consisting of methanol, naphtha and water is degassed in a prewash flash vessel. The gases from the flash vessel are combined with other flash gas streams going to a sulfur recovery unit, while the liquid is passed to the naphtha extractor. By addition of water, the naphtha and methanol layers are separated and crude naphtha is withdrawn and sent to storage. The methanolwater layer, which is not entirely free from naphtha, is warmed up and fed to the azeotrope column. The azeotropic mixture of naphtha and methanol is discharged from the top of the column and ultimately returned to the naphtha The water-methanol mixture is withdrawn from extractor. the bottom of the azeotrope column and fed to the methanol water column, where the water is separated from methanol by distillation. Water is drawn off from the bottom of the column, cooled and sent to waste water treatment. The regenerated methanol is then recycled back to hot regeneration column.

SELECTIVE RECTISOL PROCESS

334

Besides the non-selective removal of H_2S and CO_2 , a process scheme for selective removal of H_2S and CO_2 is possible. Figure 4-2 shows a selective one-stage wash scheme to treat synthesis gas from a partial oxidtion unit after it has been quenched and shifted.

- Feed Gas Precooling-Feed gas is cooled by heat interchange with the product and waste CO₂ streams in exchanger E1. Icing is prevented by injecting methanol into the gas stream prior to cooling.
- Feed Gas Purification After separation of the condensed methanol-water mixture, the feed gas is scrubbed by methanol in the wash column, T1. H₂S and COS are scrubbed by CO₂-loaded methanol in the bottom section of the absorber. The removal of CO₂ is accomplished by scrubbing with hot regenerated methanol in the top section of the absorber. The heat of solution due to CO₂ absorption is removed by external refrigeration. Purified gas leaves the top of the absorber.
- Cold Regeneration A portion of the CO₂-loaded methanol from the absorber (T1) is flashed in Successive stages (D2). The flash gases are compressed and recycled to the absorber T1, so as to recover the co-absorbed syngas. The cold regenerated methanol is fed to the top of H₂S enrichment column, T2.

4 - 7

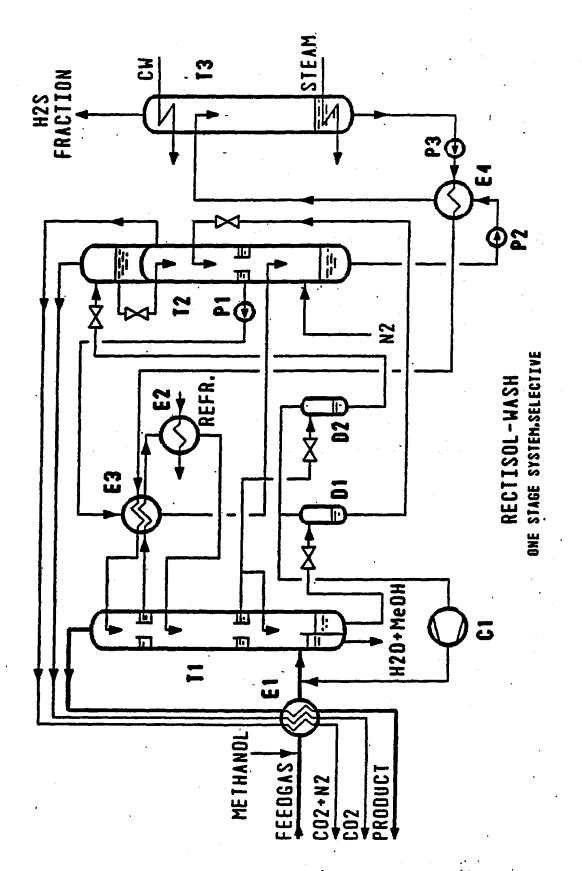


FIGURE 4-2 ONE-STAGE SELECTIVE RECTISOL WASH SYSTEM (REF. 5)

- H₂S Enrichment The H₂S-rich methanol leaving the bottom 0 of the absorber is flashed in a tank (D1), to an intermediate pressure. The flash gases are compressed and recycled, while the methanol solution from the flash vessel is fed into the middle of the H₂S enrichment column. In order to achieve the required concentration of H_2S in the acid gas stream, N2 is used to strip out CO2 from the loaded methanol in the lower section of the cofumn. The H₂S content of the vent stream is controlled by contacting it with sulfur-free, CO2-loaded methanol from the cold regeneration step. The sulfur-free tail gas leaves the top of the column, T2.
- o Warm Regeneration The H_2S -rich methanol from the bottom of the H_2S concentration column is warmed up against warm regenerated methanol in exchanger E4 and pumped (P2) into the regeneration column, T3. Complete stripping of H_2S and CO₂ is affected by a steam reboiler. The H_2S -rich stream leaving the top of the regeneration column is cooled and the condensed methanol is refluxed to the top of the regeneration column. The H_2S -rich stream is sent to a sulfur recovery unit. The regenerated methanol leaving the bottom of the column is cooled in E4, before being sent to the absorber, T1.

5.0 COMMERCIAL DESIGN DATA

A summary of the design data for a "Selective" Rectisol acid gas removal system for a 250 Billion BTU/day coal-to-SNG plant is shown in Table 5-1. The feed gas is from the gasification of Kentucky #9 coal in Exxon Catalytic Gasifiers.

Table 5-2 presents the design data for a "Non-Selective" Rectisol acid gas removal system for a 125 Billion BTU/day coal-to-medium-BTU gas plant. The feed gas is from the gasification of Texas Lignite in Lurgi gasifiers.

Tables 5-3 and 5-4 give the calculation of contributions to gas cost for the two design cases presented in Tables 5-1 and 5-2.

DESIGN DATA FOR A SELECTIVE RECTISOL AGR SYSTEM IN A 250 BILLION BTU/DAY COAL-TO-SNG PLANT

Stream *	Feed gas	Acid gas to Sulfur Recovery	Tail gas	CO2 Vent	Sweetened Product Gas
Flowrate, Moles/hr #/hr	110,358 2,032,572	2,338 83,925	3,923 163,817	16,542 727,572	87,138 1,039,758
Pressure, psia	450.0	26.2	. 21.8	17.4	432.0
Temp,deg F	120.0	95.0	89.3	89.3	5.0
Composition	(Vol %)				
C0 H2 CH4 C2H6 N2 C02 C0S H2S H20	9.52 34.14 32.31 45 ppm 3.25 19.60 18 ppm 0.80 0.38	0.05 0.05 0.21 0.01 0.22 61.70 0.08 37.66 0.00	1.37 3.74 1.63 0.02 0.02 93.21 0.00 0.00 0.00	0.02 0.01 0.06 0.01 0.00 99.89 (1 ppm 0.01 0.00	11.99 43.06 40.83 23 ppm 4.11 0.01 (0.3 ppm (0.4 ppm 6 ppm

UTILITY REQUIREMENTS

Steam 65 psig 260,000 #/hr 150 psig 38,000 #/hr	
150 psig 38,000 #/hr	
Cooling Water 24,800 Gpm	
Make-up Solvent 23,760 #/day	

CAPITAL COSTS

÷

Equipment (Installed) Royalties \$ 77.1 MM (March,1979) \$ 3.7 MM (March,1979)

* Refer to Figure 4-2

DESIGN DATA FOR A NON- SELECTIVE RECTISOL AGR SYSTEM IN A 125 BILLION BTU/DAY COAL-TO-MED. BTU GAS PLANT

Stream * Gas Flowrate	Crude gas from gas cooling	Off gas to Sulfur Rec	Product Gas to Methanation	Naphtha to Storage	Net Water Purge
#/hr	1,046,100	662,349	381,317	· ·	
Gas Composi	tion (Vol %)		•	•	
CO H2 CH4 CnHm N2 CO2 COS H2S H2O	15.35 40.76 11.16 1.17 0.29 30.23 0.02 0.76 0.26	0.11 0.08 0.82 2.48 0.00 94.02 0.05 2.44 0.00	22.19 59.00 15.81 0.58 0.42 2.00 0.00 <10 ppm 0.00		
Liquids, #/h	r	· .	•		
H20 HCl/HCN Naphtha	100 8,469		·	8,469	2,334 100
Total Flowr #/hr UTILITY REQ	ate, 1,054,669 UIREMENTS	662,349	381,317	8,469	2,434
	Electric Pow Refrigeratio Steam - 100 Boiler Feed Cooling Wate Make-up Solv Caustic	n psig water r	6,900 Kw 7,910 Kw 59,000 #/ 27,000 #/ 3,960 Gp 13,200 #/ 1,776 #/	hr hr May	
CAPITAL COST	S				
* Refer to F	Equipment (I Royalties igure 4-1	nstalled)	\$56.2 MM (4 \$4.9 MM (4	th Quarter,198 th Quarter,198	1) 1)
				•	

CALCULATION OF CONTRIBUTION TO GAS COST ______SELECTIVE RECTISOL CASE

Coal Type	Kentucky # 9 (Exxon Gasifiers)
Evaluator	Air Products & Chemicals, Inc.
Pro ^l ject Report No.	FE-3044-T12
Date Published	February,1980
Plant Capacity	250 Billion Btu/day SNG

CAPITAL COSTS :

*\$ MM (Mid-1982)

Installed Equipment	113.4
Contingency @ 15%	17.0
Direct Facility	
Constr Investment	130.4
Home-Office costs @ 12%	15.6
Total Facility Constr Investment	146.0
COUPEL THAESEMENT	140.0
Royalties	5.4
Initial Solvent Charge	0.5
· .	
Total Plant Investment	151.9

OPERATING COSTS :

\$/hr

4334.2

Steam(65 psig)	260,000 #/hr	@ \$ 3.85/ 1000 lb.	1001.0
Steam(150 psig)	38,000 #/hr	@ \$4.00/ 1000 lb.	152.0
Electricity	59,000 Kw	@ \$0.05/Kwh	2950.0
Cooling water	24,800 Gpm	@ \$0.10/ 1000 Gal	148.8
Solvent Make-up	150 Gal/hr	@ \$0.55/Gal	82.4

TOTAL

Total Operating Cost, \$ MM/yr at 100 % Stream factor = 37.9 MM \$/Yr

CONTRIBUTION TO GAS COSTS :

	Specific Cost, \$/MM Btu-Yr	Charge Rate, Year	Contribution, \$/MM Btu
Capital Related	1.85	0.089	0.16
Operating	0.46	1.000	0.46
Total			0.62

4-12

CALCULATION OF CONTRIBUTION TO GAS COST NON-SELECTIVE RECTISOL CASE

.

Coal Type Evaluator Project Report No. Date Published Plant Capacity	Fluor DOE/RA/50381-1 March,1982	(Lurgi Gasifiers) 1156 zu/day Med Btu gas	
CAPITAL COSTS :	\$ MM (Mid-1982	2)	
Installed Equipment Contingency @ 15%	57.6 8.6		
Direct Facility Constr Investment Home-Office costs @ 12%	66.2 7.9		
Total Facility Constr Investment	74.1		
Royalties Initial Solvent Charge	5.0 0.1		
Total Plant Investment	79.2		
OPERATING COSTS :			\$/hr
Steam(65 psig) Boiler Feed Water Electricity Cooling water Solvent Make-up Caustic	59,000 #/hr 27,000 #/hr 14,810 Kw 3,960 Gpm 150 Gal/hr 74 #/hr	@ \$1.50/ 1000 lb @ \$0.05/Kwh @ \$0.10/ 1000 Ga @ \$0.55/Gal	40.5 740.5
TOTAL			1081.6
Total Operating Cost, \$ 1	₩/yr at 100 %	Stream factor = 9	.47 MM \$/Yr
CONTRIBUTION TO GAS COSTS :	Specific Cost, \$/MM Btu-Yr	Charge Rate, Year	Contribution, \$/MM Btu
Capital Related Operating	1.93 0.23	0.089 1.000	0.17 0.23
Total			0.40
340	4-	13	

.

6.0 ADVANTAGES & DISADVANTAGES

- o Advantages
 - Methanol is inexpensive, generally non-corrosive and readily available.
 - Methanol is not degraded by trace components such as HCN, NH₂, CS₂, COS or other hydrocarbon impurities produced from coal gasification.
 - The process is attractive for applications requiring high purity product and for feed gases having a high acid gas partial pressure. A 0.1 ppmv total sulfur (including H₂S, COS, CS₂, mercaptans, etc.) specification in the treated gas stream can be achieved.
 - A COS hydrolysis step is not required since COS can be removed economically with the H₂S stream.
 - Approximately 50 to 70% of the CO₂ content in the feed gas can be recovered as a CO₂ product steam of 99 % purity.
 - The "Selective" Rectisol process can produce a high H₂S concentration acid gas stream, which can be sent directly to a Claus sulfur recovery unit.
 - The product gas is dehydrated simultaneously with CO2 removal from the feed gas.
 - The Rectisol process also serves as a precooling step if subsequent low temperature processing of the purified gas (such as liquid N_2 wash, H_2/CO separation, liquid CH_µ wash, etc.) is required.
- o Disadvantages
 - The process flow scheme is very complex
 - Extensive use of stainless steel and 3.5% nickel steel due to low operating temperatures results in higher capital costs.
 - Solvent vaporization losses are relatively high due to the appreciable vapor pressure of methanol even at low temperatures. Hence, depending on the plant location and its size, a small methanol plant on site may be necessary.

- Nitrogen, which is used as a stripping gas, has to be very $pure(0_2 = 3-10 ppm)$ due to the following reasons:
 - (i) Potential safety hazards for the methanol-02 mixture.
 - (ii) Elemental sulfur precipitation.
 - (iii) Safety problems associated with the presence of O_{2} in the cryogenic units.
- Hydrocarbon Losses for "Non-Selective" Rectisol (Ref. 4, 6, 7).

Component	Losses, as % of Feed
CO	0.3-0.5
H ₂	0.1
снц	0.5-3
$c_{nH_{m}}(c_{3}^{+})$	55-65

7.0 COMMERCIAL INSTALLATIONS

About 70 units have been built and operated since the 1950's by both Lurgi and Linde. The Rectisol plants built by Lurgi include those at SASOL I, SASOL II, SASOL III. A list of Rectisol units built by Linde/Lotepro is shown in Table 7-1 and the units built by Lurgi are shown in Table 7-2.

8.0 REFERENCES

- Ranke G., "The Rectisol Process for the Selective Removal of CO₂ and Sulfur Compounds from Industrial Gases, "Chemical Economy and Engineering Review, 4(5), 25 (1972)
- 2. Lotepro Corporation., "Rectisol Plants for the Purification of Hydrogen and Synthesis Gas".
- W. R. Grace Co., "Synthesis Gas Demonstration Plant Program, Phase I; Trade-Off Study Report II - Gas Purification Alternatives", February 1979. DOE/ET-13402-T25.
- 4. Schreiner, Max; "Research Guidelines Studies to Assess Gasoline from coal by Methanol-to-Gasoline and SASOL-Type Fischer-Tropsch Technologies." Final Report, August 1978, FE-2447-13.
- 5. Ranke, G. and V. H. Mohr; "Comparison of Various Processes for Acid Gas Removal, "Paper presented ast the AIChE 1984 Winter National Meeting, March 1984, Atlanta, Georgia.

- 6. Cassano, A.A. et al. "Cryogenic Methane Separation/Catalytic Hydrogasification Process Analysis", Final Report, February 1980, FE-3044-T12.
- 7. Transco Medium BTU Coal Gasification Project: Feasibility Study - Final Report, March 1982, Volumes I, II and III. DOE/RA/50 381-1156.8. "Great Plains Gasification Project", Final Environmental Impact Statement, Volume 1, DOE EIS-0072F, August 1980.

TABLE 7-1 (Reference 3)

. Note: Three units were built by Messer Grienbelm GmbH, whose know-how was _______ and *_____t to Linde AG in 1971.

	acquired and transferrad to Linde AG in 1971	ide AG in 1971.	COMPONENTS	CONTRACT
CLIENT	FEEDGAS	PRESSURE	REMOVED (VOL.S)	AWARDED IN
Typpi Oy Oulu, Finland	16 KDMSCFD bydrogen rich gas from partisi oxidation of heavy fuel oil	356peta	CO ₂ ,33.4% - 50ppm H ₂ S.0.4% - 1 ppm CO ₂ -Prod. 2.1 MMSCFD 99%	1960
Dansk-Norsk Kvaelstoff- fabrik, Copenhagen, DK	13.8 MMSCFD bydrogen rich gas from partial oxidation of heavy fuel oil	358 pata	CO ₂ 33.4% - 50 ppm H ₂ S 0.4% - 1 ppm CO ₂ -Prod. 1.45 MMSCPD 99%.	1961
Texaco Inc. Los Angeles, USA.	79.6 MMSCFD hydrogen rich gas from partial oxidation.	481 puja	CO ₂ 33.3% - 10 pp# H28 0.49% - 1 ppm Tailgas: max. 5 ppm H ₂ 8 no CO ₂ required. H ₂ 8-Prod. 10% design result 25.6% H ₂ 8	1966 2 ³
H. Koppers GatH, Essen, for Kutahys, Turkey.	46.9 MMSCFD converted gas from coal gasification.	351 pete	CO ₂ : 37.6% - 60 ppm 1 H ₂ S. Tracem to be removed CO ₂ -Prod. 12.9% MMSCFD 99%	1966 Loved

ł

344

4-17

(Continued)	
7	
Е 7	
1	
TABI	

CLIENT	PEEDGAS	PRESSURE	COMPONENTS REMOVED (VOL. 5)	CONTRACT AWARDED IN
American Air Liquide Inc, for Momento Texes City, USA.	53 MN9CFD Àydrogen rich gas from steam reformer	351 paia	CO ₂ 10.2% - 20 ppm	1969
Long leland Lighting Comp. New York, USA.	4.3 MMSCFD ratural gas.	602 peta	Odorants, CO2, C2+ CO2 0.92 - 5 ppm	1969
Pilot - and Demonstration Plant for Texaco Inc. Monte Bello CAL,	1 MMSCFD hydrogen rich gas from partial oxidation of heavy hydrocarbons.	1140-2560 peta	CO ₂ 33% - 10 ppm H ₂ S 0.7% - 1 ppm H ₂ S 1n tailgae max. 5 ppm	1966
Borden Chemical Cump. New York, UgÅ.	16.8 MMSCFD	313 pete	co ₂	1966
Rohm and Haas Comp. Philadelphir, UBA.	12.6 MMSCFD	356 psta	CO2, C2H2	1966
Brooklyn Unio Gas Brooklyn New York, USA	11.9 MMSCFD	356 pete	coz	1966
Rohn GubH, Darmstadt, West Germany-	7.9 MMSCFD natural gas.	498 peta	8-Cumponents, C ₂ + CO ₂ 5% - 50 ppm H ₂ S 0.01% - 15 ppm	1970

4-18

CONTRACT AWARDED IN	1972 125	1975	1975	1976	1976	1977
COMPONENTS REMOVED (VOL.3)	CO ₂ 42.6% - 20 ppm H ₂ S 0.95% - 1 ppm H ₂ S-Prod. 80% H ₂ S/COS CO ₂ -tailgas: wax. 10 ppm H ₂ S CO ₂ -Prod. 10.8 MMSCFD 99.9%	CO ₂ 42.3% - 20 ppm H ₂ ^S 1.0% - 20 ppm H ₂ ^{S-Prod. 97% H₂S/COB CO₂-tailgas: max. 150 ppm H₂S}	·	CO ₂ , H ₂ S, COS, ACN - 0.1 ppm H ₂ S ← COS	35.9% (*02 - 20 ppm 0.75% H ₂ S - 1 ppm C02-Prod. 26.8 MMSCFD - 98.5% C02	6.7% CO ₂ - 20 ppm 1.46% (H ₂ S + COS) - 0.1 ppm H2S-fraction: 50% (H ₂ S + COS)
PRESSURE	427/711 peta	398/341 pata	441 psia	853 pata	1067 psia	612 prin
FEEDGAS	146 MMSCFD hydrogen rich gas from coal gasification.	32.0 MMSCFD hydrogen rich gas from coal gasification.	Over 35 MMSCFD hydrogen rich gas.	from partial oxidation of heavy residual oil before and after CO-shift (2 stages)	168 MMSCFD Converted gas from partial oxidation of heavy fuel oil (1 stage)	21.1 HMSCFD from partial oxidation of heavy fuel oil.
CLIENT	R.Koppers GmbH, Essen, for Modderfontein, Bouth Africe.	Krupp Koppers GmbH, Essen, for Kafue, Zambia.	Celanose Chemical Co. Houston, Texas, USA	Byngas Co. Houston, Texas, UBA	Gujarat Btate Fertiliaer Co., Baroda, India.	UBE Industries Ltd., Tokyo,

· TABLE 7-1 (Continued)

346

4-19

TABLE 7.1 (Continued)				
CLIENT	FEEDGAS	PRESSURE	COMPONI COMPONI	COMPONENTS REMOVED (MOL 2)
Nagarjuna Fertilizers and Chemicals Ltd., Kakinada, India	ll6.l MM SCFD Shifted Gas from partial oxidation of heavy fuel oil	. 682 psia		35.4% - 20 ррт 0.74% - 1 ррт
China National Technical Import Corp., Beijing, PR China	3 x 121.7 MMSCFD Shifted gas from partial oxidation of vacuum residual oil	ll38 psia	СО ₂ : Н ₂ S:	34.10% - 10 ppm 0.24 - 1 ppm
Chinese Petroleum Corp., Taipei, Taiwan	119.3 MMSCFD Shifted and unshifted gas from partial oxidation of heavy residual oil	870 psia	CO ₂ : H ₂ S + COS:	36% – 10 ррт 1.5% – 0.1 ррт
Bechtel Petroleum for - Tennessee Eastman Corp., Kingsport, Tennessee U.S.A.	44.7 MMSCFD unshifted and 25.6 MMSCFD shifted gas from Texaco coal gasification	860 psia	_ со ₂ : - H ₂ S + соs:	382 - 20 ppm 1.282 - 0.1 ppm
Texaco Corporation Convent, Louisiana, U.S.A,	108 MMSCFD	690 psia	со ₂ + н ₂ s	<i></i>
C. E. Lummus for Great Plains Associates North Dakota, U.S.A.		450 psia	с <u>о</u> 2 + H ₂ S	

4-20

347

, 1

Gas- and Synthesis Technology

Т	A	В	L	Ε	7	<u>'-2</u>	1

5

2. Gas Purification by Physical Absorption
 2.1 Rectisol[®] Process

Date of Order	Location	No. of Units	Feedstock	Components to be Removed	Product for	Capacity m³/day	Process/ Licensor
-					•		

Plant Pressure: 22 to 55 bar

Built up to 1964: a total of 9 units with a maximum plant capacity of 6.0 MM Nm³/day

	1				F				
		CSSR, Germany, South Africa, USSR		Raw Gas ex Coal-, Oilgasification	CO ₂ , H ₂ S, org. S, Hydrocarbons	Town Gas. NH₃ Synthesis, Fischer-Tropsch Synthesis	15,700,000	Lurgi	
1	964	Republic of South Africa	I	Raw Gas ex Coal- gasification	CO2, H2S, org. S, Hydrocarbons	Town Gas	2,800,000	Lurgi	
1	964	USA	l	Raw Gas	CO ₂	H ₂ and CO Recovery	450,000	Lurgi	
1	964	USA	i	Raw Gas	CO ₂ , C ₂ H ₂	H ₂ and CO Recovery	340.000	Lurgi	
1	965	CSSR	1	Raw Gas ex Coal- gasification	CO2, H2S. org. S, HCN, Hydrocarbons	Town Gas	2,400,000	Lurgi	
1	965	Yugoslavia	1	Raw Gas ex Coal- gasification	CO ₂ , H ₂ S, org. S, HCN, Hydrocarbons	NH3, Urea Synthesis Town Gas	2.200.000	Lurgi	-
I	966	USA	1	Natural Gas	CO2	Natural Gas Peak Shaving	320,000	Lurgi	
1	967	CSSR .	2	Raw Gas ex Coal- gasification	CO ₂ , H ₂ S. HCN, Hydrocarbons	Town Gas	5,800,000	Lurgi	
1	967	Yugoslavia	2	Raw Gas ex Coal- gasification	CO ₂ , H ₂ S, org. S, HCN,. Hydrocarbons	NH3, Urea Synthesis Town Gas	2,500,000	Lurgi	
1	1967	Germany	1 1	Raw Gas ex Oil- gasification	H₂S, COS, CO₂	Methanol Synthesis	1,300.000 960.000	Lurgi	
1	1971	Germany	I I	Raw Gas ex Oil- gasıfication	H ₂ S, COS, HCN, CO ₂	NH3, Methanol Synthesis	4,000,000 4,700,000	Lurgi	
	1971	Great Britain	1	Raw Gas ex Coal- gasification	CO2, H2S, HCN, org. S. Hydrocarbons	Substitute Natural Gas	280,000	Lurgi	•
	1971	USA	2	Raw Gas ex Coal- gasıfication	CO ₂ , H ₂ S, org. S, Hydrocarbons	Substitute Natural Gas	14,900.000	Lurgi	
•	1975	India .	1 1	Raw Gas ex Oil- gasification	H2S, COS, HCN, CO2	NH3. Urea Synthesis	2,100.000 2.900.000	Lurgi	

Source: Lurgi literature

348

Gas- and Synthesis Technology

2. Gas Purification by Physical Absorption

2.1 Rectisol[®] Process (cont'd)

Date of Order	Location No. Uni		Feedstock	Components to be Removed	Product for	Capacity m³/day	Process/ Licensor
1975	Republic of South Africa	1	Raw Gas ex Coal- gasification	CO ₂ , H ₂ S, HCN, org. S Hydrocarbons	Fischer-Tropsch Synthesis Town Gas	5,300,000	Lurgi
1975	Germany	1	Raw Gas ex Oil- gasification	H₂S, COS, HCN,	Methanol Synthesis	1,700,000	Lurgi
976	İndia	1 • I	Raw Gas ex Coal- gasification	H₂S, COS, HCN CO₂	NH ₃ , Urea Synthesis	.2,400,000 3,600,000	Lurgi
976	India	1 1	Raw Gas ex Oil- gasification	H ₂ S, COS, HCN, CO ₂	NH3- Synthesis	2,100,000 2,900,000	Lurgi
976	India	i 1	Raw Gas ex Oil- gasification	H₂S, COS, HCN, CO2	NH ₃ -, Urea Synthesis	2,400,000 3,600,000	Lurgi ,
976	India	1 1	Raw Gas ex Oil- gasification	H_2S , COS, HCN, CO ₂	NH3- Synthesis	2,100,000 2,900,000	Lurgi
976	India	1 1	Raw Gas ex Oil- gasification	H_2S , COS, HCN, CO ₂	NH₃- Synthesis	2,100,000 2,900,000 ·	Lurgi
976	Germany	1 1	Raw Gas ex Oil- gasification	H₂S, COS, HCN, CO₂	NH₃- Synthesis	3,800,000 5,450,000	Lurgi
977	India	1 1	Raw Gas ex Oil- gasification	H₂S, COS, HCN, CO₂	NH3- Synthesis	1,800,000 2,200,000	Lurgi
977	Republic of South Africa	4	Raw Gas ex Coal- gasification	CO ₂ , H ₂ S, HCN, org. S Hydrocarbons	Fischer-Tropsch Synthesis	39,600,000	Lurgi
977	Japan	1 1	Raw Gas ex Oil- gasification	H₂S. COS, HCN, CO₂	Methanol Synthesis	1,100,000 800,000	Lurgi
.978	Brazil	1	Raw Gas ex Oil- gasification	H₂S, COS, HCN, CO₂	NH ₃ -, Urea Synthesis	2,700,000 3,900,000	Lurgi
.978	China	۱ -	Raw Gas ex Coal- gasification	CO_2 , H_2S , COS , org. S Hydrocarbons	NH₃-, Urea Synthesis	2.880,000	Lurgi
1979	Portugal	1 1	Raw Gas ex Oil- gasification	H₂S, COS, HCN, CO₂	NH_{3} -, Urea Synthesis	2,400,000 3,200,000	Lurgi

4-22

Gas- and Synthesis Technology

2. Gas Purification by Physical Absorption

2.1 Rectisol[®] Process (cont'd)

Date of Order	Location No. of Units	Feedstock	Components to be Removed	Product for	Capacity m³/day	Process/ Licensor
1979	Republic of 4 South Africa	Raw Gas ex Coal- gasification	CO ₂ , H ₂ S, HCN, org. S Hydrocarbons	Fischer-Tropsch Synthesis	39.600,000	Lurgi
1979	Germany 1	Raw Gas ex Oil- gasification	CO ₂	Methanol Synthesis	1,000,000	Lurgi
1981	Venezuela 2	Raw Gas ex Oil- gasification	CO₂, H₂S, COS, HCN	Hydrogen	7,500,000	Lurgi
1981	Germany 2	Raw Gas ex Oil- gasification	H₂S COS, HCN, CO₂	Hydrogen, Methanol Synthesis	7,200,000/ 3,400,000	Lurgi
1983	Germany 1	Raw Gas ex Coal- gasification	H₂S COS, HCN, CO₂	Hydrogen+ Oxogas	1.870.000 .	Lurgi

STATUS SUMMARY

BENFIELD ACID GAS REMOVAL

1.0 General Information

2.0 Process Development

3.0 Solvent Characteristics

4.0 Process Description

5.0 Commercial Design Data

6.0 Advantages and Disadvantages

5-1

7.0 Commercial Installations

8.0 References

1.0 GENERAL INFORMATION

Developer:	Benfield Corporation Pittsburgh, Pa. 15228
Licensor:	Union Carbide Corporation Engineering Product and Processes Department P. O. Box 44 Tonawanda, New York 14150
Type:	A chemical absorption process which uses a hot potassium carbonate solution as the solvent for removal of acid gases (CO_2 , H_2S and COS) and other impurities from a variety of feed streams including synthesis gases produced by coal gasification and partial oxidation processes.
Conditions:	Gas stream pressures in Benfield units range from under 100 psia to 2000 psia with acid gas content of the feed ranging from 5 to 50 vol%. The temperature of the rich solution leaving the bottom of the absorber is normally between 250 - 260°F.
Applications:	 The process has been applied to purifying gas streams for the following applications: Ammonia Synthesis Gas Hydrogen Streams Natural Gas for Pipeline or LNG. SNG based on liquid feedstock. Coal Gasification streams for High or Low BTU Gas. Partial Oxidation Gases from the Texaco or Shell Processes. Reducing Gases for Iron Ore Reduction.
	- Ethylene Oxide, Methanol, Vinyl Acetate and Oxo-Synthesis Gases.
Process	
Scheme:	There are four basic process schemes: a) single-stage design; b) split-flow absorber design: c) two-stage design and d) the

HiPure process. For typical coal-to-SNG applications, the HiPure process is often used. Recent improvements to the Benfield process were made by Union Carbide to reduce energy

consumption via the LoHeat Process. The design features of LoHeat Process can be incorporated into any one of the above four designs to

. 352

(Refer to Section

reduce energy consumption.

4.0 for details).

Status: Over 520 units have been designed and/or operated throughout the world including the installation at Westfield, Scotland, which purifies the raw gas from a Lurgi gasifier.

2.0 PROCESS DEVELOPMENT

- o The Hot Potassium Carbonate Process was developed by H. E. Benson, J. H. Field and other co-workers at the U. S. Bureau of Mines, Bruceton, Pa., in the early 1950's.
- o The process was developed with the objective of purifying synthesis gas produced from coal gasification resulting in a gas with high CO_2 partial pressure at high temperature and containing H_2S and COS.
- o Benson and Field later formed the Benfield Corporation and licensed the process under the name of "Benfield Process"
- As the use of Hot Potassium Carbonate process expanded, catalyst activators were developed which increased rates of absorption and regeneration by several process licensors: Activated Hot Carbonate Process (Benfield), Catacarb (Eickmeyer & Associates); Giamarco-Vetrocoke (Giamarco-Vetrocoke, Italy).
- o In the mid 1960's, the Power Gas Corporation (now Davy-McKee Ltd.) patented an adaptation of the Hot Potassium Carbonate process employing certain independent countercurrent solution circuits and reuse of stripping steam. This development and similar design are presently offered as the Benfield HiPure Process.
- Latest improvement to the Hot Potassium Carbonate processes is the reduction in thermal energy requirements via the Benfield LoHeat Process.

5-3

3.0 SOLVENT CHARACTERISTICS

o CO, and H₂S Absorption

The absorption-regeneration reactions of H_2S and CO_2 with activated hot potassium carbonate solution² can be represented as:

Equilibrium pressures of H_2S and CO_2 over the solution increase with temperature and concentrations of KHS and KHCO₂. Because KHCO₂ is formed when either CO₂ or H_2S is absorbed, their equifibrium pressures over a solution are interdependent and must be carefully considered. When the CO_2 : H_2S ratio of the feed gas is greater than 8, a reasonable estimate of capital cost and utility requirements can be made by assuming total acid gas to be only CO₂. Since H_2S is more soluble than CO₂, its content in the purified gas will be reduced to a greater extent than that of CO₂, and thus nearly complete removal of H_2S can be obtained.

o Selective H₂S Absorption

Since H_2S is more soluble in the activated hot carbonate solution than is CO_2 , H_2S is absorbed and stripped at a faster rate. Operating conditions can be selected such that an H_2S absorption rate 50 times that of CO_2 can be achieved.² Generally, H_2S removal of 90 to 98% is possible while CO_2 removal can be restricted to 10 to 40%.

o COS, CS₂, Mercaptans and Thiophene Absorption.

COS hydrolyzes in activated hot potassium carbonate solution:

 $COS + H_2O ---- H_2S + CO_2$

The reaction rate is slower than that for CO_2 absorption, but the reaction will proceed to completion. The rate of hydrolysis is only slightly dependent on solution conversion to KHCO₂ or KHS but is highly dependent on temperature. COS removal to 1 ppm level can be achieved in a slightly different process configuration for systems optimized for CO₂ and H₂S removal. In the presence of activated hot potassium carbonate solution, the CS₂ is hydrolyzed in two stages:

354

 $CS_2 + H_2O \longrightarrow COS + H_2S$ $COS + H_2O \longrightarrow CO_2 + H_2S$

5-4.

Since an additional step is involved, CS_2 is absorbed at a slower rate than COS.

Mercaptans are slightly acidic and react with activated hot carbonate solution as follows:

 $K_2CO_3 + RSH ---- RSK + KHCO_3$

Absorption is rapid but proceeds only to a limited extent.

Thiopene would not be expected to react chemically with activated hot potassium carbonate solution.

o Ammonia and HCN Removal

The absorption rate of NH₃ in activated hot potassium carbonate solution is high, But the solution capacity is low. The degree of removal is dependent on the concentration of ammonia in the feed gas and the solution circulation rate.

HCN reacts readily with activated hot potassium carbonate solution:

 K_2CO_3 + HCN ----- KCN + KHCO_3

Removal efficiencies are expected to be as high as that for H_2S .

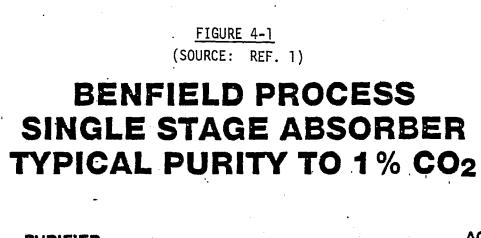
 Heavy hydrocarbons do not react with or degrade activated hot potassium carbonate solution. However, hydrocarbons condensates should be avoided since they can initiate foaming. Relative absorption capacity and rate of absorption into Activated Hot Carbonate solution at 230°F is given below: (Ref. 2).

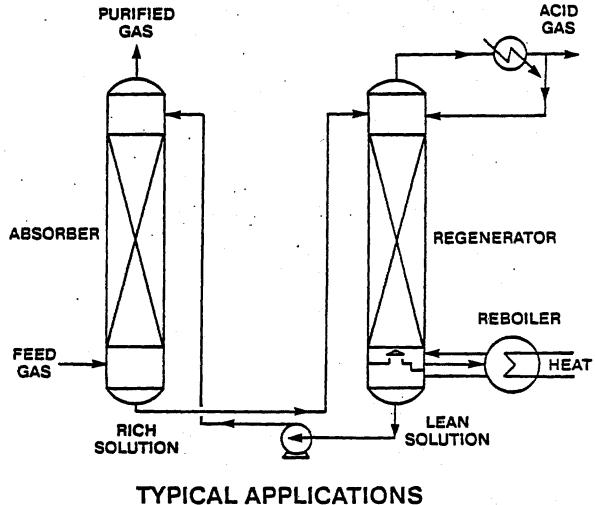
Component	Relative Capacity	Relative Rate
, co ₂	· 1 ,	1
H2S	1.41	3.6
cos	Hydrolyze	.36
cs ₂	Hydrolyze	.10
сн ₃ ѕн	0.03	1.2
NH 3	0.10	3.5

Capacities measured to an equilibrium partial pressure of 2 psi. Rates measured at solution loading equivalent to an equilibrium partial pressure of 2 psi.

5-6

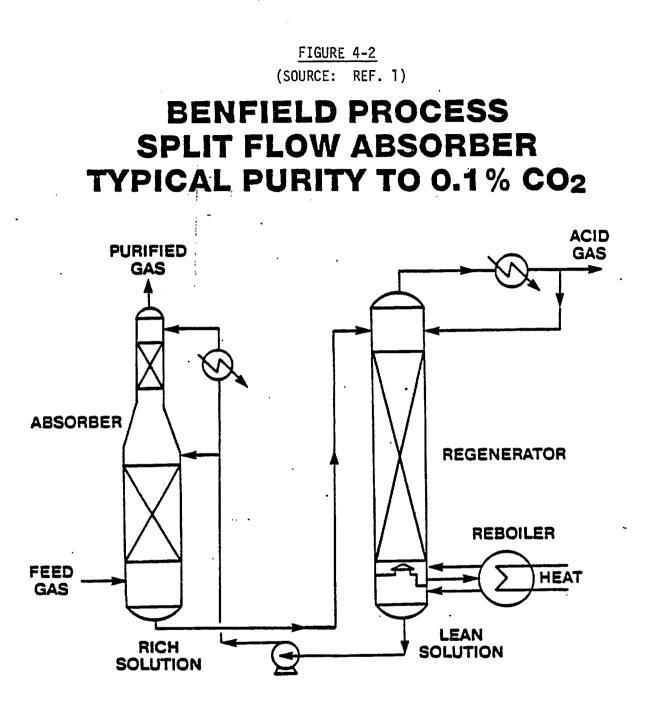
. . .


4.0 PROCESS DESCRIPTION


i į L

The Benfield Activated Hot Potassium Carbonate Process employs conventional packed or tray towers. A flow diagram of a single stage process is shown in Figure 4-1. Both the absorber and regenerator operate isothermally at a temperature near the solution's atmospheric boiling point, normally about 230°F. The process gas to be purified is introduced at the bottom of the absorber and is contacted by lean solution flowing countercurrently downwards. Rich solution is withdrawn at the base of the absorber and is regenerated while passing downward through the second tower against a rising flow of Stripping steam is usually supplied from a process gas steam. or steam heated solution reboiler. The regenerated or lean solution is then recycled back to the top of the absorber. The CO₂ level of the purified gas can be reduced down to 1% with this process configuration.

A number of process variations are available to achieve higher degrees of purification, to satisfy specific process requirements.


- o Split Flow Process (Figure 4-2) In this process configuration, the bulk of the hot regenerated solution is introduced to an intermediate point of the absorber. A portion of this solution is cooled down to between 160 and 200 F and fed to the top of the tower. The lowered equilibrium pressure of CO_2/H_2S over the cooled solution allows a much higher gas purity to be achieved. The CO_2 content of the purified gas can be reduced down to 0.1%. The solution is regenerated in a conventional single column.
- o Two-Stage Process (Figure 4-3) In this system, both the absorber and the regenerator are split into two distinct sections. A major portion of the regenerated solution flow (semi-lean solvent) is split off from the mid-point of the absorber. The remainder is stripped more thoroughly with the total steam flow. This lean solution is cooled and then fed to the top of the absorber. The unit can be designed to achieve a typical CO₂ concentration of 500 ppm in the purified gas.
- Benfield Hi-Pure Process (Figure 4-4) This process uses two independent circulating solutions in series to achieve a high purity product gas. The process gas is first contacted with normal Benfield hot carbonate solution in the primary absorber followed by contact with an amine solution in the secondary absorber. Bulk acid gas removal occurs in the bottom section of the primary absorber employing Benfield activated hot carbonate solution. Final acid gas cleanup occurs in the top section of the secondary absorber employing amine in a separate circuit at a reduced temperatures. Regeneration of the amine occurs in the bottom section of the secondary regenerator while the activated Benfield solution is regenerated in the top section of the

Natural Gas SNG

Ethylene Oxide

TYPICAL APPLICATIONS Ammonia Synthesis Gas Hydrogen Natural Gas

359

5-9

FIGURE 4-3 (SOURCE: REF. 1)

BENFIELD PROCESS TWO STAGE REGENERATOR TYPICAL PURITY TO 0.05% CO₂

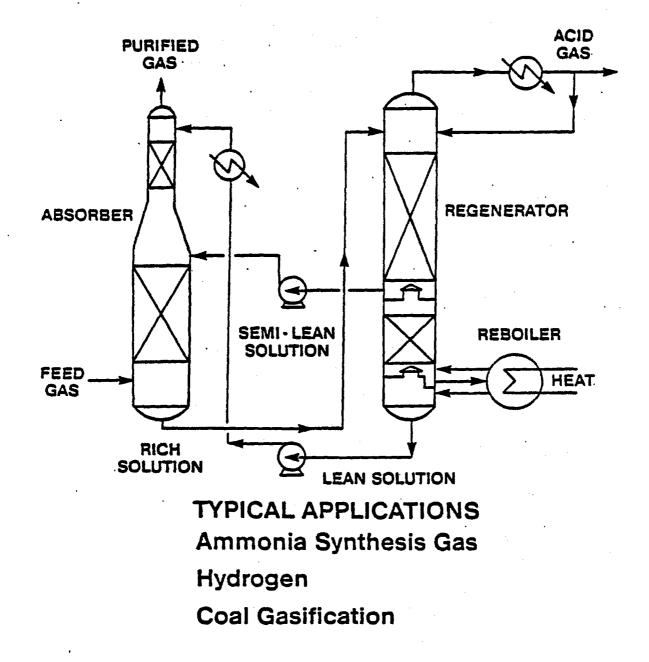
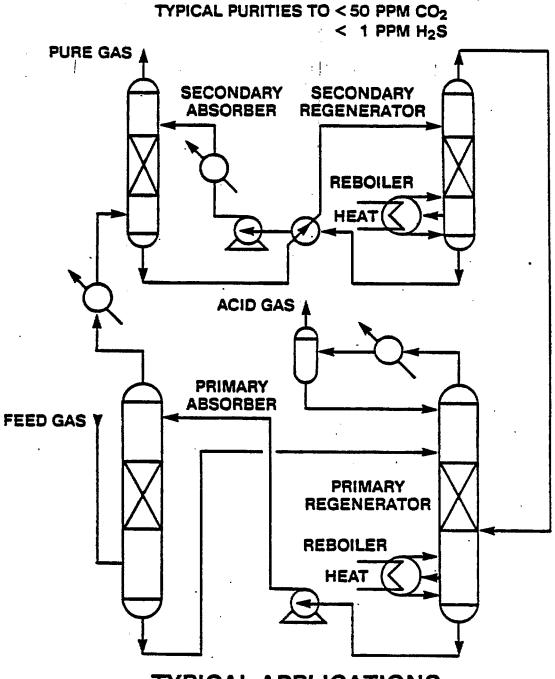
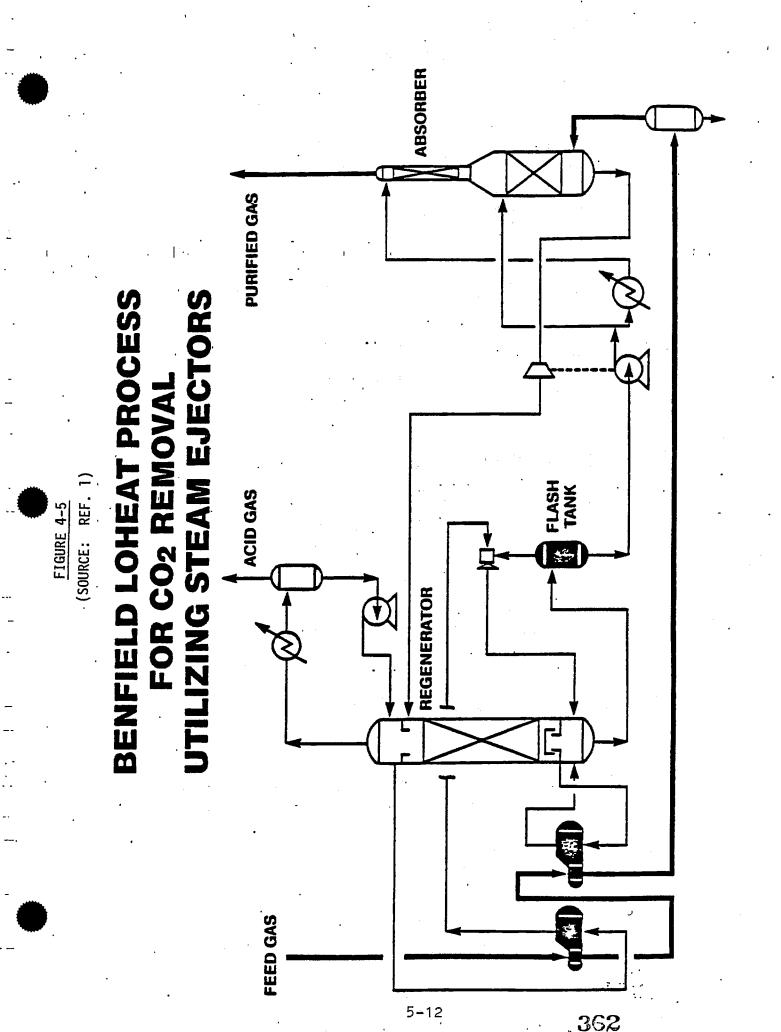




FIGURE 4-4 (SOURCE: REF. 1)

BENFIELD HIPURE PROCESS UNIT

TYPICAL APPLICATIONS Natural Gas for Pipeline LNG Pretreatment

primary regenerator. Stripping steam used to thoroughly regenerate the solution flowing in the amine circuit is reused as stripping steam in the top portion of the regenerator. Purified gas with 1 ppm H_2S and 50 ppm CO_2 can be obtained with this process.

- Recent improvements to the Benfield Processes were made to reduce the regeneration energy consumption via the use of the LoHeat Process. In the LoHeat design, the regenerated lean solution is flashed at a lower pressure. The steam flashed off is compressed and used directly in the reboiler to strip the CO₂ and H₂S from the rich solution. Either thermocom-pressors (steam ejectors) or mechanical compressors can be used (See Figure 4-5). The net effects are:
 - Less outside heat required for the same regeneration and the same product gas purity;
 - Required reboiler surface area is decreased, and
 - The acid gas and lean solution cooling duties are decreased.

5.0 COMMERCIAL DESIGN DATA

A set of commercial Benfield HiPure acid gas removal system design data for a 250 Billion Btu/day coal-to-SNG plant is shown in Table 5-1. The feed gas is from the gasification of N. Dakota lignite in the Westinghouse gasifiers. Table 5-2 gives the calculation of contribution to gas cost based on design information given in Table 5-1.

.DESIGN DATA FOR A BENFIELD AGR SYSTEM IN A 250 BILLION BTU/DAY COAL-TO-SNG PLANT

Stream * ''	Feed gas	Acid gas	Sweetened Gas
Flowrate, Moles/hr	71,126	56,606	43,576
Pressure, psia	406.0	15.7	. 404.0
Temp,deg F	180.0	122.0	122.0
Composition (/ol %)		
CO H2 CH4 C2H6 N2/AR CO2	13.35 41.38 5.97 0.46 36.60	0.06. 0.25 0.03 0.00 45.98	21.71 67.22 9.71 0.75 0.05
COS H2S H2O	0.03 0.36 1.85	0.00 0.48 53.19	1 ppm 4 ppm 0.57

UTILITY REQUIREMENTS

Electric Power 10,500 Kw Steam 60 psig 795,000 #/hr Cooling Water 42,000 Gpm Make-up Solvent 51 Gal/hr

CAPITAL COSTS

Equipment	(Installed)	<i>v</i> .	\$ 48.5	MM	(Mid-1982)
Royalties			\$ 2.9	MM	(Mid-1982)

364 (****)

* Refer to Figure 4-5

CALCULATION OF CONTRIBUTION TO GAS COST BENFIELD (NON-SELECTIVE) SYSTEM

Coal Type N.Dakota lignite (Westinghouse Gasifiers) Evaluator Kellogg Rust Synfuels, Inc. Project Report No. None i Date Published None 1 250 Billion Btu/day SNG . Plant Capacity CAPITAL COSTS : \$ MM (Mid-1982) Installed Equipment 48.5 Contingency 0 15% 7.3 Direct Facility Constr Investment 55.8 Home-Office costs @ 12% 6.7 Total Facility Constr Investment 62.5 Royalties 2.9 Initial Solvent Charge 2.4 ____ Total Plant Investment 67.8 OPERATING COSTS : \$/hr Steam(60 psig) 795,000 #/hr @ \$ 3.85/ 1000 lb. 3060.8 10,500 Kw Electricity @ \$0.05/Kwh 525.0 Cooling water 42,000 Gpm @ \$0.10/ 1000 Gal 252.0 Solvent Make-up 51 Gal/hr @ \$2.00/Gal 102.0 TOTAL 3939.8 Total Operating Cost, \$ MM/yr at 100 % Stream factor = 34.5 MM \$/Yr CONTRIBUTION TO GAS COSTS : Specific Cost, Charge Rate, Contribution, \$/MM Btu-Yr Year \$/MM Btu Capital Related 0.83 0.089 0.07 Operating 0.42 1.000 0.42 ____ Total 0.49

6.0 ADVANTAGES & DISADVANTAGES

- o Advantages
 - Low cost non-proprietary chemicals are used.
 - The solution is stable, hence no solution reclaimers are required and no fouling of heat exchangers and column internals occurs.
 - Rich/lean solution heat exchangers are usually eliminated.
 - Process gas coolers before acid gas removal are sometimes eliminated because hot gases can be treated. This results in improving the overall thermal efficiency, although the regeneration steam requirement is relatively high as compared to other AGR processes. Low solubility of process gases minimizes product losses.
 - Most of the equipment can be of carbon steel construction.
 - A COS hydrolysis step is not required since the majority of COS is hydrolyzed to H₂S in the hot carbonate solution.

o Disadvantages

- The Benfield process generates a very low H₂S concentration in the acid off-gas stream to the Sulfur plant, hence requiring a more expensive sulfur recovery facility.
- When the CO content of the feed gas is high, or at high temperature, CO will react with K₂CO₃ to form potassium formate (KCaOH). A small purge stream is necessary to remove the formate and fresh carbonate solution makeup is required.
- o Hydrocarbon Losses: (Typical) (Ref: 3, 4, 5).

Component	Losses, as percent of Feed
H ₂	<1%
CO	<1%
CH4	<1%
C2H6	<1%

. 366

7.0 COMMERCIAL INSTALLATIONS

A list of all the Benfield Activated Hot Carbonate Process Installation is shown in Table 7-1. (Source: Ref. 3)

8.0 REFERENCES

- Bartoo, R. K., "The Benfield Process for Acid Gas Removal". Paper presented at the AIChE 1984 Winter National Meeting, March 1984, Atlanta, Georgia.
- Parrish, R. W., and H. B. Neilsen, "Synthesis Gas purification Including Removal of Trace Contaminants by the Benfield Process". Paper presented at the 167th National ACS Meeting. Division of Industrial and Engineering Chemistry, Los Angeles, California, 1974.
- 3. Personal Communication with Union Carbide Corp. Engineering Products & Processes Division.
- Cassano, A. A. et al., "Cryogenic Methane Separation/Catalytic Hydrgrasification Process Analysis", Final Report, February 1980, FE-3044-T12.
- 5. Kellogg In-House data.

PAGE L

'<u>:</u>

E N H

;

.

TABLE 7-1

~

.....

.

(SOURCE: REF. 3) FIELD CORPORAT

BENFIELD CORPORATION 615 WASHINGTON ROAD PITTSBURGH, PA 15228

GENERAL PLANT L

NOTE	999	99	(1)	(1)	Ð	Ð	(1)	60	9	Э	0	Ð	3	3	(1)	Э	Ĵ	(1)	(1)	(7)	3	9	3	Ĵ	3	Э	3	Ĵ	3	Ĵ	63	(1)	9	(1)	Ĵ	Ð	(1)	0	3	(1)	
HZS OUT	4636 PPM 1068 PFM	}	ł	1	1	1	ł	ł	1	1 T		1	1	-	}	ļ	ŀ	1	1	ł	1	ł		ł	ł		1	ł	 	ļ	1	1	ł	1	BE DISCLOSED	ł	ł	ł	!	1	
H2S IN	. 1500% 16. 608%			1	!	ł	1	•	ł	ľ	IDENTIAL	1	ł		1	1	ł	¦	;	ł	ł	ł	ICENTIAL	1	ł		1	1	.1	;	l	1	ł	ł	TO BE DIS	ł	1		1	:	
CO2 GUT	0. 500% 1. 680% 500%		2001 9			0. 166%	0.400%	0.100%			ARE COUF		0.306%	0.100%	6. 460%	8 400:	0.500%	0.100%	5. 400%	5. 460%	0.200%	9 1992	FIRE CONF	0. 2002		0.100%	0. 1062	0. 100%	0. 160%	0. 1002	6. 100%	2001 0	0. 106%	0.160%	HRE NOT 1	6 180%	0. 200%	0. 200%	3. 880%	3. 000%	
CO2 IN	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			10. 6%	22. 6%			_		16. 6%	-	18. 17	23. 9%	22. 0%	15.5%	15.5%	23. 1%	24. 2%	26. 32	26. 3%	16 0%	18. 1%	DETRILS	23. 37	22. 0%	22, 07	17.92	17. 9::	18. 6%	22, 0%	22, 8%	21.5%	23. 17	22. 9%	DETAILS	21, 8%	22. 7%	22. 7%	50. 8%	50. 0%	
*512E	92. 0 NM 125. 0 NH	150 TPD	250 TPD	1	-				360 TFD	200 TFD	OPERATING	600 IFD	6. 0 MN			120 TPD	4.9 MM	33. @ MM	53. 0 MM	53. 0 MM	23. 0 MH	1600 TPD	OPERATING	14 0 MM	500 TPD	1600 TPD	625 TPD	825 TPD	20 0 141	750 TPD	21. 6 NM	15. 6 NH	11.6 PM	21. 6 MM	OPERATING	545 TPD	457 TPD	457 TPD	15. 8 MH	15.8 M	
ТүрЕ	NAT. GAS NAT. GAS AMOUTA	HIMOMAN	AMMONIA	CONF 10.	FINDALA	HINCHAR	RIVENIA	RIVIOUTH	APPROVIDE	APPLOATE .	Bretter B	AMMONIA	HYDROGEN	FINONIA	FINONIA	HIMUMA	CARB NON	HVDROGEN	TOWN GAS	TOWN GAS	HYDRÜGEN	FINDUIR	AINONIA	HYGROGEN	FUNCTURE	FIMONIA	FINDATE	RMDIONIA	HYDROGEN	RIMOMIA	HVDROGEN	HYDROGEN	HYDROGEN	HYDROGEN	ETH. OX.	RIMONIA	RIMONIA	AMMONIA	NAT. GAS	NAT. GAS	
CONTRACTOR/ENDINEER	RALPH N PAKSONS CO LIDIER ENGRO AND	DIDIER ENGRG GABH	DAVY PONERGAS	PACE ENGINEERING			SIMON CHRVES	SIMON CARVES	DRVY POUERGAS	LUPBUS COPPORT	FLANT OUNER	CURRENC COMPANY	SELMS B. V.	CHIYODA CHEM ENGR	PULLINN KELLOGG	PULLING KELLOGG	DAVY PONERGAS	FRIEGRICH UNDE		MOODFILL BUCKHRN	LUMPUS CONFANY	LUNINUS CONPANY	PLANT OWER	SELAS B. V.	FOSTER WHEELER CORP	SOC. TECH. ENT. CHIM.	HALDOR TOPSOE	HALDOR TOPSOE	BECHTEL CORP	HUMPHREYS & GLASGOM	DAVY POWERGAS	CHIYUDA CHEM ENGR	FOSTER WHEELER CORP.	CHIYODH CHEM ENGR	SCIENTIFIC DESIGN	FRIEDRICH UNDE	INP. CHEM. IND. (ICI)	INP. CHEN IND. (ICI)	DESIGN	SCIEN DESIGN LTD	
LOCATION	TEXAS, USA CANADA EGVPT	EGVPT	CRNADA	TEXAS, USA	HUNDARY	FOLAND	POLAND		UKEHI BRITAIN		WEST VIK. , USH		UKEAT EKITAIN	HIGHI	FRANCE		GREAT BRITAIN	JAPAN	ITHLY	11ALY-	SPAIN	MEX1CO	TEXAS, USA	SYRIA	BRAZIL	FRANCE	POLAND	POLAND .	NEXICO	FINLAND	JAPRN	JAPAN	JAFAN	JAPAN	. SWEDEN	FRANCE	INDIA	INDIA		HEH ZEALAND	
PLANT OWNER	Lone star gas co. Petrogas processing Helwan Ammonia	HELWAN ANMOUTA	BRUCKVILLE CHEMICRI	PUM CHERICHL CO.	CHEMUKUMPLEX			FULINEX THORDED CUTH TURING	DEMEY	rieries F 1 fullour		FILE KIVEN CHEMICHL	STINELEY CREMICH	DELMI ULUIM MILLS	H. P. C. CP. E. CRHIN)	H. P. C. (P. E. CRHIN)		IDENTISU KUSHN		5. 7. 6. 6.	RID GULF	PETROLEOS MEXICANOS	E. I DUPONT	SYRIAN GOVERNMENT	ULTRAFERTIL S. A.	S E. I. F. NRNGIS	POL IMEX	P.OL. IMEX	PETROLEOS MEXICANOS	V0 19971	NIPPON PETROLEUN	TOR MENRYO KOGYO KK	DAIRYO OIL CONPANY	MHKUZEN SEKIYU CO.	MO DCH DONISJO	A. P. C. (P. E. CRHIN)	ł	KRNPUR		MATURAL GAS OF N. Z.	
	କରନ	ί ⊊ ί	60	6 í	C a	Ê ĉ	5		96	144					22	18)	141	(97		22)	ຄີ	24)	25)	26)	275	28)	29) 29)	105	Ê	32)	CEE	(+M	35	(9) [9]	62E	38)	. 39)	40>	41)	. 42)	

368

(5) OTHER CONVERSION

(4) VETROCOKE CONVERSION

(3) CRTRCARB CONVERSION

(2) HIPURE

NOTES - (1) CONVENTIONAL BENFIELD

* - 512E IS EITHER IN MILLIONS OF NORMAL CUBIC FEET OF PRODUCT GAS PER DAY OR IN TONS OF PRODUCT PER DAY

2	NOTE	(1)	Ð	Ðŝ	93	ਉ		ŝ	(1)	(1)	(1)	(1)	(]	£	(2)		Ð	3	65	(1)	3	(2)	93	(i)	93	93	35	93	9	(1)	(1)	ਦ	93)E	6	9		Ð	(1)	0	(2)	6	Ð	Œ		
PAGE	H2S OUT		1	-		ł]	10 PPM	D1SCLOSED	DISCLOSED	3 PPM	ļ	ł	1		1	1	¦	1	ł	1	10 PPM		1	1					ł	ł	4 PPM	1	-	ŀ	ł	ł	1	ł	!	ł	1	1	1	1	
	H25 IN	ł	-	ł		ļ	ļ	0. 630%	TO BE DISC	TO BE DISC	0.662%	ł	!	ļ	1]	1	ł	ł	ł		0. 500%	1	1	1	TO DE VICCI DEEN			-	1	ł	1. 800%	26%		1	1		ł	1	ł	1	1	!	ł	-	
	CO2 0UT				0. 166%			200%	ARE NOT 1	RRE NOT 1		0. 100%		- 8. 8782	0. 166%	6. 100%	0. 656%	2.060%	1. 5002						6. 100%	2001				0. 100%	0. 100%	0. 186%	0.126%					0.860%	0.300%	0. 2062			0. 108%	0. 100%	0. 168%	
	CO2 IN		•••		22. 37		8, 37	5 37	DETAILS	DETAILS	7. 2%	17. 9%		22. 8%	24. 37	15 . 2%	16. 8%	19. 9%	12, 47		25. 9%				19. 7%	19. 72	DEINILS			18. 6%	19.8%			04 97		. –		21. 2%		24. 32					24, 37	
	*SIZE	11. 7 MM	1000 TPD	6. 2 MM		4	M	9.6 MM	OPERATING	OPERATING	105. 5 NM	225 TPD	1568 TPD	4.8 MM	2.3 19	MN 6 4	1060 TPD	0.5 MM	0.4 MM	28. 0 NM	œ	0		10.6 MM	875 TPD	041 278	UPEKHIJINU 1000 TON	TABO ITU	E 9 9 1 0	1000 TPD	51. 0 MM	17.1 MM	1000 TPD	ULENNI INU		0	o ا	4 4	4	44.1 MM	12. 0 MM	588 TPD	-		4. 4 E	
general plant lișt	TYPE	HYDROGEN	ANMONIA	HYDROGEN	HINDMIN	HYDROGEN	HYDROGEN	- HYDROGEN	ETH. OX.	ETH. OX.	NAT. GAS	RIMONIA	AMMONIA	HVDROGEN	HYDROGEN -	CARB MON	AMMONIA	VIN. AC.	METHANIOL	HYDROGEN	oxo gas	NAT. GAS	HYDROGEN	HYDROGEN	HINOMIA		EIH. UX.			AINOMIA	HYDROGEN	NAT. GAS	_	VIN. NC.	HUDBOGEN	HVORDGEN	OXO GAS	TOWN GAS	HYDROGEN	HYDROGEN	VIN. AC.	AMMONIA	AMMONIA	HYDROGEN	CARB MON	
GENERAL	CONTRACTOR/ENGINEER	CHIYODA CHEM ENGR	FRIEDRICH UHDE	CHIYODA CHEM ENGR	HUMPHREYS & GLASGOW	DAVY POWERGAS	FOR SECOND ABSORBER	DAVY POWERGAS	SCIENTIFIC DESIGN	SCIENTIFIC DESIGN	SCIENTIFIC DESIGN	FOSTER WHEELER CORP	BECHTEL CORP	SPEICHIM - ONIA GEGI	DAVY POWERGAS	FOR SECOND ABSORBER	C. F. BRAUN	FRIEDRICH UHDE	DRVY POWERGAS	FOSTER WHEELER CORP	HITACHI LIMITED	PLANT OWNER	LUMMUS COMPANY	CHIVODA CHEM ENGR		HALDOR TOPSOE	SCIENTIFIC DESIGN	FRJEVKICH UNUE	HITACHI LIMITED	FOSTER WHEELER CORP	BECHTEL CORP	DAVY POWERGAS	DAVY POWERGAS	FRIEUKICH UHUE Easted Luester Cobe		EPIEDRICH NHAF	THIS LINE FOR SECOND ABSORBER		- 1	CHIYODA CHEM ENGR	PLANT OWNER		HALDOR TOPSOE	SELAS B. V.	FOR SECOND ABSORBER	
	CGRTION	JAPAN	WEST GERMANY	JAPAN	BULGARIA	JAPAN	STRERM. THIS LINE	JAPAN	PUERTO RICO	THE INDIS, USA	JAPAN	ITALY	NETHERLANDS	EAST GERMANY	GREAT BRITAIN	STREAM. THIS LINE	JAPAN	AUSTRALIA	SOUTH KOREA	FRANCE	JAPAN	-	ARGENT INA	JAPAN	KUMAIT	KUMAIT		CZECHUSLUVHKIH ODEAT ADITAIN	JAPAN JAPAN	ROMANIA	MEXICO	GATAR		IEXHS, USH TOOGH	TODAN	TAPAN	STREEM	JAPAN	JAPAN	OKINHA	TEXAS, USA	POLAND	POLAND	RLANDS	THIS LINE	
BENFIELD CORP.	PLANT OWNER	FÙJI OIL COMPANY	GEWERKSCHAFT VICTOR	KOA DIL COMPANY LTD	TECHNOIMPORT	KASHIMA OIL COMPANY	LINE ABOVE IS MAIN	KASHINA OIL COMPANY	PPG INDUSTRIES	MORTHERN PETROCHEM	NISSO PETROCHEMICALS	TERNI	DUTCH STATE MINES	VEB SYNTHESE MERKE	INTERNATIONAL NICKEL	LINE ABOVE IS MAIN	ASAHI CHEMICAL INDUS	CSR CHEMICALS LTD	TRESUNG LUNBER CO	BRITISH PETROLEUM	NISSON PETROCHEMICAL	HEST COAST TRAUSMISS	VACIM. PETRO. FISCAL.	KANSAI DIL COMPANY	PETROCHEMICAL INDUST	PETROCHEMICAL INDUST	DOW CHEMIE N. V.	ZDRUZENIE CHEMIUKEHU BB CHEMICENE 110	BF CREMICALS FIV KVOMA VIKA KK	INDUSTRIAL IMPORT	PETROLEOS MEXICANOS	GRIAR FERTILIZER	GRIAR FERTILIZER	E. I. DUPUNI	IDENIIOU NUONN Gemeroal oli companiu	VACET MIVICUTMA FO	LINE ABOVE IS MAIN	DSAKA GAS COMPANY	TOA NEVIRYO	GULF SEKIYU SEISEI	NATIONAL DISTILLERS	POL. IMEX	POLIMEX	AIR PROD (NETH) NV NETHE	LINE ABOVE IS MAIN	
		4 3)	44)	48)	46)	47>		(48)	(6)	50.5	51)	32)	53)	242	25.5	 	56)	225	58)	29)	. 60)	61)	62)	63)	64)	62)	(99)	67)	69	202	71)	72)	2	21				78)	(62	80)	81>	82)	629	649		

(5) OTHER CONVERSION

(4) VETROCOKE CONVERSION

(3) CATACARB_CONVERSION

(2) HIPURE

NOTES (1) CORVENTIONAL BENFIELD

+ - SIZE IS EITHER IN MILLIONS OF NORMAL CUBIC FEET OF PRODUCT GAS PER DAY OR IN TONS OF PRODUCT PER DAY

~	1 [.]	<u>ا</u> ا	9	(F)	(4)	93	9	33	.	e :	Ð	9	93	2:	22	(2)			22		(2)	ì	(1)		Ð		(1)		<u>2</u> :	66	93	93	2	93			Ð	Ð		6		2	2	<u></u>	24	2			N
Page		NOTE	5	Ű	<u>ئ</u>	53	5	C :	J :	7 . 3	₽:	U :	5:	93				93							3		5	• •	3	3	บ					Ð	3	2		3		Ĵ	3:	3 :	93	9			ERSIO
U Q	L a	H2S OUT		1	ł	1	!	ł	1	ł	1	1	ł						1 PPN	300 PPM				1	1	l	1	1		110	DISCLOSED	VISULUSED EV 4 DOM				ł		1	1	-	ł	DISCLOSED	DISCLOSED	UISULUSED		NISCLUSED			(5) OTHER CONVERSION
		H25 IN	.	ł	ł	ļ	ł	l	3	1	ł	ł	ł		10 000			ł	4 7262		4. 7202		1	ļ	1	1	ł	1	ł	i		IU BE VIS 3 8655				ł	1	ł	1	1	ł	ы Ш		IU BE UIS	TO DE 210	5			(5) OT
. •		CO2 OUT	0. 100%	0.080%	· .	2001.0						2. 8082		2001 0		-	1000	-					0. 100%			2. 000%			1. 6962	2002		HKE NUI 2 Eagy					0:150%	1. 608%	1.400%	1. 0062	2001	FO1			YON Y		· · ;	AHU- N	ERSION
		C02 IN	19. 2%	18. 17						÷.	-			24.16			•			6. 2%	4. 9%	6. 2%	17.9%	21, 62						23. 37 DETOU O		DEIHILS	14 27			22. 7%	20. 2%		20.0%		1			J	AL CA				OKE CONVI
		 	8.4 MM	~	~		9	ר י	٥	43. K 717	9		H U		- 1	- 0	0 0	<u>ا</u> ر	4	4	203. 4 NM	57.4 MM	118.0 NM	न	0	न ।	<u>م</u>	9	1 00	COEPOTING	UNITRATING	UNEKNIINU 169 1 MM	• •	(ल	-	660 TPD	26.4 NM	78. 7 MM	-		4.1 MM	OPERATING	OPERHI ING	UPEKHI INU OFO TON	UTI 808				(4) VETROCOKE CONVERSION
general plant list		TYPE	HYDROGEN	AMMONIA	HVDROGEN	NTURUEN	NIGUNG	HINDRACH	HYDROGEN	NAUKUGEN		CHU UMUT		HUDROGEN.	NAT GAC		. 2	AMMONIA	LNG	NAT. GAS		NAT. GAS	SNG	HYDROGEN	SNG	HYDKUGEN	511G	HYDROGEN	DNU DNDOOGNU	HYDRUGEN ETU OV					ā	AIMOMMA	HVDROGEN	SNG	HYDROGEN	SNG	2			DELLA UV.					ONVERSION
. GENERAL		CONTRACTOR/ENGINEER	DAVY POWERGAS		PLANT OWNER DECUTEL CODB	HMINEDCAL OIL DOD		FLANI UMNEK Survada such such	NUMB NAME AND AND THE	CUTUDA CUTUM	COLTOVA CACA ERUN	DAVV POLIEDCAC		DAVY PRUERCAS	HUDSON FNGTNEERING	FOR SECNID ABSORAFE	DAVY PONERGAS	CHIYODA CHEM ENGR	BECHTEL INT.	FOR SECOND ABSORBER	BECHTEL INT.	FOR SECOND ABSORBER	DAVY POWERGAS	FOR SECOND ABSORBER	DHVY POWERGAS	- UK SECURIU HESUKBEK .	LUMITUS CUMPHNY	FUK SECUND HESUKBER	noverus current	SCIENTIFIC SECIEN	SCIENTIFIC DESIGN	GLOBAL ENGINEERING			FOSTER WHEELER CORP	HUMPHREYS & GLASGOM		BECHTEL CORP	FOR SECOND RESORBER	BECHTEL CORP	ruk secund Hesokeek		SCIENTIFIC DESIGN	-	SCIENTIFIC DESIGN		CCC1		JRE (3) CATACARB CONVERSION
		LOCATION	GREAT BRITAIN	ITALY	CHLIFUKNIH, USH MEVICO	TAPAN				TAPAN	TAPAN	IAPAN	IBPAN	GEORGIA, USA		STREAM THIS LINE	GREAT BRITAIN	INDIA		STREAM. THIS LINE	DAS ISLAND	STREAM. THIS LINE	OHIO, USA	SIREAM. THIS LINE	CTPEGM THIC LINE (MICHIGAN, 169 -	IGD WIDTHOUT	FRANCE	JAPAN .	RUSTRALIA	AUSTRALIA -	RUSTRAL IA	TENNESSEE, USA	INDIA	BAHRAIN					NEW ZEHLANU DDA711		RISTRIA	ROMANIA		UNS OF NOTHER CIDI		CNFIELD (2) HIPURE
BENFIELD CORP.		PLANT OWNER	NYPRO (U. K.) LTD	UNINUCU CHEMICHL	PETRO FOS MEXICRNOS	KYOKUTO PETROL IND	GROTNIEP. INC	ASTA KYNSEKT CO UTO	PETROFINA	IDEMITSU KOSAN	DSAKA GAS CONPANY	OSAKA GAS CONPANY		COLUMBIA NIPRO	HUMBLE OIL CO	IS MAIN		DELHI CLOTH MILLS .	LIG CO	IS MAIN	LIG CO	IS MAIN	CORP.	COLUMBIO 1 NO CODD	LUKF.				NIPPON PETROLENM	ETHYLOX	KASEI MIZUSHIMA	z	SANTOS LTD TRAIN B	TRAIN	W. R. GRACE & CO	MANGALORE FERTILIZER	BHHRAIN PETROLEUM		7			DYTTEND C Q	MITSUI PETROCHEMICAL	0, 5, 4,	ROMCHIM		SIZE IS EITHER IN MILLIONS OF NORMOL CURIC		- (1) CONVENTIONAL BENFIELD
			85)			(68	685	616	92)	93)	646	626	96)	52	685		66	1002	101)		102)		(SOL	1947		1050		106)	107)	108)	1092	110>	111>	112)	113)	114)	1152	116)	16.77	()11	1187	1911	120)	121)	122>		- U #		NOTES

۰.

•••

. 5-20

370

:

	BENFIELD CORP.		GENERAL	PLANT LIST					PAGE	й 4
	PLANT OWNER	LOCATION	CONTRACTOR/ENGINEER	. ТҮРЕ	*512E	CO2 IN	CO2 0UT	H25 IN	H2S OUT	NOTE
			الله يكل شرك إليها الله إليان الله إليان المار إليان إليها الله الله الله الله الله الله الله							1
123)	MARINDUQUE MINING	PHILIPPINES	٥	HYDROGEN	~	22. 4%	0. 100%	1	ł	(1)
124)		INDIA		AMMONIA	180 TPD	32. 4%	2. 000%		ľ	Ð
125)	ENTASA	SPAIN	UNIVERSAL OIL PROD	HVDROGEN				1 1	ţ	Ð
126)		JAPAN		HYDRUGEN	Z8. 4 MI	13. 8Z	0. 200%	1	ļ	93
127>	_	RUSTRAL IA	RALPH M PARSONS CO	AMMONIA	2			£ 1	ł	93
128>	H		LUMMUS COMPANY	SHG	9	23. 72			1	9
			FOR SECOND ABSORBER	HYDROGEN	4 (•	
129>	ALGONQUIN GAS CO.	, USA THE FUL	38	SNG	9 0				1	9
1000	LINE ABOVE IS MAIN	THIS LINE	CUND HESUK	HYUKUGEN	6. 8 MM 204 TON		2002	0.00	10 DDM	
1262			FERI, CURF. UF INVIN FEDT CODD OF MOID			1.1				93
			יעאר. טר מססי					1		
1221	r. t. 1.	TRVAC, NCD	LUNT. UT	NAT CAS		24 02		2000 0	1 PPM	E
174)					4		1. 000%		1 PPM	9
			- D		0		2. 000%	1	1	9
136)	PEOPLES GAS CONPANY	ILLINDIS, USA	PULLMAN KELLOGG	HYDROGEN	9. 1 MM	21. 72	1. 009%	ł		3
137>			PULLMAN KELLOGG	045	8	22. 3%	1. 000%	ł	ł	(1)
138)				SNG	0	22. 37	1. 686%	1	1	(1)
139>	OIL		FOSTER WHEELER CORP	, SNG	54. 9 NM	23. 37	2.590%	ł	ł	£
140>	PUBLIC SERVICE EAG	NEW JERSEY, USA	FOSTER WHEELER CORP	SNG	18. 7 MM	22. 5%	0, 500%	1	-	(1)
	ABOVE IS MAIN	STREAM. THIS LINE	FOR SECOND ABSORBER	HYDROGEN	ल	20. 0%		1	1	
141>	SERVICE E&G	NEN JERSEY, USA	WOODALL DUCKHAM	SNG	N	22. 9%		1	ł	£
	NIC	STREAM. THIS LINE	FOR SECOND ABSORBER	HYDROGEN	-	22. 17	0. 500%	1	1	
142>	CHINESE PETROLEUN	TRIMAN	RALPH M PARSONS CO	HYDROGEN	Ø	24.6%	0. 100%	ł	ł	Ð
143>		JAPAN	JAPAN GASOLINE	HADROGEN	D	12		ł	!	9
144>	BARODA ATOM. RES. COM.		HUMPHREYS & GLASGOW		100 TPD	18. 9%	0. 100%	; ; ;		Ð
1450	INDIAN PETRO CHEM	INDIA 112	SCIENTIFIC DESIGN	ETH. OX.	Ę,	DETAILS	ARE NOT T	O BE DIZCI	CLOSED	93
1462	HUNDU (THHHH) HIGH I INDU THHUNDU HUNDU	HHWHII, USH STREOM TUIC IINC	KHLPH M PHKSUNS CU . FOD SECOND ODSOBOED	DNG	115. 5. TH	K4. K6	1. 0000 1.			
1544	C	DIACHT, LAIS LANC Uduart 1160	POR SECURIN NOSUNDER		0 0	10 10 10 10	1. 000%			
			TOD CRUCHT I FINJURD CO							ì
1011	Themiten Provedu	INLA LINE	FUR JECUID NEJUNEER	HADDOGN	0 0	24 77				(1)
		MINNECOTO, NG		HUDDOGEN	1 0	24 47	0 1007			Ĵ
1503	ISTANBLIL GUBRE SAN	TURKEY	FRIEDRICH UHDE	AMIONIA	<u>ج</u>	22.22	0.100%	ł	1	ĴĴ
151>	CHEVRON OIL CO.	NEW JERSEY, USA	FOSTER WHEELER CORP	HYDROGEN	7. 8 MM	22. 6%		!	1	Ð
152>	IDEMITSU KOSAN	JAPAN	FOSTER WHEELER CORP	HYDROGEN	15. 8 MM	23. 5%		i	ł	6
153>	IDEMITSU KOSAN	JAPAN	CHIYODA CHEM ENGR	HYDROGEN	N	24. 47		1	1	3
154>	MACHIMPLEX	CHINA (PRC)	HUMPHREYS & GLASGOM	METHANOL	22.9 MM	16. 6%		ł	1	£
155>	ASIA OIL CO. LTD.	JAPAN	JAPAN GASOLINE	, HYDROGEN	m	23. 1%		ł	1	Ĵ
156>	TOA OIL	JAPAN		u	M	17. 2%		ł]	Ĵ
157)	SIDERURG, VENEZOLANA	VENEZUELA	ARTHUR G MCKEE	RED. GAS	m		0.950%	ł	1	(1)
158)	TOKUYAMA STYRENE	JAPAN	JAPAN GASOLINE	HNDROGEN	-	11. 57 1		[[ł	3
159)	CHUNG THI CHEMICHL	NUMINI	DIDIER ENGRIG GMBH	2	12. 4 MM	20. 2%				93
160)	MONTEDISON S. P. H.	THLY			UPERHI ING	DEINILS		1 1 1 1 1	DISCLOSED	93
161)	CHINN THN-THUE FIBER	~	SULENTIFIC DESIGN	EIH. UX.					עשבטשטב נע	93
162)	CNIIC NHXI	CHINH (PKC)	PULLMHN KELLUGG	HINDWIH	CHI APAT	JC. 72	A. 0/0%	1	}	6
- - -	CITE IC ETTHED IN MULLING OF NODMOL	TOLO IONONO JUDI	C SEET OF DONN'NT COS D		TONC OF DE	DOLIDE DE	200			

* - SIZE IS EITHER IN MILLIONS OF NORMAL CUBIC FEET OF PRODUCT GAS PER DAY OR IN TONS OF PRODUCT PER DAY

(3) CATACARB CONVERSION (2) HIPURE NOTES - (1) CONVENTIONAL BENFIELD

(5) OTHER CONVERSION

<4> VETROCOKE CONVERSION

5-21

371

PAGE 5	H2S OUT NOTE	 - (1)	Ð	9: 1	93 1	93) 	(E)	£ 3):E	99	Ыдд	6 PPN (1)	PPM	(1)	3 1	(1)	9	93 1	93	€€)) 	1	Ð	.	1 Ð	93 1	93 1		DISCLOSED (1)	•		- E			99	1 PPN (1)	Ĩ	1 £	9				(5) OTHER CONVERSION	
-	H25 IN I	7	1	1	1	ľ) · 	l	1	: -		1	I 1	0. 005%	0.0102		1	ł	1	ł	1	 		ł	1	!	1	1	1			ទី ឃ្ល	3		ł		TO BE DISCLOSED	1 1 1	6.0032		1	1	I I		•	(2) 01H	
	CO2 0UT	 0. 070%	0.070%	8. 878% 0	8. 878% 6. 670%	2010.0	2010 0				0. 2007. 0 6007	0 150%			4. 500%	0.500%	0. 160%	6. 100%	1. 500%		0.500%		6 658%	0.0502	0. 850%	8. 200%				2002 2007		T. UUUA	ARE NOT	0.300%		0. 1802	ARE NOT				8.300%	0, 050%	0. 100%	VER DAY		WERSION	
	CO2 IN	0 17.72								20.2%	20. 20 20. 20 20. 20	i Ç		16.	27	M	D 18.3%	_				di C	0 10 02 0 18 02	1 1 1 1	1 1 1 1 1 1 1			24	4 9 0		27 - 42 27 - 42 27 - 52		_		17.	23. 5%	NG DETAILS				M 24.7%	D 17.32	D 20.1%	PRODUCT F		(4) VETROCOKE CONVERSION	
	*S12E	1000 TPD	·	• •	1000 1PD	UTI BOOL	•				15 6 MM	9	0	ω	14. 5 NH	17. 7 MN	1250 TPD	1250 TPD	5.6 MH		4 (21. 5 FUT		1500 TPD			2	-	ກ	n c		OPERATING	OPERATING	19, 4 NM	1250 TPD	39. 5 MN	GPERATING			0	41. 2 NM		1100 TPD	IN TONS OF	·	(4) VET	
- PLANT LIST	T-VPE	 AMMONIA	HIMOMIA	HINDAME	HINDHINH		UTNINUU		HIMUMU	HINUMAN	NAT GAC		HYDROGEN	NAT. GAS			AMMONIA	ANNONIA	METHANOL	AMMONIA	NAT, GAS	HYUKUUEN OMMONY O	ANMONIA ANMONIA	AMMONIA	AMNONIA	HYDROGEN	AINOMIA	HVDROGEN	OXO GHS	5NG UVDDDGEN	NOT COC			2	ANMONIA		ETH. OX.			2	HYDROGEN	AMMONIA	RIMONIA	PER DAY OR		CONVERSION	•
GENERAL	CONTRACTOR/ENGINEER		_			PULLIN KELLUUU		TOUS CHANNELOUG	TOUD ENGINEERING	IUTU ENGINEEKING BLOÙT CLAITE	SCIEN DESTGALTD	EL. CORP	BECHTEL CORP	_	FIRNA CARL STILL	FIRMA CARL STILL	PULLNAN KELLOGG	PLANT OWNER	DAVY POWERGAS	PULLMAN KELLOGG	_	RUNFRICTS & GERSOOM	CHEMICO	CHEMICO	CHEMICO	Щ,	HUMPHREYS & GLASGOM	PULLMAN KELLOGG		PLANI UMNEK Aavu pohedaas	OLY FUMERUND	SCIENTIFIC DESIGN	SCIENTIFIC DESIGN		HUMPHREYS & GLASGOM	DAVY POWERGAS	SCIENTIFIC DESIGN	FRIEDRICH UNDE	PULLNAN SWINDELL	BADGER	CHIYODA CHEM ENGR	FOST. WHEELER ITALY	FRIEDRICH UHDE	ic feet of product gas per day or in tons of product per day		PURE (3) CATACARB CONVERSION	
	LOCATION	CHINA (PRC)	_		CHINH (PKC)					INDIA VERU	NEN ZERI AND	CANADA	CANADA	AUSTRALIA	BRAZIL	ERAZIL	OKLAHOMA, USA	KANSAS, USA	SOUTH KOREA	INDONESIA	INDUNESIA COSOT DOITOIN	uneni BKIININ Need	USSR	USSR	USSR	JAPAN	IRAN	JAPAN	UHTHN INDIA	GENDGIA. 11CD		CHINA (PRC)	MEXICO	KENTUCKY, USA	GREAT BRITAIN	JAPAN	EHST GERMANY FRUDT	SPAIN	VENEZUELA	BRHAMAS	JAPAN	EGVPT	LIBYR	ONS OF NORMAL CUB		NFTELD (2) HIPURE	
BENFIELD CORP.	PLANT OWNER	CNTIC	CNT1C	CNTIC	1667 UNITE SUICHTHNU 1273 ENTIE STEULT						173) NATURAL GAS OF N. 2	-		SA	8	8			THESUNG 1	Xnana Ia	184) FI FUFUK SKIMIDJHJR 184) FONDED VILLINGHOLME		TECHMASH.	TECHMASH.	TECHMASH.	-	-		192) NYUMA PEIKUCHERICHL 193) NEU PENTOOL RITE			196> CNTIC		-			202) FRVPTIAN GEN/L ARGAN			205) BORCO DESULF. CO.			208) NHITONHE OLE CORP	- SIZE IS EITHER IN MILLIONS OF NORMAL CUBIC	:	NOTES - (1) CONVENTIONAL BENFLELD	

•

.

. 5-22

372

·. .

		BENFIELD CORP.		GENERAL	PLANT LIST					PAGE	je e
		PLANT OWNER	LOCATION	CONTRACTOR/ENGINEER	TYPE	*S12E	CO2 IN	C02 0UT	H25 IN	H25 OUT	NOTE
	209)	PERTANINA - ARUN	INDONESIA			8	14. 72			1 PPM	<u>8</u>
		ł	INDURESTR				14. 72	0.005%		1 PPM	ŝ
_ :		PERIMINA - ANUN Deto Vuncevi	INUUNESIA Tapan	BECHIEL INI. CULUADA CHEM ENED	LING UIDDOCTU	0	14. 7%		8. 008%	1 PPM	ŝ;
<u>م</u>		TRUTHO BECTNING CO				n (5	ł	93
		MOUDDOCTOD COOD CCDT		FUSTER WHEELER CURP	HYDRUGEN	סכ	Ξ.		ł	1	9
		NITROTOC DE COUTILO	HIGNI	HHLIDUK IUPSUE	HINDWINH	•	-			ł	Ð
		MITDOTOS DE COSTILIO			HINDINH				1	ł	6
					HINDUN	dat est			ł	1	(4)
				SNHM PRUGETT	HIMOMMH	1100 TPD			ł		Ð
		NINIGIN EIKE JEUK.	IRELAND	KELLUGG INT.	HIMONIA	1500 TPD			1	1	(1)
			MEDI GERMANY	KKUPP KUPPEKS	HYDRUGEN	MM 2 2			1	1	(1)
		XOTOT N	INDUNESTH		HINOMMH	1000 TPD	Ĩ.,		1	ł	(1)
					NHT. GHS				1	ł	Ð
			- ·		AMMONIA		• •		1	1	ĉ
	522		LOUISIANA, USA		AMNONIA	1250 TPD			1	;	ŝ
	224)	PT PUPUK KUJANG	INDONESIA	_		1100 TPD	19. 0%			1	(1)
	225)	CORL MIN'G RES. CENT.	JAPAN	HITACHI LIMITED	COAL GAS	0 C M	7. 4%	2.000%	0.116%	M99 62	(1)
	226)	LIZENSINTORG MOSKOV	USSR	FRIEDRICH UHDE	VIN AC.	140.0 MN	20. 2%	2.500%	ł	ļ	(T)
	227)	NYPRO (U.K.) LTD			HYDROGEN	14.9 MM	18, 9%	0.100%	ł	ł	(1)
	228)	COLUMBIA NITROGEN	GEORGIA, USA	C. F. BRAUN	AMMONIA	1500 TPD	17. 17	0.080%	1	1	(1)
	229>		TRIMAN	ABR ENGINEERING	NAT. GAS	44. 51 MM	43. 62	5. 0002	0.002%	MPP 0	(1)
	230)		VENEZUELA	PULLMAN SWINDELL	NAT. GAS	52. 0 MH	11. 32	1. 000%	ł	1	(1)
	231)		JAPAN	DAVY POWERGAS	516	38. 7 MM	21: 12	1. 000%	ł	ł	(1)
	232)	TOKYO GAS NEQISHI	JAPAN	DAVY POWERGAS	SIIG	38. 7 MM	21. 1%	1.000%	1		(1)
	233)	-	BULGARIA	SCIENTIFIC DESIGN	ETH. OX.	OPERATING	DETAILS	ARE NOT 1	TO BE DISC	DISCLOSED	Ð
	234>	PETRO. RIO TERCERO	ARGENT INA	SOC. TECH. ENT. CHIM.	HYDROGEN	4.8 MM	8. 0%	0. 106%	ł	}	(1)
	235)	STATE FERT MFG CO	SRI LANKA	PULLMAN KELLOGG	ANNONIA	650 TPD	19. 0%	0.100%	ł	ł	(1)
	236)	HINDUSTAN STEEL LTD	INDIA	FERT. CORP. OF INDIA	ANMONIA	180 TPD	23. 07	9. 1 00%	ł		(1)
	237)	INDIAN FARM FERT CO	INDIA	AN KELI	AMMONIA	1000 TPD	22. 8%	0, 050%	ţ		(1)
	238)	LIGNITE	INDIA	CORP. OF	AMMONIA		6.5%		1. 100%	M77 0	6
	239)	NEVVELI LIGNITE CORP	INDIA	FERT. CORP. OF INDIA	RMMONIA	350 TPD	32. 8%	0.0562			(1)
	240>	TECHMASH ROSSOSH	USSR		AMMONIA	1500 TPD	17.4%	0: 050%	I	I I	(1)
	241)	TECHNA NOVOMOSKOVSK	USSR		AMMONIA		17.4%	0.050%	1	1	(1)
	242)	TECHMASH GRODNO	USSR		FINOWIA		17. 42		1	ļ	(1)
	243)	TECHMHSH CHEKKHSSY	USER	TOYO ENGINEERING	AMMONIA		17. 4%		1	ł	(
		NFKI CUHL UIL		LIPUE H. G.		262. 0 MH	11.52		ł	1	<u>(</u> 2)
		SU HERI CUHL UIL GHS	SUUIN HERICH	LINDE H. G.	CORL GAS	262. 0 MM			1	1	(2)
	(46)	WHINK FERIJLIZER CU	GHTHR	DHVY POWERGRS		1000 TPD	18.8%				(1)
	242	KUMHIT OIL COMPRIN	KUWRTT		NAT. GAS	io i	NM M		8. 020%	700 PPM	(1)
	(46) 1	GULT UIL CHNHUM	CHINHDH	FUSJER WHEELER CORP	HYDROGEN	14.6 MN	15.9%		!	1	(]
		HSHUGHNJ FEKI & CHEM		FRIEDRICH UHDE	£	1200 TPD	17. 7%			ł	(1)
		CULUKHUU INIEKSIMIE	WYUMING, USH	STERRNS ROGER INC	NAT. GAS		17. 6%		3. 760%	Ndd E	(S)
		CHITANNA 1070	1 URKEY	KELLUGU INT.	Ę	1100 LPD		0. 050%	ł	ł	Ð
				۳,		50. 0 HE	8. 1%	2002	ł	ł	(1)
		UXI IENU NUKDESIE				OPERATING	DETRILS	NOT	8	DISCLOSED	(1)
	1907	CHINOUN DAA	TEXHS, USH	SCIENTIFIC DESIGN	ETH. OX.	OPERATING	DETRILS	ARE NOT T	TO BE DISC	DISCLOSED	(1)
	4				-						
	Å ¦ ₽	SIZE IS EITHER IN MILLIUNS OF NURMHL CUBIC	NS UP NUKTHIL LUBI	IC FEET OF PRODUCT GAS PER DAY OR IN TONS OF PRODUCT PER DAY	ER DAY OR IN	I TONS OF PK	ODUCT PE	R DAY			

(5) OTHER CONVERSION

(4) VETROCOKE CONVERSION

(3) CATACARB CONVERSION

(2) HIPURE

NOTES ~ (1) CONVENTIONAL BENFIELD

373

	BENETELD CORP.	•	TYYENER	הנאון בוצו	•	•			PAGE	بر بر
•	PLANT DIMER	LOCATION	CONTRACTOR/ENGINEEK	TYPE	3212	CO2 IN	100 E00	NI SZH	HZS OLT	MOTE
Î	JEFFERSON CHENICAL	TEXAS. USA	CTENTIELE OCCIER		0.11200200					
3 26	FCI TROMBAY V	INDIA	SNAM PROCETTI	RMONTO	CENTINU - 41AB			LUNT IVENT IN.		33
222		ILSSN	SCIENTIFIC DESIGN	ETH OX	OPEGATING	OFTRILS	۹	CONSTRENTION	I	33
		POLIND .	HALDOR TOPSOE	ALMONTA	823 TPD	10, 82	9 1002		ł	33
		Parma	HALDOR TOPSOE	FINCINIA	825 TPD	18.8%	8. 188Z	ł	1	93
	PEJKUMIN Terunosutusent anal	SALDT NOALA	TIELROOV & ASSUC	HYDROGEN		15.92	8. 100Z	 	1	93
			TOYO ENGINEERING	RIMONIA	1566 TPD	17. 72	0. 050%	1	ł	33
		UNHON	SCIENTIFIC DESIGN	ETH OX	OPERATING	DETAILS	ARE CONFIL	CONFIDENTIAL	•	3
2643		PETERS INC.	KINETICS TECH INT	NAT. GAS	27.2 1	24. 52		1	1	3
			HOODALL DUCKHAN	SHG	22: 3 H	24.52	1. 660%	İ	ł	3
2653		SINCHAL THIS LINE	FOR SECOND RBSCRBER	ື	Env.	24 2%	0 500%	1	ļ	; .
266)	KEIVO GAS COMPANY	LEBON	DOM CRINKDA	ETH OX	OPERAT ING	DETRILS	ARE CONFIL	CONFIDENTIAL		3
267)					16.9 m	20.7%	2.000%	1	ł	3
268)			ž.			30.6%	0. 800%	ł	1	(1)
269)	TECHTASHIMP ANGARSK		Actuation LUNI. EV.	HINDLAH	1268 TPD	19. 8%	6. 650%	1	1	3
270>		RUNCTOR TO	DE DUT CUMUCENTRU DE DUT CUMUC	5	DAL BACE	21. 9%	8. 050%	ł	ł	3
271)					136, 8 mM	••	. 2. 000%	ł	1	(3)
272>	JEFFERSON CHEMICAL	TEXAC, NCO	SCIENTIFIC DESIGN		CPERATING			CONFIDENTIAL	•	3
273)	HGRICO CHENICHL	HRKBUSAS USA	STATES IT I DESIGN		OPERATING		RRE CONFI	CONFIDENTIAL		Ĵ
2743	PETROLEOS MENICANOS	MEXICO		€.	1068 TPD	-	8. 688%	1	1	9
275)	BALTINGRE GAS & ELEC	HARVLAND. 1150	BLART ALVED UNDER		CHERRI NG		'	CONFIDENTIAL		3
	LINE REDVE IS MAIN	IREAN	FUR SECOND DECREDED			24	8.588%	1	ł	9
276>	UNION OIL CRLIFORNIA	PLFBF	DET DEF FULIVERING				7: 000%		1	
2775		NEH YORK USA	C.F. BRAUN		UL T TC			0.928%	1 PPN	3
276)		LIEYF	SNAM PROGETTI	RIMUMIA.	ULENNING		Ξ.	DENTIA		3
279)		USSR	SCIENTIFIC DESIGN	ETH OX	OPERATING				1	3
		PRKISTAN	SNAM PROGETTI	AMMONIA	1108 TPD		A 190%	CUNFILLENI (HL.		£ :
		JAPAN	HITACHI LINITED	SND		5 X 0			ł	33
1101	-	PAKI STAN	HALDOR TOPSOE	FUTONIA	1168 TPD				1	33
		HIGH	PLANT OWNER	ALINUM	457 TPD	20.00	A 2001			3:
	NIZHA - LUZIN	MUGGSLAV1A	SCIENTIFIC DESIGN	ETH. OX	OFERATING	DETATIS			1	33
2.5	rencio uje Vertibe émerico	HOUISIANA, USA		NHT. GAS	56 7 hm	1 22			ł	93
267)		INVUNESTA	LURGI KOHLE UND MIN.	AINCOMA	1506 TPD	15.12		1 		33
258)	HINDUSTAN FERTIN 1750		POHEROAS	TOWN GAS	13. 5 PM	18. EX	2. 0302	ł	1	93
(532	SU HFRI CORL DIL GAS		PERI. CONP. OF INDIA	FINONIA	666 TPD	18. 6%	6. 160%	1	ł	33
(952	SO HFRI CONL DIL GHS	SOUTH REPLY			\$	11. 5%			;	3
251)	UUUK FHDRIKH SECERA				262. 6 MM	11. 5%	0. 668%	ł	ł	3
252)	PULYCHEN	INDIA				5.62	0. 566%	!	i i	9
(262	PETRUCHENICAL INDUST	LIEMUN	HALDOR TOPSOF			_	Ξ	DENTIAL		9
65	KYUDO OXYUEN	JüPfin	MARINZEN ENGINEEPING		٦	15.4%		ł	1	(1)
(1951) (1951)	STATE ORGAN OIL FRUJ	IKĤO	KINETICS TECH INT		a •	45.0%		ł	1	9
276)	IFENIISU FEIKOCHEM	JHPAN			• 1			1	ł	3
257)	HZZHIINA OIL RFG CO	LIEVA	SCIENTIEL LECTON			3. 5%	0 106%	ł	ł	3
(352	ьйсен Раган	1 NUDINES 1A			Ę.	DETAILS (ī.	DENTIFIL		(7)
2453	balen papau	INDUNESIA		NURVICEN		21.72	6. 166%	;	ł	3
		•			11 B.F.	27 22	6. 10 <i>0</i> %	1	ł	9
បា រ ៖	- SIZE IS EITHFR IN MULICUS -		-		•				-	
1			" HUKINYL CUBIC FEET OF PRODUCT GAS PER DAY OR IN TONS OF PRODUCT PER DAY	ER DAY OR IN	TONS OF PR	ICDUCT PER	r DHY			
NUTES	NÜTES - (1) CÜNYENTLÜNHL BENETEN					,		•		

•)

(5) DTHER CONVERSION

(1) VETROCOKE CUIVERSIUN

(2) Chifichke Cunversion

(2) HIPURE

אטדבה - נו) כטונייבאודוטואין פּבּארובנט

374

Reproduced from best available copy.

PAGE 8	NOTE	£	(I)	. (1)	3	9	9	Ð
٤	H2S IN H2S OUT	1	ł	ł	1	ł	ł	
	H2S IN	1	ł	ł	ł	ł	1	ł
	C02 0UT	0. 100%	. 0. 100%	0.200%	0. 100%	0, 200%	. 0. 120%	0. 120%
	C02 IN	18, 82	18.8%	20.6%	18. 32	23. 5%	19.92	19. 9%
		38. 9 MM	38. 9 MM	18. 3 MM	1100 TPD	40. G MM	40. S MM	40. 5 MH
GENERAL PLANT LIST	TYPE	HYDROGEN	HYDROGEN	HYDROGEN	AMMONIA	HYDROGEN	HYDROGEN	HVDROGEN
GENERAL	CONTRACTOR/ENGINEER	UNIVERSAL OIL PROD	UNIVERSAL OIL PROD	FLUOR CORPORATION	HALDOR TOPSOE	CHIYODA CHEN ENGR	FOSTER WHEELER CORP	FOSTER WHEELER CORP
•	LOCATION	INDONES IA	INDONESIA	CHLIFORNIA. USA	IBHH UBH	JAPAN	KUMAIT	KUMAIT
BENFIELD CORP.	PLANT OWLER							306) KUMALT NAT. PET. CO.
		30	38	38	88	Ř	ñ	38

375

(5), OTHER CONVERSION 2/81

(4) VETROCOKE CONVERSION

+ - SIZE IS EITHER IN MILLIONS OF NORMAL CUBIC FEET OF PROVICT GAS PER DAY ON IN TONS OF PRODUCT PER DAY

(3) CATACARB CONVERSION

(2) HIPURE

NOTES - (1) CONVENTIONN, BENGIELD

.

STATUS SUMMARY

CNG ACID GAS REMOVAL PROCESS

6-1

376

- General Information
 General Information
 Process Development
 Solvent Characteristics
 Process Description
 Commercial Design Data
 Advantages and Disadvantages
- 7.0 References

1.0 GENERAL INFORMATION

Developer:	Consolidate	d Natural	Gas	Research	Company
-	Cleveland,	OH 44106	•	-	• •

Licensor: Consolidated Natural Gas Research Company Cleveland, OH 44106

. Type:

The CNG process is a low temperature physical absorption process that removes acid gases (CO₂, H₂S, COS) and other trace contaminants from medium to high pressure gas streams containing substantial amounts of CO₂. The process has three novel features:

- (i) Absorption of sulfur-compounds and trace contaminants with pure liquid CO₂.
- (ii) Regeneration of pure CO₂ with simultaneous concentration of H₂S and trace contaminants by triple-point crystallization.
- (iii) Absorption of CO₂ with a slurry of organic liquid containing solid CO₂.

Conditions:

The sulfur absorber operates at $-67^{\circ}F$, slightly above the triple point. The feed gas pressure can range from 300 to 1500 psia. However, the CO₂ dew point of the feed gas must be above the triple point temperature. The feed gas must have a CO₂ partial pressure of at least 75 psia. The triple-point crystallizer operates at pressures and temperatures near the triple point of CO₂. The CO₂ absorber operates at temperature ranges between $-67^{\circ}F$ and $-112^{\circ}F$.

Applications: The CNG process can be applied to process gas containing medium to high CO₂ content, e.g., synthesis gas produced by coal gasification, heavy oil partial oxidation, and natural gas in enhanced oil recovery projects.

Status:

The process is currently at the bench scale stage of development. Future plans call for a 2-3 ton/day Process Development Unit (PDU).

2.0 PROCESS DEVELOPMENT

- Development work on the CNG acid gas removal process has been sponsored since 1973 by the CNG Research Company
- o A U.S. Patent 4,270,937 was filed in 1979 and was accepted in June 1981.
- o Since 1981, the CNG process development work was co-sponsored by the U.S. Department of Energy, and CNG Research Company.
- o To date, an extensive process data base has been accumulated which includes:
 - Vapor-liquid equilibrium data for binary systems of CO2 with sulfur-compounds and with ethers and ketones, and multi-component systems including hydrogen, carbon monoxide, methane, carbon dioxide, and hydrogen sulfide.
 - (ii) A bench-scale slurry formation and melting apparatus which provides data on slurry pumping and on rates of slurry formation and melting.
 - (iii) A bench-scale closed-cycle triple point crystallizer which provides data on rates of crystallization and melting and on separation factors attainable in a single stage of crystallization.

3.0 SOLVENT CHARACTERISTICS

o Physical and Chemical Properties of CO2

Triple Point $-69.9^{\circ}F$, 75.1 psiaSublimation Temperature $109.3^{\circ}F$ Specific gravity liquid @ $67^{\circ}F$ 1.18Viscosity @ $-67^{\circ}F$ 0.35Surface Tension @ $-67^{\circ}F$ 10 dynes/cmMolecular Weight44Heat of Fusion86 Btu/lbHeat of Vaporization150 Btu/lb

(Source Ref. 1 & 2)

4.0 PROCESS DESCRIPTION

The CNG process consists of five main steps. (Figure 4-1).

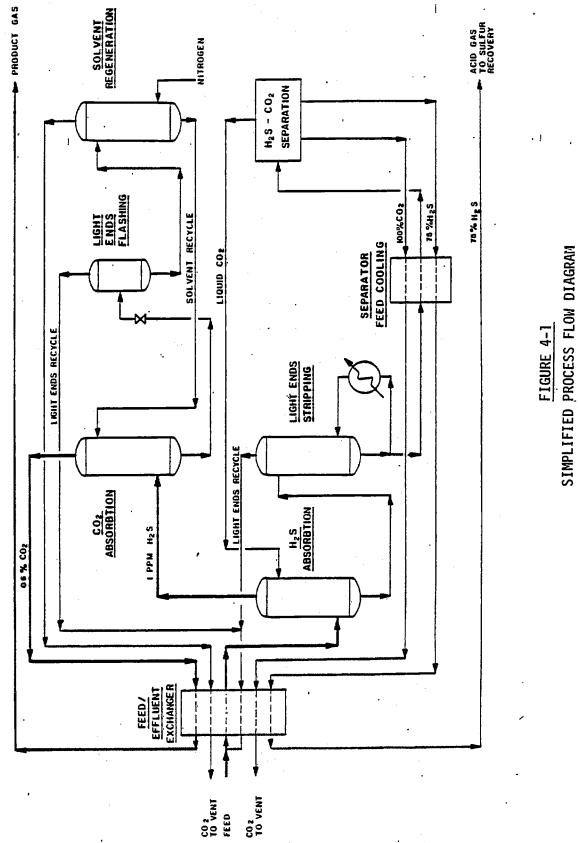
o Precooling, Water Removal

The raw gas is cooled and residual water vapor is removed in a dehydration system to prevent subsequent icing. The water-free crude gas is further cooled to its carbon dioxide dew point (-56°C) by countercurrent heat exchange with return clean gas and carbon dioxide.

o Carbon Dioxide Condensation, Sulfur-Compound Absorption

Carbon dioxide is partially condensed by cooling the gas from its dew point to about -55°C. Depending on CO_2 dew point, a fraction of the CO_2 in the crude gas stream is condensed together with the Sulfur-compounds. The gas at -55°C is scrubbed by liquid CO_2 to remove H_2S , COS and other trace impurities from the feed gas. The absorption is essentially isothermal since the heat of absorption is being dissipated as heat of vaporization of a small portion of the liquid CO_2 .

- The liquid CO, with all the sulfur-compounds, other trace contaminants and some co-absorbed light hydrocarbons is combined with the contaminated liquid CO₂ condensed in precooling the raw gas. The light hydrocarbons are stripped from this combined liquid CO₂ stream and recycled and mixed with the feed gas. Any higher hydrocarbons (C_4-C_6) in the feed gas will remain with the condensed CO₂.
- o Carbon Dioxide Regeneration by Triple Point Crystallization.


The contaminated liquid CO, stream leaving the light ends stripping tower is processed in a direct-contact triple point crystallizer with vapor compression. Solid CO, is formed by adiabatic flashing of the liquid CO, stream hear the top of the crystallizer. An H₂S-rich gas stream is produced and is continuously withdrawn from the top. All C₂-C₆ hydrocarbons to the crystallizer are removed with the H₂S rich stream. The solid CO₂ crystals fall to the bottom of the crystallizer where they are melted by direct contact with condensing carbon dioxide vapor. Pure carbon dioxide liquid thus produced is split into two streams, one in absorbent recycled to the H₂S absorber, the other is sent back through the process for refrigeration and power recovery, and is delivered as a product stream or vented to the atmosphere.

o Carbon Dioxide Removal

 CO_2 remaining in the gas after removal of sulfur-compounds is absorbed at temperatures below the CO_2 triplepoint with a slurry absorbent. The slurry absorbent is a saturated solution of an organic solvent and CO_2 containing suspended particles of solid CO_2 . As CO_2 is absorbed (condensed), the latent heat released melts the solid CO_2 contained in the slurry absorbent. The direct refrigeration provided by the melting of solid CO_2 enables a small absorbent flow to accommodate the considerable heat of condensation and absorption of the CO_2 vapor. The cold, purified gas stream then leaves the acid gas removal process after heat exchange with the raw gas stream.

o Regeneration of Carbon Dioxide Absorbent Slurry

The CO₂-rich solvent leaving the CO₂ absorber near the triple-point temperature contains no² solid CO₂. This stream is flashed in a drum to vaporize any methane or other light components. The CO₂-rich absorbent is next cooled by external refrigeration and then flashed to lower pressure in a number of stages, so as to generate a cold slurry of liquid solvent and solid CO₂. Nitrogen stripping of the solvent may sometimes be required to produce a very lean solvent. The regenerated slurry absorbent is recirculated to the CO₂ absorber while the CO₂ flashed gas is vented to the atmosphere after recovery of refrigeration and power.

· 6-6

381

(Source: Ref. 3)

5.0 COMMERCIAL DESIGN DATA

A summary of the design data for a CNG acid gas removal system for a 250 Billion Coal-to-SNG plant is shown in Table 5-1. The feed gas is from the gasification of a U.S. Eastern Coal in the BI-GAS gasifiers. Table 5-2 gives the calculation of contribution to gas cost for the case presented in Table 5-1.

÷ .,

6.0 PROCESS CHARACTERISTICS

- o Advantages
 - Pure liquid CO₂ absorbs COS better than H₂S. An absorber for sulfur-compounds designed to remove H₂S using liquid CO₂ will also remove COS and all other less volatile sulfur-compounds in the gas.
 - A sulfur-rich stream up to 75% H₂S can be produced by triple point crystallization with low energy consumption.
 - A pure CO₂ stream with 1 ppm impurities can be produced by triple²point crystallization.
 - Low flowrate of liquid CO₂ used to absorb sulfur-compounds and other trace impurities due to: 1) unique COS absorption capability of liquid CO₂, 2) low absorption temperature and 3) low molecular weight of CO₂ which favors high gas solubility per unit volume of solvent.
 - Low flowrate of slurry absorbent for CO₂ removal due to:
 1) low temperature of absorption, 2) prior bulk condensation of CO₂, and 3) high effective heat capacity of the slurry containing solid CO₂ (as in situ phase change refrigerant).
 - The CNG process utilizes relatively small temperature and pressure driving forces to effect the desired separations. Therefore the CNG process has a low energy consumption.
 - The CNG process uses liquid CO₂, a byproduct of the process, as the absorbent for sulfur-compounds removal. This can reduce the solvent makeup requirements.
- o Disadvantages

· · · ·

- Separate raw gas dehydration and condensible hydrocarbon cleanup systems are required prior to the CNG process.
- Low operating temperatures require extensive use of 3-1/2% Nickel Steel.

TABLE 5-1

DESIGN DATA FOR A CNG AGR SYSTEM IN A 250 BILLION BTU/DAY COAL-TO-SNG PLANT

Stream 	Shifted Syngas	Acid gas to Claus	Stripper Overhead	CO2 Product	Sweet Gas	N2 to Stripper
Flowrate, Moles/hr	101,176	1,745	4,526	30,076	67,546	2,800
Composition	(Vol %)				1997 - A.	
CO H2 CH4	11.85 40.63 13.94	0.00 0.00 0.00	0.17 44 ppm 6.43	0.00 0.00 0.00	17.74 60.85 20.45	
C2H6 N2 C02 C0S H2S H2O	0.22 31.99 0.02 1.27 0.08	0.00 24.99 1.35 73.66 0.00	61.36 32.04 0.00 0.00 0.00	0.00 100.00 0.00 0.00 0.00	0.36 0.60 < 1 ppm < 1 ppm 0.00	100.0

UTILITY REQUIREMENTS

Electric Power	14,651 Kw (Pumps & Comp)
	2,507 Kw (Refrigeration)
Make-up Solvent	1.5 MM \$/yr

CAPITAL COSTS

Equipment (Installed) \$ 90.6 MM (Mid-1982) Royalties \$ 1.4 MM (Mid-1982)

TABLE 5-2

.

CALCULATION OF CONTRIBUTION TO GAS COST CNG (SELECTIVE) CASE

.

Coal Type Evaluator Project Report No. Date Published Plant Capacity	Eastern U.S. (Bigas Gasifiers) C.F.Braun GRI-81/0174 May,1983 250 Billion Btu/day SNG	
CAPITAL COSTS :	\$ MM (Mid-1982)	
Installed Equipment Contingency @ 15 %	90.6 13.6	
Direct Facility Constr Investment Home-Office costs @ 12%	104.2 12.5	
Total Facility Constr Investment	116.7	
Royalties Initial Solvent Charge	1.4 8.4	
Total Plant Investment	126.5	
OPERATING COSTS :		\$/hr
Electricity Solvent Make-up	17,250 Kw @ \$0.05/Kwh	862.5 173.5
TOTAL	· · ·	1036.0
Total Operating Cost, \$	MM/yr at 100 % Stream factor = 9	.08 MM \$/Yr
CONTRIBUTION TO GAS COSTS :	Specific Cost, Charge Rate, \$/MM Btu-Yr Year	Contribution, \$/MM Btu

Capital Related	1.54	0.089	0.14
Operating	0.11	1.000	0.11
Total			0.25

384

• • •

- The process is not suitable for gases having low CO₂ concentration.
- Slurry systems may be difficult to operate.
- o Hydrocarbons Losses: (Ref. 3)

Component	Losses as Percent of Feed
ċo	<0 1%
H ₂	Negligible
СН4	. 2%

7.0 REFERENCES

- Hise, R. E., L. G. Massey, R. J. Adler, C. B. Brosilow, N. C. Gardner, W. R. Brown, W. J. Cook, and M. Petrik, "The CNG Process: A New Approach to Physical Absorption Acid Gas Removal", AIChE Symposium Series No. 224, Vol. 79, 1983.
- 2. Cook W. J., W. R. Brown, Y.C. Lin, and M. Petrik", Refrigerant Absorbents for use in Acid Gas Removal", Paper presented at the AIChE 1983 Summer National Meeting, August 1983, Denver, Colorado.
- 3. "Fossil Fuel Gasification Technical Evaluation Services" -Evaluation of CNG Acid Gas Removal Process" Final Report, Prepared for the Gas Research Institute by CF Braun & Co., March 1983.

385

STATUS SUMMARY

RYAN-HOLMES ACID GAS REMOVAL PROCESSES

1.0	General Information
2.0	Process Development
3.0	Solvent Characteristics
4.0	Process Description
5.0	Commercial Design Data
6.0	Advantages & Disadvantages
7.0	Commercial Installations
8.0	References

1.0 GENERAL INFORMATION

Developer:	Koch Process	Systems Inc.
	Westborough,	Massachusetts

Licensor: Koch Process Systems, Inc. Westborough, Massachusetts

Type:

The Ryan-Holmes Processes are low temperature distillation processes used for separating acid gases (CO₂ and sulfur compounds) from natural gas streams. An NGL-based additive, typically a C_{μ} + mixture, is introduced to or near the top of the distillation column to significantly alter the phase equilibrium of the systems in order to provide advantages in the distillations.

Conditions:

The distillation columns operate between 350 to 650 psia. Depending on the scheme, the operating temperatures can range from -120° F to 40° F. Acid gas contents (mainly CO₂) in the feed can range from 30% to 90%.

Applications: The Ryan-Holmes processes can be applied to a

variety of gas processing applications:

- Processing of associated gases from enhanced oil recovery projects;
- NGL recovery fom sour hydrocarbon gases;
- Upgrading BTU content and quality of natural
- gas stream with high acid gas concentration;
 Feed purification prior to follow-on cryogenic processing;

Process Schemes:

Several different process schemes are possible with combinations of a demethanizer, an ethane recovery column, an NGL (additive) recovery column, and a CO₂ recovery column. (Refer to Section 4.0 for details)

Status:

Koch Process Systems has licensed four applications of the Ryan/Holmes technology in Enhanced Oil Recovey projects. This process has not yet been applied, or proven to process synthesis gases from coal gasification units.

387

2.0 PROCESS DEVELOPMENT

. 388

- In 1978, a laboratory program consisting of multi-component 0 phase equilibrium cell experiments was initiated.
- 0 Vapor-liquid equilibrium data were studied for:
 - Methane-CO, at high CO, concentrations and near the
 - freezing point of CO_2 ; $CO_2-C_2H_6-C_4$ liquids and $CO_2-H_2S-C_4$ composition ranges. liquids over wide
- o Experimental data were fitted using the Soave-Redlich-Kwong and Peng-Robinson equations-of-state.
- o In 1981, a 600,000 SCFD pilot plant was installed at the ARCO Oil and Gas Company gas plant in Covington, Oklahoma. A variety of feed compositions were tested, including variation of CO content from 10% to 90%, variation in NGL content and the presence of H_2S in feed.
- o After completion of the pilot plant program, the pilot plant was relocated to Koch Refining Company's refinery in Corpus Christi, Texas.
- o Further testing is planned to include effects of column internals on hydraulic characteristics and applications in the production of SNG and synthesis gas.

SOLVENT CHARACTERISTICS 3.0

The additives used in the Ryan Holmes processes are usually Natural Gas Liquids (NGL) extracted from natural gas feed. Typical additives most commonly used are C_{μ} mixtures. The use of NGL has the advantage that it is readily available and that it does not introduce any foreign components into the system. The functions of the additives in different separations are as follow:

Separation of methane and CO2 -0

- prevents CO₂ freezing in the condenser; (i) (ii) thế operating temperature of the raises reducing distillation column, hence refrigeration horsepower requirements; relative volatility
- (iii) increases the methane/CO₂ above that for the binary system;
- permits higher pressure operation; (iv)

Separation of CO, from ethane-plus hydrocarbons -

- breaks the CO₂-ethane azeotrope; allows higher operating temperatures; (i)
- (ii)

Separation of CO₂ and H_2S -0

> enhances the CO_2/H_2S relative volatility. (i)

Depending on the feed gas compositions and the type of application, the molar ratio of additive to methane content in feed gas can range from 0.25 to 4.5.

4.0 PROCESS DESCRIPTION

390

Depending on the application, several different Ryan-Holmes process flow schemes are possible:

o Enhanced Oil Recovery Gas Processing Facilities

This system consists of three columns: demethanizer, ethane recovery column, and NGL product column, as shown in Figure 4-1.

Dry feed is cooled by appropriate cold products and refrigeration before entering the demethanizer. An optimum NGL mixture is added in the demethanizer condenser, which operates at about -120° F. Product sales gas (H₂S-less than 4 ppm, CO₂-100 ppm to 2%) is produced overhead at essentially column pressure (normally 450-650 psi).

The bottoms is fed to the ethane recovery column after heat exchange. This column normally operates at 350 to 550 psig with an overhead temperature of about 5°F. The additive NGL is introduced to the column several trays down from the top. CO_2 is produced with 50 ppm or less H_2S .

The bottoms product from the ethane column is fed to the NGL recovery column. A light hydrocarbon is produced overhead which contains all the H_2S and CO_2 fed to the column. The bottom stream from this column is used as the distillation additive for the first two columns. A slip stream is taken from the bottom stream to remove the net C_4 contained in the feed.

An alternative process scheme using four columns can also be used in this application. The four-column arrangement has lower energy requirements and the overall capital costs are also lower. This system, as shown in Figure 4-2, consists of a demethanizer, an ethane recovery column, a CO₂ recovery column, and an NGL (additive) recovery column.

Dry feed enters the ethane recovery column where the split betweeen CO₂ overhead product and a bottoms product stream consisting of C₂, H₂S, C₃ and additive, is effected. The overhead is then compressed, chilled by refrigerant and fed to the CO₂ recovery column. No additive is used in the CO₂ recovery column so the overhead is a methane stream with 15 to 30% CO₂. The bottoms product is pure liquid CO₂ and can be pumped to the required reinjection pressure. The overhead from the CO₂ recovery column next flows to the demethanizer where additive is used to produce a sales gas quality fraction overhead. Less additive is required for the four column scheme since much of the CO₂ has been removed in the CO₂ recovery column. The bottoms of the demethanizer contains CO₂ plus additive. It is used to fulfill some of the additive requirement in the ethane recovery column with the remainder of that requirement being made up with fresh recycle additive.

The bottoms from the ethane recovery column flows to the additive recovery column in which a light NGL-heavy NGL split is made.

O Upgrading BTU Content and Quality of Sweet Natural Gas Streams

Only two columns, a demethanizer and an additive recovery column, are required; see Figure 4-3. The second column operates as a conventional distillation column.

o Recovery of NGL without Methane/CO2 Separation

This process scheme applies where combined methane-CO₂ overhead can either be reinjected or burned directly as a low BTU fuel. Ethane and C₂ hydrocarbons are recovered in the bottoms of the demethanizer and processed in the additive recovery column, as shown in Figure 4-4.

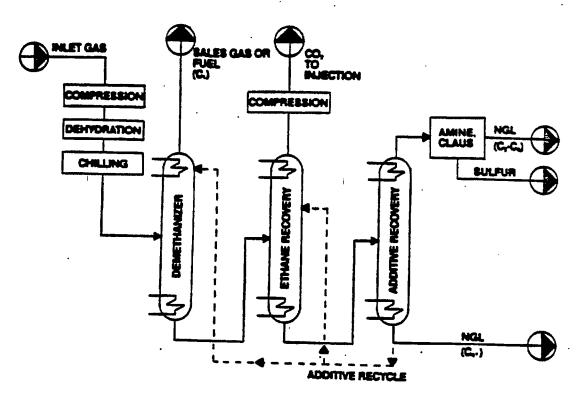
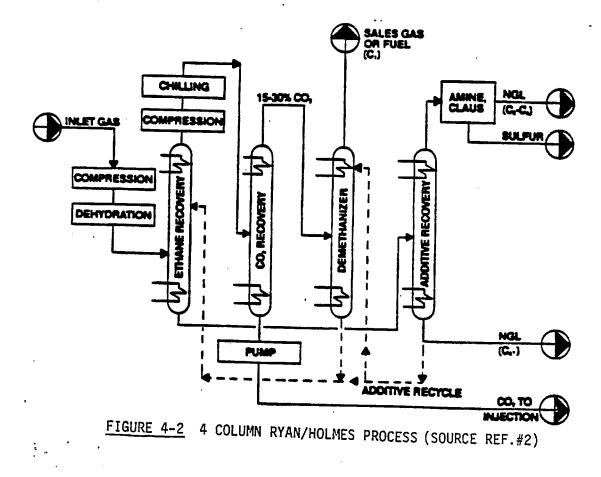
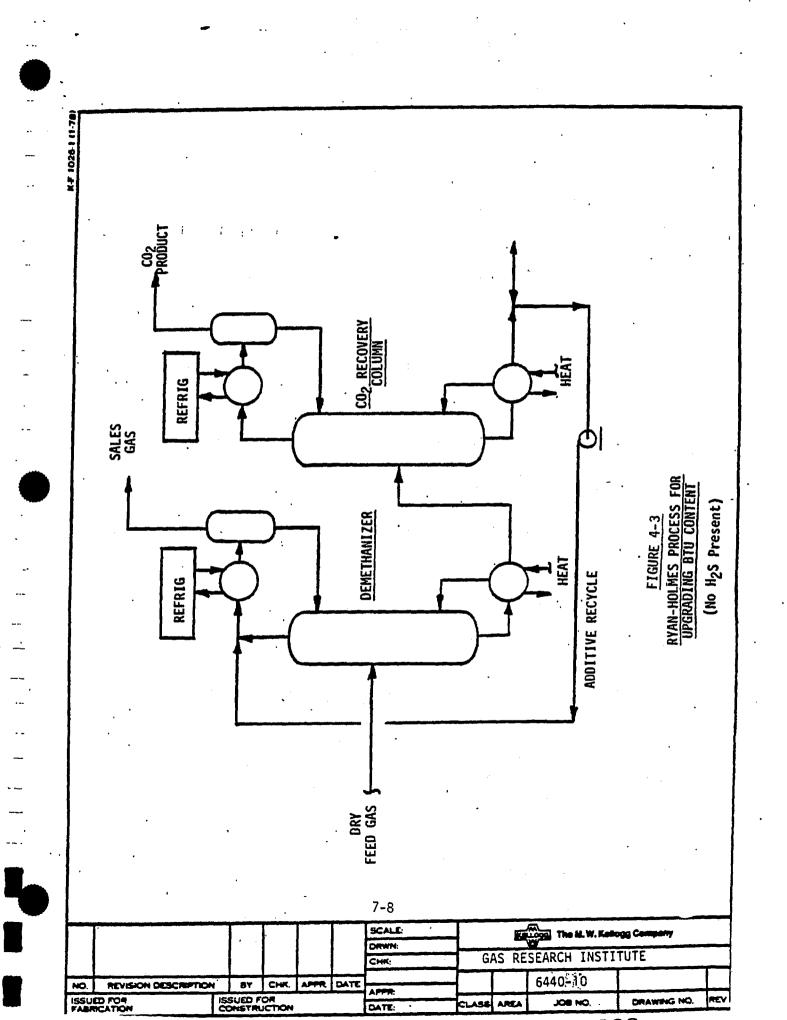
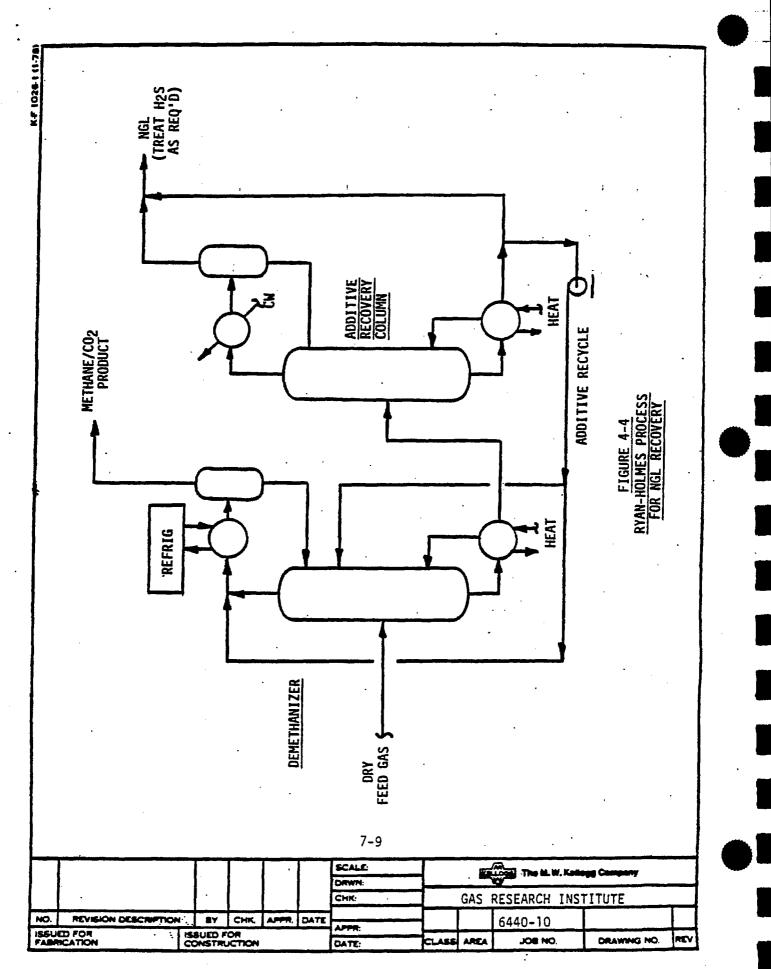





FIGURE 4-1 3 COLUMN RYAN/HOLMES PROCESS (SOURCE REF. #2)

392

5.0 COMMERCIAL DESIGN DATA

0	Enhanced (Refer	d Oil Reco to Figure	very Gas Se 4-1)	eparation Pla	nt	
ı	Moles/H1	Feed	Fuel Gas Product	CO, to Injection	NGL Product	% Recovery
	co ₂	: 793•3	4.2	• 715.1	20.0	
	H ₂	5.0		4 ppm	5.0	
	сн ₄	214.2	· 199.2·	15.0	-	
	с ₂ н ₆	110.9	-	8.0	102.9	92.8
	C ₃ H ₈	94.8	0.1	• 3	94.4	99.6
	cų	116.8	0.7	-	116.1	99.4
	· N ₂	3.1	3.1	· _	· · -	-
	TOTAL	1284.1	207.3	738.4	338.4	· .
o	<u>High CO</u>	<u>Content</u>	Gas Separat	ion	•	-
	Basis:	, Prod	line Sales uct CO ₂ , 20 2000 psig	Gas, 1000 psi 000 psig	lg, 2% CO ₂	
	Feed:	СН ₄ , со ₂ ,	MMSCFD MMSCFD		27 <u>73</u>	
•		TOTA	L	10	00	
	Product:	CO ₂ 1	s Gas, MMSC Product, MM Product, M	ISCFD 73.	4	
		TOTAI		100.	0	·
				•		

(Source Ref. 1)

6.0 ADVANTAGES AND DISADVANTAGES

Advantages Q

- Can produce pipeline quality methane, with H₂S less than 4 ppm and CO₂ less 1%. Can produce a Claus plant feed stream with a high
- H₂S/CO₂ ratio.
- Can produce a CO, stream with less than 100 ppm $\rm H_2S.$ Up to 98% recovery of ethane can be achieved.

 - Low loss of additive agent, C_{4}^{+} , to products, e.g., approximately 1%.
 - Flexibility to handle widely-varying flow rates and compositions of feedstock.
- Use of expander/compressor sets not required.
- High recovery of CH___.

Disadvantages 0

If the overhead condenser is operated at approximately -60° F instead of approximately -120° F, the additive agent/methane molar ratio increases from 0.2 to 4.0.

The Ryan-Holmes processes are proven only for natural gas and NGL applications. Very little, if any, investigation has been devoted to processing of synthesis gas. Representatives of Koch have indicated concern that significant concentrations of hydrogen would not be easily handled by the processes.

7.0 COMMERCIAL INSTALLATIONS (Reference 2)

- Seminole Unit operated by Amerada Hess
- Willard Unit, Wasson Field, operated by ARCO Oil & Gas.
- GMK Smith Field operated by Mobil Producing Texas and New Mexico Inc.
- Wasson Denver Unit operated by Shell 'Oil' Company."

8.0 REFERENCES

- Holmes, A. S., J. M. Ryan, B. C. Price, and Styring; "Pilot Tests Prove Ryan/Holmes Cryogenic Acid Gas/Hydrocarbon Separations"; Paper presented at 61st annual GPA Convention. March 1982, Dallas, Texas.
- Ryan, J. M., and F. W. Schaffert; "The Ryan/Holmes Technology - An Economical Route for CO₂ and Liquids Recovery"; Paper presented at the 1984 AIchE Winter National Meeting, March 1984, Atlanta, Georgia.

8.0 COMPARISON OF PERFORMANCE/DESIGN PARAMETERS

1 1

The GRI/Advisors Planning and Strategy (GAPS) Committee was established to develop a plan for guiding research in the areas of fossil fuel gasification and downstream gas processing. As part of the work, the committee has developed a procedure for evaluating acid gas removal processes by setting up performance criteria to evaluate processes. This allows the identification of specific advantages and disadvantages of various processes and to establish research goals for process improvement and new The "Musts" in acid gas removal process development. technology are shown in Table 8-1. The technical criteria and standards developed for AGR technology appear in Table 8-2. A brief description and explanation of the same is provided where appropriate. Table 8-3 summarizes the performance of the four (Selexol, Rectisol, Benfield and CNG) processes. The Ryan-Holmes process is not included in the evaluation, for the reason it has not yet been applied or proven to process synthesis gas from coal gasification units. All the data in Table 8-3 are extracted from the respective Status Summary reports and from the public sources. It should be noted that these data are based on . current publicly available resources; as more data are developed or made available to the public by the licensors, this table could be updated. Footnotes at the end of the table are provided for additional clarification.

'MUSTS'IN ACID GAS REMOVAL TECHNOLOGY SELECTION

• The acid gas removal technology being considered must:

- 1. Be capable of processing the typical gas from coal gasification to effect removal of at least 95% of the contained H2S and at least 98% of the contained CO2.
- 2. Be compatible with at least one type of shift/methanation system, i.e., coventional, combined or direct, and with at least one standard commercial sulfur recovery process.
- 3. Generate only residues which are disposable using available technology, i.e., solid residues suitable for landfill without major environmental control, liquid residues convertable to disposable effluents and gaseous residues convertible to ventable effluents.
- 4. Requires no highly exotic materials of construction.
- 5. Involves no solvent or process reagent which is regarded as highly toxic or highly carcinogenic.

6. Be developed such that the basic concept is confirmed.

-

•

TECHNICAL CRITERIA AND STANDARDS FOR ACID GAS REMOVAL TECHNOLOGY

		***************************************		8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
-	CRITERION	DESCRIPTION	STANDARD	EXPLANATION
	1.0 Feedgas Processing Capability (Con	pability (Concentration of components, vol%):		
	1.1 CO2 1.2 H2S 1.3 COS	Ability to process feed gas having a widely varying concentration of constituents.	5 - 60 0.2 - 1.3 100-500 ppmv	The process must be capable of treat- ing the raw gas from a variety of gasification technologies.
	1.4 C2-C4 Gases 1.5 C5+ hydrocarbons 1.6 Water 1.7 Dther Contaminants		Up to 1.2 Up to 0.2 0.3 - 0.5 Up to 50 ppm	
	2.0 Separation Capability:		NH3/HCN	
	2.1 H2S in product gas	Ability to remove CO2 and suifur compounds	1 - 5 ppm	
8-3	2.2 CO2 in product gas 2.3 H2S in acid gas-	a regulations.	1 vol% 25% minimum	
	2.4 H2S in acid gas- (non-selective AGD)		1% minimum	claus reed specification. For non-selective AGR processes.
	2.5 Sulfur in vent gas 2.6 CH4 lost from		250ppm as SD2 < 1.0 %	As percentage of CH4 in feed gas.
	2.7 C2-C4 hydrocarbons		No losses	Index vs Selexol
	2.8 COS removal effic- iency		max i mum	Ratio of COS in H2S-rich gas to COS in AGR feed.
	3.0 Process Efficiency (percent):	ercent):		
400	3.1 Product Gas Loss 3.2 Energy Consumption	100 * (1- HHV product gas/ HHV sulfur- free feed gas} Utility input(MM BTU)/HHV of feed gas.	∧ ∧ - ເບັ % %	Defines the product gas losses to H2S and CD2 rich streams. Utility requirements-include steam and electric power, which must be conver- ted to an equivalent heat rate.
•• • •	4.0 By-product Production:			
•	4.1 CO2 Impurity		< 1 %	could be sold as
	4.2 CO2 Recovery		> 75 %	oy-productionso minimize product toss.

1

CRITERION	DESCRIPTION	STANDARD	EXPLANTION
5.0 Operating Conditions (Absorption/Regeneration):	(Absorption/Regeneration):	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5.1 Absorption Tempera- ture		100 F	Process with minimum feed gas cooling and no refrigeration requirement is professioned
5.2 Absorption pressure	, ,	400 pstg	Process should be capable of operat- ing at the existing system pressure without the need of letdown or compre-
•			ssion. Std. based on typical operating pressure of Lungi,Westinghouse and BGC/Lundi dasifiers.
5.3 Regeneration Temp- erature		100 F	Regeneration temp closest to the absorption temp is preferable. Process with no heat input or refrigeration
5.4 Regeneration Pressure		20 ps1g	requirement is preferred. Regeneration pressure should allow Integration with sulfur recovery proc- ess without any additional compression Higher regeneration pressure is
			preferred.
6.0 Solvent Characterization:	101:		***************************************
6.1 Vaporization losses 6.2 Degradation losses 6.3 Regenerability	Negligible vaporization losses. Negligible degradation losses. Regenerable by more than two techniques.	<pre>< 20% /yr. < 1% /yr. > 2 Methods</pre>	As percentage of in-process inventory (Basis: Selexol) Stripping methods: steam stripping, N2/Air stripping and pressure
6.4 Safety in Solvent Handling	Solvent should be non-toxic, non-corrosive and inflammable.	58 7 7	let down. Index relative to Selexol.

TECHNICAL CRITERIA AND STANDARDS FOR ACID GAS REMOVAL TECHNOLOGY

	N 0 13 13 13		
4 1	DESCRIPTION	STANDARD	EXPLANATION
7.0 Integrability with ups	7.0 Integrability with upstream and downstream units:		
7.1 Feed pretreatment	Number of steps(COS hydrolysis, carbon adsorption, mol. sieves)required to prepare feed suitable for acid das removal unit.	No extra steps	
7.2 Compatibility with gas conversion	Process must be compatible with convention- al Shift/Methanation, combined Shift/Metha-	+ N	Compatible with at least two types of gas conversion systems.
processes 7.3 Integrability with Claus sulfur	Number of extra steps required before feed- ing acid gas to the sulfur recovery unit.	No extra steps	
recovery. 7.4 Integrability with Stretford sulfur recovery unit.	Number of extra steps required before feed- ing acid gas to the sulfur recovery unit.	No extra steps	
8.0 Process Techniques:			
8.1 Equipment Availability	pment which is readily available minimal extrapolation from es.	No Extrapolation	
9.0 Materials of Construction:			
9.1 Availability	Materials of construction available at reasonable cost.	Standard Materials	
10.0 Complexity:		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
10.1 Absorption steps	Number of towers in series must not exceed number of ras streams senarated minus one	2 Max1mum	Two for selective process and one for non-selective process
10.2 Regeneration Steps	00Ve.	2 Max1mum	
10.3 Gas Recycles	Number of gas recycles should not exceed the number of removal stens	· 2 Maximum	
10.4 Mechanical Complexity	Internals. ts required. as standaro	None	Index relative to Selexol.

i

8-5

,402

1

TECHNICAL CRITERIA AND STANDARDS FOR ACID GAS REMOVAL TECHNOLOGY

	exesterererererererererererererererererere	11 11	和江軍同计计科学員和指導部務委員
	DESCRIPTION	STANDARD	EXPLANATION
1.1.0 Controllability :		3 5 1 7 5 6 6 6 6 7 7	, , , , , , , , , , , , , , , , , , , ,
11.1 Control System 11.2 Turn down	Use existing control techniques or only minimal extrapolation. Fraction of normal rate to which flows can be reduced while producing product and acid gases to specification.	Yes To 50 %	Index relative to Selexol.
12.0 Reliability:	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	F E E T T T T T T T T T T T T T T T T T	
12.1 Standby Requirements	Need for spare equipment (other than normal practise)	None	
12.2 Consequence of Fallure		Minimum	Likelihood that damage would occur to other units due to a failure of AGR
12.3 Maintenance Extent	Need for maintenance	Minimum	system.
12.4 Overdesign Requirements	Necessity to overdesign equipment for coal composition variations.	None	•
13.0 Environmental Considerations:		3 	, , , , , , , , , , , , , , , , , , , ,
13.1 Solid Effluents 13.2 Liquid Effluents 13.3 Gaseous Effluents	ZŒE	None None None	
,			

403

i

..

••

PERFORMANCE OF ACID GAS REMOVAL TECHNOLOGIES VS. CRITERIA

CRITERIA AND SUBCRITERIA	EXPLANATION	TOXETES	RECTISOL	BENFIELD	CNG
1.0 FEEDGAS PROCESSING CAPABILITY					
1.1 CO2	Process wide	No limitation	No-11mitation	No limitation	16 vol% Minimum
1.2 H2S	range of concen-	0.2 to 1.3 vol %	0.2 to 1.3 vol %	0.2 to 1.3 vol %	@ 450 psig 0.2 to 1.3 vol %
1.3 COS	trations of each	10 [.] - 20 ррши	Up to 500 ppmv	500 Ppmv	500 ppmv
1.4 C2-C4 gases	species.	Up to 1.2 vol %	Up to 1.2 vol %	> 1.2 VOL %	> 1.2 VOL %
1.5 C5+ hydrocarbons		Prewash reg'd.	Prewash reg'd.	Independent	None Tolerated
1.6 Water		0.3 to 0.5 vol %	0.3 to 0.5 vol %	Ргеназћ 0.5 vol %	None Tolerated
1.7 Other Contaminants		Up to 50 ppmv HCN/NH3	Up to 50 ppmv · HCN/NH3	HCN produces non- regenerable salts	52723
2.0 SEPARATION CAPABILITY			•		
2.1 H2S in Product Gas	Remove CO2 and	1 to 5 ppm .	Less than 1 ppm	1 ppm (Hipure)	1 ppm
2.2 CO2 in Product Gas	sulfur compounds	1 vol %	10 ppm	< 1 vol %	0.1 to 1.5 vol %
2.3 H2S in Acid Gas (S)	for compatability	25 to 30 %	25 to 30 %	2-5 vol %	50-75 %
2.4 H2S in Acid Gas (NS)	with sulfur re-	3-5 vol %	3-5 vol %	1-2 vol %	50-75 %
2.5 Sulfur in Vent Gas	covery processes	< 250 ppmv	< 250 ppmv	No Vent	< 1 ppm
2.6 CH4 Loss	As % of CH4 in feed gas	0.4 - 0.5 %	0.8 - 1.0 %	< 1 %	%
2.7 C2-C4 Losses	Index	1.0	0.9	1.1	0.8
2.8 COS Removal Effic	In H2S rich gas vs.AGR feed	10 to 20 %	Over 90 %	X0-90 %	99 + X

Selective Non-selective

.

s NS

404

TABLE 8-3(Cont'd)

PERFORMANCE OF ACID GAS REMOVAL TECHNOLOGIES VS.CRITERIA

4

)5 . ⊖≬

CRITERIA AND SUBCRITERIA 3.0 PROCESS EFFICIENCY	EXPLANAT ION	SELEXOL	RECTISOL	BENFIELD	CNG
3.1 Product Gas Loss	(1-HHV product gas/HHV sulfur free feed gas)	4% (Lurgi) 2% (Westghs)	6.5% (Lurg1) 1.4% (Exxon)	1.7% (Westghs)	3.5% (Bigas)
3.2 Energy Consumption	Utility input/ HHV of feed gas	4.7 % (Westghs)	4.5% (Exxon) 3.4% (Lurg1)	13.9%(Westghs)	1.4% (Bigas)
4.0 BYPRODUCT PRODUCTION					
4.1 CO2 Impurity		1 % or less.	1 % or less.	Not Produced.	< 0.5 %
4.2 CO2 Recovery		75 - 85 %	50 - 70 x	Not Produced.	80 + X
5.0 OPERATING CONDITIONS		,	•		
5.1 Absorber Temperature	deg F	100 degF (H2S) 50 degF (CO2)	-50 to -70 degF (Solvent temp)	200-250 degF	-67 to -112 degF
5.2 Absorber Pressure	psig	400 psig	400 paig	400 psig	400 paig
5.3 Regenerator Temp	deg F	280 degF(H2S) 10-20 degF(C02)	250 degF(H2S) 5 degF(CO2)	200-250 degF	-67 degF
5.4 Regenerator Press	psig	20 psig(H25) 2 - 5 psig(C02)	5 - 10 psig	2-5 paig	> 75 psig
6.0 SOLVENT CHARACTER					
6.1 Vaporization Loss	% of in-process inventory	20 % per year	240-700 % per yr	30 % per year	Ŀ
6.2 Degradation Loss		Negligible.	Negligible.	> 1% per year	Negligible
6.3 Regenerability	Methods	Flash, Steam, N2	Flash, Steam, N2	Steam Stripping	Flash, N2
6.4 Solvent Safety	Index	1.0	0.8	1.1	0.9

TABLE 8-3(Cont'd)

PERFORMANCE OF ACID GAS REMOVAL TECHNOLOGIES VS. CRITERIA

CRITERIA AND	RYPI ANATION				
SUBCRITERIA		SELEXOL	RECTISOL	BENFIELD	CNG
7.0 INTEGRATION WITH OTHER PROCESS AREAS					
7.1 Feed Pretreatment	Extra staps	COS Hydrolysis &	Debydration &	011 Removal &	Dehydration and
7.2 Compatability with Gas Conversion	Different type of processes	ULL REMOVAL 3 Types	Ull Kemoval 3 Types	CUS Hydrolyala 3 Types	011 Removal 3 Types
7.3 Integrability with Claus Unit	Steps required before feeding	None.	None.	One	None.
7.4 Integrability with Stretford Unit	Steps required before feeding	None.	None.	None.	None.
8.0 PROCESS TECHNIQUES					
8.1 Equip't Available	Standard vessels	No extrapolation	No extrapolation	No extrapolation	Will require extrapolation
9.0 MATERIALS OF CONSTRUCTION				•	
9.1 Availability	None exotic	Standard mat'ls	Standard mat'ls	Standard mat'ls	Standard Mat'ls
10.0 COMPLEXITY					
10.1 Absorption Steps	- -	Two(S),One(NS)	Three(S), Two(NS)	Two(H1pure)	Тно
10.2 Regeneration Steps		Two(S),One(NS)	Three	Тно	Тио
10.3 Gas Recycles		Тчо	One	None .	Тио
10.4 Mechanical Complexity	Index	1.0	0.9	1.1	0.9
11.0 CONTROLLABILITY	:	•			
11.1 Control System	Index	1.0	1.0	1.0	0.8
11.2 Тurndомп	% of full rate	50 X	50%	50 %	25-50 %

8-9

;

;

406

Ite

r. !

TABLE 8-3(Cont'd)

1

PERFORMANCE OF ACID GAS REMOVAL TECHNOLOGIES VS. CRITERIA

(49)<u>(</u>

,

407

CNG		Sone	Minimum	0.9	None		None	None	None
BENFIELD		None	Miniaum	1.1	None.	: :	None.	Spent solvent	None
RECTISOL		None	Minimum	1.0	None		None	Purge stream	None
SELEXOL		None	Minimum	1.0	None		None	None	None
EXPLANATION		Active/total	Risk involved	Index			Extra steps	Extra steps	Extra steps
CRITERIA AND SUBCRITERIA	12.0 RELIABILITY	12.1 Standby Regmnts	12.2 Consequence Of Failure	12.3 Maintenance Extent	12.4 Overdesign Requirements	13.0 ENVIRONMENTAL CONSIDERATIONS	13.1 Solid Effluents	13.2 Liquid Effluents	13.3 Gaseous Effluents

CRITERIA EXPLANATION

- 1.1 CO, IN FEED Selexol, Rectisol and Benfield can process any CO, concentration. CNG requires a minimum CO, partial pressure of 75 psia (16% CO₂ at 450 psia) in the feed gas.
- 1.3 COS IN FEED CNG and Rectisol remove COS with H_2S stream while Selexol removes it with the CO₂ stream. Benfield removes it by hydrolysis to H_2S .
- 1.5 C₅+ HYDROCARBONS CNG cannot tolerate any C₅+'s due to freezing possibilities.
- 1.6 WATER IN FEED Benfield can tolerate maximum water because of higher feed temperature.
- 2.1 H₂S IN PRODUCT GAS Selexol can produce 1 ppm H₂S product gas with additional trays.
- 2.3 H₂S IN ACID GAS (SELECTIVE) Selexol is expected to produce a somewhat less concentrated H₂S stream as compared to Rectisol for the same coal type.
- 2.4 H₂S IN ACID GAS (NON-SELECTIVE) Non-selective Rectisol and Selexol produce an acid gas which is relatively richer in H₂S as compared to Benfield.
- 2.5 SULFUR IN VENT GAS Vent gas from Selexol is likely to have a higher SO, content as compared to Rectisol since COS is removed with the CO, stream in Selexol.
- 2.8 COS REMOVAL EFFICIENCY Selexol is least effective in removing COS with H₂S stream.
- 3.1 PRODUCT GAS LOSS This is a function of the raw gas composition (i.e., the type of gasifier). In general, the losses will increase along with the methane content of the raw gas.
- 3.2 ENERGY CONSUMPTION This is also a function of the feed composition because the volume of gas to be treated from a fixed bed gasifier will be less than that from an entrained bed gasifier.
- 4.1 CO, BYPRODUCT PURITY Selexol CO₂ stream will contain COS.
- 5.2 ABSORBER PRESSURE CNG requires a certain minimum CO2 partial pressure in the feed, which may necessitate feed compression.

 ± 408

- 6.1 VAPORIZATION LOSS For CNG, sufficient information is not available but it is known that the solvent for CO₂ removal is a heavier hydrocarbon.
- 7.2 COMPATIBILITY WITH GAS CONVERSION PROCESSES All processes can be used in conjunction with any of the gas conversion processes (conventional methanation, combined shift/methanation and direct methanation) but the sulfur content to zinc oxide beds is lowest for CNG and higher but about the same for others.
- 7.3 INTEGRABILITY WITH CLAUS UNIT CNG produces highest concentration H₂S stream and because Benfield is a nonselective process it requires further treatment to obtain a sufficiently concentrated H₂S-rich stream.
- 8.1 EQUIPMENT AVAILABILITY The scale-up flexibility of the crystallizer for the CNG process is undefined.
- 10.2 REGENERATION STEPS Rectisol has three steps due to the presence of methanol column regenerator.
- 10.4 MECHANICAL COMPLEXITY Benfield is considered less complex because of no recycles, solvent coolers, etc. Rectisol is more complex than Selexol due to refrigeration requirements. CNG is the most complex because it pumps a solid slurry and due to the crystallizer.
- 11.1 CONTROL SYSTEM For CNG, control of crystallizer may require special control techniques.
- 12.1 STANDBY REQUIREMENTS CNG was judged to require some parallel equipment such as the crystallizer.
- 12.4 OVERDESIGN REQUIREMENTS This defines the need for overdesign of equipment to meet such variations as sulfur in coal. CNG is judged to respond most favorably to these variations.
- 13.2 LIQUID EFFLUENTS Rectisol generates a water/methanol purge stream which must be treated. Benfield generates a spent solvent stream which must be disposed.

.