4 Economic Analysis

4.1 Reid Plant Case

4.1.1 Capital and O&M Cost Estimates

Primenergy developed capital cost for the gasification plant and supporting equipment required for the gasifier. Nexant developed detailed concept for the fuel receiving, storage and transport to the gasifier. Cost for this system was estimated by contacting vendors and requesting written quotes. Installation cost was established based on bulk material estimates and vendor input. Table 4-1 provide summary of the capital cost for three different material handling system configurations.

Table 4-1 Capital Cost Estimates for the Fuel Storage and Conveying

Material Handling System	8 t	/h System				
Conveying System	N	Mechanical Pneuma		neumatic		Alternate /lechanical
Truck Unloading	\$	65,220	\$	75,000	\$	200,969
Long Term Storage	\$	433,170	\$	450,000	\$	882,716
Day Storage	\$	94,437	\$	90,000	\$	228,911
Additional Equipment/Parts	\$	94,587	\$	60,000	\$	99,000
Conveying	\$	375,000	\$	250,000	\$	434,710
Trench construction/ Cover	\$	130,000	\$	-	\$ -	
On Site Construction	\$	481,000	\$	250,000	\$	258,456
Total	\$	1,673,414	\$	1,175,000	\$	2,104,762

The following table 4-2 is the total capital cost for the entire system, including boiler modification and on site construction management for WKE case.

Table 4-2 Total Capital Cost for WKE's Case

Item	Cost \$	Cost \$		
Conveying Systems	Mechanical	Pneumatic		
Primenergy Equipment and Site Installation	\$ 6,951,847	\$ 6,951,847		
Material Handling Equipment	\$ 1,673,414	\$ 1,175,000		
Boiler Penetrations/ Other Eng.	\$ 250,000	\$ 250,000		
Contingency (5% of above)	\$ 443,763	\$ 418,842		
WKE Construction Management (12 week Construction Phase)	\$ 144,000	\$ 144,000		
Total Capital Cost	\$ 9,463,024	\$ 8,939,689		

Table 4-3 provides an estimate for the fuel and O&M cost for the gasifier system.

Table 4-3 Operation, Maintenance and Fuel Cost Estimate - WKE Case

Item			Units	Cost	Basis
Gasifier Fuel & Ash					
Poultry Litter	7.45	(8.20)	t/h (tons/hr)	\$10.90 (\$12.00)	\$/t (\$/ton)
Heating Value (LHV)		(4,200)	kJ/kg (Btu/lb)	\$1.12 (\$1.43)	\$/GJ (\$/MMBtu)
Natural Gas	20.9		kg/h (lbs/hr)	, ,	
Heating Value (LHV)	50,007	(21,502)	kJ/kg (Btu/lb)	\$5.68 (\$6.00)	\$/GJ (\$/MMBtu)
Nominal Ash in Litter	20-26		%		
Ash Produced (@26% ash)	1.96	(2.16)	t/h (tons/hr)	\$1.82 (\$2.00)	\$/t (\$/ton)
Credit for sale of Ash (year 3+)		, ,	,	(\$5.45) ((\$6.00))	\$/t (\$/ton)
Boiler Availability Factor	70%		%/year	(assumed)	
Gasifier Capacity Factor	90%		%/year		
Total Poultry Litter Usage	41,091	(45,254)	tpy (tons/yr)	\$543,050	/year Litter Cost
Total NG Usage	115,255	(253,865)	kg/y (lbs/y)	\$32,752	/year NG Cost
Total Ash Produced & cost	10,814	(11,910)	tpy (tons/yr)	\$23,819	/year (year (1,2)
Ash Credits (year 3+)				(\$71,457)	/year (year 3+)
Net Gasifier Output Eq. kWe	5,238.9		kWe		
Total Power Produced	28,912,496		kWh/y		
Fuel Cost (year 1,2)	\$ 0.021			\$599,621	/year (year 1,2)
Fuel Cost (year 3+)	\$ 0.017			\$504,344	/year (year 3+)
Operation					
Operation Manpower	2.50		man-year	\$15.00	/hr
OH Multiplier	1.50			\$22.50	/hr
Operation Payroll Cost	\$ 0.004		\$/kWh	\$117,000	/year
Utility					0.01
Water	3.41	(54.02)	l/s (gpm)	\$0.53 (\$2.00)	\$/kl (\$/1000 gal)
Air (Accounted as Aux Load)					(\$\psi, 1000 \text{gail})
Electricity (-do-)					
Utility Cost	\$ 0.001		\$/kWh	\$35,774	/year
Annual Maintenance	\$ 0.005		\$/kWh	\$144,562	/year
Total O&M Cost	\$ 0.010		\$/kWh	\$297,337	/year
Operating Cost of Power					
Fuel & O&M Cost (year 1,2)	\$ 0.031		\$/kWh	\$896,957	/year
					-
Fuel & O&M Cost (year 3+)	\$ 0.028		\$/kWh	\$801,681	/year

The delivered litter cost was developed by contacting local farmers and also requesting written quotes from local haulers who traditionally haul litter for the farmers. The maintenance cost was based on EPRI guideline for typical power plant with 5 mills per kWh produced. To minimize operating cost of the gasifier, the controls are to be integrated with the existing control room. Thus the plant

operating personnel can operate the gasifier from the control room with no additional personnel. The total burden on the plant operation, including material handling for the poultry litter and ash removal was estimated at 21/2 men equivalent.

Two separate estimates were developed. It is assumed that during the first two years of operation, no market for the gasifier ash is available. Thus \$2/ton of disposal cost was assigned to the electricity production cost. Since, the ash is a valuable P&K source, it can be sold to local farmers as a supplemental fertilizer. Nominal revenue of \$6/ton was assigned for year 3 analyses.

As shown in the above table, the fuel and O&M cost for the first two years of operation is calculated at 3.1c/kWh and for subsequent years it is 2.8c/kWh. This cost can be considerably reduced, if the litter can be procured at lower or negative price and higher price can be commended for the ash. A sensitivity analyses based on these and other financial factors is provided in the Appendix.

4.1.2 Financial Pro Forma

The levelized cost of the electricity is calculated using financial parameters in table 4-4:

Table 4-4 Input Financial Parameters

Financial Factors		
Inflation rate (annual)	3	%
Fuel escalation rate (annual)	0	%
Start of construction	2003	
Years of construction	1	
Debt	80	%
Return on Debt	7.5	%
Return on Equity	12	%
Base year (for economic reporting)	2002	
Book life	20	years
Capacity factor (0.70x0.90=0.63)	63	%

Table 4-5 Levelized Cost of Electricity for WKE Case

Economic Summary (Costs are in thousands of mid-2002 dollar	's)
Item	\$ Cost
Total plant cost (TPC) Cost of land Organizational and startup expenses Working capital AFUDC Fuel cost, \$/GJ (\$/MM Btu) Allocation of TPC over design/const. years Year	4,732 0 126 169 -4 1.12 (1.43)
1 2	0.00
Annual fixed O&M costs Annual variable O&M costs @100% CF Power output (kWe) @ design capacity	259 10 5,239 13.883
Heat rate, kJ/kWh (Btu/kWh)	(13,148)
Constant dollars levelized Cost of Electricity (COE), mills/kWh	
Capital	17.8
O&M	9.2
Fuel	14.0
COE \$/kWh (mills/kWh)	0.041 (41.0)

4.1.3 Sensitivity Analysis for Reid Plant Case

The price of electricity produced from the biomass gasifier is dependent upon capital cost, fuel cost and fixed O&M cost for the gasification operation. The table 4-6 on next page provides sensitivity analysis for changes in some of these parameters.

Table 4-6 COE Sensitivity Analyses for Reid Case

Case	Litter Cost	Ash Credits	Capital Cost	WKE Cost	Interest	Period	Fuel	O&M	Capital	Total
	\$/ton	\$/Ton			%	Years	c/kWh	c/kWh	c/kWh	c/kWh
Base Case	12	(6)	\$9,500,000	\$ 4,750,000	7.5%	10	1.74	1.03	2.39	5.17
2	8	(6)	\$9,500,000	\$ 4,750,000	7.5%	10	1.12	1.03	2.39	4.54
3	10	(8)	\$9,500,000	\$ 4,750,000	7.0%	15	1.35	1.03	1.80	4.18
4	12	(10)	\$9,500,000	\$ 4,750,000	7.0%	15	1.58	1.03	1.80	4.41
5	6	(12)	\$8,900,000	\$ 4,450,000	7.0%	15	0.56	1.03	1.69	3.28
6	8	(12)	\$8,900,000	\$ 4,450,000	7.5%	10	0.87	1.03	2.24	4.14
7	10	(14)	\$8,900,000	\$ 4,450,000	7.0%	10	1.10	1.03	2.19	4.32
8	12	(16)	\$8,900,000	\$ 4,450,000	7.0%	10	1.33	1.03	2.19	4.55

One of the variables for the cost of electricity is cost of litter. The other variable is disposal cost of ash. As previously mentioned, the ash from the gasifier can be a useful source as a P&K based fertilizer. If the ash was sold as a fertilizer, it will contribute toward reducing the cost of electricity production. The figure 4-1 provides impact of litter cost and benefit of ash credits.

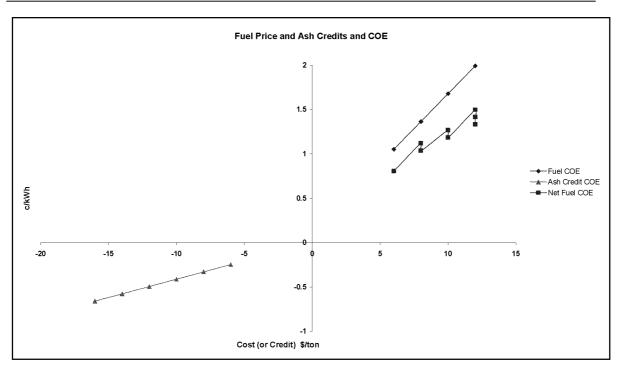


Figure 4-1 COE Sensitivity to Fuel Price and Ash Credit

4.2 Monticello Unit 1 Case

4.2.1 Capital and O&M Cost Estimate

As in the case of Reid plant, Primenergy developed capital cost for the gasification plant and supporting equipment required for the gasifier. Nexant developed detailed concept for the fuel receiving, storage and transport to the gasifier. Cost of these systems was estimated by contacting vendors and requesting written quotes. Installation cost was established based on bulk material estimates and vendor input.

Table 4-7 Capital Cost Estimates for Fuel Storage and Conveying

Material Handling Cost Estimate	М	Mechanical System		
Major Equipment	\$	672,800		
Bulk Material	\$	269,200		
Direct Sub Contract	\$	438,300		
Direct Labor	\$	287,200		
Sales Tax @8% Freight @3%	\$	103,600		
Total Direct Costs	\$	1,771,100		
Field Indirect @100% Labor	\$	287,200		
Total Field Cost	\$	2,058,300		
Home Office Cost @ 12%	\$	247,000		
Escalation (none assumed)	\$	_		
Total Mat. Handling Cost w/o Escalation	\$	2,305,300		
2 13		222.522		
Contingency @10%	\$	230,530		
Total Estimate	\$	2,535,830		

The following is the total capital cost for the entire system, including boiler modification and on site construction management for the TXU Monticello case. The Monticello case was analyzed as a commercial unit.

Table 4-8 Total Capital Cost for the Monticello Plant

Item	\$ Cost Estimate
Primenergy Equipment	\$ 11,000,000
Material Handling Equipment	\$ 2,535,830
Boiler Penetrations/ Other Eng.	\$ 400,000
Contingency @ 5% of above	\$ 696,792
TXU Construction Management (16 week Construction Phase)	\$ 250,000
Total Capital Cost	\$ 14,882,622

Table 4-9 provides an estimate for the fuel and O&M cost for the gasifier system.

As in the WKE case, the delivered litter cost was developed by contacting local farmers and also requesting written quotes from local haulers who traditionally haul litter for the farmers. The maintenance cost was based on EPRI guideline for typical power plant with 5 mills per kWh produced. To minimize operating cost of the gasifier, the controls are to be integrated with the existing control room. Thus the plant operating personnel can operate the gasifier from the control room with no additional personnel. The total burden on the plant operation, including material handling for the poultry litter and ash removal was estimated at 21/2 men equivalent.

Two separate estimates were developed. It is assumed that during the first two years of operation, no market for the gasifier ash is available. Thus \$2/ton of disposal cost was assigned to the electricity production cost. Since, the ash is a valuable P&K source, it can be sold to local farmers as an supplemental fertilizer. Nominal revenue of \$6/ton was assigned for year 3 analyses.

As shown in the table 4-9 below, the fuel and O&M cost for the first two years of operation is calculated at 3.1c/kWh and for subsequent years it is 2.8c/kWh. This cost can be considerably reduced, if the litter can be procured at lower or negative price and higher price can be commended for the ash. A sensitivity analyses based on these and other financial factors is provided in the Appendix B TXU Case.

Table 4-9 Operation, Maintenance and Fuel Cost Estimate - Monticello Case

Item			Units	Cost	Basis
Gasifier Fuel and Ash					
Poultry Litter	14.53	(16.00)	t/h (tons/hr)	\$7.26 (\$8.00)	\$/t (\$/ton)
Heating Value (LHV)	9,768	(4,200)	kJ/kg (Btu/lb)	\$0.74 (\$0.95)	\$/GJ (\$/MMBtu)
Natural Gas	0	(0)	kg/h (lbs/hr)		
Heating Value (LHV)	50,007	(21,502)	kJ/kg (Btu/lb)	\$5.68 (\$6.00)	\$/GJ (\$/MMBtu)
Nominal Ash in Litter	18~23		%		
Ash Produced (@23% Level)	3.34	(3.68)	t/h (tons/hr)	\$1.82 (\$2.00)	\$/t (\$/ton)
Credit for sale of ash (year 3+)				(\$5.45) ((\$6.00))	\$/t (\$/ton)
Boiler Availability Factor	80%		%/year	(assumed)	
Gasifier Capacity Factor	90%		%/year		
Total Poultry Litter Usage	91,631	(100,915)	tpy (tons/yr)	\$807,322	/year
Total NG Usage	0	(0)	kg/y (lbs/y)	\$0	/year
Total Ash Produced	21,075	(23,210)	tpy (tons/yr)	\$46,421	/year (year 1,2)
Ash Credits (year 3+)				(\$139,263)	/year (year 3+)
Total Gasifier Output Eq. kWe	12,782.7		kWe		
Total Power Produced	80,622,887		kWh/y		
Fuel Cost (year 1,2)	\$ 0.011			\$853,743	/year (year 1,2)
Fuel Cost (year 3+)	\$ 0.008			\$668,059	/year (year 3+)
Operation					
Operation Manpower	3.00		man-year	\$20.00	/hr
OH Multiplier	1.50			\$30.00	/hr
Operation Payroll Cost	\$ 0.002		\$/kWh	\$187,200	/year
Utility					
Water	3.41	(54.02)	l/s (gpm)	\$0.53 (\$2.00)	\$/kl (\$/1000 gal)
Air (Accounted as Aux Load)					
Electricity (-do-)					
Utility Cost	\$ 0.001		\$/kWh	\$40,885	/year
Annual Maintenance	\$ 0.005		\$/kWh	\$403,114	/year
Total O&M Cost	\$ 0.008		\$/kWh	\$631,199	/year
Operating Cost of Power					
Fuel & O&M Cost (year 1,2)	\$ 0.018		\$/kWh	\$1,484,942	/year
Fuel & O&M Cost (year 3+)	\$ 0.016		\$/kWh	\$1,299,258	/year

4.2.2 Financial Pro Forma

Table 4-10 Levelized Cost of Electricity for Monticello Case

Economic Summa (Costs are in thousands of mid-2	
Item	\$ Cost
Total plant cost (TPC)	14,883
Cost of land	0
Organizational and startup expenses	355
Working capital	263
AFUDC	384
Fuel cost, \$/MM Btu	0.95
Allocation of TPC over design/const. years Year	
1	0.12
2	0.88
3	0.00
Annual fixed O&M costs	587
Annual variable O&M costs @100% CF	14
Power output (kWe) @ design capacity	12,783
Heat rate, kJ/kWh (Btu/kWh)	11,101 (10,514)
Constant dollars levelized Cost of Electricity (COE), m	ills/kWh
Capital	19.8
O&M	7.4
Fuel	7.2
COE \$/kWh (mills/kWh)	0.0345 (34.5)

4.2.3 Sensitivity Analysis for Monticello Case

As mentioned in the Reid plant case, the price of electricity produced from the biomass gasifier is dependent upon capital cost, fuel cost and fixed O&M cost for the gasification operation. Table 4-11 below provides sensitivity analysis for changes in some of these parameters for the Monticello case.

Table 4-11 COE Sensitivity Analyses for Monticello Case

Case	Litter Cost \$/ton	Ash Credits \$/Ton	Capital Cost (TXU Cost)	Interest %	Period Years	Fuel c/kWh	O&M c/kWh	Capital c/kWh	Total c/kWh
Base Case	8	0	\$14,882,622	7.5%	10	1.00	0.78	2.69	4.47
2	8	(6)	\$ 4,882,622	7.5%	10	0.83	0.78	2.69	4.30
3	8	0	\$14,882,622	7.5%	10	1.00	0.78	1.34	3.13
4	6	(6)	\$14,882,622	7.5%	10	0.58	0.78	2.69	4.05
5	6	(6)	\$14,882,622	7.5%	10	0.58	0.78	1.34	2.71
6	4	0	\$14,882,622	7.5%	10	0.50	0.78	2.69	3.97
7	4	0	\$14,882,622	7.5%	10	0.50	0.78	1.34	2.63
8	0	(6)	\$14,882,622	7.5%	10	-0.17	0.78	2.69	3.30

The effect of changes in the litter price and credit for the ash sales will be same for the Monticello plant as in the Reid case.