LARGE PILOT PLANT ALTERNATIVES FOR SCALEUP OF THE CATALYTIC COAL GASIFICATION PROCESS

APPENDIX II

DETAILS OF STUDY DESIGN FOR MAJOR SYNTHANE REVAMP CASE

.

Preceding page blank

2

•

APPENDIX II

DETAILS OF STUDY DESIGN FOR MAJOR SYNTHANE REVAMP CASE

II-A ONSITES FACILITIES

TABLES

II-A-1	Onsites	Utilities	and Cl	nemicals	3
II-A-2	Onsites	Equipment	List ·	- Heat Exchangers	9
II-A-3	Onsites	Equipment	List .	- Pumps	11
II-A-4	Onsites	Equipment	List -	- Compressors	12
II-A-5	Onsites	Equipment	List -	- Pressure Vepsels	13
II-A-6	Onsites	Equipment	List .	- Furnaces	15
II-A-7	Onsites	Equipment	List -	· Special Equipment	16
II-A-8				Analyzers	17

FIGURES

II-A-1	Coal Feed and Catalyst Recovery	18
II-A-2	Gasification Section	19
II-A-3	Product Gas Clean-Up Section	20
II-A-4	Acid Gas Removal Section	21
II-A-5	Methane Recovery Section	22
II-A-6	Steam Reforming Section	23
II-A-7	Preheat Furnace	24
II-A-8	Onsite Plot Plan	25
II-A-9	Elevation Scheme	26

II-B COAL RECEIPT AND COAL PREPARATION

TABLES

II-B-1	Utilities	and Chemicals	30
II-B-2	Equipment	List	32

FIGURES

	Coal Preparation Plant Flow Plan Coke and Char Storage Facilities	40 41
II-C CATA	LYST HANDLING FACILITIES	42

II-D CO2 AND INERT GAS FACILITIES

223

TABLE

....

×

II-D-1 Design Flow Plan Details

Preceding page blank

1

43

44

27

•

	- 2 -	
		Page
FIGURE		
II-D-1	CO ₂ and Inert Gas Facilities	45
II-E PLAN	T FUEL SYSTEMS	46
FIGURES		
	LNG/LPG Fuel Systems Fuel Oil System	48 49
II-F BOIL	ER FEEDWATER AND STEAM FACILITIES	50
TABLES		
II-F-1	Equipment List	52
FIGURES		
	Demineralization Plant Flow Plan	55
11-F-2 11-F-3	BFW Treating & Distribution Flow Plan Steam Generation & Distribution Flow Plan	56 57
II-G COOL	ING WATER FACILITIES	58
TABLES		
11-G-1 11-G-2	Equipment List Design Flow Plan Changes for Cooling Water System	59 60
FIGURES		
11-G-1	Cooling Water Distribution Plan	61
II-H COMP	RESSED AIR FACILITIES	62
FIGURE		
II-H-1	Compressed Air Facilities Flow Plan	63
II-I ELEC	TRICAL POWER SYSTEM	64
TABLE		
II-I-1	Distribution Center Load Summary	68
FIGURES		
II-I-1 II-I-2	Electrical One-Line Diagram IPS One-Line Diagram	69 70

•

•

224

		Page
II-J POTA	ABLE, INDUSTRIAL, AND FIREWATER SYSTEMS	71
FIGURES		
II-J-1 II-J-2 II-J-3 II-J-4	Potable Water Distribution Industrial Water Distribution Water Storage and Pumping Firewater Distribution	73 74 75 76
II-K WAST	E TREATING FACILITIES	77
TABLE		
II-K-1	Design Flow Plan Changes for Waste Treating Facilities	79
FIGURES		
II-K-1 II-K-2	Interconnecting Lines Rainwater Retention Facilities	82 83
II-L SAFE	TY FACILITIES	84
TABLES		
II-L-1 II-L-2	Equipment List Design Flow Plan Changes	85 86
FIGURE		
II-L-1	Flare Coordination Flow Plan	87
II-M CHEM	ICAL HANDLING FACILITIES	88
II-N LAYO	UT_AND SITE PREPARATION	89
FIGURES		
II-N-1 II-N-2	Present Synthane Plant Layout Major Synthane Revamp Plant Layout	92 93

- 3 -

*

APPENDIX II-A

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

ONSITE STUDY DESIGN

This specification covers the onsite facilities for a study design for converting the Synthane Pilot Plant located in Bruceton, Pennsylvania to a Catalytic Coal Gasification Process - Large Pilot Plant.

Major areas covered by the specification are as follows: coal feeding system, gasifier and cyclones, char withdrawal system, gasifier fines recovery system, high temperature heat recovery facilities, wet scrubbers, NH₃ scrubber, methane recovery facilities, preheat furnace, steam reformer, sour slurry stripper and catalyst recovery section.

Design Basis

The Major Synthane Revamp case of the Large Pilot Plant study is designed to gasify 92 ST/SD of raw bituminous coal and produce pipeline quality SNG.

Process Description

Illinois No. 6 feed coal is fed via a lock hopper system to a fluidized bed gasifier which operates at approximately 1300° F and 500 psia. Gasification of the coal occurs with a mixture of steam and recycled synthesis gas, producing CH₄, CO₂, CO, H₂ and unconverted steam as the gasifier effluent. The gasifier contains internal primary and secondary cyclones where unconverted coal fines and ash are separated from the effluent gas and returned to the fluid bed.

The effluent gas enters a gas-gas exchanger where it is cooled to approximately 1050°F. Further cooling of the gas is achieved in a highpressure waste heat boiler where 600 psig steam is generated. The gas leaves the boiler at approximately 520°F. After leaving the waste heat boiler, the gas is sent to a tertiary cyclone to recover as many of the overhead fines as possible.

A fines scrubbing system is provided to remove particulate solids from the gas prior to further treating. The raw product gas from the tertiary cyclone is fed to a venturi scrubber where it is contacted and scrubbed with the NH₃ scrubber bottoms slurry. The water slurry leaving the scrubber surge drum, which contains NH₃, H₂S, CO₂ and dissolved catalyst in addition to the particulate solids and water, is²fed to a sour slurry stripper for further treating. The gas from the scrubber surge drum is cooled to 110°F in a product gas cooler and fed to an NH₃ scrubber where final NH₃ cleanup is accomplished. The gas from the NH₃ scrubber is then fed to the acid gas removal facilities which is the existing Benfield unit. Removal of H₂S, CO₂, COS and other sulfur compounds takes place in this section.

> - 1 -227

Drocoding nage blank

Downstream of the Benfield unit, molecular sieve purifiers are provided to assure complete removal of the CO_2 , H_2S and to absorb other impurities which could freeze in the downstream cryogenic facilities. Leaving the purifiers, the gas is fed to the cryogenic methane recovery facilities where synthesis gas ($H_2 + CO$) is separated from the product methane. The recycled synthesis gas plus makeup from the reformer is compressed, mixed with 600 psig steam and heated in the preheat furnace. This gas is fed to the gasifier and provides the heat input for the gasification reactor.

Ash and char residue from the gasification step and overhead fines from the fines slurry drum are sent to a catalyst recovery unit. Semi-rich catalyst solution from the recovery unit is used to slurry each of the feed solids streams. A large fraction of the catalyst is leached from the residue and fines using counter current water washing. The recovered catalyst solution is concentrated, mixed with fresh makeup catalyst and is used to impregnate the coal to complete the catalyst recovery loop.

ONSITES UTILITIES AND CHEMICALS

.

Cooling Water

ł

.....

.

.

đ

.

Requireme	nts, GPM	<u>Normal</u>	Maximum
E-103	Product Gas Cooler	52	274*
E-104	Slurry Stripper Ov'hd Cond.	251	291*
E-105	Slurry Stripper Btm's Cooler	520	520*
E-113	MRT R 12 Condenser	18	18*
E-114	MRT Methane Comp After Cooler	31	31*
E-118	Reformer Effluent Trim Cooler	23	81*
E-119	Cat Recovery Slurry Cooler	9	33*
E-120	Evaporator Ov'hd Condenser	123	123*
E-121	Reactivation Gas Cooler	· 6 8	68*
E-123	MRT Methane Comp. Int. Cooler	30	30*
C-102	MRT Methane Comp. Jacket Cooling	47	47*
EA-201 &	- 5	.,	41
218	Scrubbing Water Cooler	429	1052*
EA-207	Catacarb Regen. Ov'hd cond.	177	177*
E-125 &			277
EA-205	Lean Sol'n Cooler	102	102*
		1880	2847
	Simultaneous Maximum		2847

Boiler Feed Water

Requirements, GPM		<u>Normal</u>	Maximum
E-102 E-116	Gasifier Waste Heat Boiler Reformer Waste Heat Boiler	17 9 26	24* 22* 46
	Simultaneous Maximum		46

Industrial Water

Requirements, GPM		<u>Normal</u>	Maximum
D-113 D-121N T-101	Char Quench Drum Hydroclone Mix Drum Ammonia Scrubber	1 6 50 	2* 17* 50*
	Simultaneous Maximum	57	69 69

•

.

Steam

<u>Steam - 600</u>

Requirem	ents, #/hr	<u>Normal</u>	Maximum
E-111	Reactivation Gas Heater	5500	5500*
R-101	Gasifier	12430	12430*
F-102	Reformer	3046	9135*
DC-202	Char Quench Drum	7220	7220*
		28196	34, 285
	Simultaneous Maximum		34, 285

<u>Steam - 125</u>

Requirements, #/hr		<u>Normal</u>	Maximum
E-122	Slurry Stripper Reboiler	8694	8694*
J-101	Evaporator Ejector	2110	2110*
F-101	Preheat Furnace	300	3000*
F-102	Reformer	185	3000*
E-126	CO ₂ Vaporizer	150	700*
EA-204	Benfield Reboiler	3300	3300*
DA-203	Benfield Regenerator	3570	3570*
FB-201	Benfield Sol'n Tank	200	200*
		18509	24574
	Simultaneous Maximum		24574

Steam - 600

Producti	lon, #/hr	Norma1	Maximum
E-102	Gasifier Waste Heat Boiler	7870	11160*
E-116	Reformer Waste Heat Boiler	2345	505 0*
E-102	Reformer Convection Section	1630	4585*
		11845	20795
	Simultaneous Maximum		20795

Electric Power

ł

.

٠

2

w

Requirem	ents, kW	<u>Service</u>	Operating Load	Reaccel- eration
E-117	Ref. Effluent Cooler			
C-101A		N	6*	A
C-101A	Recycle Gas Compressor	N	250*	A
C-101B	Recycle Gas Compressor	S	250	A
C-102R	MRT Methane Compressor	N	370*	A
C-102B	MRT Methane Compressor	S	370	A
C-103A	MRT Ethylene Compressor	N	54*	A
	MRT Ethylene Compressor	S	54	A
C-104A	MRT R-12 Compressor	N	64*	А
C-104B	MRT R-12 Compressor	S	64	Α
P-101A	Ref. WH Boiler Circul. Pump	N	6*	A
P-101B	Ref. WH Boiler Circul. Pump	S	6	A
P-104A	Slurry Stripper Reflux Pump	N	1*	A
P-104B	Slurry Stripper Reflux Pump	S	1	A
P-105	Sulfuric Acid Metering Pump	N	0.5*	· B
P-106A	Neutralization Circul. Pump	N	2*	Ă
P-106B	Neutralization Circul. Pump	S	2	Å
P-107A	MRT Reflux Pump	N	0.5*	A
P-107B	MRT Reflux Pump	S	0.5*	A
P-108A	MRT Bottoms Pump	N	0.5*	
P-108B	MRT Bottoms Pump	S	0.5*	A
P-109A	Char Slurry Pump	N		A
P-109B	Char Slurry Pump		22*	A
P-110A	Cat Solution Surge Pump	S	22	A
P-110B	Cat Solution Surge Pump	N	7*	A
P-111A	Slurry Feed Pump	S	7	A
P-111B	Slurry Feed Pump	N	2.3*	A
P-112A	Recycle Cat Solution Pump	S	2.3*	A
P-112B	Recycle Cat Solution Pump	N	1.5*	A
P-113A	Recycle Cat Solution Pump	S	1.5*	A
P-113B	Spent Char & Ash Pump	N	1.5*	A
P-114A	Spent Char & Ash Pump	S	1.5*	· A
P-114A	Hydroclone Pump	N	2.3*	A
P-1146 P-114C	Hydroclone Pump	N	2.3*	A
P=1140 P=114D	Hydroclone Pump	N	2.3*	A
P-1140 P-114E	Hydroclone Pump	N	2.3*	A
	Hydroclone Pump	N	2.3*	. A
P-114F	Hydroclone Pump	N	2.3*	А
P-114G	Hydroclone Pump	N	2.3*	A '
P-114H	Hydroclone Pump	N	2.3*	A
P-1141	Hydroclone Pump	N	2.3*	A
P-114J	Hydroclone Pump	N	2.3*	A
P-114K	Hydroclone Pump	N	2.3*	A
P-114L	Hydroclone Pump	N	2.3*	A
P-114M	Hydroclone Pump	N	2.3*	Ā
P-114N	Hydroclone Pump	N	2.3*	Ă
P-115A	Evaporator Circ. Pump	N	11*	A

•

٠

•

Requiremen	ts, kW	Service	Operating Load	Reaccel- eration
P-115B	Evaporator Circ. Pump	S	11	A
P-116A	Concentrated Solution Pump	N	0.3*	A
P-116B	Concentrated Solution Pump	S	0.3	A
GA-208	Makeup Water Booster Pump	N	0.7*	A
GA-208S	Makeup Water Booster Pump	S	0.7	A
GA-201 GA-207	Scrubbing Water Circulation Pump	N S	33.5* 33.5	A A
GA-207S	11 IT TE TE	S	33.5	A
P-118A	MRT HP Flash Btm's Pump	N	0.5*	A
P-118B	MRT HP Flash Btm's Pump	S	0.5	A
P-119A	Scrubbing Water Booster Pump	N	34.6*	A
GA-401	Scrubbing Water Booster Pump	S	34.6	A
P-120	Dimethyl Sulfide Metering Pump	N	0.1	С
M-101	Neutralization Mix Drum Mixer	N	1*	A
M-102	Char Slurry Drum Mixer	N	4*	A
M-103	Fines Slurry Drum Mixer	N	4*	A
M-104	Slurry Feed Drum Mixer	N	1*	A
M-105	Recycle Cat Solution Drum Mixer	N	1*	A
M-106A	Hydroclone Mix Drum Mixer	N	1*	A
M-106B	Hydroclone Mix Drum Mixer	N	1*	A
M-106C	Hydroclone Mix Drum Mixer	N	1*	A
M-106D	Hydroclone Mix Drum Mixer	N	1*	A
M-106E	Hydroclone Mix Drum Mixer	N	1*	A
M-106F	Hydroclone Mix Drum Mixer	N	1*	A
M-106G	Hydroclone Mix Drum Mixer	N	1*	A
M-106H	Hydroclone Mix Drum Mixer	N	1*	A
M-106I	Hydroclone Mix Drum Mixer	N	1*	A
M-106J	Hydroclone Mix Drum Mixer	N	1*	A
M-106K	Hydroclone Mix Drum Mixer	n	1*	A
M-106L	Hydroclone Mix Drum Mixer	N	1*	A
M-106M	Hydroclone Mix Drum Mixer	N	1*	A
M-106N	Hydroclone Mix Drum Mixer	N	$\frac{1*}{926.6}$	A

Fuel System

<u>Fuel Gas</u>

Requirement, MBtu/hr		Normal	Maximum
F-101 F-102	Preheat Furnace Reformer	11.0 <u>6.8</u> 17.8	15.0* <u>24.6*</u> 39.6
	Simultaneous Maximum		39.6

Pilot Gas

.

٠

۵

.

1

Requirem	ments, MBtu/hr	<u>Normal</u>	Maximum
F-101 F-102	Preheat Furnace Reformer	1.0 0.6	1.0*
1 102	ACTOL MCL	1.6	2.2
	Simultaneous Maximum		2.2
<u>Fuel 011</u>	L		
Requirem	ents, MBtu/hr		
F-101	Preheat Furnace	11.0	15.0*
F-102	Reformer	<u>6.8</u> 17.8	<u>24.6</u> 39.6
	Simultaneous Maximum	27.00	39.6
Air Syst	_		0,10
Instrume	nt_Air		
Requirem	ent. SCFM		
	Estimated	200	
<u>Utility</u>	Air		
Requirem	ent, SCFM		
	Estimated	100	
Catalyst	and Chemicals		
<u>Dimethy1</u>	Sulfide		
Requirem	ent, #/hr	0.5	1.6
<u>Methane</u>			
Requirem	ent, SCFM	Normal	Maximum
F-102	Reformer	215	645
<u>Sulfuric</u>	Acid - 98% H2SO4		
Requirem	ent, #/hr		
D-107	Neutralization Mix Drum	950	950
Carbon D	ioxide (Liquid)		
Requirem	ent, #/hr		
E-126	CO ₂ Vaporizer	1000	5000

. •

Zn0 Adsorbent

3200 lbs of Adsorbent 1/8" - 3/16" spheres

Mol Sieve Adsorbent

30,000 lbs of 1/16" molecular sieve

Activated Carbon

3000 lbs of activated carbon

Reformer Catalyst

52 ft³ of $5/8" \ge 5/8" \ge 1/4"$ nickel on alumina gas reforming rasching rings. 52-54 lbs/ft³ bulk density

٠

.

ONSITES EQUIPMENT LIST. - HEAT EXCHANGERS

•Shell and Tube Exchangers

\$

.

	Equipment No.	Service	Duty, MBtu/hr	Total Surface, Ft ²	No. Shells	Comments
	E-101	Gas-Gas Exchanger	3.5	326	1	
	E-102	Gasifier W. H. Boiler	11.3	722	1	
	E-103 A and B	Product Gas Cooler	4.8	660	2	
	E-104	Slurry Stripper O'H Condenser	5.2	430	1	
	E-105 A and B	Slurry Stripper Bottoms Cooler	8.6	1160	2	
	E-111	Reactivation Gas Heater	1.22	200	l	
	E-113	MRT Condenser R-12	0.32	130	1	
N	E-114 A and B	MRT Methane Comp. After Cooler	0.54	340	2	
235	E-115	ZnO Bed Preheated	0.69	90	1	
•	E-116	Reformer W. H. Boiler	4.7	190	1	
	E-118	Ref. Effluent Trim Cooler	0.8	456	1	
	E-119	Cat Recovery Slurry Cooler	0.7	40	1	
	E-120	Evaporator 0'H Condenser	2.1	110	1	
	E-121	Reactivation Gas Cooler	1.2	300	1	
	E-122	Slurry Stripper Reboiler	7.6	2660	1	
	E-123	MRT Methane Comp. Inter Cooler	0.51	350	2	
	E-124	Evaporator Heater	2.9	300	1	
	E-125	Lean Sol'n Cooler)	400	1	
	EA-205	Lean Sol'n Cooler	1.27	400	1	Existing

• Shell and Tube Exchangers (Cont'd)

Equipment No.	Service	Duty, MBtu/hr	Total Surface, Ft ²	No. Shells	Comments
EA-204	Benfield Reboiler	3.2	500	2	Existing
EA-207	Benfield Regen. OV'HD Condenser	3.1	1000	1	Existing
EA-201	Scrubbing Water Cooler		1562	2	Existing
EA-218	Scrubbing Water Cooler	18.5	1560	2	Existing
E-126	CO ₂ Vaporizer	0.65		1	
Plate Fin Excha	ngers				
E-106 A and B	MRT Feed Cooler	1.8	11,400	0	
E-107	MRT Feed Chiller	0.44	1100	0	
E-108	MRT Feed Condenser	0.11	240	0	
E-109	MRT Aux. Cooler	0.94	300	0	
E-110	MRT O'H Condenser	0.71	3000	0	
E-112	MRT Ethylene Condenser	0.09	450	0	
Air Fin Exchang	jer s				
E-117	Ref. Effluent Cooler	10.0	718	0	

•

.

.

-

•

ONSITES EQUIPMENT LIST - PUMPS

.

٠

-

Equipment No.	Service	Туре	Capacity, GPM	ΔP, PSI	BHP	Comments
P-101 A and B	Ref. WH Boiler Circulating Pump	Centrifugal	322	25	7.0	
GA-201	Scrubbing Water Circulating Pump	Centrifugal	230	165	50.	Existing
GA-207 and S	Scrubbing Water Circulating Pump	Centrifugal	230	165	50.	Existing
P-104 A and B	Slurry Stripper Reflux Pump	Centrifugal	15	25	1.	
P-105	Sulfuric Acid Metering Pump	Metering	0.1	110	0.5	
P-106 A and B	Neutralization Circulating Pump	Centrifugal	90.	20	2	
P-107 A and B	MRT Reflux Pump	Centrifugal	16.	10	1	
P-108 A and B	MRT Bottoms Pump	Centrifugal	16.	10	0.5	
2 P-109 A and B	Char Slurry Pump	Centrifugal	350	40	30.	•
🎇 P-110 A and B	Cat Solution Surge Pump	Reciprocal	18	480	7.5	
P-111 A and B	Slurry Feed Pump	Centrifugal	21	50	2.5	
P-112 A and B	Recycle Cat Solution Pump	Centrifugal	10	65	2.0	
P-113 A and B	Spent Char and Ash Pump	Centrifugal	10	70	2.0	
P-114 A-N	Hydroclone Pump	Centrifugal	30	45	2.5	
P-115 A and B	Evaporator Circulating Pump	Centrifugal	880	5	15.0	
P-116 A and B	Concentrated Solution Pump	Centrifugal	5	50	1	
GA-208 and S	Makeup Water Booster Pump	Centrifugal	11	50	2.0	Existing
P-118 A and B	MRT H.P. Flush BTM's Pump	Centrifugal	23	10	0.75	
P-119	Scrubbing Water Booster Pump	Centrifugal	60	570	50.	
GA-401	Scrubbing Water Booster Pump	Centrifugal	60	570	50.	Existing
P-120	Dimethyl Sulfide Metering Pump	Metering	0.004	625	0.1	
GA-202 and S	Semi-Lean Sol'n Pump	Centrifugal	285	500	200	Existing

Equipment No.	Service	Туре	Capacity, GPM	AP, PSI	BHP	Comments
GA-203	Benfield Sol'n Sump Pump	Reciprocal	2	20	0.5	Existing
GA-204 and S	Benfield Reflux Pump	Centrifugal	10	75	3.0	Existing
GA-212 and S	Lean Sol'n Pump	Centrifugal	28	500	30.	Existing

TABLE II-A-4

ONSITES EQUIPMENT LIST - COMPRESSORS

Equipment No.	Service	Туре	No. Stages	Suction Flow, ACFM	BHP
C-101 A and B	Recycle Gas Compressor	Reciprocal	1	240	330
C-102 A and B	MRT Methane Compressor	Reciprocal	2	1400	500
C-103 A and B	MRT Ethylene Compressor	Reciprocal	2	112	75
C-104 A and B	MRT R-12 Compressor	Reciprocal	2	227	100

.

•

.

.

*

ONSITES EQUIPMENT LIST - PRESSURE VESSELS

*

÷

٠

- ---

		Dimensi			
Equipment No.	Service	Diameter, Ft	Length, Ft	Position	Comments
R-101	Gasifier	3'6"	154'0"	Vertical	
DA-201	Ammonia Scrubber	216"	39'0"	Vertica1	
T-102	Slurry Stripper	2'6"	62'0"	Vertical	
T-103	Methane Recovery Tower	1'6"	36'0"	Vertical	
T-104	Benfield Absorber	2'10" (Btm 1'9" (Top	•	Vertical	
DA-203	Benfield Regenerator	4 [*] 0 ^{**}	112'0"	Vertical	Existing
FE-106	Weigh Hopper	513"	4*2"	Vertical	Existing
FE-104 AX, BX	Storage Injectors	3'6"	6'6"	Vertical	Existing
FE-105X	Primary Injector	6'0"	11'0"	Vertical	Existing
D-101	Gasifier Steam Drum	3*0**	13'0"	Vertical	
D-102	Gasifier Steam Blowdown Drum	1'0"	5'0"	Vertical	
FA-204	Benfields Abs. OV'HD K.O. Drum	2*6"	6'0"	Vertical	Existing
FA-205	Acid Gas K.O. Drum	2'6"	6'0"	Vertical	Existing
FA-215	Scrubber Surge Drum	5*0**	14'0"	Horizontal	Existing
D-106	Stripper Distillate Drum	3*0**	9'0"	Horizontal	
D-107	Neutralization Mix Drum	3*0**	9'0"	Vertical	
D-108	MRT Distillate Drum	3*0"	9*0**	Vertical	
D-109	MRT Bottoms Flash Drum	3'0"	9'0"	Vertical	
D-110	Reformer Steam Drum	3'0"	12'0"	Vertical	
D-111	Reformer Steam Blowdown Drum	1'0"	5'0"	Vertical	
D-112	Reformer Effluent K.O. Drum	2'6"	10'0"	Vertical	
DC-202	Char Quench Drum	4'6";2'6"	34'0"	Vertical	

- 13 -

239

Equipment No.	Service	Dimen Diameter, Ft	Length, Ft	Position	Comment	<u>s</u>
D-114	Char Slurry Drum	4'0"	6'0"	Vertical		
D-115	Fines Hopper	2'6"	7'0"	Vertical		
D-116	Fines Slurry Drum	4 "6"	7'6"	Vertical		
D-117	Slurry Feed Drum	3'0"	6'0"	Vertical		
D-118	Recycle Cat Solution Drum	2'0"	6'0"	Vertical		
D-119	Spent Char and Ash Drum	2'0"	4 ' 0''	Vertical		
D-120	Cat Solution Surge Drum	2'6"	7 *6"	Vertical		
D-121 A-N	Hydroclone Mix Drum	3'6"	6'0"	Vertical		300
DC-204A	Zn0 Bed	2'0"	20'0"	Vertical	Existing	0
D-123 A-C	Mol Sieve Absorber	4'6"	16'0"	Vertical		
D-124	MRT Ethylene Compressor K.O. Drum	1'6"	4 * 6 **	Vertical		
D-125	MRT R-12 Compressor K.O. Drum	1'6"	5'0"	Vertical		
D-126	Product SNG K.O. Drum	1'6"	6'0"	Vertical		
D-127	MRT H. Pressure Flash Drum	3'0"	10'0"	Vertical		
D-128	Evaporator	4'6"	7'0"	Vertical		
D-129	Condensate Surge Drum	2'6"	8'0"	Horizontal		
FD-201	Semi-lean Sol'n Filter	1'0"	3'0"	Vertical	Existing	
FB-201	Benfield Sol'n Tank	10'0"	8'0"	Vertical	Existing	
CYC-101	Primary Gasifier Cyclone	1'2.5"	3 ' 5 ''	Vertical		
CYC-102	Secondary Gasifier Cyclone	1'0.5"	3'	Vertical		
CYC-103	Tertiary Gasifier Cyclone	1'1"	4'1"	Vertical		
CYC-104	Quench Drum Cyclone	8"	2'	Vertical		

.

٠

.

ł

1

٠

ONSITES EQUIPMENT LIST - FURNACES

Equipment No.	F-101	F-102
Service	Steam/Recycle Gas Preheat Furnace	Steam Reformer Furnace
Туре	Vertical Tube Box Furnace with Hori- zontal Convection Section	Vertical Tube Box Furnace with Hori- zontal Convection Section
Duty, MBtu/hr	11.6	12.5 Radiant/6.9 Convection
Efficiency, %	75.3	76.7
Excess Air at Stock, %	20	15

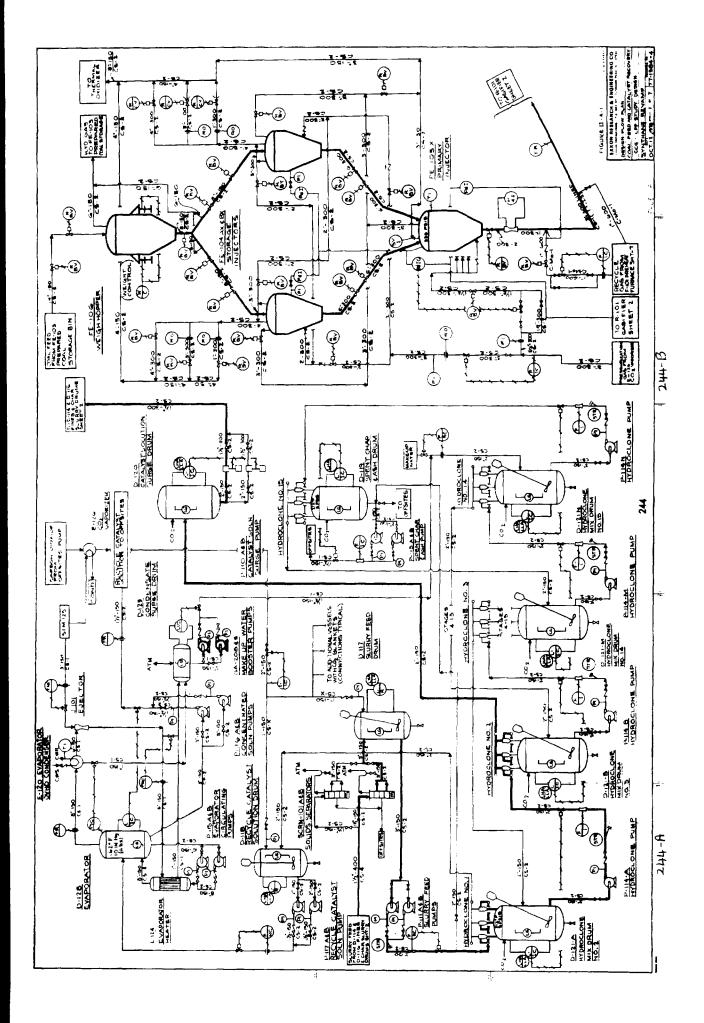
- 15 -

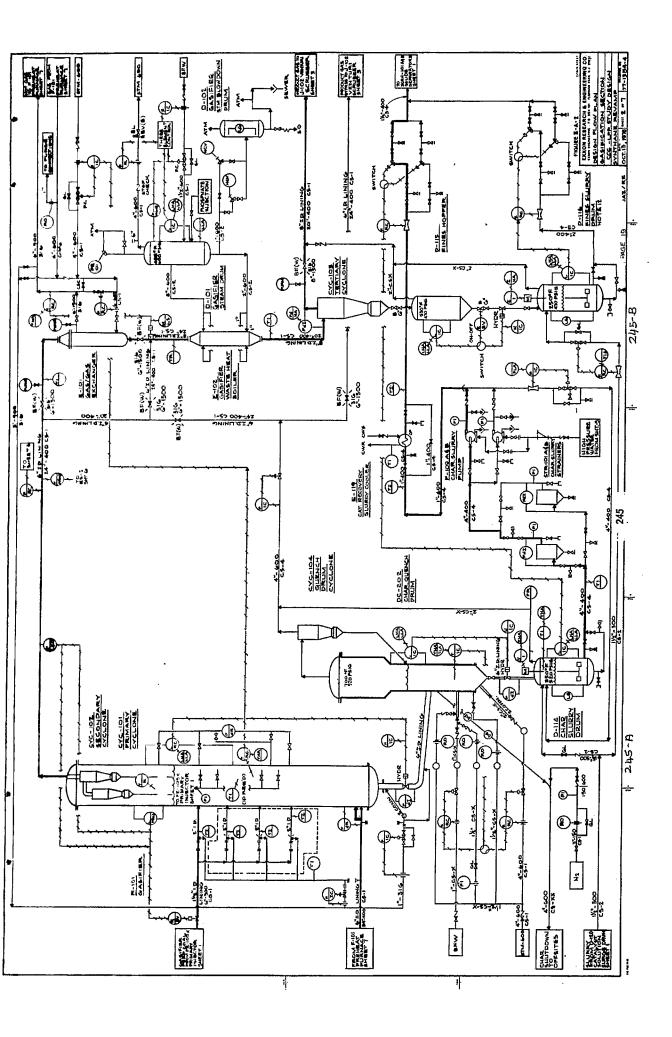
٠

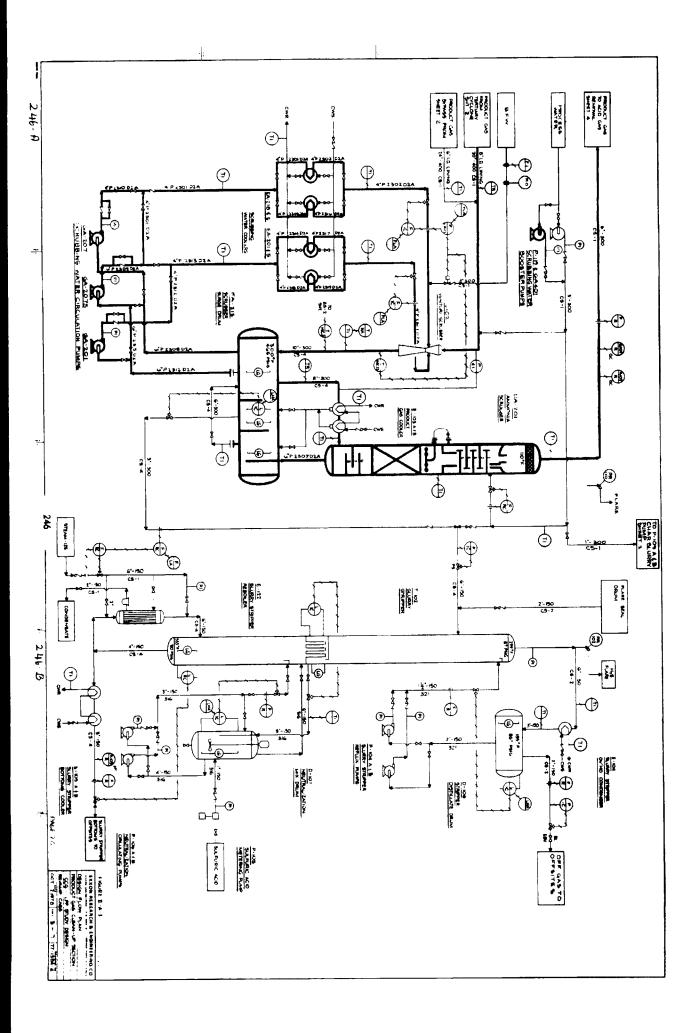
ONSITES EQUIPMENT LIST - SPECIAL EQUIPMENT

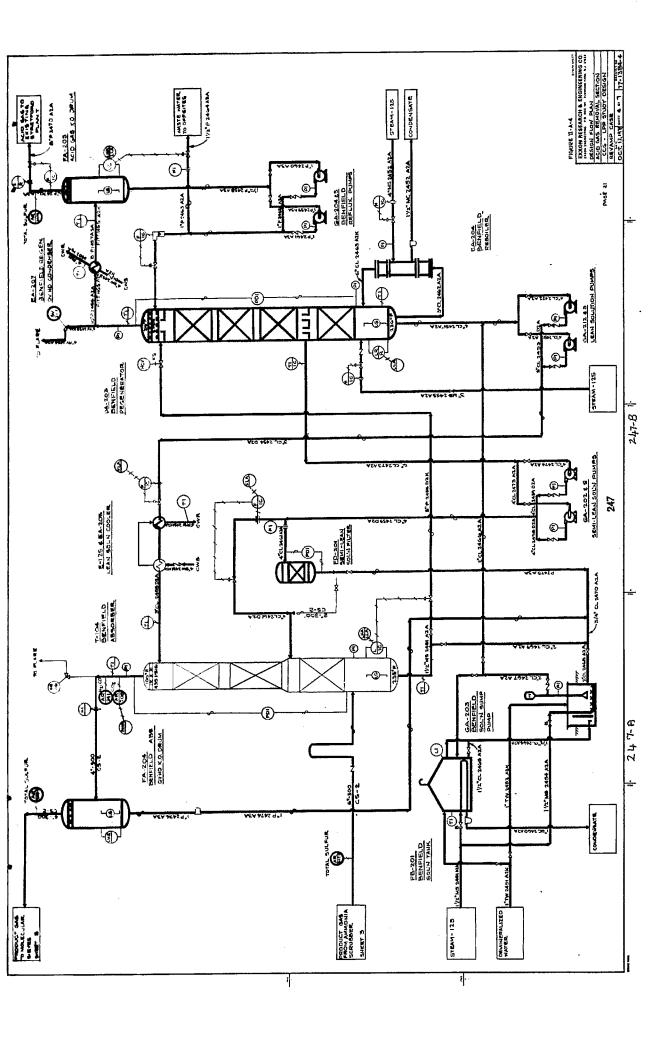
SCRN - 101 A and B	Screens to remove particles larger than 1000 microns from slurry feed to D-117 slurry feed tank. Sweco Vibro-Energy Separater Model LS485 818 10CD, 24" diameter or equivalent.
STR - 101 A and B	Char Slurry Strainers, screen type to remove particles larger than 3/16", screen area is 40 in?
J-101	Steam jet ejector. Suction pressure 10 in. Hg, back pressure 40 in. Hg., 886.6 lb/hr saturated steam.
J-102	Venturi Scrubber for product gas coal fines removal, gas rate is 15.5 ACFS, solid content (max.) is 10wt% (10 microns), scrubbing liquid rate is 460 gpm, design efficiency is 98%.

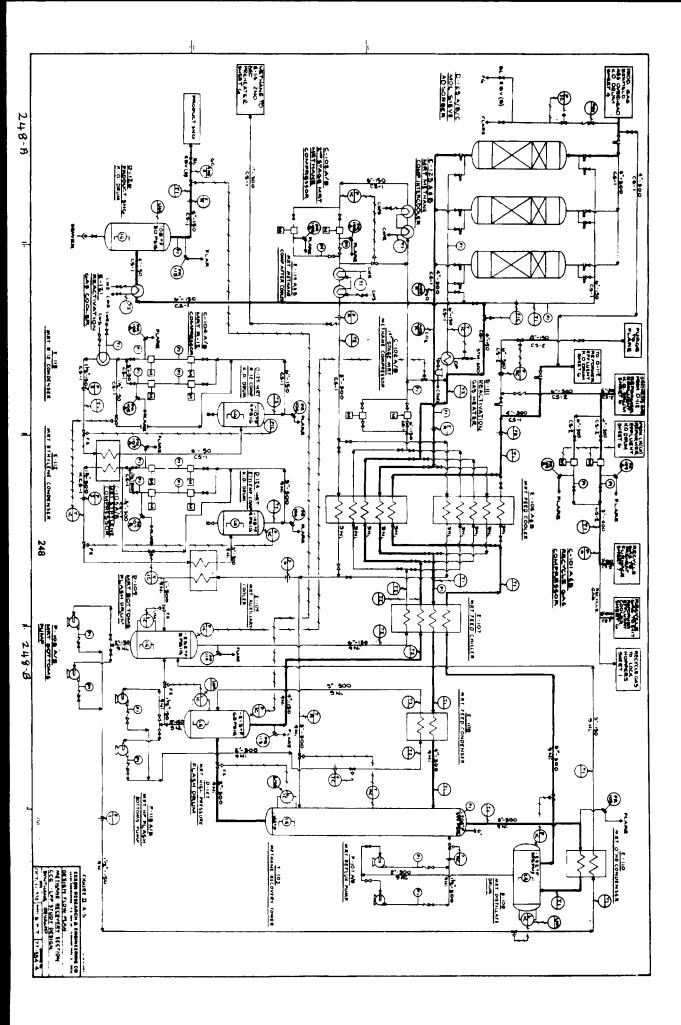
• •

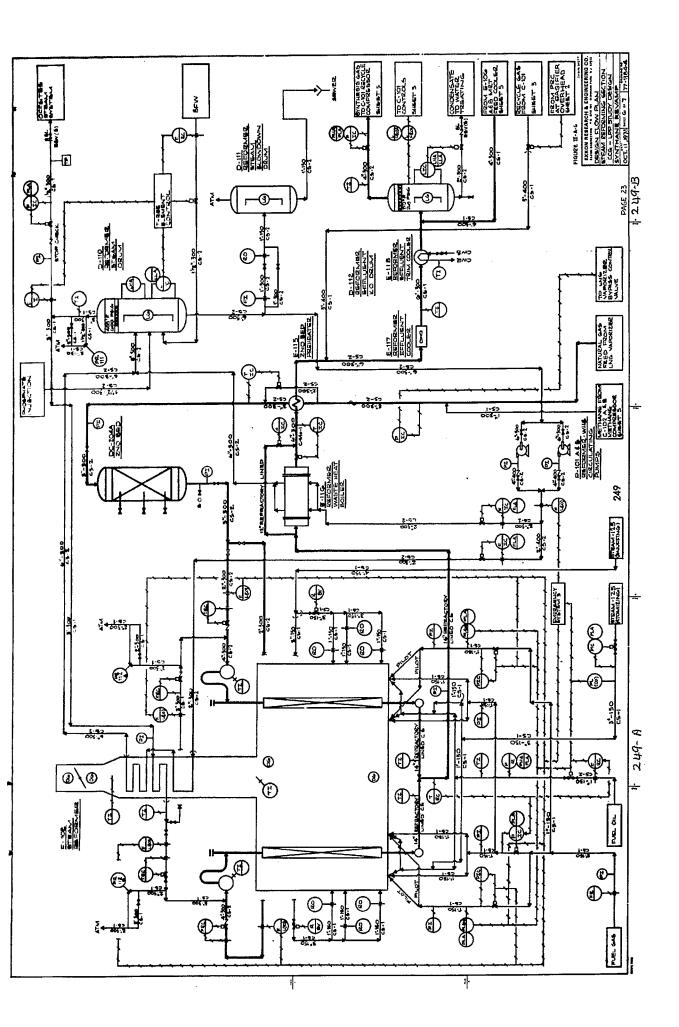

.

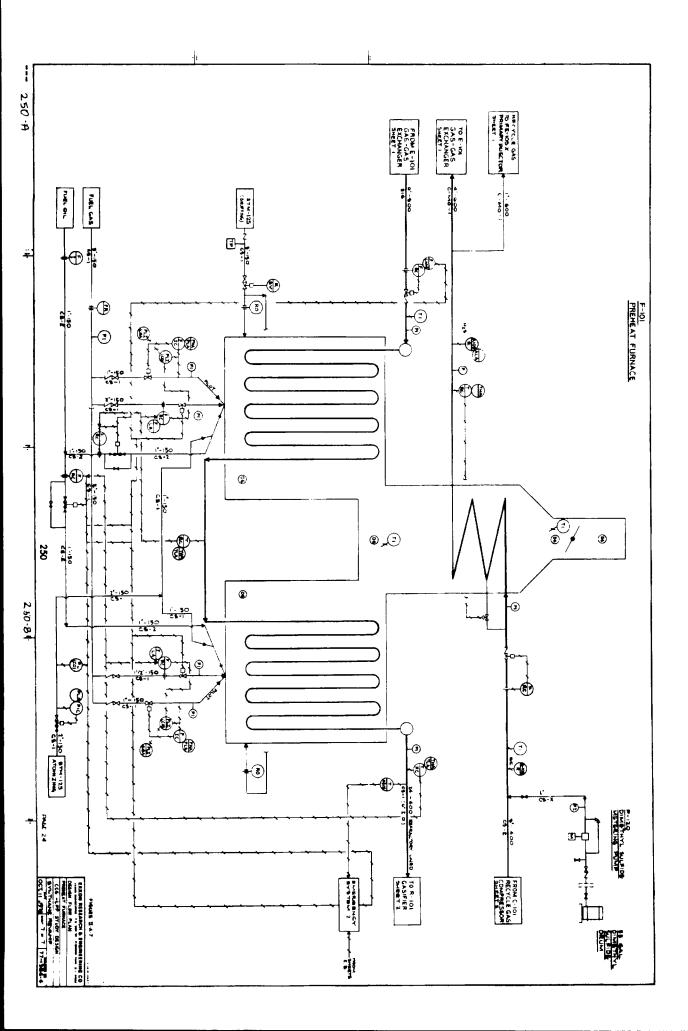

.

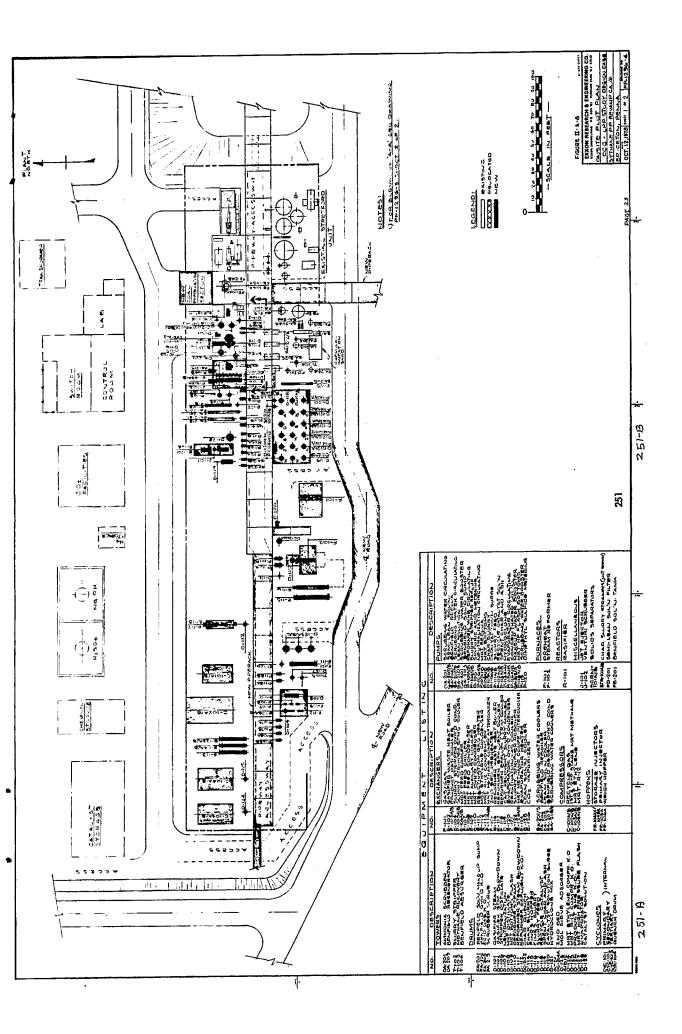

ONSITES EQUIPMENT LIST - ANALYSERS

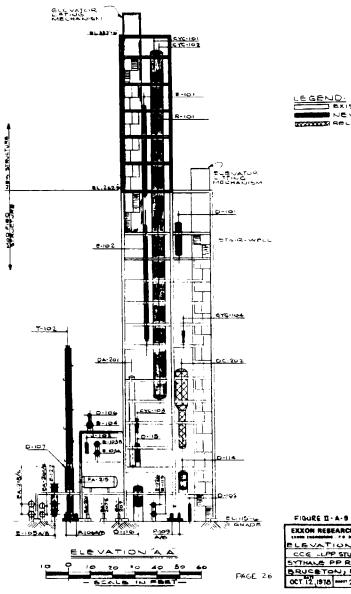

Item	Stream	Туре	Components
A-101 R	Ammonia Scrubber Overhead	GC	H ₂ , CO, CO ₂ , CH ₄ (Hewlett Packard)
A-102 R	Ammonia Scrubber Overhead	GC	H_2S , NH_3 , C_2 + (Hewlett Packard)
A-103 R	Sour Slurry Stripper Bottoms	pH	
A-104 R	Feed to MRT Cooler	H ₂ O Dew Point	0 to -140 °F (duPont)
A-105 R	Feed to MRT Cooler	CO ₂ (ppm)	
A-106 R	Synthetic Product Gas	GC	H ₂ , CO, CO ₂ , CH ₄ (Hewlett Packard)
A-107 R	Steam Reformer Feed	H ₂ S	0-2 ppm
A-108 R	Preheat Furnace Feed	GC	H ₂ , CO, CO ₂ , CH ₄ (Hewlett Packard)
A-109 R	Preheat Furnace Effluent	H ₂ S	0-2 ppm


.









EXXON RESEARCH & ENGINEERING CO.
ELEVATION A-A
CCE -LPP STUDY DESIGN CASE
SYTHALE PP REVAMP CASE
BRUCETON, PONNA.
OCT. 12,1918 - 2 -2 PR.1294-3

APPENDIX II-B

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

COAL RECEIPT AND COAL PREPARATION

This section of the Study Design covers the modifications and additions to the Synthane Pilot Plant coal receipt and coal preparation facilities required to convert the Synthane Pilot Plant to Catalytic Coal Gasification Process for the Major Synthane Revamp Case.

DESIGN BASIS

4

• General

+

+

٠

The raw coal properties, the prepared coal properties, the gasification process flow rates, and the coal preparation system flow rates are summarized below.

+ Raw Coal Properties The coal preparation equipment is designed to process Illinois No. 6 Bituminous coal.

Surface (wt%) 3.6 - Bulk Density (1b/ft ³) 45-50 - Hardgrove Index 56 - Angle of Repose (Degrees) 40 - Particle Size Distribution 98% less than 3/4 inches Prepared Coal Properties 98% less than 2 - Moisture Content (total wt%) less than 2 - Particle Size Distribution 8 mesh (98% less than) 8 mesh - Catalyst 50/50 K2C03/Na2C03 or K2C03 Type 50/50 K2C03/Na2C03 or K2C03 Loading (wt%) up to 20 Gasification Process Flow Rates (Maximum) STPH - Moisture Free Coal 3.21	- Moisture Content Total (wt%)	Illinois No. 6
 Bulk Density (1b/ft³) Hardgrove Index Angle of Repose (Degrees) Particle Size Distribution Gatalyst Type Loading (wt%) Gasification Process Flow Rates (Maximum) Moisture Free Coal 		
 Hardgrove Index Angle of Repose (Degrees) Particle Size Distribution Particle Size Distribution Moisture Content (total wt%) Particle Size Distribution (98% less than) Gatalyst Type Loading (wt%) Gasification Process Flow Rates (Maximum) Moisture Free Coal 		
 Angle of Repose (Degrees) Particle Size Distribution Prepared Coal Properties Moisture Content (total wt%) Particle Size Distribution (98% less than 2 8 mesh (98% less than) Catalyst Type Loading (wt%) Gasification Process Flow Rates (Maximum) Moisture Free Coal 		
 Particle Size Distribution Particle Size Distribution Moisture Content (total wt%) Particle Size Distribution (98% less than) Catalyst Type Loading (wt%) Gasification Process Flow Rates (Maximum) Moisture Free Coal 		
Prepared Coal Properties - Moisture Content (total wt%) less than 2 - Particle Size Distribution 8 mesh (98% less than) 8 mesh - Catalyst 50/50 K2C03/Na2C03 or K2C03 Type 50/50 K2C03/Na2C03 or K2C03 Loading (wt%) up to 20 Gasification Process Flow Rates (Maximum) STPH - Moisture Free Coal STPH		40
 Moisture Content (total wt%) Particle Size Distribution (98% less than) Catalyst Type Loading (wt%) Gasification Process Flow Rates (Maximum) Moisture Free Coal Iess than 2 8 mesh 50/50 K2C03/Na2C03 or K2C03 up to 20 	- Particle Size Distribution	98% less than 3/4 inches
 Particle Size Distribution 8 mesh (98% less than) Catalyst Type Loading (wt%) Gasification Process Flow Rates (Maximum) Moisture Free Coal STPH 3.21 	Prepared Coal Properties	:
 Particle Size Distribution 8 mesh (98% less than) Catalyst Type Loading (wt%) Gasification Process Flow Rates (Maximum) Moisture Free Coal STPH 3.21 	- Moisture Content (total wt%)	less than 2
(98% less than) - Catalyst Type Loading (wt%) 50/50 K2C03/Na2C03 or K2C03 up to 20 Gasification Process Flow Rates (Maximum) - Moisture Free Coal	- Particle Size Distribution	8 mesh
Type 50/50 K2C03/Na2C03 or K2C03 Loading (wt%) up to 20 Gasification Process Flow Rates (Maximum) - - Moisture Free Coal STPH 3.21	(98% less than)	
Loading (wt%) up to 20 Gasification Process Flow Rates (Maximum) - Moisture Free Coal <u>STPH</u> 3.21	- Catalyst	
Loading (wt%) up to 20 Gasification Process Flow Rates (Maximum) - Moisture Free Coal <u>STPH</u> 3.21	Туре	50/50 K2C03/Na2C03 or K2C02
- Moisture Free Coal <u>STPH</u> 3.21		
- Moisture Free Coal 3.21	Gasification Process Flow Rates (Maximum)	
- Moisture Free Coal 3.21		STPH
	- Moisture Free Coal	
- As-Received Coal 3.85	- As-Received Coal	
(Illinois No. 6-16 wt% moisture)		

0.64

- Catalyst (maximum loading)

+ Coal Preparation Plant Flow Rates

		STPH
-	Moisture Free Coal	4.80
-	As-Received Coal	5.76
	(Illinois No. 6-16 wt% moisture)	
-	Catalyst (maximum 'loading)	0.96

The coal preparation plant flow rates are based on the maximum throughput of the existing plant. All new equipment is designed to be compatible with the existing equipment design flow rates.

The coal preparation plant operating schedules are as follows:

- + 7 days/week. 16 hrs/day with the reactor at maximum rate.
- + 5 days/week, 12 hrs/day with the reactor at 50% maximum rate.

The coal preparation plant flow rates allow ample maintenance time (1 shift/day) and avoid operating the preparation plant on weekends as long as reactor is at or below 60% of its maximum rate.

The existing prepared coal storage bin has a capacity of 150 tons. 150 tons is 45 hours of storage with the reactor at full rate. This is sufficient storage to bridge a weekend when the reactor is at 60% of its maximum rate.

An inerted 40 ton capacity bin has been added to receive and store start-up coke or reactor char. The design temperature of the bin is 650°F. Hot char must be allowed to cool to a maximum of 300°F before it is fed to the coal pressurizing system.

Coal Receipt

Synthane has a subcontractor, located 12 miles from the site, who receives coal by rail, stockpiles the coal and delivers it to Synthane in 20 ton trucks. These same facilities will be utilized without modification. However, arrangements will be required to change the present coal delivery schedule to account for an increase in raw coal feed rate from 85 to 92 tons per day. Synthane's raw coal handling facilities are sized for 119 ton/day.

This basis is a significant departure from the grass-roots design basis which calls for covered hopper rail cars, protected car unloading facilities, and inert raw coal storage. However, provision of these facilities at Synthane would present exceptional project difficulties. The sizable land requirements for the rail spur and special raw coal handling facilities in the grass roots case cannot be readily accommodated on the limited land area of the Synthane site. As a result, there is potential risk that additional downtime or collection of non-representative data could result from coal degradation in storage. The risk is considered acceptable when weighed against the project debits.

• Coal Preparation

The existing coal preparation equipment will be modified and new equipment will be added to accomplish the following three processing steps: (1) crushing and drying the raw coal, (2) adding catalyst, and (3) final drying.

Data from Synthane indicate that the existing hot-gas swept mill is adequate for the first processing step of crushing and drying the raw coal. The only modification required is the replacement of the screen cloth to meet the 8 mesh top size.

New equipment has been specified for the catalyst addition and final drying steps. Catalyst addition is accomplished by spraying a 40 wt% solution of the catalyst on the coal and mixing the two streams in a ribbon blender. The coal is dried before catalyst addition, in order to eliminate the possibility of the catalyst solution "running off" (not coating) the coal.

An indirect heated steam dryer has been specified for the final drying step. A steam dryer was chosen because it is easy to operate and it does not require a large plot area.

> - 29 -**255**

UTILITIES AND CHEMICALS - COAL RECEIPT AND PREPARATION

.

ELECTRIC POWER

Requirements, KW

			Loa	d
Symbol	Service	Duty	Operating	Connected
• Existin	ng Equipment			
JD-102	Raw Coal Conveyor	N	-	1.9
JD-102	Raw Coal Bucket Elevator	N	-	13.0
JD-105	Raw Coal Weigh Feeder	N	-	1.9
PA-102	Flash Drying Mill	N	-	62.1
GB-101X	Drying Air Heater	N	-	1.9
GB-102X	Drying System Fan	N	-	62.1
PA-104X	Drying System Bag Filter	N	-	1.9
FD-101X	Vibrating Screen	N	-	2.8
PA-114X	Vibrating Bin Discharge	N	-	1.9
 New Eq 	uipment			
B-1101	Inert Gas Bag Filter Fan	N	0.5	1.0
CO-1101	Screw Conveyor	N	0.5	1.0
CO-1102	Prepared Coal Bucket Elevator	N	1.9	1.9
CO-1103	Screw Conveyor	I	2.0	2.8
D-1101	Steam Dryer	N	41.7	41.7
DC-1101	Inert Gas Bag Filter	N	-	1.9
DC-1102	Steam Dryer Bag Filter	N	-	1.9
FE-1101	Rotating Vane Feeder	N	1.4	1.4
FE-1102	Rotating Vane Feeder	N	1.4	1.4
FE-1103	Rotating Vane Feeder	I	1.4	1.4
M-1101	Mixer	N	6.6	6.6
P-1101	Coal Receiving Pit Sump Pump	I	1.5	1.9
	Instruments Lighting		-,	itractor itractor

256

<u>Steam - 125 psig (saturated)</u>	
Requirements, 1b/hr	
 D-1101 Steam Tracing of DC-1102 and Associated Ducts 	5700 100
LP CONDENSATE	
Production, 1b/hr	
• D-1101	5700
COMPRESSED AIR	
Requirements, SCFM	
InstrumentUtility	50 50
INERT GAS - LOW PRESSURE	
Requirements, SCFM	
ExistingAdditional	40 40
INERT GAS - HIGH PRESSURE	
Requirements, SCFM	
• Existing	30
FUEL - NO. 2 FUEL OIL	
Requirements, 10 ⁶ Btu/hr	
• Existing Flash Dryer Mill	3.6

۵

*

.

- 31 - **257**

 A second sec second sec

EQUIPMENT LIST - COAL RECEIPT AND COAL PREPARATION

D-1101 No. 2 Steam Dryer

Service	Reduce the total moisture in the coal/ catalyst mixture from 4 wt% moisture to 2 wt% moisture.
Туре	Indirect Steam Dryer
Design Capacity	
• Coal (STPH) • Catalyst (GPM)	5.0 (includes 4 wt% moisture) 6.4
Product Moisture Content (wt%)	4

Notes:

(1) Dryer shall be similar to Strong Scott Torus Disc Dryer Model TD60-20.

.

Pumps

٠

w

X

Equipment No. Service

Type Capacity (GPM) ΔP, psi P-1101 Coal Receiving Pit

Vertical Sump 50 20

Compressors

Equipment No. Service

B-1101 Inert Gas Bag Filter Fan 50 28 5 300 -5 Centrif.

Flow Rate, SCFM Gas Mol. Wt. Fan ΔP , in H₀ Inlet Temp., ²°F Inlet Press., in H₂0 Fan Type

•

Storage Bins

Equipment No.	BN-1101	
Service	Coke and Char Storage Bin	
Туре	Circular, Conical Outlet	
Diameter, ft.	10	
Straight Side ht., ft.	24	
Tape Height, ft.	16	
Capacity, tons	40	

Conveyors

Equipment No. Service	CO-1101 Screw	CO-1102 Continuous Bucket Elevator	CO-1103
Length, ft.	10	140 (c/c Pulleys)	21
Diameter	9.0	-	12
Design Capacity (STPH)	6.0	6.0	4.0

Bag Filters

Equipment No. Service	DC-1101 Inert Gas Bag Filter	
Туре	Continuous, self-cleaning	
Bag Area (ft ²)	25	
Gas Rate (ACFM)	73	

Equipment No.

Service

DC-1102 Steam Dryer Bag Filter

To remove the dust from the gas steam leaving dryer D-1101

Туре

.

Bag Area (ft²)

Gas Rate (ACFM)

2000

650

Feeders

Equipment No. FE-1101 FE-1102 Service Dried Coal Feeder Wet Catalyzed Coal Feeder Туре Rotating Vane Rotating Vane Width, Ft. By Contractor By Contractor Diam. (width), in. By Contractor By Contractor Capacity, STPH 5.0 7.5 Equipment No. FE-1103 Service Startup Coke or Char Feeder Type Rotating Vane Width, ft. By Contractor Diam. (width), in. By Contractor Capacity By Contractor

- 35 -

M-1101 Catalyst Addition Mixer

Service	Mix coal and catalyst solution	
Туре	Ribbon Blender	
Design Capacity		
Coal (STPH) Catalyst Solution (GPM)	5.0 6.4	
Material Being Handled		
CoalCatalyst Solution	40% aqueous solution of $K_2^{CO}_3$	
Operation	Continuous	

Remarks:

- (1) Mixer shall be fully enclosed and inerted.
- (2) Mixer design shall be similar to Teledyne Readco 16" diameter by 15' long continuous blender.

Coal Preparation Equipment Shelter

- Service Shelter new coal preparation equipment
- Approximate Size 625
- Maximum Height 30

Vibrating Screen

The existing vibrating screen appears to be adequate for the new system. However, new screen cloth is required to meet the 8 mesh top size. (Present system design is 20 mesh top size).

Gas-Swept Mill System

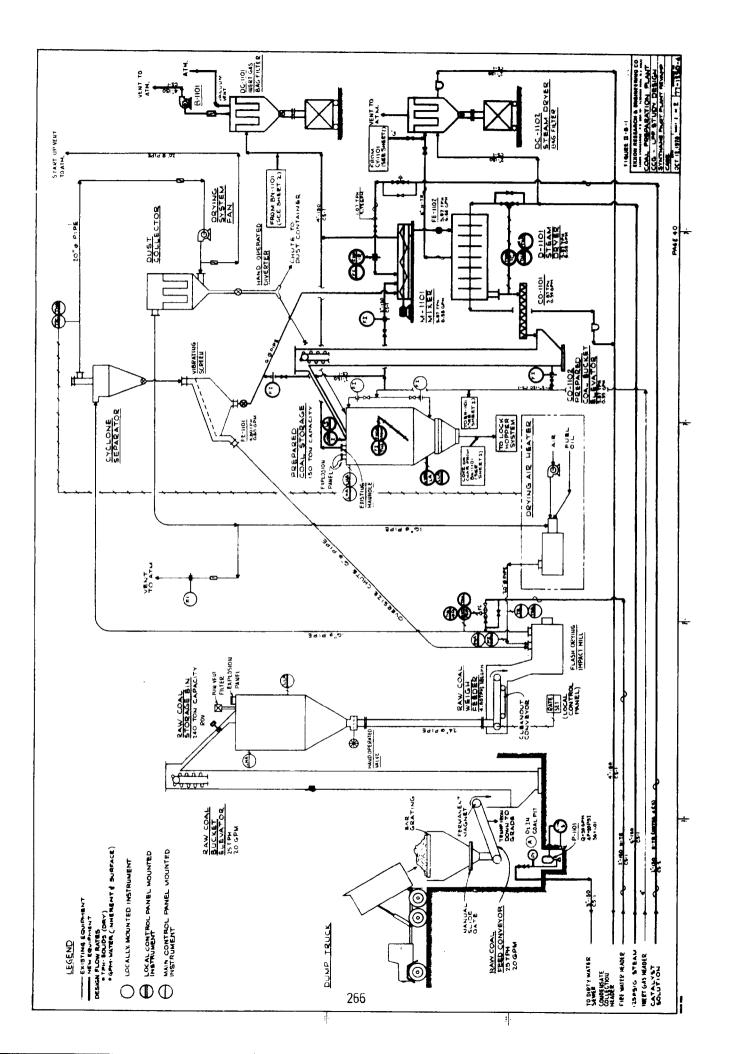
The gas-swept mill system will be used to crush, dry, and classify as-received coal and to convey it to the elevated screen. The system will consist of a closed gas circuit containing a gas-swept crusher, pneumatic classifier, cyclone separator, and ducts as shown on Drawing No. 77-1072-4. Also associated with the gas-swept mill system is a gas heater furnace, secondary gas cleaner (scrubber), and fans. The system will have the capability to crush the coal to 100% less than 8 or 16 mesh and dry it to 4-5% total moisture. This type of system is similar to those used in coal fired generating stations in that it uses a hot gas to classify, dry, and convey the coal. However, a controlled oxygen gas recycle system is necessary in order to operate the system safely (minimum risk of fires) at the temperatures required to reduce the coal moisture contents to the levels specified.

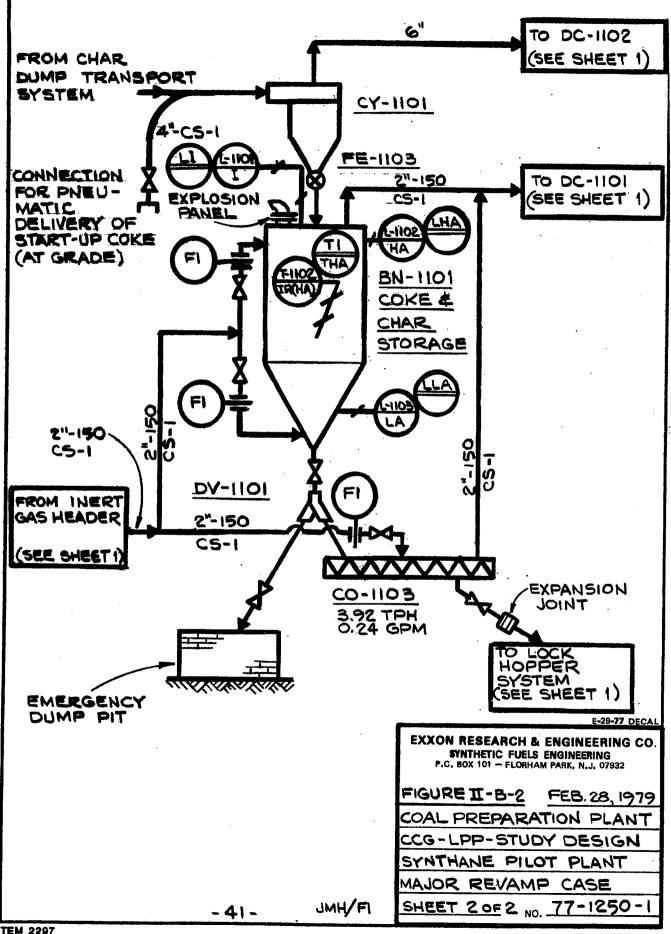
CR-1101 Impact Venturi Mill

٠	Туре	Gas-Swept Mill	
٠	Solids Flow Rate (STPH)	6.5	
•	Gas Flow Rate (SCFM)	7000	
٠	Gas Temperature (Normal Operati	ng)	
	+ Inlet (°F) + Outlet (°F)	800-1000 225	
٠	Mill shall be designed to opera of 42 IWG.	te under a positive internal press	sure

- Mill shall be equipped with the following:
 - + Circulating oil system for main bearings
 - + V-Belt drive with changeable sheaves
 - + Venturi separator
 - + Motor base
 - + Feed control panel
 - + Bottom reject clean out spout with valve
 - + Velocity separator
- <u>Remarks</u>:
 - + The gas swept mill system equipment shall be designed to minimize gas leaks out of system

CY-1101 Mill Cyclone


• Gas Flow (SCFM)	7000
• Design Solids Flow Rate (STPH)	5.0
• Operating Temperature (°F)	225
 Design Temperature (°F) 	375
 Design Pressure (psig) 	B-1101/B-1104 discharge pressure
• Maximum Diameter (ft) approx.	2.5


Remarks:

- Include 1" external insulation
- Cyclone shall be designed to maximize solids recovery

Ducts

- Total length (ft estimated): 350
- Provide 1" of external insulation on all ductwork in the coal preparation plant with the exception of the furnace discharge duct which is covered in Section 7.
- Include explosion hatch protection.
- Design Pressure: Discharge pressure from B-1101/B-1104.
- Condensate drains shall be provided at low points in the ductwork.

APPENDIX II-C

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

CATALYST HANDLING FACILITIES

The catalyst handling facilities for the Major Synthane Revamp Case shall duplicate the facilities specified in the Grass Roots Case (Appendix I-F). The following modifications are required for the Major Synthane Revamp Case:

- In general, industrial water lines shall be buried. Portions located aboveground shall be steam-traced and insulated to protect the lines from freezing in the winter months.
- (2) The rated capacity of P-1302 A & B (catalyst feed pumps) shall be increased to 6.4 gpm.

APPENDIX II-D

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

CO, AND INERT GAS FACILITIES

Scope

This section covers the process study design for the CO_2 and inert gas facilities serving the onsite and offsite systems of the Major Synthane Revamp case.

Design Basis

Liquid CO₂ will be provided to the process unit where it will be vaporized for onsite use. Inert gas will normally be provided to the offsite users. In the event of the inert gas generators breaking down, gaseous CO₂ will be provided to the offsite users.

Reuse of existing CO_2 and inert gas facilities has been emphasized in this study design. Synthane CO_2 and inert gas facilities will be relocated and modified to meet the revamp system demands. The CO_2 and inert gas facilities design flow plan is shown in Figure II-D-1.

CO₂ Facilities

The existing Synthane CO_2 storage tanks, CO_2 vaporizers, and CO_2 gas superheater shall be relocated and reused. Two new pumps shall be provided to pump liquid CO_2 to the process unit. One pump shall be a spare.

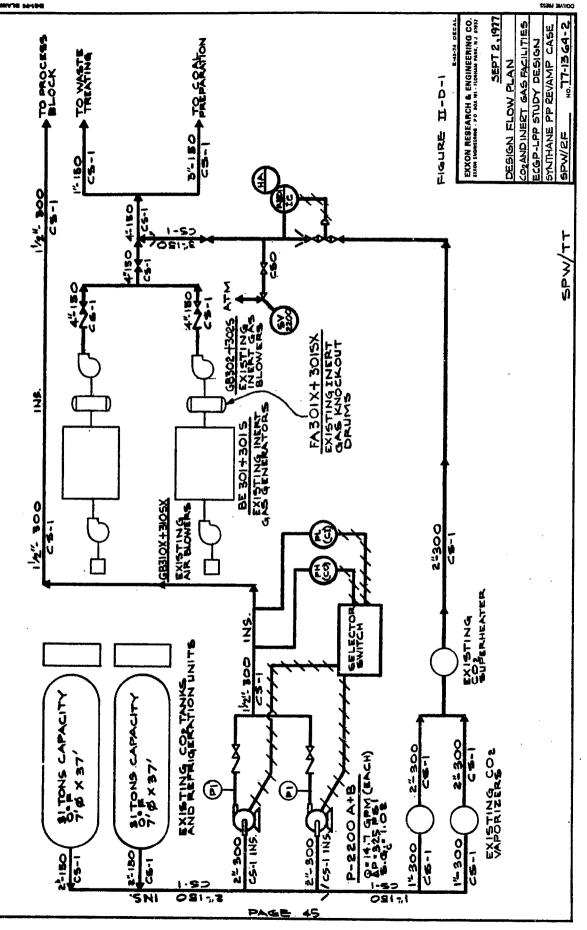
Inert Gas Facilities

The existing Synthane inert gas generators with their air blowers, the inert gas knockout drums, and the inert gas blowers shall be relocated and reused.

TABLE II-D-1

DESIGN FLOW PLAN DETAILS

Existing relocated equipment


•

Details of existing equipment which has to be relocated and integrated with the new facilities is shown on CE Lummus Drawings.

Equipment	Lummus Drwg. No.
CO ₂ Storage and Refrigeration system	E-7426-04005-J-3
CO ₂ Vaporizers	
Inert Gas Generators	
Inert Gas Blowers	E-6656-0 3027-10
Utilities tie-ins	
Utility tie-in requirements for re are as follows:	elocated equipment
Equipment	Utilities tie-ins
CO ₂ Storage and Refrigeration System	Electric Power
CO ₂ Vaporizers	2 1/2" Steam Line (<u>55</u> Psig)
Inert Gas Generators	Electric Power 1 1/2" LPG Line (stm traced and insulated) 4" Cooling Water Lines (supply and return)
Inert Gas Blowers	Electric Power

.

- 44 -

APPENDIX II-E

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

PLANT FUEL SYSTEMS

This section covers offsite Plant Fuel System facilities for the Major Synthane Revamp Case. It includes:

- LNG Storage, vaporization, and distribution facilities to onsites and offsites consumers.
- LPG-C₃ Storage, vaporization, and distribution facilities to onsites and offsites consumers.
- Fuel Oil #2 Storage and distribution facilities to onsites and offsites consumers.

Maximum use of existing facilities has been considered in this study design.

Design Basis

LNG Facilities

LNG will be delivered to the plant site by trailer truck in about 10,000 to 11,000 USG parcels. A new 55,000 USG atmospheric storage facility is required which is about equivalent to the feed required for 5 to 6 days normal operation of the onsite reformer.

Vaporized LNG will be used primarily as onsites reformer and pilot gas feed.

Excess product gas as available from process will be utilized as offsites boiler fuel, supplementing F.O. #2.

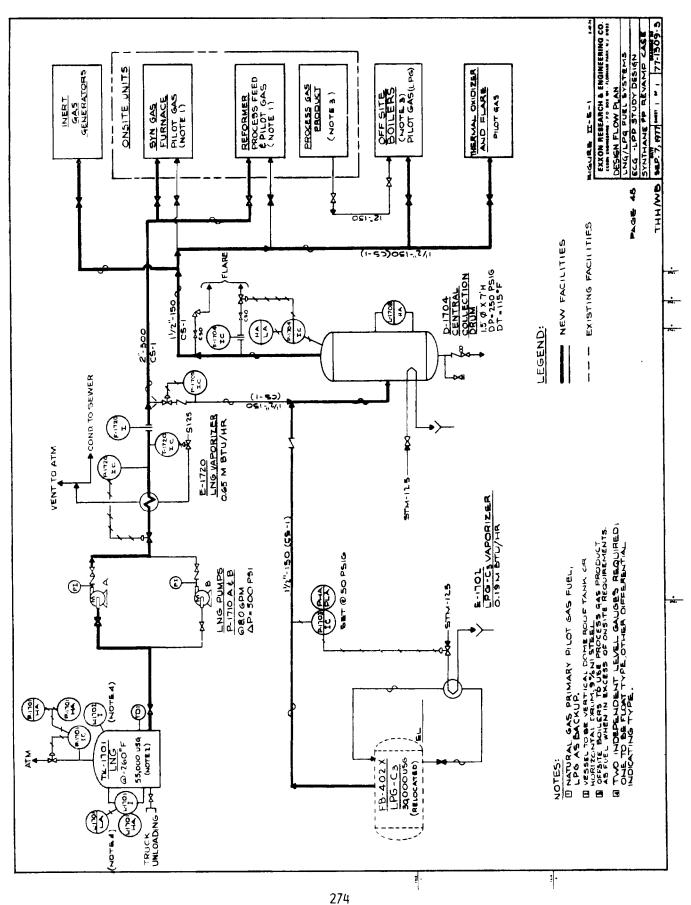
The design flow plans for the natural gas and product gas systems are covered in Figure II-E-1.

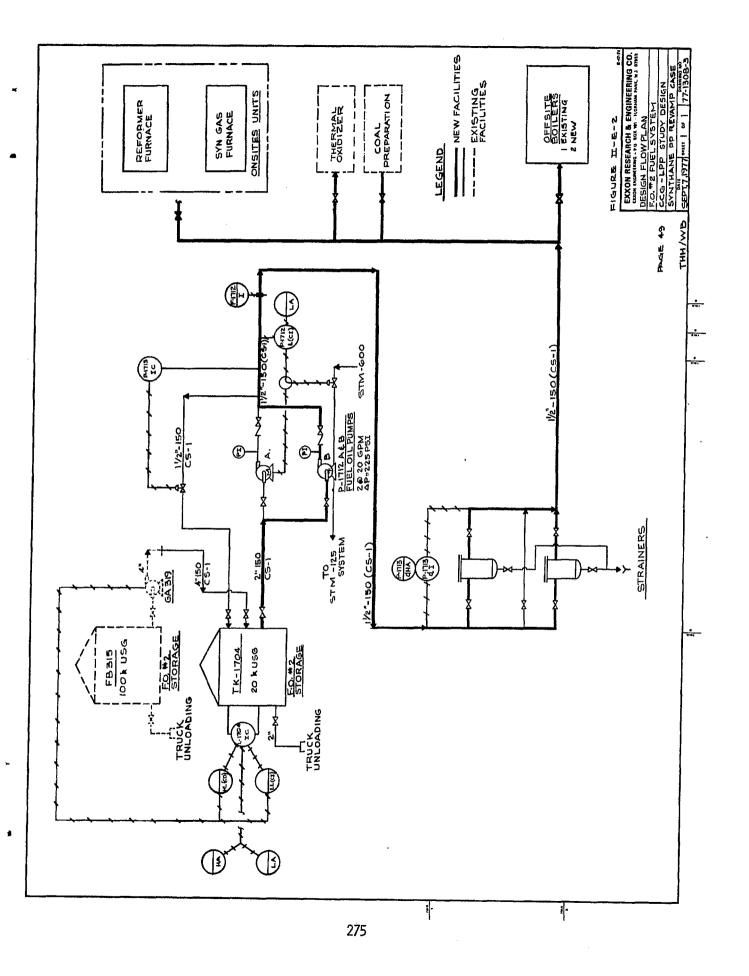
LPG-C, Facilities

LPG-C₃ will be delivered to the plant site by trailer truck. The existing 30,000 USG storage drum will be utilized after relocation to a new plant area. The capacity is equivalent to a 5-day supply for LPG-C₃ maximum requirements.

- 46 -

LPG-C₃ will be used primarily as pilot gas for the offsites boilers and the flare, and the offsites inert gas generators. Facilities are provided for use as backup for onsites pilot gas. The distribution system is interconnected with the natural gas system to permit use of natural gas as a backup pilot gas.


The design flow plan for the LPG-C $_3$ facilities is presented in Figure II-E-1.


Fuel Oil Facilities

The existing 100,000 USG tank will be used and the existing underground tank at the utility plant will be abandoned. A new 20,000 USG tank will be located adjacent to the proposed new boiler plant site. The combined capacity of about 120,000 USG is equivalent to about an 8-day supply for normal operations.

F.O. #2 will be used as primary fuel for the onsites boilers, offsites boilers, offsites oxidizer, and offsites coal preparation. No backup fuel will be provided.

The design flow plan for the F.O. #2 facilities is presented in Figure II-E-2.

ł

APPENDIX II-F

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

BOILER FEEDWATER AND STEAM FACILITIES

This section covers offsite Boiler Feedwater and Steam Facilities for the Major Synthane Revamp Case. It includes:

- BFW treating and distribution.
- Steam generation and distribution, condensate collection.

Maximum use of existing facilities has been considered in this study.

Design Basis

BFW Treating and Distribution

The existing 3 bed city water demineralization facilities with a production capacity of 50 GPM (net) will be relocated to the new utility plant site. Additional capacity of 150 GPM (net) will be provided by two new 3 bed trains. The existing H_2SO_4 and NaOH storage is considered adequate for the total facility. The city water feed supply will be obtained from a new raw water storage tank and pumping facility.

The design flow plan for the demineralization system is shown in Figure II-F-1.

The existing treated water storage tank FB-301 will be relocated to the new utility plant site for the same service. The 35k USG tank capacity is about a 3 to 4 hours supply for normal operations. New transfer pumps for treated water are required for deaerator feed and demineralization plant regeneration requirements. The existing deaerator will be abandoned and replaced by a new 140,000 lbs/hr. capacity deaerator. The existing hydrazine addition facilities will be relocated to the new utility plant site. New morpholine addition facilities will be provided. The existing phosphate injection and BFW pumps associated with the existing 1150 psig boiler will be relocated to the new utility plant along with the boiler. New phosphate injection facilities and BFW pumps will be provided for the new 600 psig boilers.

The deaerator, BFW treating and treated BFW distribution facilities are shown in Figures II-F-2 and II-F-3. Steam Generation and Distribution Condensate Collection

The steam facilities will be based primarily on 600 psig and 125 psig systems. The existing high pressure boiler (1150 psig) will be relocated to the new utility plant area. The 1150 psig steam produced will be let down to the 600 psig level. In addition, two new 600 psig boilers with individual capacities of 90k lbs/hr will comprise the offsite steam generation facilities. Additional 600 psig steam will be generated by two onsites waste heat boilers. Onsites consumers require 600, 125, and 55 psig steam services. These will be supplied by 600 and 125 psig headers with letdown stations for 55 psig requirements. The 55 psig services are required for the Benfield and Stretford units in addition to the heating services for the administration building. The 125 psig services are also required for the offsite coal preparation, flare, maintenance shops, LNG and LPG-C₃ vaporizers, and wastewater treating facilities.

Condensate will be recovered from the 125 psig systems in the onsite and coal preparation facilities.

The design flow plan for the steam generation and distribution system is presented in Figure II-F-3.

Existing Facilities

Existing facilities specified for reuse in this design study are covered in The Lummus Company piping and instrumentation drawings:

E-6656-03012A E-6656-03012C E-6656-03013 E-6656-03026

TABLE II-F-1

EQUIPMENT LIST

• DEMINERALIZATION PLANT

New Facilities

- 2 trains; 3 beds/train; cation, anion, mixed bed
- Production capacity 150 GPM (net) for both trains.
- Feed quality 400 ppm max. TDS
- Acid regeneration system
- Caustic regeneration system
- Neutralization pit

Existing Facilities (relocated to new utility plant site)

- 3 bed train with regeneration facilities.
- H₂SO₄ and NaOH storage tanks for existing and new facilities.

• DEAERATOR

Flow Plan Symbol D-1804
 Output capacity (lbs/hr) 140,000
 Operating Pressure (Psig) 20
 Materials Stainless steel vertical deaeration section and carbon steel horizonal storage section

Notes:

(1) Storage section of deaerator shall be sized for 20 minutes holdup.

• BOILERS

ŧ

 Number of Boilers Flow Plan Symbols Capacity Per Unit Steam Outlet Conditions 	2 SG - 1809, 1810 90,000 lbs./hr.
 Pressure Temperature Feed water temperature Fuel (Dual fired) 	600 psig 750 °F 250 °F No. 2 Fuel 0il (19,200 BTU/LB.)
• Blowdown Rate	or Product Gas (23,100 BTU/LB.) 5%

Notes:

*

4

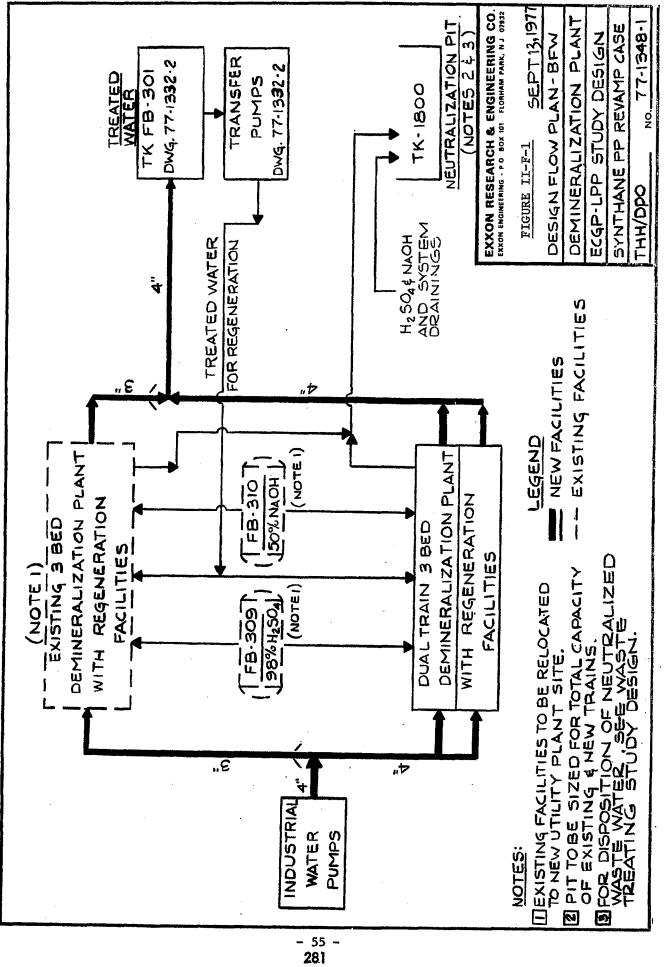
- (1) Boilers shall be equipped with steam turbine driven force draft fans.
- (2) Boilers shall be equipped with a 100 foot common self-supporting unlined steel stack.

• LET DOWN STATIONS

Service	Capacity, 1bs/hr
1150# - 600#	25,000
600# - 125#	10,000
600# - 125#	40,000
125# - 55#	10,500
125# - 20#	20,000

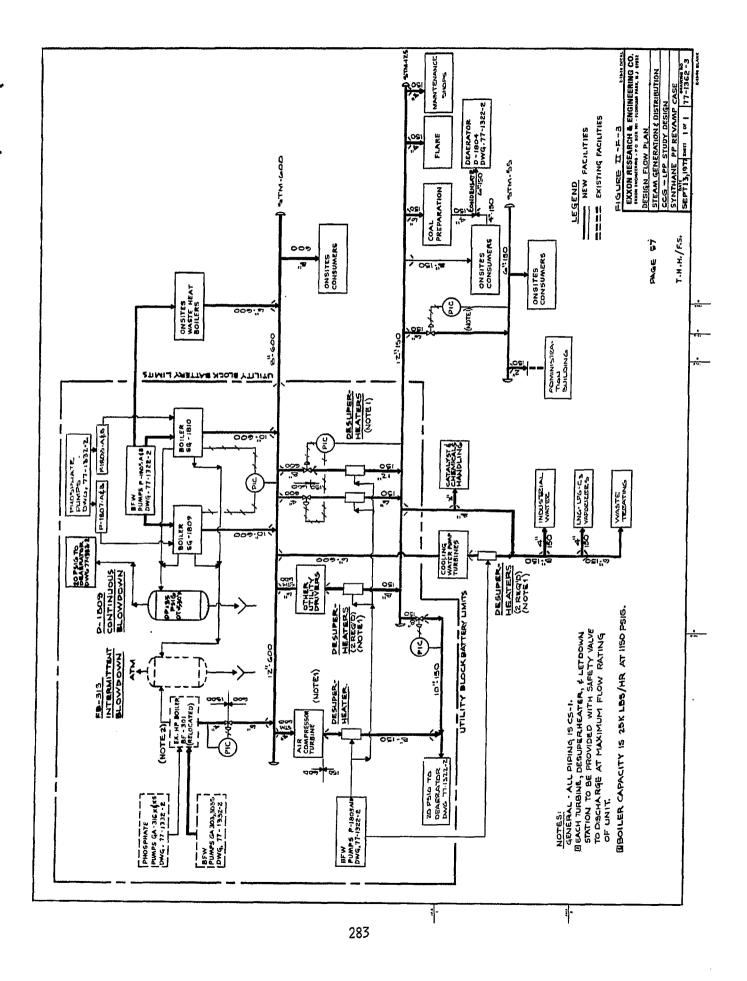
- 53 -

279


DESUPERHEATER STATIONS

Location - Service	Steam Rate, lbs/hr Inlet/Outlet (a)	Operating Pressure, psig	Temp., °F Inlet/Outlet
• Utility Plant			
~ Air compressor turbine	6800/8100	20	530/300
- Other turbines (b)	18200/21100	125	540/ 400
- Let down stations			
600 - 125 p sig	10000/11600	125	693/400
600 - 125 psig	40000/46200	125	693/400
• Other Offsite Areas			
- Cooling water pump turbines (b)	7100/8200	125	540/400

- (a) BFW rate (@ 250°F) to desuperheater is difference between inlet and outlet steam rates.
- (b) Two stations required, each with indicated capacity.


• BOILER CONTROLS

The controls for the BFW and steam systems will be located in a new local control house. The controls for the relocated existing boiler (BF-301) will be integrated with the controls for the new boilers, SG-1809, 1810. Critical alarms will also be located in the main control house.

....

ļ

~

-

APPENDIX II-G

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

COOLING WATER FACILITIES

This section covers the process study design for the cooling water facilities serving the onsite and offsite systems of the Major Synthane Revamp Case.

DESIGN BASIS

Cooling water for process and offsite consumers shall be provided via a recirculating water system with an induced draft multicell cooling tower.

The cooling water pumping, recirculation, and chemical systems will be new facilities similar to the Grass Roots CCG-LPP Study Design (Appendix I-D). The cooling tower will consist of a new basin with four tower cells and fans. The existing Synthane tower and fans will be relocated on the new basin (see plot plan in layout study design) and supplemented with two additional cells and fans to provide the total required capacity.

The Cooling Water Distribution Plan for the Revamp site is shown in Figure II-G-1, and the Cooling Water Flow Plan requirements (based on Grass Roots Study Design) are specified in Table II-G-2.

TABLE II-G-1

EQUIPMENT LIST

COOLING TOWER

The cooling tower design is based on the following conditions:

Total Circulating Water Rate	4150 GPM
Design Wet Bulb Temperature	76°F
Approach	11°F
On Tower Temperature	122°F
Off Tower Temperature	87°F
Range	35°F

The cooling tower capacity shall be met in the following manner:

- A new basin and pump suction bay shall be provided to handle the total flow of 4150 GPM. The basin shall be divided into four sections serving individual cells, and shall have the capability of shutting down one cell and draining its basin while the remaining cells are in operation. Dual trash screens shall be provided on the pump suction bay to provide continuous trash screening while one screen is taken out of service.
- The two existing tower cells and fans shall be relocated to the new basin. The capacity of these existing cells based on the new design conditions will be 1800 GPM.
- Two new tower cells and fans shall be required to handle a total flow of 2350 GPM. Each cell and fan shall be sized to handle 50% of the 2350 GPM GPM cooling water load. Non-reversing type fans shall be provided.

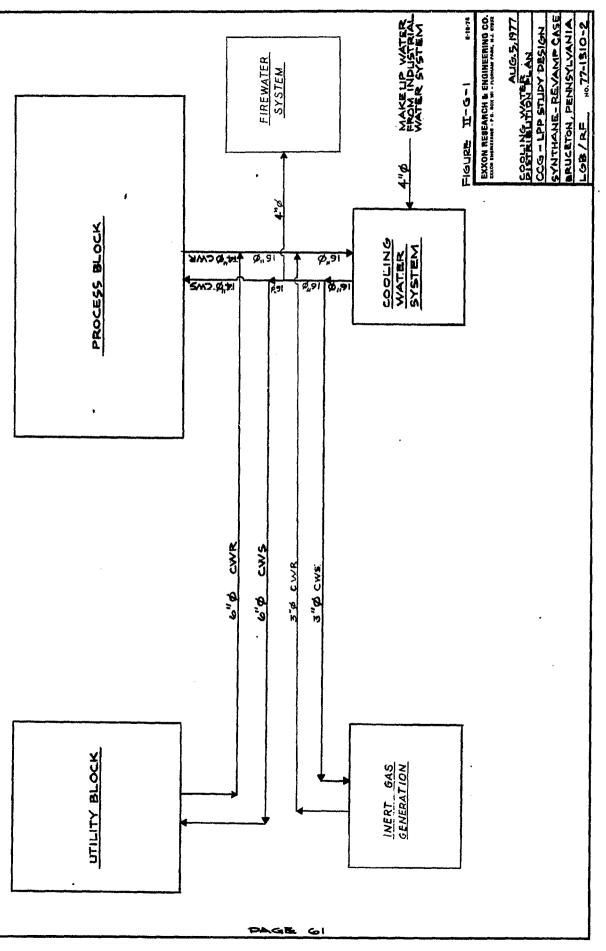

- 59 -**285**

TABLE II-G-2

DESIGN FLOW PLAN CHANGES COOLING WATER SYSTEM

(See Figure I-D-9 for Grass-Roots Case)

	Major Synthane Revamp	Grass Roots
Design Flowrate	4150 GPM	4325 GPM
Basin	4 cells (2 Existing)	2 cells
Recirculation Pumps	3 @ 2075 GPM Each	3 @ 2170 GPM Each
	2 Steam Turbine Driven	l Steam Turbine Driven
	600 psig inlet steam	125 psig inlet steam
	125 psig outlet steam	O psig outlet steam
	l Electric Motor Driven	2 Electric Motor Driven
Sulfuric Acid Injection F	umps 2@0.44 GPH Each	2 @ 0.7 GPH Each
Inhibitor Injection Pumps	2 @ 0.55 GPH Each	2 @ 0.6 GPH Each
Makeup Pipe Diameter	4"	6"
Chlorine Facilities	None	Chlorinator with Storage Facilities.

.

APPENDIX II-H

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

COMPRESSED AIR FACILITIES FLOW PLAN

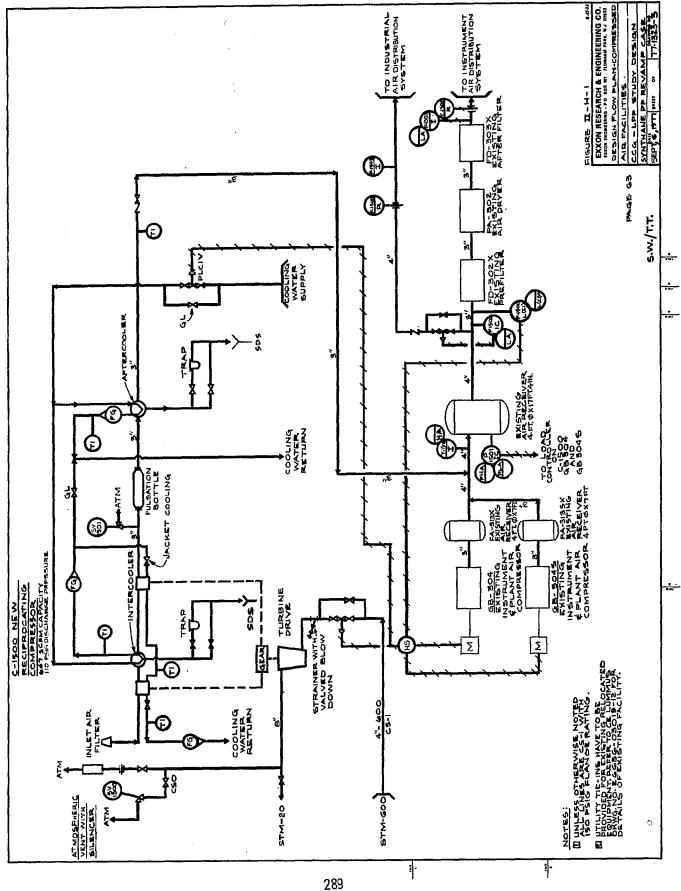
This section covers the process study design for the compressed air facilities serving the onsite and offsite systems of the Major Synthane Revamp Case.

DESIGN BASIS

Compressed air for process and offsite consumers shall be provided by three air compressors, two motor driven and one steam turbine driven.

Reuse of existing compressed air facilities at the Synthane Plant has been emphasized in this study design. Synthane compressed air facilities will be relocated and expanded to meet the needs of the revamped facility. The compressed air facilities design flow plan is shown in Figure II-H-1.

COMPRESSORS AND DRIVERS


The existing reciprocating compressors GB-304 and GB-304S with their motor drivers shall be relocated and reused. An additional air compressor C-1500 with the same rating as the existing units shall be provided (Joy Mfg. Co. Model WN 112 EHDL, Size 13-8 x 7). The new unit shall be steam turbine driven. An appropriate intercooler, after cooler, pulsation bottle, and related equipment shall be provided with the new compressor. The three compressors shall be placed in parallel. The new header pressure control scheme shown on the flow plan shall be integrated with the control packages of the three compressors.

The steam turbine driver for C-1500 shall be single stage. Inlet steam will be 600 psig, 750° F steam (STM-600) and outlet steam shall be 20 psig steam (STM-20).

ADDITIONAL EQUIPMENT

The existing air receivers, Prefilter FP-302X, Air Dryer PA-302, and After Filter FD-303X with bypass piping arrangements shall be relocated and reused.

- 62 -**288**

APPENDIX II-I

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

ELECTRICAL POWER SYSTEM

This section of the study design covers the electrical power supply and distribution system for the Coal Gasification Large Pilot Plant (CCG-LPP) Major Synthane Revamp Case.

DESIGN BASIS

Power for the CCG-LPP shall be obtained at 2400V from the West Penn Power Company substation within the plant battery limits.

Power shall be distributed radially from one existing 2400V substation and two existing 480V substations.

The estimated maximum simultaneous demand for the CCG-LPP is approximately 3.8 MVA, including contingencies. The loads are summarized by distribution center in Table

No planned pre-investment for future expansion shall be included in the electrical distribution system.

POWER SOURCE

Power for the CCG-LPP shall be supplied at 2400V, 60Hz, 3 phase from the West Penn Power Company substation existing at the Synthane Plant. A zig-zag grounding transformer and neutral resistor shall be added to the existing 2400V system. This system, according to West Penn Power, is capable of supplying the CCG-LPP estimated load of 3800 kVA.

The interrupting capability of equipment at the 2400V level shall be 36 kA symmetrical at 2400V, which is equivalent to 250 MVA interrupting duty at 4160V.

The contractor's responsibilities shall include, but are not limited to:

- Removal of existing SUB 1-A switchgear and replacement with new switchgear as indicated on one-line drawing, Figure II-I-1.
- Expansion of main electrical room to allow for addition of new MCC's and instrument power supplies.
- Installation of the new zig-zag grounding transformer and neutral resistor.

• Disconnection and reconnection of power cables, control wires, meters and relays at the SUB 1-A switchgear.

DISTRIBUTION SYSTEM

Figure II-I-1 is the simplified one-line diagram of the electrical power distribution system.

The location of the existing substations and new MCC's are indicated on plant layout Figure II-N-2 included in the Layout and Building Study Design.

System Voltage Levels

The distribution voltage level is 2400V. The medium voltage loads will be supplied at 2400V and the low voltage loads will be supplied at 480V.

Distribution System Description

Switchgear units are numbered the same as for the existing Synthane Plant and are located in the main electrical room.

The new SUB 1-A, 2400V switchgear is supplied radially from the West Penn Power Co.'s main transformer and the existing main 2400V circuit breaker located in the yard.

The two existing 480V Substations 1-B and 1-C, and the existing 2400V motor control center MCC 1-E are served radially from SUB 1-A.

SUB 1-B serves three existing MCC's and two existing power panels.

SUB 1-C serves four existing MCC's and shall serve two new MCC's. The two new 480V MCC's shown in Figure II-I-1 shall be designated as Utilities MCC and Waste Water MCC.

The main electrical room shall be air conditioned and pressurized as described in the Layout and Building Study Design.

System Grounding

The new zig-zag grounding transformer shall be connected to the load side terminals of the main 240V circuit breaker. The transformer and neutral resistor package shall be capable of supplying approximately 1200 amps of ground fault current for 10 seconds.

The two 2400-480V transformers have delta connected primary windings, and wye connected secondary windings with a solidly grounded neutral.

LOAD DESCRIPTION

The estimated maximum simultaneous demand for the CCG-LPP, including contingencies, is approximately 3800 kVA. The loads are summarized by distribution center in Table II-I-1. The contractor is responsible for finalizing all loads and for assuring compatibility of all equipment, both new and existing, throughout the system.

The contractor shall utilize existing motor starters wherever possible. Where new starters are required, they shall be added to the existing MCC's in the main electrical equipment room.

METERING

West Penn Power Company has their own revenue metering at their incoming transformer.

The transformer secondary is presently equipped with:

- An indicating watthour meter with a demand register.
- One single phase indicating ammeter with selector switch for three phases.
- Voltmeter with selector switch for three phases.

PROTECTION

The West Penn Power Co.'s main transformer has secondary phase overcurrent protection, undervoltage protection, and anti-single phasing protection, as shown in Figure II-I-1. A new backup ground overcurrent relay shall be added to the new zig-zag grounding transformer neutral circuit and shall be wired to trip the main 2400V breaker.

The outgoing SUB 1-A feeders have phase instantaneous and time overcurrent protection, and instantaneous ground fault protection.

The existing medium voltage motor starters have fuses and thermal overload relays. Locked rotor and instantaneous ground fault protection shall be added. New motor starters shall be supplied with the same protection.

Protection for SUB 1-B and SUB 1-C consists of existing breakers with direct acting trip devices, and with ground sensing relays which shall be rewired to trip the source breaker at SUB 1-A.

INSTRUMENT POWER SUPPLY

The contractor shall provide an IPS (instrument power supply) in the main electrical room for supplying power to instruments and other essential services during power outages. Figure II-I-2 shows the IPS one line diagram. A new IPS shall also be provided in the new boiler room.

The existing computer IPS shall be moved from the existing boiler room to the main electrical room.

The two emergency generators shown in Figure II-I-2 are existing, but shall be reconnected as shown.

Transfer switches for a-c loads shall operate immediately upon drop of voltage below lower tolerable limit of loads served. A solid state transfer switch shall be provided.

The instrument power distribution panels shall be standardized metal enclosures with grouped fused disconnect switches.

The contractor's responsibilities shall include, but are not limited to:

- Selection and sizing of equipment for the IPS system based on the latest instrument.
- Complete coordination of switching and tripping elements.

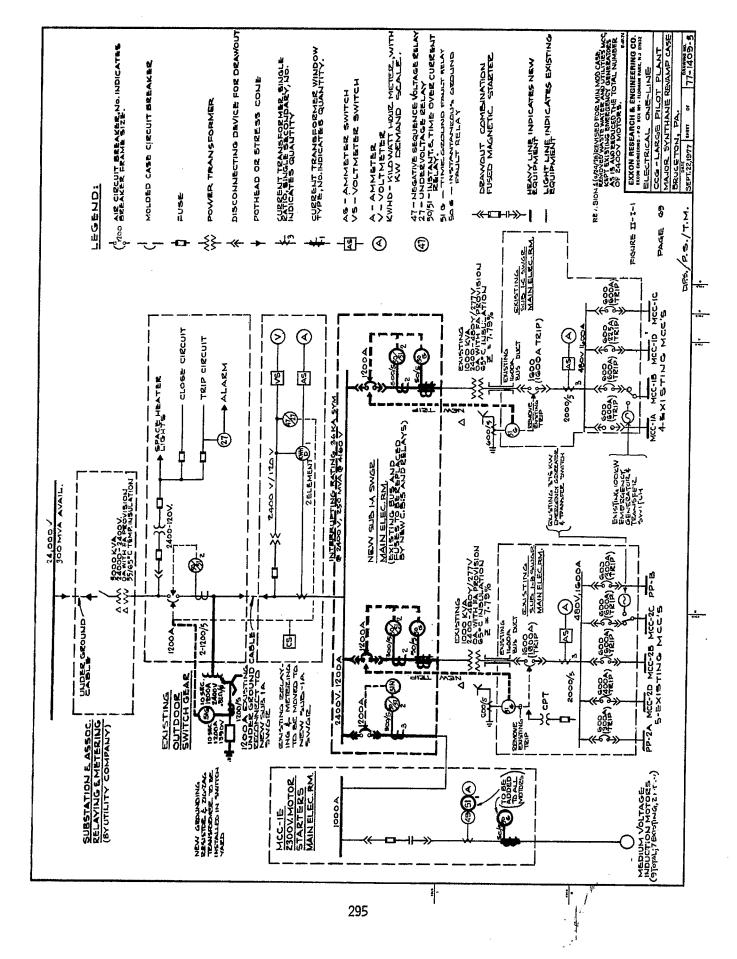
COMMUNICATIONS

The communication system for this project is not the responsibility of the contractor; however, the contractor shall supply conduits, raceways, etc., as required for the installation of the new equipment which will include dial telephones and a two-way radio system.

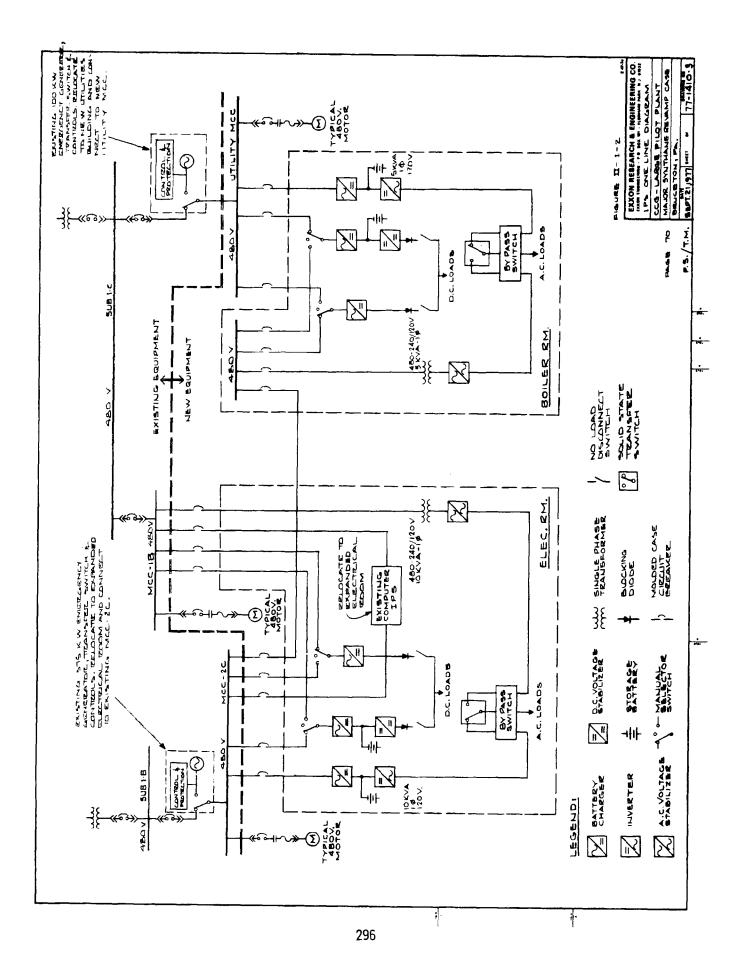
TABLE II-I-1

DISTRIBUTION CENTER LOAD SUMMARY

Distrib. Center	Loading Area	Exis Oper. kW	Existing Oper. <u>kW</u> Equiv. kVA(2)		Oper. kW ⁽¹⁾ Equiv. kVA ⁽²⁾	
SUB 1-A (2400V)	MCC 1-E	411	462	1191	1338	
	SUB 1-B	428	504	395	465	
	SUB 1-C	145	171		<u> </u>	
	Totals	984	1137(4)	2373	2729(4)	
SUB 1-B (480V)	Onsite	203	240	99	117	
	Coal Receipt & Storage	150	176	81	95	
	Safety Syst	75	88	17	20	
	I. P. S.	-	-	8	10	
	Boiler Rm (3) & Lighting	<u></u>		190	223	
	Totals	428	504	395	465	
SUB 1-C (480V)	Onsite Chemical Mardidae & Mise	-	-	303 31	356 36	
	Handling & Misc.	- 30	35	12	14	
	CO ₂ Admin. Building (3)	20		12	14	
	& Lighting	-	-	151	178	
	Computer IPS	17	20	-	-	
	JUTILITIES MCC	31	37	11	13	
	Waste H ₂ O MCC	<u> </u>	79	279	329	
	Totals	145	171	787	926	


Notes: (1) Additional allowance has been included.

(2) Assumed power factors are 0.89 for medium voltage loads, 0.85 for low voltage loads.


(3) These are estimated loads some of which will be existing.

(4) Total Sub 1-A kVA is approximated by arithmetic rather than vector summation.

- 68 -

-

APPENDIX II-J

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

POTABLE, INDUSTRIAL, AND FIREWATER SYSTEMS

This section covers the process study design for the potable water, industrial water, and firewater facilities serving onsite and offsite facilities of the Major Synthane Revamp Case.

DESIGN BASIS

In general, the basis of this study design is to utilize the existing pilot plant facilities where possible and expand them as required to meet the process and safety requirements of a Catalytic Coal Gasification Pilot Plant.

• Potable Water

The existing potable water distribution system can be used to meet the new pilot plant requirements by simply separating it from the existing industrial water system and adding new distribution lines.

• Industrial Water

Industrial water for process and offsite consumers shall be provided via a new industrial water system consisting of storage, pumping, and distribution facilities.

• Firewater

Firewater shall be provided to the pilot plant facilities by adding a new pumping system which takes suction from the industrial water tank. Additional distribution loops shall be added to the existing firewater network to serve the new areas of the plant.

POTABLE WATER DISTRIBUTION

Potable water is presently taken from the city water main at 160 psig and metered into the Synthane site at 30 psig. This pressure reducing system plus the existing distribution network shall be retained and expanded as shown in Figure II-J-1. New lines are required as follows:

- One 2" pipe line to the new utility block containing boilers and air compressors.
- One 1-1/2" pipe line to the relocated maintenance building.

INDUSTRIAL WATER DISTRIBUTION

The industrial water distribution system shall be an entirely new facility consisting of storage tank, pumps, and distribution lines. The storage tank shall also provide the necessary firewater inventory as required to meet safety standards.

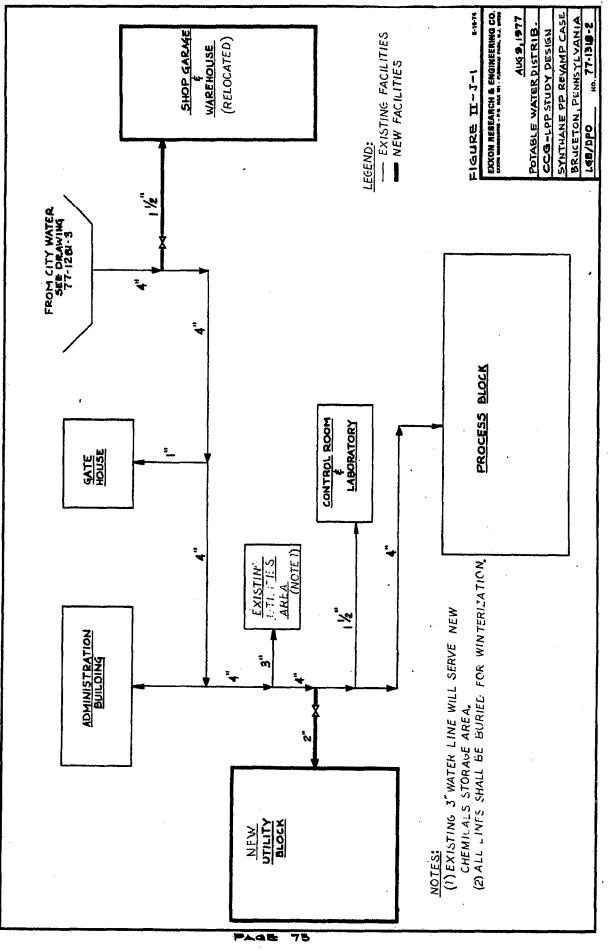
.

.

Water shall be supplied to the tank via a new 8" \emptyset line which shall be tied into the existing city water main. For reliability and flexibility, the pumping facilities shall consist of three 50% pumps, 2 electric motor driven and one steam turbine driven.

The industrial water distribution network is shown in Figure II-J-2, and storage and pumping facilities are illustrated in Figure II-J-3.

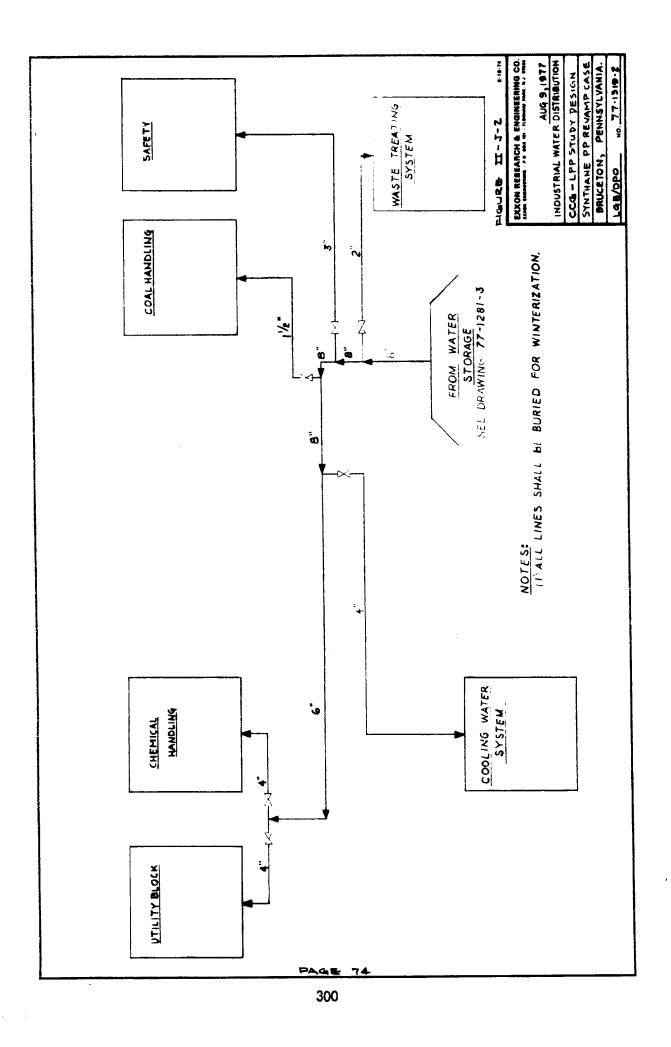
FIREWATER SYSTEM

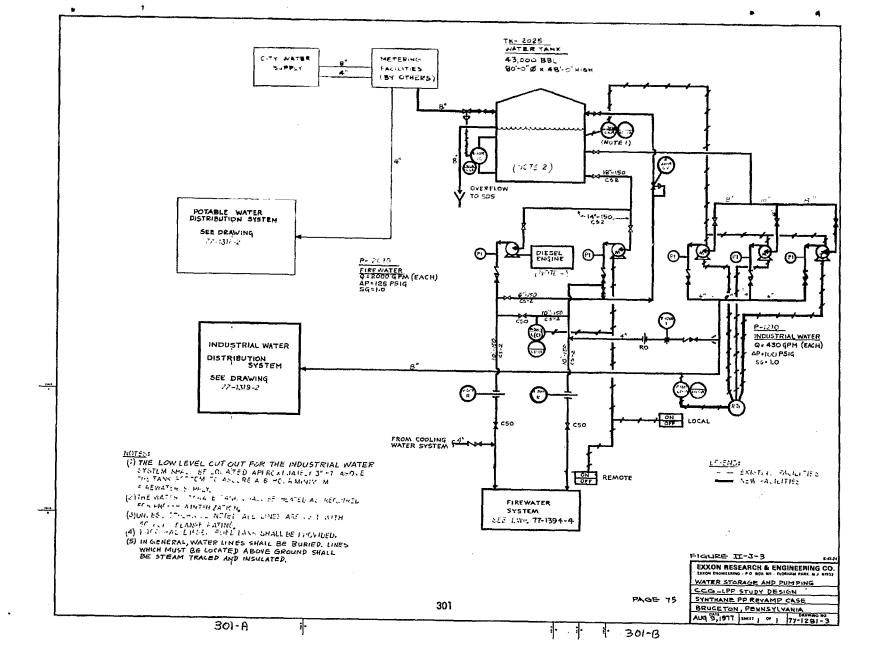

Firewater shall be distributed throughout the plant via the existing piping system plus additional loops required for new/relocated facilities as shown in Figure II-J-4.

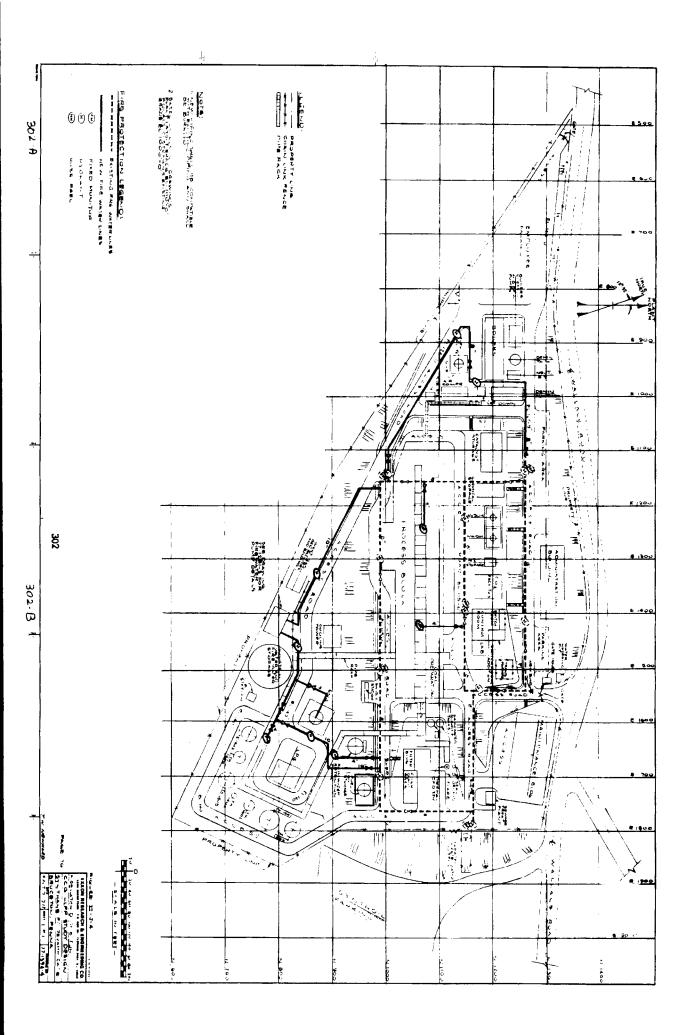
A 6-hour firewater supply shall be provided in the industrial water tank.

New pumping facilities shall be provided and tied in to the firewater distribution network, as shown in Figure II-J-3.

FIREFIGHTING EQUIPMENT


For the purposes of this study design, it is assumed that the municipal mobile firefighting equipment is adequate to cover the needs of the revamped facility.




:

299

• • •

APPENDIX II-K

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

WASTE TREATING FACILITIES

This section covers the handling, treating, and disposition of waste streams from the onsite and offsite facilities of the Major Synthane Revamp Case.

DESIGN BASIS

Onsite waste streams for the Major Synthane Revamp Case will be the same as the grass-roots case onsite waste streams except for the following:

- There will be a 0.4 gpm waste stream from the Stretford Plant, a unit not specified in the Grass-Roots LPP. Because of the toxicity of this waste stream, it shall be stored in a 5000 gal. drum at the Stretford Plant site for periodic removal by an outside contractor.
- The waste stream from the sour slurry stripper will be increased by 6-7 gpm. This is caused by the addition of a waste stream from the acid gas removal section to the sour slurry stripper.

Offsite Major Synthane Revamp Case waste streams will differ from offsite grass-roots case waste streams as follows:

- The design contaminated rainwater flowrate will be significantly less than the grass-roots case contaminated rainwater flowrate. This is caused by a smaller design rainfall and a smaller contaminated rainwater runoff collection area.
- There will be no waste stream from coal preparation.
- Sanitary waste will be treated by a separate existing facility.

Cooling tower blowdown, boiler blowdown, and the neutralized regeneration water from the demineralization plant will be purged from the LPP without treatment. These streams are presently purged from the Synthane Plant without treatment, so it has been assumed this practice is acceptable from an environmental standpoint.

Wherever possible, existing Synthane Plant waste treating facilities have been incorporated into the Synthane Revamp Case waste treating facilities. Following are existing facilities which shall be reused.

- The solids/liquid separation vacuum filter facilities.
- One of the 15,000 gal. rainwater runoff tanks.

• The 160,000 gal. waste water holdup tank.

To the extent possible, treated waste water will be reused in the Synthane Revamp LPP. Excess treated waste water shall be purged to an adjacent stream.

.

The design flow plans for the Major Synthane Revamp Case waste treating facilities are the same as the design flow plans for the Grass-Roots Case waste treating facilities (Appendix I-G), except as noted on the following tables.

TABLE II-K-1

DESIGN FLOW PLAN CHANGES WASTE TREATING FACILITIES

• Changes to grass-roots case Figure I-G-3).

1

-

.

Item	Major Synthane Revamp	Grass Roots	
Tank and Drum Volumes			
- TK-1 400	3509 bb1.	3071 bb1.	
- TK-1 404	1469 gal.	5880 gal.	
- D-1403	2000 gal.	4500 gal.	
Thickener Diameter			
- TH-1401	36 ft.	50 ft.	
Pump Flowrates (1)			
- P-1400	50 gpm	45 gpm	
- P-1401 A&B	34 gpm (each)	40 gpm (each)	
- P-1402 A&B	120 gpm (each)	355 gpm (each)	
A new pump P-1415 is added to the vacuum filter overflow water line. Its characteristics follow.			
Flowrate	21 gpm		
Differential Pressur	re 25 psi		
Inert gas or CO2 shall be	used to blanket TK-1400 instea	ad of N2.	
There is no waste stream from coal preparation.			
The two contaminated rainw char fines storage area runoff line) are not re	vater runoff lines from the coa (separate from the main conta equired.	al receipt area and aminated rainwater	
The existing Synthane Plan the following specifica	nt vacuum filtration pumps shal ations and used in place of P-1	1 be modified to 405 A&B.	
Flowrate Differential Pressure	29 gpm 43 psi		
Existing equipment at Synt in place of the followi	thane shall be reused and tied ing grass roots equipment.	into the new facilities	
C-1400 A&B			
D-1400			
VF-1400 A&B			
CO-1400 A&B			
со-1401 А&В			
(1) Capacity proration fa	actors also to apply to associa	ted piping systems.	
- 70 -			

TABLE II-K-1 (Cont'd.)

Characteristics of mixers MA-1400 A&B and MA-1404 shall be prorated on the volumes of the tanks in which they are set.

For winterization, all piping shall be insulated and heat traced, all drums shall have heaters, and all tanks shall have steam spargers.

• Changes to grass-roots case Figure I-G-4)

<u> </u>	Major Synthane Revamp	Grass Roots
Tank and Aeration Basin	Volumes	
- TK-1402	2,098 bbl.	6,526 bb1.
- TK-1403	4,798 bbl.	12,978 ьь1.
- AB-1405	1,617 bbl.	4,292 bbl.
Diameter of Clarifier		
- CL-1406	27 ft.	44 ft.
Pump Flowrates (1)		
- P-1403 A&B	138 gpm (each)	380 gpm (each)
– P-1404 A&B	138 gpm (each)	380 gpm (each)
- P-1407 A&B	0.5 gph (each)	1.1 gph (each)
- P-1409 A&B	7 gph (each)	20 gph (each)
- P-1414 A&B	43 gpm (each)	190 gpm (each)
Purge of treated	To outfall at east	To refinery
waste water.	end of plant.	

Sanitary waste shall be handled by a separate existing facility.

All piping shall be insulated and heat traced for winterization. All tanks shall have steam spargers for heating during winter.

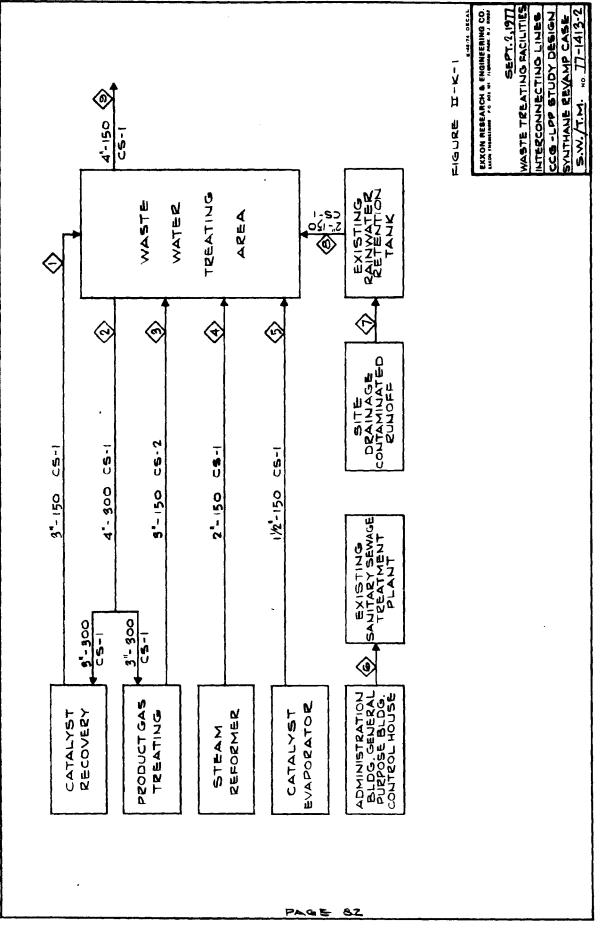
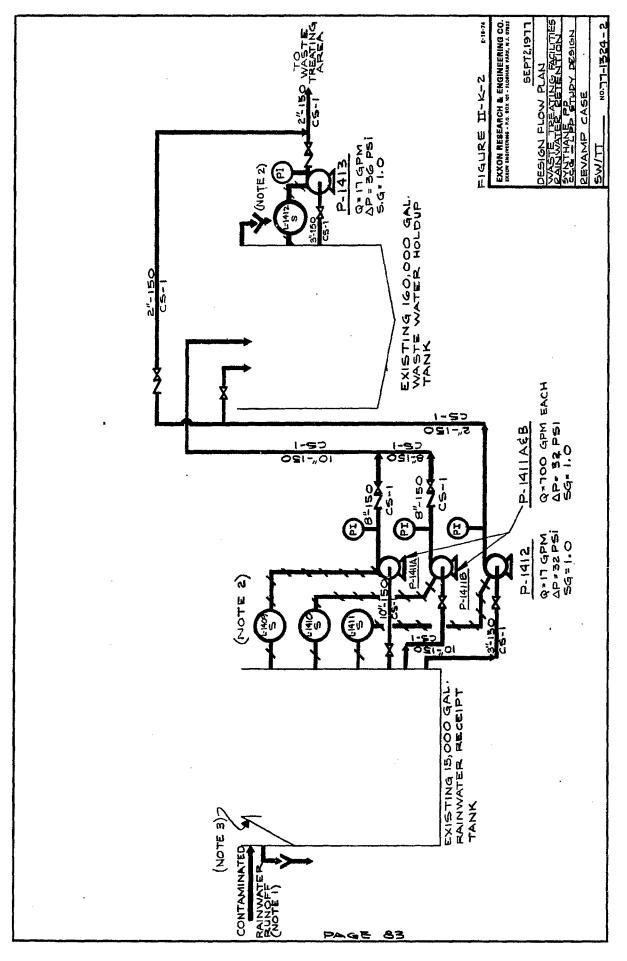

(1) Capacity proration factors also to apply to associated piping systems.

TABLE II-K-1 (Cont'd.)

• Figure II-K-1 replaces grass-roots case Figure I-G-5. Stream designations for Figure II-K-1 are below.


Number	Stream
1.	Catalyst Recovery waste water.
2.	Catalyst Recovery and Product Gas Treating supply water.
3.	Product Gas Treating waste water.
4.	Steam reformer effluent condensate.
5.	Catalyst evaporator condensate.
6.	Sanitary waste.
7.	Site drainage contaminated runoff.
8.	To waste treating.
9.	Purge from activated sludge unit.
	mentance mean means to and Figure T-C-6 Following are

- Figure II-K-2 replaces grass-roots case Figure I-G-6. Following are notes pertaining to Figure II-K-2.
- 1. This flow is from the Segregated Sewer System in the process unit and other areas producing contaminated rainwater runoff. The Segregated Sewer System shall be sealed and have vents.
- 2. Level switches shall have level high cut in and level low cut out. Set points shall be determined by contractor to provide sequential startup and shutdown of Pumps P-1411A, P-1411B, and P-1412 with increasing/decreasing rainwater flow.
- 3. A trash rack consisting of 1" \emptyset bars on 2" centers shall be provided at the rainwater collection sump entrance.
- 4. All piping shall be insulated and heat traced for winterization. All tanks shall have steam spargers for heating during winter.

.

*54 **N-19-2**

ł

*

APPENDIX II-L

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

SAFETY FACILITIES

This section covers the safety system required for the onsite and offsite facilities of the Major Synthane Revamp Case.

Equipment is provided to safely dispose of the continuous H_2S stream from the overhead of the slurry stripper and to flare the gaseous safety valve releases from the plant.

DESIGN BASIS

The existing thermal oxidizer is used to burn the continuous H_2S purge stream from the process area. Based on existing Synthane practices, it has been assumed that this is acceptable from an environmental standpoint. New equipment required to make the thermal oxidizer suitable for continuous H_2S burning is listed in Table II-L-1.

The flare gas facilities for safety value releases will be similar to the grass-roots case flare system (Appendix I-K). Specific changes for the Major Synthane Revamp Case are listed.

The Coordination Flow Plan - Flare System shown in Figure II-L-1 gives a simplified overview of the Major Synthane Revamp Case Safety Facilities.

TABLE II-L-1

EQUIPMENT LIST

THERMAL OXIDIZER SYSTEM

The existing thermal oxidizer will be used to incinerate the continuous H_2S steam from the process area. Existing burners, controls and local piping at the thermal oxidizer will be reused. Only changes to the system are tie-ins from revamped offsite utilities systems (fuel oil, steam, compressed air) and the addition of an H_2S flare gas line with seal drum and associated facilities.

Details of new facilities are: <u>Item</u> H₂S flare gas line from process to seal drum

Flare seal drum with water supply and sealing water disposal pumping system.

H₂S flare gas line from seal drum to thermal oxidizer

Equipment

4"Ø steam traced and insulated

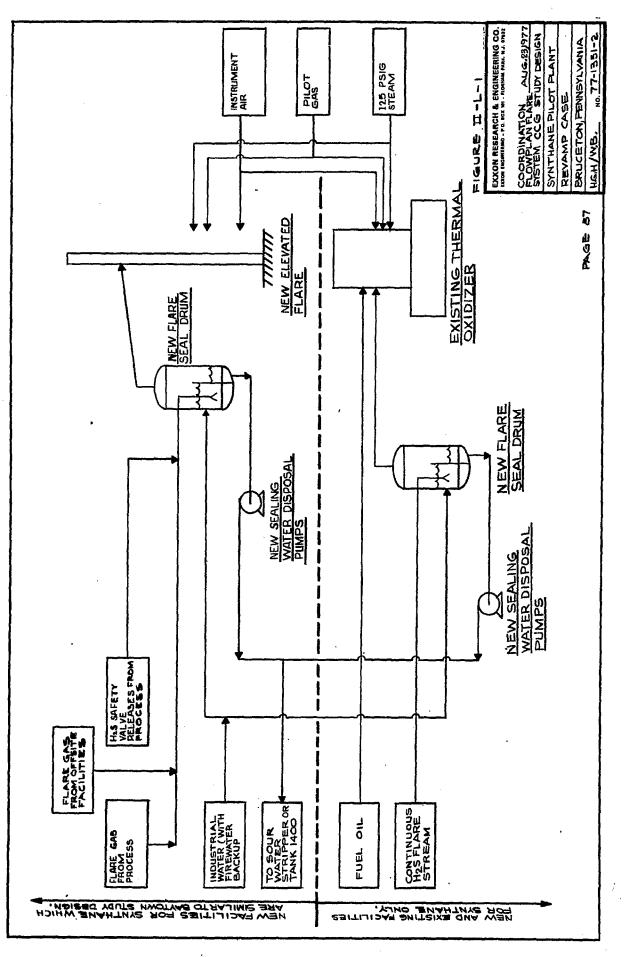
Duplicate of seal system for elevated flare (see grass roots case Figure I-K-1.

All water and condensate lines to be heat traced and insulated.

4"Ø steam traced and insulated.

TABLE II-L-2

DESIGN FLOW PLAN CHANGES FLARE SYSTEM


• Changes to grass-roots case Figure I-K-1.

	Major Synthane Revamp	Grass Roots
Flare Gas Lines		
- From Process - From Utility Block - From LPG/LNG Facilities	10''Ø 2''Ø 2''Ø	12''Ø 8''Ø None
Flare Stack Diameter	10''Ø	12"Ø
Pilot Gas/Fuel Gas System	1-1/2"∅ LPG Line to Pilot Gas Systems	3" Natural Gas Line to Flare Stack and Pilot Gas System
Heat Tracing Required		
- Water Lines - Condensate Lines	Yes Yes	NO NO
 Changes to grass-roots cas 	e Figure I-K-2. Major Synthane Revamp	Grass Roots
Heat Tracing of:		
- Condensate Drum Bottom	Yes	No
- Condensate Lines	Yes	No

Flare Gas Heater (1)

Note:

(1) This information is common to both the Grass-Roots and Major Synthane Revamp Cases.

1

*

*

3

APPENDIX II-M

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

CHEMICAL HANDLING FACILITIES

The chemical handling facilities for the Major Synthane Revamp Case will be nearly a duplicate of the chemical handling facilities for the grass-roots case (Appendix I-H). Following are changes to the grassroots chemical handling facilities for the revamp chemical handling facilities.

- 1. Chlorine and its related facilities have been deleted.
- 2. All caustic and sulfuric acid pumps and lines shall be heat traced. All caustic pumps and lines shall be stress relieved.
- 3. The sulfuric acid Tank TK-1601 shall be externally heated (steam or electric tracing).
- 4. Differential Pressures of the following pumps have been changed.

Major Synthane Revamp		Grass-Roots	
P-1601	44 psi	25 psi	
P-1603	29 psi	14 psi	

APPENDIX II-N

CATALYTIC COAL GASIFICATION LARGE PILOT PLANT STUDY - MAJOR SYNTHANE REVAMP CASE

LAYOUT AND SITE PREPARATION

This section covers overall layout and site preparation for the Major Synthane Revamp Case.

DESIGN BASIS

The "Major Synthane Revamp Case" has been developed to provide a basis for comparison with the conceptual "Grass-Roots Case". The "Major Synthane Revamp Case" would be constructed on the existing DOE Coal Gasification Plant site at Bruceton, Pennsylvania in an attempt to utilize the existing facilities where possible.

In order to comply with minimum required safety standards, it is necessary to relocate some existing equipment and use additional land outside the present fence line for new offsite facilities.

The extent of the modifications of the existing DOE Plant may be visualized by comparing the Present Plant Layout in Figure II-N-1 with the Major Synthane Revamp Plant Layout in Figure II-N-2.

SITE DESCRIPTION

The proposed pilot plant site is the existing Synthane Coal Gasification Plant which is located in Bruceton, Pennsylvania. The plant is situated on a hilly, 15-acre tract and is graded on several different levels. The site is bounded by a public road (Wallace Road) on the north, by residential property on the west, by farmland on the south, and by Synthoil, another DOE Plant, on the east.

CONTRACTOR STAGING AREA

At present, the Synthane site is not large enough to include a contractor staging area and a contractor parking area. For the purpose of the study design only, it is assumed that an adjacent DOE site could be used for staging and parking.

EMPLOYEE PARKING

The parking area, as shown on the New Plant Layout, is not large enough to accommodate parking for the present Synthane staff. As with the Contractor Staging Area, it is assumed that adequate land can be made available to satisfy all future parking needs.

EQUIPMENT SPACING

The spacing of equipment follows ER&E's recommended spacing requirements as much as possible. However, because the Synthane site has limited available land for new facilities, some spacing requirements could not be met. All of these areas have been carefully assessed and judged acceptable.

3

Since the new LNG storage tank is located on a terraced portion of land above the process area, it is necessary to provide a reinforced concrete dike capable of retaining the entire tank volume.

PIPEWAYS

The layout illustrates only major pipebands. Pipeways within the process block and at road crossings shall be elevated.

ROADS

Roads and accessways are shown in Figure II-N-2. Accessways within the process block are covered in the onsite study design layout.

All site access <u>roads</u> shall be 20 feet wide. Onsite access roads, and off-road loading and unloading areas shall be asphalt paved.

Accessways shall be 12 feet wide and shall be of crushed stone construction.

PAVING AND SURFACING

Paving and surfacing for existing, reused Synthane facilities will not be changed. For land areas requiring new development, the following standards should be followed:

1. 4 inches of crushed stone or gravel (1-1/2" maximum size) for:

- Utility Block
- Waste treatment area
- Substations areas
- Under pipeways
- Cooling tower area
- Catalyst storage area

2. Concrete for:

- Chemical storage area
- Process block
- Coal preparation area

- 90 -

SECURITY FENCING AND LIGHTING

The Synthane plant is presently fenced in, as shown in Figure II-N-1. Additional fencing and gates shall be provided as required to enclose the entire Revamp site, as shown in Figure II-N-2.

Security lighting shall be provided in the expansion areas.

BUILDINGS

The following existing Synthane buildings will be reused without modification:

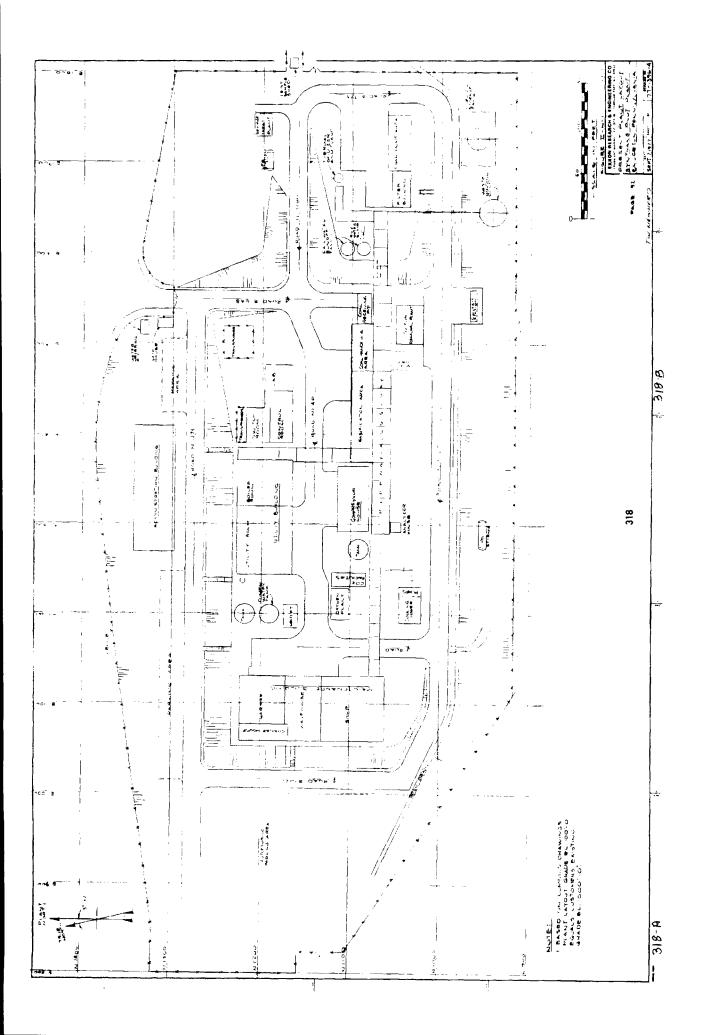
- Gatehouse
- Administration Building
- Filter Building

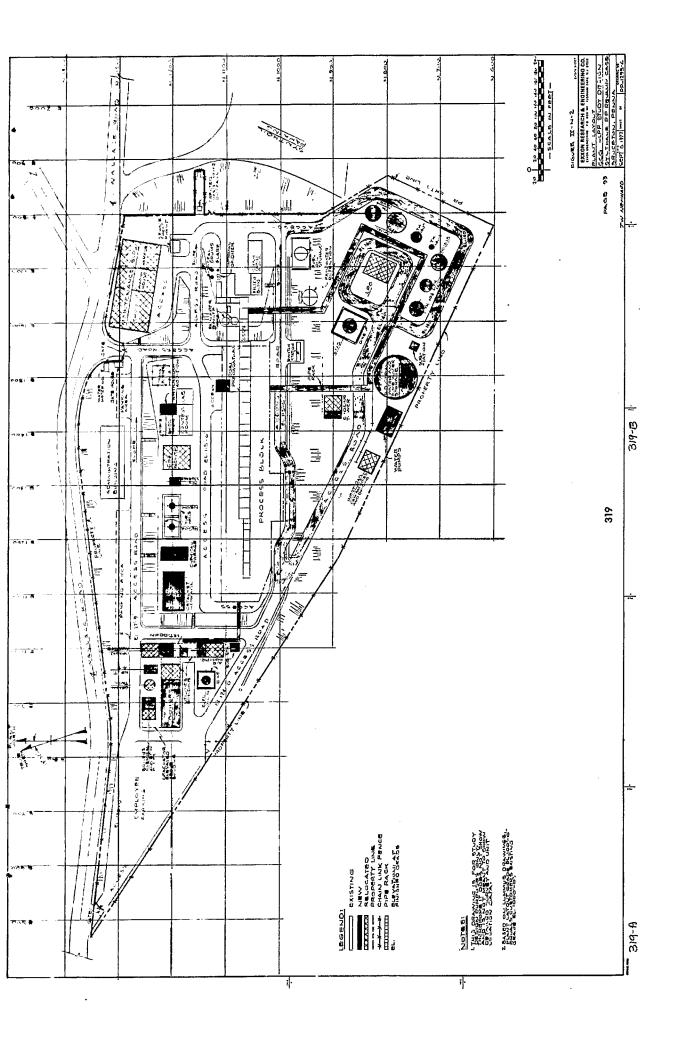
The following existing Synthane buildings shall be relocated as shown on the layout drawings:

- Shop
- Garage
- Warehouse .

The following new buildings are required:

- Utilities To house boilers, boiler feed water treating and air Building compression facilities. Reuse of the existing utilities building or portion thereof shall be considered if practical. A new utilities control room shall be provided.
- Inert Gas Generation Building


The existing building housing the main control room, laboratory and electrical switch room shall be modified as follows:


- Provide air conditioning.
- Provide pressurization with air intake 40 ft. above roof.
- Replace existing glass partitions and windows with safety glass.
- Block off doorway between laboratory and control room and provide separate outside entrance to laboratory.

MOBILE EQUIPMENT

For the purposes of this study design, it is assumed that existing Synthane mobile equipment is adequate to cover the needs of the revamped facility.

> - 91 -317

