ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

Master

ANL/EES-TM-118

PROBLEMS ASSOCIATED WITH SOLID WASTES FROM ENERGY SYSTEMS

by

S.Y. Chiu, L. Fradkin, S. Barisas, T. Surles, S. Morris,* A. Crowther,* and Vincent DeCarlo**

Energy and Environmental Systems Division Integrated Assessments and Policy Evaluations Group

September 1980

DISCLAIMER — DISCLAIMER — Discussion of the united States Government, Neither the United States Government nor any searcy therior, nor any of their employees, makes any werranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned fights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endormend, its available united by the United States Government or any agency thereof. The views and opinions of suthors expressed herein do not necessarily state or reflect these of the United States Government or any agency thereof.

Prepared for

U.S. DEPARTMENT OF ENERGY Assistant Secretary for Environment Office of Environmental Assessments Regional Impacts Division

*Brookhaven National Laboratory, Biomedical and Environmental Assessment Division

**U.S. Department of Energy, Regional Impacts Division

BISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

CONTENTS

EX	ECUTIVE SUMMARY	ix
. 1		1
	1.1Background <t< td=""><td>1 1 2</td></t<>	1 1 2
2	REVIEW OF ENVIRONMENTAL REGULATIONS	4
· ·	 2.1 Clean Air Act Amendments of 1977 (PL 95-95)	4 6
	2.3 Safe Drinking Water Act (PL 93-523) and Underground Injection Control Act (PL 95-150)	6
	 2.4 Surface Mining Control and Reclamation Act (PL 95-87) 2.5 Toxic Substances Control Act (PL 94-409)	7 7 9
	2.6.4 Solid Waste Disposal Requirements	9 10 16 17 25 32
3	SOURCES AND NATURE OF ENERGY RELATED SOLID WASTES	33
	3.1 Solid Wastes Associated with Coal Utilization	33
	3.1.2Inorganic Solids and Sludges3.1.3Tars and Oil Sludges3.1.4Biosludges3.1.5Spent Catalysts	35 47 56 58 60 60
	3.2 Solid Wastes Associated with Oil Shale Processing	63
	3.2.2Retorted Shales.3.2.3Other Shale Derived Wastes	63 63 65 67
	3.3 Solid Wastes Associated with Other Energy Technologies	68
	3.3.2 Oil and Gas Extraction	68 71 72 74
4	HAZARD CHARACTERISTICS	79
	4.1 Coal Utilization	79
		79 85

CONTENTS (Cont'd)

		4.1.3 4.1.4 4.1.5 4.1.6	FBC Spent Solids97Sludges from Chemical Treatment of Process Wastewater.99Tars and Oil Sludges99Biosludges102)
	4.2		ale Processing Wastes	
5	PROB	LEMS AS	SOCIATED WITH HAZARDOUS WASTE STORAGE AND DISPOSAL 113	١.
	5.1	Dispos	al Options	I
		5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	Ponding. 113 Landfill 114 Mine Disposal 115 Ocean Disposal 116 Deep Well Disposal 116 Soil Application 116	
		5.1.7	Incineration	,
	5.2		erm Environmental Problems	;
		5.2.1 5.2.2 5.2.3	Deterioration of Landfill Covers)
6	SOLI	D WASTE	UTILIZATION)
	6.1	Buildin	ng Material	
		6.1.1 6.1.2 6.1.3 6.1.4	Ash from Convention Boilers.122FGD Sludges.123Fluidized Bed Material123Other Solid Wastes124	}
	6.2	Road Co	onstruction Material	ŀ
		6.2.1 6.2.2 6.2.3 6.2.4	Ash. 124 FGD Sludge 124 Fluidized Bed Material 124 Other Solid Wastes 125	+
	6.3	Agricul	ltural Use	í
			FGD Wastes125Fluidized Bed Material125Fluidized Bed Material125	
			nmental Impacts	
7			ATION OF SELECTED HAZARDOUS WASTES FROM THE INDUSTRIAL	į
	7.1	Coke In	ndustry)
		7.1.1 7.1.2	Industrial Profile and Process Description	
	7.2	Petrole	eum Refining Industry	

CONTENTS (Cont'd)

		7.2.1	API Separator Wastes	•	•	•	•	•	•	•	•	•	•	•	133
		7.2.2	Dissolved Air Flotation Float												134
		7.2.3	Slop Oil Emulsion	•	•	•	•	•	•	•	•	•	•	•	135
		7.2.4	Heat Exchanger Bundle Cleaning Waste	s.	. •	•	•	•	•	•	•	•	•	•	135
		7.2.5	Tank Bottoms												135
		7.2.6	Biosludges	•	. •	•	•	•	•	•	•	•	•	•	136
		7.2.7	Spent Catalysts	•	•	•	•	•	•	•	•	•	•	•	137
	7.3	Electr	oplating and Metal Finishing Industrie	es	•	•	•	•	•	•,	•	•	•	•	137
		7.3.1	Process Description			•	•	•	•			•	•	•	138
			Waste Stream Description												138
	7.4	Creoso	te Production Industry	•	•	•	•	•	•	•	•	•	•	•	139
		7.4.1	Process Description	•	•	•		•	•		•		•	•	140
		7.4.2	Hazardous Components of the Waste												140
	7.5	Wood P	reserving Industry	•	•	•	•	•	•	•	•	•	•	•	141
	1. A.	7.5.1	Industry Profile		•	•	•	•	•	•	•	•	•	•	142
		7.5.2	Process Description												142
		7.5.3	Hazardous Waste Constituents	•	•	•	•	•	•	•	•	•	•	•	143
	7.6	Phenol.	Acetone Production Industry	•	•	•	•	•	•	•	•	•,	•	•	144
		7.6.1	Process Description	•	•	•	•	•	•	•	•	•	•	•	144
		7.6.2	Hazardous Properties of the Wastes .												145
	7.7	Second	ary Lead Smelting Industry	•	•	•	•	•	•	•	•	•	•	•	145
		7.7.1	Process Description	•	•	•	•	•	•	•	•	•		•	146
		7.7.2	Hazardous Waste Constituents	•	•	•	•	•	•	•	•	•	•	•	147
	7.8	Primar	y Zinc Smelting and Refining Industry	•	•	•	٠	•	•	•	÷	•	•	•	147
		7.8.1	Process Description	. •	•	•	•		• .	• .	•	•	•		147
4.5		7.8.2	Hazardous Properties of Waste												148
RE	FEREN	CES		•	•	•	•	•	•	•			•	•	150

TABLES

1	Summary of Energy Wastes and Relative Hazard Potential x
1.1	Estimated Solid Wastes from Energy Related Activities (10 ⁶ Tons)
2.1	Summary of Potential Regulatory Actions Affecting the Hazardous Solid Wastes from Energy Industries
2.2	Hazardous Constituents Identified in RCRA
2.3	Maximum Concentration of Contaminants for Characteristics of EP Toxicity
2.4	Hazardous Waste from Nonspecific Sources

TABLES (Cont'd)

2.5	Hazardous Waste from Specific Sources	18
2.6	Basis for Listing Hazardous Wastes	19
2.7	Test Methods for Evaluating Solid Wastes	20
2.8	Analytical Methods for Organic Chemicals	21
2.9	Analytical Methods for Inorganic Species	22
2.10	State Readiness to Use the Solid Waste Disposal Criteria	26
2.11	Interim Status Standards for Hazardous Waste Disposal	28
3.1	Quantities of Solid Waste Generated	34
3.2	A Partial Identification of Trace Elements in Coal Ash	37
3.3	Major Chemical Constituents of Coal Ash	38
3.4	The Separation of Elements in the Geochemical Classification Scheme	38
3.5	Chemical Constituents of Bottom Ash and Flyash	39
3.6	Estimated Saturated n-Hydrocarbon Concentrations in Coal Ash	41
3.7	Estimated Polycyclic Aromatic Hydrocarbon (PAH) Concentration in Coal Ash	42
3.8	Natural Radionuclides Observed in Coal, Bottom Ash, and Flyash	43
3.9	Contents of the Various Radionuclides in Coal, Bottom Ash, and Flyash	44
3.10	Representative Analyses of Coals and Chars (Wt. %)	45
3.11	Inorganic Elements in the Mineral Residue from the H-Coal Utilizing Illinois #6 Coal	46
3.12	Trace Element Concentrations (ppm) in Illinois Coal and in the Unquenched Gasifier Ash Obtained from Lurgi Gasification	48
3.13	Chemical Composition of Coal Ashes from Gasification/ Liquefaction Plants	50
3.14	Chemical Analysis of Lime Process Sludges on a Dry Solid Basis (%)	52
3.15	Chemical Analysis of Flue Gas Desulfurization Sludges	53
3.16	Elemental Composition of Scrubber Sludge Leachate	54
3.17	Major Components of German High-Temperature Conversion Process Coal Tar	57
3.18	Organics in Product Water from Gasification of Illinois No. 6 Coal	58
3.19	Trace Elements Reported in Product Gas Quench Waters	59
3.20	Catalysts Used in Coal Conversion Processes	61
3.21	Trace Element Concentration for Drainage Produced by Illinois Basin Coal Refuse	62

TABLES (Cont'd)

3.22	Typical Analysis of Organic and Mineral Matter in the Raw Shale
3.23	Ash Composition of Typical Retorted Oil Shale
3.24	Distribution of Trace Metals During Oil Shale Retorting 66
3.25	Inorganic Ions Leachable from Freshly Retorted Shales (kg/T) - Based on Laboratory Tests
3.26	Typical Composition of Shale Oil Coke
3.27	Average Concentration in Geothermal Brines and in Water Samples (mg/L)
4.1	Composition of Ash Pond Liquors and Sluicing Waters (mg/L) 80
4.2	Equilibrium Concentrations of Trace Elements in Coal Ash Leachate
4.3	Levels of Chromium and Lead in Solid Residues and Leachates from Coal Combustion Compared to Solid Wastes from Selected Industries
4.4	Chemical Composition of Lurgi Ash and Slurry Supernatant Solutions of the Ash from an Illinois No. 6 Coal at Several pH Levels
4.5	Elements Exceeding Recommended Water Quality Levels
4.6	EPA-EP Leaching Results for Five Gasification/Liquefaction Solid Wastes
4.7	Levels of Chromium and Lead in Solid Residues and Leachates from Coal Conversion Compared to Those of Solid Wastes from Selected Industries
4.8	Chemical and Bioassay Test Results for Gasification Ash 92
4.9	Chemical and Bioassay Test Results for Gasification Ash Leachate
4.10	Chemical and Bioassay Test Results for Gasification Cyclone Dust
4.11	Chemical and Bioassay Test Results for Gasification Cyclone Dust Leachate
4.12	Acute Toxicities of Lurgi Ash Leachates to Daphnia Magna 96
4.13	Toxicity of Lurgi Ash Leachates to Raphanus Sativus L 98
4.14	Comparison of Process Wastewaters from Coal Conversion and Coke Making Processes (mg/L)
4.15	Bioassay Test Results for Crude Tar Samples and Fractions 101
4.16	Polynuclear Aromatic Hydrocarbon Concentration in Creosote and Coal Tar (g/kg)
4.17	Polynuclear Aromatic Hydrocarbons in Coal Tars and Bottom Sediment Sludge from a Wood Preserving Plant (g/kg)

TABLES (Cont'd)

4.18	Known or Suspected Carcinogens that may be Present in Waste Streams from Coal Liquefaction
4.19	Studies of the Acute Effects of Shale Oil and Shale Oil Products
4.20	The Number and Types of Abnormality Found in Rabbit Embryos after Oral Doses of Spent Shale
4.21	Mutagenicity of Chemicals Identified in Shale Oil Using Salmonella Tester Strains
4.22	Levels of Benzo(a)pyrene (BaP) Reported in Oil Shale and Natural and Industrial Materials
4.23	Carcinogenic Potency of Two Raw Shale Oils
4.24	Benzo(a)pyrene Content of Shale Oil Products
4.25	Carcinogenic Potency of Raw and Upgraded Shale Oil
4.26	Carcinogenic Potency of Shale Oils and Shale Oil Products 111
6.1	Electric Utility Ash Utilization Patterns
6.2	Sulfur Produced by Individual Energy Technologies and Sulfur Sold in the U.S
7.1	Levels of Chromium (mg/L) in Leachate from Solid Wastes and Coal Ash from Two Petroleum Refineries
7.2	Levels of Chromium and Lead (mg/kg) in the Solid Waste Streams from a Petroleum Refinery and in the Solid Residues of
	Conventional Coal Combustion
7.3	Levels of Chromium (mg/L) in Leachate for Electroplating Sludges and Coal Ash
7.4	Levels of Lead (mg/L) in Leachate from Coal Ash and Zinc Smelting Processes

EXECUTIVE SUMMARY

Over six billion tons of solid waste are annually produced in the United States. At least 40 million tons of these wastes contain toxic chemicals, many of which are man-made organic compounds that may possess mutagenic, carcinogenic, teratogenic or acutely toxic properties. Unfortunately, certain technological and scientific breakthroughs have had the adverse impact of increasing the presence of these toxic chemicals in our environment by many orders of magnitude. Prior practices for disposing of wastes containing these chemicals demonstrated that little consideration had been given to the possibility of future generations coming into contact with these toxic species.

The most frequently sited examples of inadequate waste management are those of chemical industries; however, the energy development sector may also have problems with toxic waste disposal, if precautions are not taken. Under the Fuel Use Act, passed in November 1978, emphasis is placed on increased use of conventional coal combustion in place of oil and gas. Efforts are also underway to develop and improve technologies that produce liquid and gaseous products from coal and liquids from oil shale. These coal use initiatives run counter to many environmental initiatives and, except for their possible impact on air quality, these energy developments will most affect environmental initiatives on solid waste generation. Present federal initatives call for approximately two billion tons of coal to be mined by 2000.

The amount of coal cleaning wastes, fly ash, and scrubber sludge to be disposed of from conventional combustion, already estimated at 66 million tons per year, will escalate dramatically to more than 200 million tons per year. Of perhaps greater importance, however, is that 600 million tons of coal per year will be converted to synfuels by 2000. It is estimated that up to 50 million tons of solid waste will be generated from these conversion processes. Although much of the waste streams from these processes will contain ash and scrubber sludge, new types of wastes will also be produced. In particular, the reducing nature of the conversion processes will produce considerable amounts of coal char, tars, and oils. These wastes could contain considerable amounts of organic chemicals that are toxic or carcinogenic. In addition to coal, oil shale development will produce 180 million tons per year of solid wastes by 1995. Continuing problems will also exist in disposing of nuclear fuel cycle wastes and drilling brines and muds from domestic oil and gas production.

In this study, we review waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation, with an emphasis on waste streams from coal and oil shale technologies. A number of waste streams are listed in Table 1, in which we attempt to rank these streams on the basis of harmful effects on health and the environment. Given the limited data available, these comparisons must be considered somewhat subjective.

Regulatory Uncertainties

Although "hazardous" criteria may be relaxed under the current Resource Conservation and Recovery Act (RCRA) regulations, it appears that the EPA

Technology and Waste Stream	Characteristic or Chemical of Concern	Potential Hazard Ranking ^a
Conventional Coal Boiler		
Ash	Various trace elements	2
Lime/limestone scrubber sludge	Various trace elements	2
AFBC		
Ash	Various trace elements	2
Spent bed material	pH, total dissolved solids (TDS), sulfate	8 1
Coal Gasification	1 	
Coal cleaning	pH, trace organics and inorganics	3
Gasifier ash/char	Fused aromatics, trace elements	3
Boiler ash	Various elements	2
Boiler FGD sludge	Various elements	2
Spent catalysts	Nickel (Ni), Cobalt (Co), Arsenic (As), Cadmium (Cd), Polycyclic organic matter	: 3
Acid gas clean up and		•
pollution control wastes	Phenolics, aromatics, various elements	3
Tar and oil sludges	Heterocyclics, polynuclear aromatics (PNA), other organics	J
Biosludges	Heterocyclics, PNA, other organics	3
-	• • • • •	.3
Coal Liquefaction	pH, trace organics and inorganics	3
Coal cleaning Liquefaction waste (chars,	pH, trace organics and inorganics	
ash, filter cake)	Fused aromatics, trace elements	2
Boiler ash	Various elements	. 3
Spent catalysts	Ni, Co, As, Cd, POM	3
Acid gas clean up and		
pollution control wastes	Phenolics, aromatics	3
Tar and oil sludges	Heterocyclics, PNA, other organics	3
Biosludges	Heterocyclics, PNA, other organics	3
Oil Shale		
Raw shale dust	Respirable particulates	2
Spent shale	Trace organics, PNA, trace inorganics	3
Shale oil coke	As, Selenium (Se), PNA, other organics	3
API separator sludge	Phenolics, trace elements	3
Nonshale wastes	Heterocyclics, other organics, variety of trace inorganics	3
Geothermal	As, Lead (Pb), Potassium (K), Fluorine	•
	(F), TDS	2
Tar Sands	Similar to oil shale	3
Nuclear		-
Low-level wastes	Low radioactivity	2
High-level wastes	High radioactivity	3
Oil Exploration		
Drilling muds	Bactericides, metals, organics	2
Drilling brines	TDS	1

Table 1 Summary of Energy Wastes and Relative Hazard Potential

^al:low -- concentrations of chemicals are known to be low, with few additional data necessary.

2: intermediate -- concentrations of chemicals approach criteria and/or additional data may illustrate that toxic levels of the chemicals are high.

3:high -- concentrations of chemicals exceed criteria and/or there is a high potential that additional data will illustrate severe problems associated with toxic constituents.

will have considerable latitude to define hazardous wastes, particularly under the "toxic" category.

The EPA has recently revised the rules and regulations under Subtitle C of the RCRA (Federal Register, May 19, 1980). One area where changes have affected the legal standing of solid wastes is in the definition of hazardous wastes. First, a pH range of 2.5-12.5 was defined as noncorrosive and acceptable, thus reducing the number of waste streams considered hazardous. Practically all waste streams from energy industries are thus removed, with two possible exceptions. Untreated coal refuse drainage can exhibit a pH range of 1.7 to 2.9, whereas untreated, spent residue from fluidized bed combustion can exhibit a pH greater than 12.5. Second, the concentrations for Extraction Procedure (EP) toxicity were increased to one hundred times those of the National Interim Primary Drinking Water Standards (NIPDWS), and, as a result, practically all waste streams for coal and oil shale do not meet hazardous criteria. It should be noted, however, that many coal technology wastes have not been analyzed according to EP toxicity protocols. The net effect of these changes has been to take large volumes of wastes and remove them from hazardous lists in these "interim final" rules. However, extracts from some coal cleaning wastes may contain 100 times the NIPDWS concentrations for chromium.

The EPA did put two new categories in place for defining solid waste: "acute hazard" and "toxic." Since a waste may be deemed "toxic" if any one of over 350 chemicals is present, the Administrator may designate it as hazardous. The regulations provide many nonquantitative qualifiers for "toxic." Thus, it appears that the EPA will have considerable latitude in defining hazardous wastes in this category. Needless to say, many of these 350 chemicals are present in coal and oil shale solid wastes. Spent catalysts, biosludges, acid gas treatment sludge, and tars and oily sludge may have problematic characteristics with regard to the toxic criteria. In addition to the heavy metals that they already contain, spent catalysts contain trace metals and highly polymeric organic materials derived from coal and oil shale. Biosludge, acid gas treatment sludge, tars, and oily sludge tend to concentrate certain trace elements and organics originating from coal and oil shale. Thus, it is in the "toxic" category that many energy wastes may be considered hazardous.

It is possible that many energy wastes will be classified as "hazardous." Energy waste streams, in general, are presently poorly characterized and may be regulated in the future on development of a legally defensible data base. The waste streams most likely to be affected include selected streams from coal liquefaction and gasification and coal cleaning waste streams. This conclusion is based on our review and analysis of the available data presented in the following text.

The Nature and Problems of Coal and Oil Shale Wastes

A typical coal gasification plant is expected to produce up to five million tons per year of coal ash, which can contain considerable amounts of trace inorganics and organics. Leachate from Lurgi ash, containing high concentrations of boron, lead, cadmium, and antimony, has been shown to be toxic to aquatic life. Few data are available on the organic species in coal gasification waste streams.

Coal liquefaction waste streams have been shown to contain many trace elements. Of greater concern here, however, are data showing that these streams contain a number of known or suspected carcinogens, including benzidine, nitrosamine, fluoranthrene, benzo(a)pyrene, -napthylamine, benzene, and pyrene. Coal tars from both gasification and liquefaction processes are highly aromatic; studies have shown that as much as 50% of coal tar constituents contain three or more benzene rings, whereas 20% are two-ring heterocyclic compounds. Although much research needs to be done, many compounds in these organic classes have already been shown or are suspected to be carcinogenic. Naphthalene, fluoranthrene, and phenanthrene, which are found in large amounts in these tars, are toxic.

Oil shale wastes also contain toxic materials. Arsenic and selenium are two trace elements of concern, but the organics produced during the processes are of greater concern. Oil shale wastes contain phenols, heterocyclic amines, and polynuclear aromatics, which include known carcinogens (in the benzene extract of shale ash) such as 1,2-benzanthracene, 3-4-benzopyrene, 1,2,7,8-dibenzacridine, 7,12-dimethylbenz(a)anthracene, and 3-methycholanthrene. The latter two are particularly potent carcinogens. Benzo(a)pyrene can occur in concentrations of up to 3 parts per million (ppm).

Ames tests on coal liquefaction wastes have determined that mutagenic agents occur in the basic and neutral tar fractions of high-boiling extracts of SRC-II tars. Tumor incidence was 100% following sufficient applications of heavy distillate to mouse skin. In a similar test, syncrude extracts were identified as carcinogens following application to mouse skin, whereas similar crude oil extracts were found to be noncarcinogenic. Ames tests for tar base fractions from three coal gasification processes showed more severe mutagenic effects on a particular bacteria strain than the crude tar samples themselves.

Epidemiological studies have shown that prolonged exposure to shale oil can produce skin cancer in humans. Extracts from shale wastes have been shown to be mutagenic (Ames test) and carcinogenic (mouse skin). Although data are available on some organic compounds in shale wastes, it should be noted that at least five different technologies, producing different waste streams, may be developed for oil shale retorting.

<u>Comparison of Coal and Oil Shale Wastes to Other Waste Streams</u>. In this portion of the study we characterized waste streams that are similar to coal and oil shale waste streams (e.g., petroleum refining, iron steel, coke scrubber sludge). Such streams were determined to be toxic as one or more of the following chemicals were present: arsenic, cadmium, chromium, lead, cyanide, phenolics, and fuel aromatics (naphthalene). A comparison of solid waste and leachates from these industries and energy industries indicates the following possible areas of energy waste regulation. Coke plant waste streams contain concentrations of phenolics on the order of 1000 ppm, and Lurgi and SRC-I waste streams contain 3500 and 45,000 ppm, respectively. Dissolved air flotation (DAF) wastes from petroleum refining contain chromium concentrations between 28 and 260 ppm. Chromium values for bottom ash (270 ppm), fly ash (300 ppm), synthane bottom ash (240 ppm), fluidized bed combustion (FBC) spent bed (450 ppm) and Lurgi wastes (590 ppm) are all within or above this range. These values are for solids, not leachates; however, these regulated wastes were considered hazardous in the toxic category rather than the EP toxic category. Thus, no leachate tests may be necessary. Creosote wastes are considered hazardous, in part due to the presence (0.2 ppm) of benzo(a) pyrene (BAP). Coal tar has BAP concentrations of up to 2 ppm. Tars are by-products found particularly in coal liquefaction and gasification wastes.

The comparison described in the preceding paragraph is little more than cursory. However, similarities do exist between regulated "hazardous" wastes and energy wastes. Future studies and legislation will determine if it will be necessary to regulate these energy wastes in a manner similar to that used for "hazardous" wastes.

Comparison to Water Quality Criteria. Water quality criteria that allow for acceptable ambient surface water concentrations have recently been developed, most on the basis of test results, for many consent decree chemicals. Although the acceptable limits for many pollutants are very low (often on the order of g/L), concentrations of these constituents in energy solid wasts and leachates are rather high. Ash from conventional coal combustion and coal conversion and sludges from desulfurization processes can contain up to 50 trace elements, many actually found in significant quantities. Specifically, ash may contain aluminum, antimony, arsenic, barium, beryllium, boron, chlorine, chromium, cobalt, copper, gallium, germanium, iron, lead, nickel, tin, titanium, vanadium, and zinc in concentrations greater than 1000 ppm. These elements are often in forms easily dissolved and mobilized into the environment at potentially harmful levels.

Other trace constituents are also contained in coal fly and bottom ash. Benzo(a)pyrene may occur in concentrations approaching 200 ppm. Other heterocyclic amines and polynuclear aromatics in this residue are probably toxic and mutagenic.

Engineering Concerns of Disposal Site Integrity. Chemical composition data indicate a pollution problem from the leaching of many energyrelated solid wastes and a need for careful site selection and monitoring. In some cases, installation of special control measures, such as liners, sealants, underground collection systems, and devices for routing ground and surface flow, may be needed. Although these control measures are potentially applicable to landfill as well as pond disposal sites, their long-term effectiveness is still a matter of concern.

There are some mechanisms by which solid waste containment areas may be breached, thus causing environmental pollution. The effectiveness of landfill cover, for example, could be decreased over the long term as a result of numerous natural phenomena, including erosion, cracking, landslide, and subsidence. Each of these phenomena can either deteriorate the structure of a landfill or produce a change in a site, thereby enhancing the rate at which contaminants reach the environment. In many cases, landfills or ponds will be lined with either natural or artificial materials designed to provide attenuation of leachate contamination or to completely isolate the waste from the environment. The effectiveness of liner materials can decrease with time, however. For example, for a specific site condition, the leachate attenuation capacities of liner soils have limits beyond which the migration of pollutants to the environment will increase. Because most pollutants may be leached from solid residues over a long period of time, long-term protection of groundwater supplies is a serious environmental concern.

Numerous artificial liners have been proposed, including both flexible films of rubber or various plastics and nonflexible liners such as asphalt, cement, or even stabilized flue-gas desulfurization (FGD) wastes. The possible chemical reaction between the liner and a waste can result in decomposition of liner material, and thus the useful lifetimes of potential liners are a matter of concern. Flexible liners are generally guaranteed for 20-25 years, and nonflexible liners are expected to have a somewhat longer life. However long-term service data for waste containment are not yet available for either type of liner.

Solid Waste Utilization Potentials. Commercial use of solid wastes is clearly an attractive alternative to disposal, as a means of reducing both environmental impacts and costs. Only 20% of coal ash from utilities is now used; a possible increase in the use of ash and possible uses for other wastes, such as FGD sludge and fluidized-bed materials, are being evaluated. The major areas of use are in building materials, road construction, agriculture, and elemental sulfur and sulfuric acid production.

Although many technically sound applications, already developed, could potentially absorb more than the wastes generated annually, that is not likely to occur in the near future because of customer uncertainties about reliability, technical complexity of application, uniformity, and quality of products. Many of these barriers may be overcome with time, after which the extent of utilization will depend on economic considerations. Many industrial firms and research organizations are active in the development of new applications and markets for power plant coal ash.

The outlook for use of wastes other than coal ash is uncertain; for example, little use of FGD waste in the near future is foreseen. Major deterrents to the utilization of lime/limestone scrubber wastes are their variable physical and chemical properties, high transportation costs, dewatering requirements for many applications, and their inability to compete economically with other material.

Many technologies for control of sulfur dioxide and hydrogen sulfide could produce elemental sulfur or sulfuric acid as by-products. The use of recovered sulfur is limited, however, since the potential supply exceeds the total U.S. demand. Development of either new sulfur uses or acceptable methods for environmental sulfur disposal is essential.

Problems of Other Energy-Related Wastes

Spent Geothermal Fluids. Disposal of spent geothermal fluid is a major environmental concern. Such fluids, produced when water and steam in the geothermal zone are tapped, may contain sodium chloride and bicarbonates in much higher concentrations than normally found in groundwater. Other elements such as boron, lithium, manganese, strontium, arsenic, lead, and potassium also exist in geothermal brines and may occur in high concentrations in some areas.

Oil and Gas Drilling Fluids. Oil and gas extraction wastes include drilling fluids and oil production brines. The latter are produced in association with crude oil from underground reservoirs and consist primarily of brackish waters. Drilling fluids, used in cooling and lubricating the drilling bit, transporting drill cuttings, balancing formation pressure, sealing the walls of the bore hole, and performing various other related functions, may contain many toxic substances. The basic drilling fluid predominantly used by the industry is a water-based bentonic or attapulgite clay suspension with additives to provide specifically desired properties. Many additives to drilling fluids contain materials considered toxic. Of particular concern are the bactericides (e.g., aldehydes, quaternary amines, diamine salts, sodium pentachlorophenate, and other chlorinated phenols) and corrosion inhibitors (e.g., benzoic acids, dihydroxybenzenes, substituted naphthalenes, amines, and imidazolines). Many drilling fluid additives are water soluble; therefore, leachate from drilling fluid disposal could contain dissolved toxic and caustic materials as well as a high salt concentration.

<u>Wastes Associated with Tar Sand Development</u>. The solid wastes from a major tar sand operation include topsoil, over burden, and tailing from tar sand extraction, and coke and oily sludge from bitumen conversion. The pollution of surface and groundwater resources may result from the leaching of salts and toxic materials from these solid wastes. However, there is a lack of quantitative information concerning the hazard characteristics of solid wastes from tar sand processing.

<u>Radioactive Wastes</u>. Radioactive wastes, the inevitable by-products of the generation of electricity by nuclear reactors, are encountered at all stages of the nuclear fuel cycle -- in mining and milling, in fuel fabrication, in reactor operation, in spent fuel assemblies, and in the reprocessing of spent fuel, should the last become a reality. Plutonium and other waste components present special problems since they decay very slowly and remain dangerous for hundreds of thousands of years. It would constitute a major catastrophe or a major health risk if radioactive waste materials were to escape to the environment in large quantities.

Until safe permanent disposal is devised, nuclear wastes remain a very serious health and environmental problem, and many disposal techniques are under investigation. These include deep geological burial; seabed, ice sheet, and extraterrestrial disposal; transmutation; and disposal by rock melting in deep mine cavities and in deep drill holes. Some of these technologies are suitable for one or several types of radioactive waste. However, because some important decisions concerning nuclear energy, namely, spent fuel reprocessing and use of the breeder reactor, have been deferred indefinitely, work is continuing on methods to dispose of all kinds of wastes. Furthermore, many methods need to be researched and developed as a hedge against one or more of them proving to be technically impossible or environmentally undesirable.

Future DOE Options

As is evident from the preceding overview, although the development of the country's energy resources is a needed national policy, this policy can have considerable impact on public health and the environment. Given uncertainties in existing data and possible regulation, it would be to DOE's benefit to develop its own program for solid wastes in the near term. This appears to be a positive step the Department could take while Congress debates the issues. This program would necessarily stress the development of an organic chemical data base and increased biological testing. DOE would thus be better prepared to develop environmental control programs based on scientific data on toxic wastes rather than waiting for a new legal definition of "toxic" and "hazardous" for a given waste stream.

To develop a program in which DOE would play the leading formative and conceptual role, a number of specific items, listed below, need to be addressed:

- (1) All solid wastes from energy systems must be evaluated and analyzed to determine their true toxic nature. These analyses should be chemical and biological. There are few data, and the sampling and analytical data that do exist apply only to a few waste streams. Emphasis should be placed on those technologies nearest to commercialization.
- (2) Control technologies for waste streams found to contain toxic or mutagenic species must be further developed and demonstrated. This effort should be directed toward the streams' isolation, containment, and ultimate disposal.
- (3) Additional research should be expended on groundwater modeling for toxic species contained in energy wastes. This effort should be specifically directed toward public health and aquatic ecosystem impacts.

These are three major areas for study. To pull these and other research and development efforts together, a center for energy toxic wastes should be established. This would provide a mechanism for the centralized collection, evaluation, and dissemination of solid and toxic waste data. Concurrently, a committee should be set up to develop requirements that would provide a consistent framework for data collection. As part of its activities, this committee would develop and oversee continuing assessment programs to evaluate the toxic nature of energy-related solid wastes on the basis of collected data and environmental controls developments. These efforts would provide DOE with a strong continuing program for supporting solid waste policy, and research and development.

INTRODUCTION

1.1 BACKGROUND

Solid waste from energy technology has become a subject of increasing concern. As the regulations for air and water pollution become more stringent, a larger fraction of residuals ends up as solid waste. Some pollution control technologies such as flue gas desulfurization (FGD) not only shift the residuals from other media to the solid but also multiply the absolute quantity of wastes severalfold. Collection of residuals as solid wastes can concentrate toxic contaminants, which allows better containment and control. On the other hand, such concentration can increase occupational exposure and, if controls are inadequate, can lead to population exposures to higher concentrations of toxic materials.

An additional reason for increased concern with solid wastes from the energy sector is the recent call for increased coal use to reduce U.S dependence on foreign oil. Moreover, it is likely that oil shale and tar sand resources will be developed. All of these technologies yield more solid wastes.

Finally, increasing public attention to the problems resulting from improper management of hazardous wastes in other industries has raised general awareness of the potential environmental problems associated with solid wastes. This has been reflected in the passage of the Resource Conservation and Recovery Act (RCRA). The RCRA has forced the energy industry to take a much closer look at solid waste disposal practices.

1.2 QUANTITIES OF SOLID WASTE PRODUCED

On the basis of quantitative estimates of solid wastes, we projected a significant increase in energy-related solid wastes (Table 1.1). Ash from electric utility sources was estimated to increase from 58 x 10^6 tons in 1976 to 134 x 10^6 tons in 1995; ash from industrial coal combustion will increase from 7.0 x 10^6 tons in 1976 to 46 x 10^6 tons by 2000, a sixfold increase. FGD sludge will increase fiftyfold from 0.8 x 10^6 tons in 1976, to 51 x 10^6 tons in 2000. These estimates were based on an energy scenario used in a DOE annual report to Congress (1978).¹

The amount of solid waste from oil shale processing is also projected to increase, reaching some 177×10^6 tons by 1995. Generation of these wastes will occur in the few counties in the Rocky Mountain region where oil shale development will occur.

One major concern about problems of solid waste from energy production entails the continued uncertainty over the disposal of high-level radioactive wastes from commercial nuclear reactors. Nuclear generation in 1995 is projected to be six times that in 1976.

Waste	1976	1985	1990	1995
Conventional Coal Boiler				
Utility				
Ash	58.0	71.0	105.0	134.0
Lime/Limestone Scrubber Sludge	0.8	5.0	30.0	51.0
Industrial				
Ash	7.0	24.0	33.0	46.0
Coal Gasification				
Coal Cleaning		0.2	0.7	1.8
Gasifier Ash		2.0	7.0	18.0
Boiler Ash		0.2	0.7	1.7
Boiler FGD Sludge		0.04	0.15	0.4
Biosludge	· .	0.08	0.3	0.7
Acid Gas Clean-up		0.003	0.01	0.02
Spent Catalysts		N/A	N/A	N/A
Tar and Oil Sludges		N/A	N/A	N/A
Coal Liquefaction				
Coal Cleaning		2.0	2.0	18.0
Liquefaction Waste		0.9	0.9	8.0
(Chars, Ash, Filter Cake)		-		
Boiler Ash		0.025	0.025	0.2
Boiler FGD Sludge		0.03	0.03	0.3
Biosludge		0.09	0.09	0.8
Spent Catalysts		N/A	N/A	N/A
Acid Gas Clean Up		N/A	N/A	N/A
Tar and Oil Sludges		N/A	N/A	N/A
Oil Shale				
Raw Shale Dust		0.5	0.9	4.0
Spent Shale		19.5	39.0	173.0
Spent Shale Dust		0.04	0.08	0.35
Arsenic Waste		0.0002	0.0005	0.002
Nuclear	A AA-	0 00	0 00	
High Level Waste $(10^6 \times ft^3)$	0.007	0.02	0.03	0.04
Low Level Waste (10^6 x ft^3)	229.0	716.0	1030.0	1380.0

Table 1.1 Estimated Solid Wastes from Energy-Related Activities (10⁶ Tons)^a

^a1976 figures were estimated on the basis of energy consumption reported in DOE/EIA Monthly Energy Review. Figures for future years were estimated on the basis of Scenario C (medium supply, medium demand, medium cost) given in Ref. 1.

1.3 STUDY OBJECTIVES

Recently, the EPA developed interim rules for the designation and disposal of hazardous wastes.^{2,3} Eighty-five generic (nonspecific) and process (specific) waste streams were identified as hazardous under the RCRA.

2

For the near term, the EPA has avoided including most energy-related wastes (e.g., coal ash and FGD sludge) on the hazardous waste list. Nevertheless, even though classified as nonhazardous, these wastes will require greater attention under the RCRA. In addition, the exemption was declared temporary while the situation is studied further. The EPA has clearly left open the possibility of classifying selected coal combustion wastes as hazardous if that should be necessary.

The study reported here was undertaken in this period of uncertainty with two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

2 REVIEW OF ENVIRONMENTAL REGULATIONS

The following environmental laws affect both the quantity of solid waste produced and the manner of its management and disposal:

- Resource Conservation and Recovery Act (RCRA)
- Toxic Substances Control Act (TSCA)
- Clean Air Act (CAA)
- Federal Water Pollution Control Act (FWPCA), as amended by the Clean Water Act (CWA)
- Safe Drinking Water Act (SDWA) and Underground Injection Control Act (UICA)
- Surface Mining Control and Reclamation Act (SMCRA)

The Clean Air Act and Clean Water Act are of interest because the controls required by these laws result in greater volumes of solid wastes. The Surface Mining Control and Reclamation Act and the Safe Drinking Water Act only indirectly affect solid waste production and control. Of greater importance are the Toxic Substances Control Act, with its explicit control of toxic chemicals, and the Resource Conservation and Recovery Act, passed specifically to control solid and hazardous wastes. These laws are summarized in Table 2.1.

2.1 CLEAN AIR ACT (CAA) AMENDMENTS OF 1977 (PL 95-95)

Increasingly stringent air pollution control requirements have led to a growing solid waste burden. The 1970 Federal Clean Air Act Amendments established a common framework within which federal, state and local governments could work together to control air pollution. The provisions of this act were expanded by enactment of the Clean Air Act Amendments of 1977. Key elements of these laws include:

- Promulgation by the EPA of national ambient air quality standards (NAAQS) for major pollutants, including NO_x, SO_x, and total suspended particulates (TSP), with states having the option to establish more stringent standards.
- Development of state implementation plans (SIPs) to be submitted to the EPA for approval. In the SIP, each state specifies how the NAAQS (or its own standards, if more stringent) will be achieved (including emission limitations, compliance schedules, and enforcement provisions) within three years of promulgation of the SIP.
- Establishment by the EPA of national emission standards for certain source categories, e.g., new sources.
- Prevention of significant air quality deterioration in areas where the air quality is already better than the NAAQS.

4

Regulation	Section(s) (as applicable)	Concern	Type of Control
RCRA (PL 94-580)	3	Hazardous solid wastes from energy must be prevented from enter- ing the environment	Waste reuse; environmen tally sound disposal site
		Large volumes of sim- ple solid wastes must be properly disposed of	
TSCA (PL 94-469)	4,5,6,8	Chemicals produced in process or waste streams of emerging technologies must be stringently controlled if they might adverse- ly affect worker health and safety, public health, or the environment	Process con- trols, EPA banning of process in case of harm to human health or the environment, extensive testing and recordkeeping
SMCRA (PL 95-87)	5	Ground and surface water contamination of mine wastes; Reclamation of spoil piles	Reclamation
FWPCA (PL 92-500) and CWA (PL 95-217)	Subtitle III	Priority pollutants from emerging tech- nologies; Wastewater discharges must be stringently control- led	BAT and total recycle; These proces- ses produce additional solid wastes
CAA (PL 95-95)		Stringent control of criteria pollu- tants and NESHAPS (Sec. 112)	ESP, scrub- bers, etc. These will produce ad- ditional solid wastes
SDWA (PL 93-523) UICA (PL 95-190)		Wastes from energy process will cause groundwater pollu- tion	RCRA type controls, re- quirement of permits for any deep well injections

Table 2.1 Summary of Regulatory Actions Affecting Hazardous Solid Wastes from Energy Industries

5

State regulations control emissions of particulates and SO_2 from both old and new industrial and utility boilers. The extent of control varies from state to state. All states require particulate control, the ash becoming solid waste. SO_2 regulations are stringent enough to require scrubbers, thus adding to the solid waste burden.

Federal emission standards for new boilers of capacity over 250×10^6 Btu/hr were promulgated in June 1979. These standards restrict particulate emissions to 0.03 lb/10⁶ Btu heat input. This will require over 99% control, and virtually all the ash will become solid waste. The SO₂ regulations are on a sliding scale and limit emissions to 1.2 lb/10⁶ Btu and 90% removal or 0.6 lb/10⁶ Btu and 70% removal. In all cases, some degree of scrubbing will be required, greatly increasing the quantities of solid waste produced.

2.2 FEDERAL WATER POLLUTION CONTROL ACT (FWPCA) PL 92-500 AS AMENDED BY THE CLEAN WATER ACT (CWA) PL 95-217

These acts are aimed at restoring and maintaining the integrity of the national waters. The Act directs the EPA to develop and enforce standards for waste discharges to navigable water or publicly owned wastewater treatment plants. The recent amendments require Best Available Technology (BAT) for 129 pollutants (consent decree pollutants), many of which are found in energy system waste streams. Control of these streams will create sludge that will require some form of disposal, thus increasing the volume of solid waste.

2.3 SAFE DRINKING WATER ACT (SDWA) PL 93-523 AND UNDERGROUND INJECTION CONTROL ACT (UICA) PL 95-190

The SDWA provides a program for the protection of public drinking water. This program entails the development of national drinking water standards to protect health and provides for the enforcement of such standards.

Section 1424(e) of the Act allows the EPA to designate a sole source aquifer, which, if contaminated, would create a significant public health hazard because it is the sole or principal source of drinking water for an area. Under Secton 1442 of SDWA, a study of the nature and extent of the impact on underground sources of drinking water of ponds, pools, lagoons, pits and other surface impoundments will be performed. This assessment will involve an inventory of surface impoundments. The RCRA and SDWA inventories will be coordinated. The SDWA inventory and assessment will be used as a screening device to establish priorities for the RCRA inventory and the application of RCRA regulations so that the worst drinking water problems may be addressed first.

The Underground Injection Control Act was designed as a permitting program to protect the nation's aquifers from degradation. It will require permits for any deep well injection of wastes; these wastes may be liquid but are considered solid wastes under the RCRA because of their containment requirements.

2.4 SURFACE MINING CONTROL AND RECLAMATION ACT (SMCRA) PL 95-87

The overall objective of SMCRA is to protect the environment from the adverse effects of surface coal mining operations. The act provides for reclamation of the mined areas to a condition capable of supporting premining or better uses. Section 508 of the Act requires submission for federal or state approval of a reclamation plan as part of the request for a mining permit. Section 515 of the Act requires that the reclamation effort insure that all debris, acid forming materials, toxic materials, or materials constituting a fire hazard be treated or burned and compacted or otherwise disposed of in a manner designed to prevent contamination of ground and surface waters.

2.5 TOXIC SUBSTANCES CONTROL ACT (TSCA) PL 94-469

This legislation provides for regulations concerning removal of hazards from contact with the environment and public health. TSCA has, in many instances, been called a record-keeping act for the industrial sector. This act requires that an industry keep records on worker health and exposure as well as biological testing data. That function, along with the collection of data on as many hazardous species as necessary are two of the primary goals of TSCA. Four key provisions are contained in TSCA to accomplish these Section 4 authorizes the EPA to order companies to test chemical goals. substances or mixtures they manufacture or process. Section 5 requires submission of notice and testing data to the EPA before manufacture of any new chemical substance or of an existing substance for a significant new use. Section 8 authorizes the EPA to require record-keeping and reports and also requires companies to immediately report adverse information. The fourth provision (Section 6) is perhaps the most important since it allows the EPA to regulate the manufacture, processing, distribution, commercial use, labelling and disposal of chemical substances and mixtures, and ban them if necessary, if they present unreasonable risk to human health or the environment. The regulation or banning of a substance is, however, based on unreasonable risk that is so great as to outweigh the benefits of the chemical "using the least burdensome requirements."⁴ The criteria for testing substances that may later be banned as a result of test data are:

- Any activity involving a chemical substance that presents an unreasonable risk to the environment or health [Sec. 4(a)(1)(A)(i)].
- 2. There is not enough information to determine potential risk [Sec. 4(a)(1)(A)(ii) and Sec. 4(a)(1)(B)(ii)].
- 3. A chemical substance will be produced in substantial quantities and "(I) it enters or may be reasonably expected to enter the environment in substantial quantities or (II) there is or may be significant or substantial human exposure." [Sec. 4(a)(1)(B)(i)].⁵

One important TSCA regulation serving as a guideline affecting energy industries relates to the use and disposal of polychlorinated biphenyls

7

(PCBs). Specifically, "within six months of the effective date of this Act [TSCA] the Administrator shall promulgate rules to:

- prescribe methods for the disposal of polychlorinated biphenyls, and
- require polychlorinated biphenyls to be marked with clear and adequate warnings and instructions with respect to their processing, distribution in commerce, use, or disposal, or any combination of such activities.⁶

As a result of this directive, the EPA published regulations that include specific disposal mechanisms for these activities.⁷ Disposal by incineration (Annex I) is subject to specific combustion criteria such as a two second dwell time at 1200°C for all liquids containing PCB and 3% excess oxygen in the stack gas of incinerators operating at a 99% combustion efficiency. Specific monitoring criteria for incineration were also developed, along with record keeping and reporting procedures. Chemical waste landfills (Annex II) also were required to meet specific technical standards, which included specific requirements for soils, i.e., that they be either clay pans or have high clay and silt content with:

- in-place soil thickness of 4 ft or a compacted soil liner 3 ft thick
- permeability of 1 x 10⁻⁷ cm/sec
- soil passing #200 Sieve > 30%
- liquid limits > 30
- plasticity index > 15
- artificial liner thickness > 30 mm

The bottom of the landfill was required to be "substantially above the historical high groundwater table." Flood plains, shorelands, and groundwater recharge areas were to be avoided. If the site was below the level of a 100-year flood, water diversion dikes around the landfill perimeter must be at least two feet above this level. Where the site was above this level, diversion structures capable of diverting all surface water run-off from a 24-hour, 25 year event must be provided. The location of the landfill should be in an area of low to moderate relief to minimize erosion and to prevent landslides.

An extensive set of requirements for monitoring and analysis was required for surface, groundwaters and leachate and includes at a minimum analysis for: (a) PCBs, (b) pH, (c) specific conductance and (d) chlorinated organics. The disposal operations themselves provided for placement to prevent damage to PCB containers and segregation from noncompatible materials. Plans were to be approved by the EPA Regional Administrator. As with incinerators, a system of record keeping and reporting was also developed.

Annex III provided rules for storage of PCB-containing materials prior to disposal. Some important requirements include:

- rain water must not reach containers
- area must be above 100-year flood plain elevation
- any piece of equipment used in storage operations must be decontaminated before removal from site.
- PCB containers must comply with DOT regulations (40 CFR 173.346 as revised 12/31/76)
- records and reports as provided by law

Annexes IV, V, and VI provided rules for decontamination, labelling, and record keeping and monitoring, respectively.⁸ It should be noted that under the TSCA, the EPA later developed rules prohibiting manufacture, processing, distribution and use of PCBs unless provided for under certain stringent conditions.⁹

The thrust of PCB disposal is similar to those being developed for hazardous wastes under the RCRA. Thus, "the Agency has made a tenative decision to merge the TSCA PCB rules into the final RCRA regulations. Unfortunately, it has not been possible to complete this task to date. Both rules are lengthy and complicated and must be carefully coordinated to avoid regulatory loopholes and disruption of the ongoing TSCA PCB program. EPA expects to complete the task of integrating the RCRA regulations and TSCA PCB rules by the fall of 1980."¹⁰

2.6 RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) PL 94-580

The primary objective of the RCRA is to ensure that solid wastes are managed properly. The program areas of particular importance to disposal of energy production waste include:

- hazardous waste management
- solid waste management (land disposal of nonhazardous solid wastes)
- resource conservation and energy recovery

The RCRA includes solids, liquids, semisolids, sludges, and contained gaseous materials as solid wastes. Wastes are included whether they are discarded, used, reused, recycled, reclaimed, stored, or transported.

The impact of the RCRA on the disposal of solid waste depends largely on whether the wastes are designated as hazardous or nonhazardous. In many cases classification will depend on analysis of the individual waste.

2.6.1 Resource Conservation and Energy Recovery

The Act encourages the conservation and recovery of materials and energy from wastes through a number of mechanisms. Subtitles D and F of the Act advocate state and regional solid waste planning that maximizes the utilization of valuable resources and encourages resource conservation. Solid wastes must be utilized for resource recovery or be disposed of in sanitary landfills or in some other environmentally sound manner. Guidelines have been published to facilitate the identification and development of regional solid waste planning areas. Such regional planning is essential to the development of cost-intensive resource and energy recovery plans.

2.6.2 Criteria for Defining Hazardous Wastes

During the writing of this report, interim final rules were issued by the EPA for Subtitle C hazardous waste control. Specifically, regulations that addressed Sec. 3001 through 3006 were developed.^{11,12} According to EPA cost and impact studies, the annual cost of implementing its program will be \$510 million, or less than 0.2% of the value of sales of the affected industries.¹³

Where possible, the RCRA will be integrated with other acts. No underground injection of hazardous waste will be allowed unless a permit is received according to the Underground Injection Control Act (PL 95-190) as promulgated by the Safe Drinking Act (PL 93-523). Ocean dumping will be regulated under the Marine Protection, Research, and Sanctuaries Act. Clean Water Act (PL 95-217) regulations will take precedence where the jurisdiction of that program allows. Thus, any hazardous waste discharge into water may be regulated under the Best Available Technology (BAT) Toxics program (Sec's. 301, 307, and 311), the pretreatment standards (Section 307), or the National Pollutant Discharge Elimination System (NPDES) permitting system (Sec. 402) of the Clean Water Act. There will be some areas in which RCRA takes precedence. One such example is where municipal sewage sludge would be considered hazard-This waste would then be controlled under Subtitle C of the RCRA. ous.

Integration with the Clean Air Act (PL 95-95) will occur primarily concerning volatile wastes. No program for these wastes has been developed. Integration with TSCA has already been considered in Section 2.5. At present, the Office of Surface Mining (OSM) of the Department of the Interior controls disposal of mining wastes under the Surface Mining Control and Reclamation Act (PL 95-87). The EPA is negotiating an agreement with the OSM whereby RCRA coverage of mining wastes will be covered under the SMCRA, assuming that the stringency of the controls will be equivalent to those the RCRA would impose.¹⁴

A special category of wastes listed in the December 18, 1978, Federal Register directly affects energy use and specifically coal.¹⁵ In its interim rulemaking, the EPA has removed that category from consideration for a number of reasons. The first reason was mentioned in Section 1.3 concerning future legislative action on coal wastes.² Other reasons entailed the general belief that if these conventional coal combustion wastes are hazardous, the associated risk is low compared to those of other hazardous wastes. Furthermore, the EPA is presently prepared to propose without additional study, specific alternative treatment and disposal technologies.¹⁶

Along with removing the "special" waste category, the EPA believed that it was most appropriate to redefine the categories for hazardous waste in a

more rigorous manner. That is to say, corrosivity and some toxicity requirements were made more stringent. The result of this action is to exclude some wastes from "hazardous" designations. Thus, for corrosivity, the upper pH limit was moved from 12.0 to 12.5 (requiring a more basic or caustic waste for inclusion as hazardous), whereas the lower pH limit was moved from 3.0 to 2.0 (requiring a more acidic waste for inclusion as hazardous than previously defined).¹⁷ One set of the toxicity requirements was modified to allow for less stringent control of wastes. The EPA addressed the problem by developing a test procedure called the Extraction Procedure (EP) designed to identify wastes likely to leach hazardous concentratons of particular toxic constituents into groundwater under conditions of improper management. Under this procedure, species were extracted in a manner designed to simulate leaching in landfills. The extract was then analyzed for parameters identified in the National Interim Primary Drinking Water Standards (NIPDWS).¹⁸ The proposed regulation defined a waste as hazardous if the concentration of any parameter was in excess of ten times the NIPDWS for that parameter.¹⁹ Since there were few empirical data on which to base this dilution factor, the EPA decided to revise this dilution factor to one deemed more appropriate in defining the relative cost/benefit for a hazardous waste listing. Thus. the EPA is adopting a 100-fold dilution factor from NIPDWS on the basis that any waste failing this test (i.e., concentrations are greater than 100 times the NIPDW) has the potential to present a substantial hazard regardless of any attenuation mechanisms.²⁰

The EPA chose two criteria for identifying hazardous waste characteristics. The first was that a characteristic could be described within the statutory definition in terms of some physical, chemical, or other properties. The second criterion was that the properties used to fulfill the first criterion could be measured by standardized and available testing protocols. On this basis, the EPA has removed organic toxicity, carcinogenicity, mutagenicity, teratogenicity, bioaccumulation potential, and phytotoxicity from the list of proposed characteristics listed in the December 18, 1978, Federal Register.²¹ The following categories were retained, however:

- ignitability
- corrosivity (as discussed previously)
- reactivity
- EP toxicity (as redefined and discussed previously)

Two new categories consistent with EPA RCRA goals have been developed:

- (1) Acute Hazardous Waste: classifed as such if it contains species that
 - have been found to be fatal to humans in low doses
 - result in oral LD₅₀* (rat) < 50 mg/kg

*LD₅₀ -- lethal dose, 50% -- is that quantity of a substance, administered either orally or by skin contact, necessary to kill 50% of exposed animals within a specified time.

- result in inhalation LC_{50} * (rat) < 2 mg/L
- result in dermal LD₅₀ (rabbit) < 200 mg/kg
- are capable of causing or significantly contributing to an increase in serious irreversible or incapacitating reversible illness²²
- (2) Toxic Waste defined as waste containing species listed in Table 2.2,²³ unless deemed nonhazardous by the Administrator following consideration of:
 - the nature of toxicity
 - concentration of toxic consitutuent
 - environmental transport potential
 - environmental persistence
 - rate of degradation to nonharmful species
 - bioaccumulation
 - plausible types of improper management
 - quantities of waste on a local, regional or national basis
 - nature and severity of health and environmental impacts
 - other governmental action
 - other factors as appropriate.²²

The characteristics of ignitability, corrosivity, and reactivity are summarized in Subpart C, Part 261 - Identification and Listing of Hazardous Waste.²² The characteristics that determine Extraction Procedure (EP) toxicity, that is, concentrations of leachate species above which the waste is considered hazardous, are summarized in Table 2.3.²⁴ As mentioned earlier, the maximum concentration of contaminants for extraction toxicity characteristics is now set at 100 times the Safe Drinking Water Standard, rather than 10 times, as originally proposed.

Tables 2.4 and 2.5 contain lists of waste streams which the EPA Administrator has defined as hazardous. The hazard code on the right hand side of each table defines the reason for defining these waste streams as hazardous according to the six characteristics discussed previously:

ignitable	(I)
corrosive	(C)
reactive	(R)
EP toxic	(E)
acute hazardous	(н)
toxic	(т)3

^{*}LC₅₀ -- lethal concentration, 50% -- is that concentration of a substance, administered by inhalation, necessary to kill 50% of exposed animals within a specified time.

Table 2.2 Hazardous Constituents Identified in the RCRA

Acetaldebyde (Acetato)phenyimercury Acetonitrile 3-(alpha-Acetonylbenzyl)-4-hydroxycoumarin and salts 2-Acetylaminofluorene Acetyl chloride 1-Acetyl-2-thioures Acrolein Acrylamide Acrylonitrile Aflatoxins Aldrin Allyl alcohol Aluminum phosphide 4-Aminobiphenyl 6-Amino-1,12,2,8.84,85-hexahydro-6-(hydroxymethyl)-8a-methoxy-5methylcarbamate azirino(2'.3':3.4) pyrrolo(1.2-a)indole-4.7-dione (ester) (Mitomycin C) 5-(Aminomethyl)-3-isoxazolol 4 Aminopyridine Amitrole Antimony and compounds, N.O.S.¹ Aramite Arsenic and compounds, N.O.S. Amenic acid Arsenic pentoxide Amenic trioxide Auramine Azaserine Barium and compounds, N.O.S. Barium cyanide Benz[c]acridine Benz[a]anthracene Benzene Benzenearsonic acid Benzenethiol Benzidine Benzo[s]anthracene Benzo[b]fluoranthene Benzo[j]fiuoranthene Benzo[a]pyrene Benzotrichloride Benzyl chloride Beryllium and compounds. N.O.S. Bis(2-chloroethoxy)methane Bis(2-chloroethyl) ether N.N-Bis(2-chloroethyl)-2-nephthylamine Bis(2-chloroisopropyl) ether Bis(chloromethyl) ether Bis(2-ethylhexyl) phthalate Bromoacetone Bromomethane 4-Bromophenyl phenyl ether Brucine 2-Butanone peroxide Butyl benzyl phthalate 2-sec-Butyl-4.6-dinitrophenol (DNBP) Cedmium and compounds, N.O.S. Calcium chromate Celcium cyanide Carbon disulfide Chlorembucil Chlordane (alpha and gamma isomers)

Chloringted benzenes. N.O.S. Chlorinated ethane, N.O.S. Chloringted naphthalene, N.O.S. Chlorinated phenol, N.O.S. Chloroacetaldehyde Chloroalkyl ethers p-Chloroaniline Chlorobenzene Chlorobenzilate 1-{p-Chlorobenzoyl}-5-methoxy-2methylindole-S-acetic acid p-Chloro-m-cresol 1-Chloro-Z.3-epoxybutane 2-Chloroethyl vinyl ether Chloroform Chloromethane Chloromethyl methyl ether 2-Chloronaphthalene 2-Chlorophenol 1-(o-Chlorophenyl)thioures 3 Chloropropionitrile alpha-Chiorotoluene Chlorotoluene, N.O.S. Chromium and compounds, N.O.S. Chrysene Citrus red No. 2 Copper cyanide Creosote Crotonaldehyde Cyanides (soluble salts and complexes). N.O.S. Cyanogen Cyanogen bromide Cyanogen chloride Cycasin 2-Cyclohexyl-4.6-dinitrophenol Cyclophosphamide Daunomycin DDD DDE DDT Diallate Dibenz[a.h]acridine Dibenz[a.j]acridine Dibenz[a.h]anthracene(Dibenzo[a.h] anthracene) 7H-Dibenzo[c.g]carbazole Dibenzo[a.e]pyrene Dibenzo[a.h]pyrene Dibenzo[a.i]pyrene 1,2-Dibromo-3-chloropropane 1.2-Dibromoethane Dibromomethane Di-n-butyl phthalate Dichlorobenzene, N.O.S. 8.3'-Dichlorobenzidine 1.1-Dichloroethane 1.2-Dichloroethane trans-1.2-Dichloroethane Dichloroethylene, N.O.S. 1.1-Dichloroethylene Dichloromethane 24-Dichlorophenol 2.5-Dichlorophenol 2.4-Dichlorophenoxyacetic acid (2.4-D) Dichloropropane

Table 2.2 (Cont'd)

Nchlorophenylarsine	Hexachloroethane
2-Dichloropropane	1.2.3.4.10.10-Hexachloro-1.4.4a.5.8.8a-
Nichloropropenol, N.O.S.	hexabydro-1,4:5.8-endo.endo-
hchloropropene, N.O.S.	dimethanonaphthalene
3-Dichloropropene	Hexachlorophene
Dieldrin	Hexachloropropens
hepoxybutane	Hexaethyl tetraphosphate
Diethylarsine	Hydrazine
LO-Diethyl-S-(2-ethylthio)ethyl ester of	Hydrocyanic acid
phosphorothioic acid	
2-Diethylhydrazine	Hydrogen sulfide
D-Diethyl-S-methylester phosphorodithicic	Indeno(1.2.3-c.d)pyrene
acid	Iodomethane
LO-Diethylphosphoric acid. O-p-nitrophenyl	Isocyanic acid, methyl ester
	Isosafrole
	Kepone
Diethyl phthalate	Lasiocarpine
O-Diethyl-O-(2-pyrazinyl)phosphorothioate	Lead and compounds, N.O.S.
Diethylstilbestrol	Lead acetate
Dihydrosafrole	Lead phosphate
.4-Dihydroxy-alpha-(methylamino)-methyl	Lead subscetate
benzyl alcohol	Maleic anhydride
Di-isopropylfluorophosphete (DFP)	
Dimethoate	Malononitrile
	Melphalan
1,3'-Dimethoxybenzidine	Mercury and compounds, N.O.S.
-Dimethylaminoazobenzene	Methapyrilene
12-Dimethylbenz[a]anthracene	Methomyi
.3'-Dimethylbenzidine	2-Methylaziridine
himethylcarbamoyl chloride	3-Methylcholanthrene
,1-Dimethylhydrazine	4.4'-Methylene-bis-[2-chloroaniline]
2-Dimethylhydrazine	Methyl ethyl ketone (MEK)
2-Dimetry in yorazine	
3-Dimethyl-1-(methylthio)-2-butanone-0-	Methyl hydrazine
((methylamino) carbonyl)oxime	2-Methyllsctonitrile
limethylnitrosoemine	Methyl methacrylate
lphs.slphs-Dimethylphenethylamine	Methyl methanesulfonate
4-Dimethylphenol	2-Methyl-2-(methylthio)propionaldehyde-o-
Dimethyl phthalate	(methylcarbonyl) oxime
Amethyl sulfate	N-Methyl-N'-nitro-N-nitrosoguanidine
initrobenzene, N.O.S.	Methyl parathion
.6-Dinitro-o-cresol and salts	Methylthiouracil
4-Dinitrophenol	Mustard gas
4-Dinitrotoluene	
6-Dinitrotoluene Di-n-octyl phthalate	Naphthalene
· ·	1.4-Naphthoquinone
.+Dioxane	1-Naphthylamine
.2-Diphenylhydrazine	2-Nephthylamine
di-n-propylnitrosamine	1-Naphthyl-2-thiourea
Neulfoton ·	Nickel and compounds, N.O.S.
4 Dithiobiuret	Nickel carbonyl
Indosulfan	Nickel cyanide
indrin and metabolites	Nicotine and salts
pichlorobydrin	Nitric oxide
Ithyl cyanide	p-Nitroaniline
thylene diamine	Nitrobenzene
thylenebisdithiocarbamate (EBDC)	Nitrogen dioxide
thyleneimine	Nitrogen mustard and hydrochloride salt
thylene oxide	Nitrogen mustard N-oxide and hydrochloride
thylenethioures	salt
thyl methanesulfonate	Nitrogen peroxide
luoranthene	Nitrogen tetroxide
luorine	Nitroglycerine
Fluoroacetamide	4-Nitrophenol
luoroacetic acid, sodium salt	4-Nitroquinoline-1-oxide
ormaldebyde	Nitrosamine, N.O.S.
Slycidylaldehyde	N-Nitrosodi-N-butylamine
falomethane, N.O.S.	N-Nitrosodiethanolamine
leptachlor	N-Nitrosodiethylamine
Heptachlor epoxide (alpha, beta, and gamma	N-Nitrosodimethylamine
	N-Nitrosodipbenylamine
isomers)	
Hexachlorobenzene	N-Nitrosodi-N-propylamine
Hexachlorobutadiene	N-Nitroso-N-ethylures
Hexachlorocyclohexane (all isomers)	N-Nitrosomethylethylamine
Several of of a constant of the several of the seve	N-Nitroso-N-methylurea

Table 2.2 (Cont'd)

V-Nitroso-N-methylurethane	Tetrachloroethene (Tetrachloroethylene)
V-Nitrosomethylvinylamine	Tetrachloromethane
-Nitrosomorpholine	2.3.4.6-Tetrachlorophenol
-Nitrosonomicotine	Tetraethyldithiopyrophosphate
-Nitrosopiperidine	Tetraethyl lead
-Nitrosopyrrolidine	Tetraethylpyrophosphate
-Nitrososarcosine	Thellium and compounds, N.O.S.
-Nitro-o-toluidine	Thallic oxide
Actamethylpyrophosphoramide	Thallium (I) acetate
Neyl alcohol condensed with 2 moles	Thallium (I) carbonate
ethylene oxide	Thallium (I) chloride
Demium tetroxide	Thallium (I) nitrate
-Oxabicyclo[2.2.1]heptane-2.3-dicarboxylic	Thallium selenite
acid	Thallium (I) sulfate
arathion	Thioacetamide
entachlorobenzene	Thiosemicarbazide
entachloroethane	Thiourea
entachloronitrobenzene (PCNB)	Thiuram
entecholorophenol	Toluene
henacetin	Toluene diamine
henol	o-Toluidine hydrochloride
henyl dichloroarsine	Tolylene diisocyanate
henyh menuny acetate	
V-Phenylthiourea	Toxaphene
	Tribromomethane
hosgens	1.2.4 Trichlorobenzene
hosphine hosphorothioic acid, O.O-dimethyl estar. O-	1.1.1-Trichloroethane
Bosphorounoic acid, U.C. unic myr court, C	1.1.2-Trichloroethane
ester with N.N-dimethyl benzene	Trichloroethene (Trichloroethylene)
sulfonamide	Trichloromethanethiol
Bihalic acid esters, N.O.S.	2.4.5-Trichlorophenol
Phthalic anhydride	2.4.6-Trichlorophenol
Polychlorinated biphenyl, N.O.S.	24.5-Trichlorophenoxyacetic acid (24.5-T)
Potassium cyanide	24.5-Trichlorophenoxypropionic acid (2.4.
Potessium silver cyanide	TP) (Silvex)
Pronemide	Trichloropropane, N.O.S.
L2-Propanediol	1.2.3 Trichloropropane
L3-Propane sultone	0.0.0 Triethyl phosphorothioste
Propionitrile	Trinitrobenzene
Propylthiouracil	Tris(1-ezridinyl)phosphine sulfide
2-Propya-1-ol	Tris(2.3-dibromopropyl) phosphate
Pryidine	Trypan blue
Reservine	Uracil mustard
Seccharin	Ursthane
Satrole	Vanadic acid, ammonium salt
Selenious acid	Vansdium pentaxide (dust)
Selenium and compounds, N.O.S.	Vinyi chloride
Selenium sulfide	Vinylidene chloride
Selenoures	Zinc cyanide
Silver and compounds, N.O.S.	Zinc phosphide
Silver cyanide	F
Sodium cyanide	
Streptozotocia	
Strontium sulfide	
Strychnine and salts	
124.5-Tetrachiorobenzene	
2.3.7.8-Tetrachlorodibenzo-p-dioxin (TCDD)	
Z.3.7.5- IEUTECHIOPOHDERZO-PHIOXIII (IGDO)	
Tetrachloroethane. N.O.S.	
1.1.2-Tetrachloroethane 1.1.2.2-Tetrachloroethane	

¹The abbreviation N.O.S. signifies those members of the general class "not otherwise specified" in this listing.

Source: Ref. (22).

EPA Hazardous Waste Number	Contaminant	Maximum Concentration Milligrams Per Liter)
D004	Arsenic	5.0
D005	Barium	100.0
D006	Cadmium	1.0
D007	Chromium	5.0
D008	Lead	' 5.0
D009	Mercury	0.2
D010	Selenium	1.0
D011	Silver	5.0
D012	Endrin (1,2,3,4,10,10-hexachloro-1,7 epoxy-1,4,4a,5,6,7,8,8a-octahydro- 1,4-endo, endo-5,8-dimethano naphthalene	0.02
D013	Lindane (1,2,3,4,5,6-hexachlorocyclohexane, gamma isomer	0.4
D014	Methoxychlor (1,1,1-Trichloro-2,2-bis [p-methoxyphenyl] ethane)	
D015	Toxaphene (C ₁₀ H ₁₀ Cl ₈ , Technical chlorinated camphene, 67-69 percent chlorine)	0.5
D016	2,4-D, (2,4-Dichlorophenoxyacetic acid)	10.0
D017	2,4,5-TP Silvex (2,4,5- Trichlorophenoxypropionic acid)	1.0

Table 2.3 Maximum Concentration of Contaminants for Characteristicsof EP Toxicity

Source: Ref. (25)

Table 2.6 lists the chemical species for which each waste stream was deemed hazardous.²⁵ Section 261.33 of Part 261 deals with chemical products, off-specification products, and spill residues.²⁶ These parameters are not as important in terms of energy use and comparative studies as are the characteristics, waste streams, and chemicals discussed previously and listed in Tables 2.2 through 2.6. Although no coal use streams are listed, five petroleum refining streams are listed as containing toxic hazardous wastes.

2.6.3 Testing and Analysis Procedures

An imperative part of RCRA definition and enforcement comes from the proper use of sampling, testing, and analysis procedures and protocols. Many tests are standard and had previously been developed by the EPA or the American Society for Testing and Materials (ASTM), or both. However, given the nature of the unique sampling and analytical problems associated with standardized solid wastes measurements, the EPA developed protocols and publications to doucment these new methods. These procedures are summarized in Table 2.7. Details of these procedures are given in an EPA report Table 2.4 Hazardous Waste from Nonspecific Sources

Industry and EPA hazardous waste No.	Hazardous weste	Hazard code
nenc:		
F001	The spent halogenated solvents used in degreasing, tetrachloroethylene, trichloroethylene, methylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, and the chlorinated fluorocarbons; and sludges from the recovery of these solvents in degreasing operations."	μ
F002	The spent halogenated solvents, tetrachiorosthylene, methylene chloride, trichlorosthylene, 1,1,1-trichlorosthane, chlorobenzene, 1,1,2-trichlorosthane, o-dichlorobenzene, trichlorofluoromethane and the still bottoms from the recovery of these solvents.	'n
F003	The spent non-halogenated solvents, xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, n-butyl alcohol, cyclohexanone, and the still bottoms from the recovery of these solvents.	Ø
F004		Π
F005	The spent non-halogenated solvents, methanoi, tokene, methyl ethyl ketone, methyl isobutyl ketone, carbon disulfide, isobutanol, pyridine and the still bottoms from the recovery of these solvents.	(L T)
F006	Wastewater treatment sludges from electroplating operations	n
F007		(R, T)
F008	Plating bath studges from the bottom of plating baths from electroplating operations	(R, T)
F009	Soent strooping and cleaning bath solutions from electroplating operations	(R, T)
F010	_ Duenching bath sludge from oil baths from metal heat treating operations	(R, T)
F011		(R, T)
F012	Quenching wastewater treatment sludges from metal heat treating operations	ίΩ.
	Flotation tailings from selective flotation from mineral metals recovery operations	ίΩ.
F014		Ö
F015		່ສັກ
F016		Ω.

Source: Ref. 3.

Test Methods for Evaluating Solid Waste, 29 which was prepared as required by $1aw.^{27,28}$ The methods are summarized for most of the toxic chemical species in Tables 2.8 and 2.9. 29

The biggest difficulty from an analytical standpoint will be to ensure that extraction protocols are rigorously followed. Although the methodology produced reasonable reproducibility, some problems were encountered in this regard, 30-32 and such problems must be monitored closely. A possible solution would be to certify testing laboratories using procedures similar to those followed for certifying laboratories for drinking water analysis. The laboratories to be certified would differ in many areas, but mechanisms for certification, testing, and recordkeeping could be standardized.

2.6.4 Solid Waste Disposal Requirements

The Section 4004 criteria for Solid Waste Disposal were issued in final form on September 13, 1979. The eight criteria address a broad range of health and environmental effects including floodplains, endangered species, surface water, groundwater, disease, air, application to land used in the production of food chain crops, and safety. These criteria are for determining which solid waste disposal facilities and practices pose a reasonable probability of adverse effects on health or the environment.³³

The criteria apply to the full range of practices for the disposal of solid waste with the following exceptions:

- agricultural wastes, including manures and residues, returned to the soil as fertilizers or soil conditioners
- overburden from mining operations intended for return to the mine site

17

Table 2.5 Hazardous Waste from Specific Sources

industry and EPA hazardous waste No.	Hazardous waste	Hazard cod
ood Preservation: K001	. Bottom sediment sludge from the treatment of wastewaters from wood preserving processes that use creasote and/or pertachlorophenol	с П
	Wastewater treatment studge from the production of chrome yellow and orange pigments	ო
K003	Wastewater treatment sludge from the production of molybdate orange pigments	ίΩ.
K004	. Wastewater treatment sludge from the production of zinc yellow pigments	<u>m</u>
K005	. Wastewater treatment studge from the production of chrome green pigments	ŭ
K006	. Wastewater treatment studge from the production of chrome oxide green pigments (anhydrous and hydrated)	Ω.
K007	. Wastewater treatment studge from the production of iron blue pigments	С С
ganic Chemicals:	. Over readue som are production of choice green payments	
KOO9	Distillation bottoms from the production of acetaidehyde from ethylene	n
K010	Distillation side cuts from the production of acetaldehyde from ethylene	ΰ
K011	. Bottom stream from the wastewater stripper in the production of acryionitrile	(R, T)
K012	. Still bottoms from the final purification of acrylonitrile in the production of acrylonitrile	n n
K013	. Bottom stream from the acetonitrile column in the production of acrylonitrile	(FI, T)
K014	Bottoms from the acetronitrile purification column in the production of acrytonitrile	
	Still bottoms from the distillation of benzyl chloride	ሟ .
	. Heavy ends or distillation residues from the production of carbon tetrachloride	
K017		
K018	Heavy ends from fractionation in ethyl chloride production	<u>m</u>
K019	Heavy ends from the distillation of ethylene dichloride in ethylene dichloride production	С С
K021	Heavy ends from the distillation of vinyl chlonde in vinyl chlonde monomer production	() ()
K022	Distillation bottom term from the production of neural/ecotors from Cuttons	m
K023	Distillation bottom tars from the production of phenometeridine from nephthalene	ö -
K024	Distlation bottoms from the production of pitihalic antydride from naphtalene	ö
K025		ιώ ·
	Stroping still tails from the production of methyl still pyndines	ίΩ i
K027	Centritives residue from toluene discovanate production	(R, T)
K028	Scent catabat from the hydrochlorinator reactor in the production of 1.1.1-trichloroethane	n –
K029	Wasta from the product stream stripper in the production of 1.1.1-trichlorgethane	ຓ
K030	Column bottoms or heavy ends from the combined production of trichloroethylene and perchloroethylene	ĊD (D)
sticides:		~ ·
K031	. By-products saits generated in the production of MSMA and cacodylic acid	Ω Ω
K032		С С
K033	. Wastewater and actub water from the chlornoson or cyclopentaciene in the production of chlordane	ю Ю
KU34	. First solds from the huradon of netactivorocyclopertadente in the production of created and a contract of created in the production of created and the producting and the production of created and the production of	ö
K035	. Vasiewaar beginen subges generated in the production of devite	ິຕິ
X032	Wasteward reactivent sludges from the production of disulfolon	ő
kone	Westmuster from the westing and stripping of phorate production	n
Kogo -	Either sale from the Elization of distinguishance and in the production of phonete	m
¥848	Westminter the strength shudes from the part streng of photote	m .
		(1)
K042	. Heavy ends or distillation residues from the distillation of tetrachlorobenzene in the production of 2,4,5-T	<u>m</u>
K043	2.6-Dichlorophenol waste from the production of 2.4-D	n
plosives:		(R)
K044		(1)
K045	. Sperk carbon from the reasoners of westewater comparing expressions	Ő
KU46	wassevere realment success non use managements of the second seco	Ř
ko47 troieum Refininc:		
K048	Dissolved air flotation (DAF) float from the petroleum refining inclusity	n
MAAA	Since all any data and do from the polyclasm referred with	m ·
K050	Heat embender bundle closeling string from the petroleum refinition inclusive	m
K08+	API economic since from the petroleum refining inclusiv	10
K052	Tark bottoms (leaded) from the petroleum refining industry	m -
ether Teacing Einishing		_
K053	. Chrome (blue) trimmings generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/retan/	መ .
	wet finish: heir save/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue; and shearling.	
K054	Chrome (blue) shavings generated by the following subcategories of the leather tanning and finishing industry; hair pulp/chrome tan/retan/	m
	wet finish; heir save/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue; and shearling.	
K056	- Buffing dust generated by the following subcategories of the leather tanning and finishing industry: har pulp/chrome tan/retan/wet finish;	(M)
K058	heir seve/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; and through-the-blue. Sever screenings generated by the following subcategories of the leather tanning and finishing industry; hair pulp/chrome tan/retan/wet	m
	finish; hair save/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue; and shearling.	••
K057	Wastewater treatment studges generated by the following subcategories of the leather tanning and finishing industry: hair pulp/chrome tan/ retan/wet finish; hair save/chrome tan/retan/wet finish; retan/wet finish; no beamhouse; through-the-blue and shearling.	n
K058	Wastewater treatment studges generated by the following subcategones of the leather tanning and finishing industry: her pulp/chrome tan/ retan/wet finish; her save/chrome tan/retan/wet finish; and through-the-blue.	(R. T)
K059	. Wastewater treatment studges generated by the following subcategory of the leather tanning and finishing industry: heir save/non-chrome tai/inter/wet finish.	(R)
n and Steel:		
K080	Ammonia still line studge from coking operations	n -
K061	Entisting out of duty sudge from the electric furnace production of steel	0
K082	Spart pickle liquor from steel finishing operations	С, П
	Sudge from line reatment of apent pickle iquor from steel finishing operations	ι Π Π
K063		ິຕິ
mary Copper: K064	Survice impoundment solide containing in and greaged from surface impoundments at primary land smelthing tacktain	
mary Copper: K064 mary Lead: K065	. Surface impoundment solids contained in and dredged from surface impoundments at primery lead smelting facilities	n.
mary Copper: K064 mary Lead: K065	Sludge from treatment of process westerweter and/or acid plant blowdown from primary zinc production	 ຕ
imary Copper: K064 imary Leed: K085 imary Zinc: K086		

Source: Ref 3.

Xan (11) No. 10

p. B.

Table 2.6 Basis for Listing Hazardous Wastes

EPA Nazardous waste No.	Hazardous constituents for which listed
F001	tetrachioroethylene, methylene chionde trichlor- esthylene, 1,1,1-trichloroethane chiorinated fluorocarbons, carbon tetrachioride
F002	tetrachlorosithylene, methylene chloride, trichlor- cethylene, 1,1,1-trichlorosithane, chloroben- zene, 1,1,2-trichloro-1,2,2-trifluorosithane, - dichlorobenzene, trichlorofluoromethane
	N.A.
	crescis and cresylic acid, nitrobenzene
	methanol, toluene, methyl ethyl ketone, methyl isobutyt ketone, carbon disulfide, isobutanol, pyndine
F006	cadmium, chromium, nickel, cyanide (complexed)
	cyanide (salts)
F008	cyanide (salts)
-009	cyanide (salts)
	cyanide (salts)
	cyanide (salta)
	cyanide (complexed)
	cysnide (complexed)
	cyanide (complexed)
	cyanide (salts)
015	cyanide (complexed)
	benzene, benz(a)antivacene, benzo(a)pyrene,
	 chrysene, 4-nitrophenol, toluene, naphthalene phenol, 2-chiorophenol, 2,4-dimethyl phenol,
	2.4.8-trichlorophenol, pentachlorophenol, 4.8-
	dinitro-o-cresol, tetrachlorophenol
002	chromium, lead
	chromium, lead
	chromium
	chromium, lead
	cyanide (complexed), chromium
	chromium
	chloroform, formaldehyde, methylene chloride, methyl chloride, paraldehyde, formic acid
@10	chloroform, formaldehyde, methylene chloride, methyl chloride, peraldehyde, formic acid, chloroacetaldehyde
011	acrylonithie, acelonitrile, hydrocyanic acid
	acrylonitrile, acetonitrile, acrolein, acrylamide
	hydrocyanic acid, achylonitrile, acetonitrile
	acetonitrile, acrytamide
	benzyl chioride, chiorobenzene, 'toluene, benzo- trichloride
(016	hexachlorobenzene. hexachlorobutadiene, carbon tetrachloride, hexachloroethane, perch- toroethylene
(017	epichlorohydrin, chloroethers [bis(chloromethy0) ether and bis (2-chloroethy1) ethers1, inchloro- propane, dichloropropanols
018	1,2-cichioroethane, trichioroethylene, hexachioro- butadiene, hexachiorobenzene
	ethylene dichloride, 1,1,1-trichloroethane, 1,1,2-
U19	inchioroethane, tetrachioroethanes (1,1,2,2-te-
U19	
019	tachloroethane and 1,1,1,2-tetrachloroethane),
	Trichloroethylene, tetrachloroethylene, carbon
	trichloroethylene, tetrachloroethylene, carbon tetrachloride, chloroform, vinyl chloride, vinyli-
	Trichloroethylene, tetrachloroethylene, carbon

hazardous waste No.	Hazardous constituents for which listed
ко20	ethylene dichlonde, 1.1,1-trichloroethane, 1.1,2-
	trichloroethane, tetrachloroethanes (1.1,2,2-te-
	trachloroethane and 1,1,1,2-tetrachloroethane),
	Inchloroethylene, letrachloroethylene, carbon
	tetrachloride, chloroform, vinyl chloride, vinyli-
2004	dene chloride
K021	antimony, carbon tetrachloride, chloroform phenol, tars (polycyclic aromatic hydrocarbons)
K023	phthalic analydinde, maleic anhydride
K024	phthalic anhydride, polynuclear tar-like materials,
	naphthoquinone
K025	meta-dinitrobenzene, 2,4-dinitrotoluene
	paraldehyde, pyridines, 2-picoline
K027	toulene disocyanate, toluene-2,4-diamine, tars
	(benzidimidazapone)
K028	1,1,1-trichloroethane, vinyl chloride
K029	1,2-dichloroethane, 1,1,1-trichloroethane, vinyl
	chloride, vinlyidene chloride, chloroform
K030	hexachlorobenzene, hexachlorobutadiene, hex-
•	achioroethane, 1,1,1,2-tetrachioroethane,
K001	1,1,2,2-tetrachloroethane, ethylene dichloride
K031	hexachiorocyclopentaciene
¥033	hexachlorocyclopentaciens
	hexachlorocyclopentaciene
	cresole, benz(a)anthracene, benz(b)fiuoroan-
	thene, benzo(a)pyrene
K036	toulene, phosphorodithioic and phosphorothioic
	acid esters
K037	toulene, phosphorodithicic and phosphorothicic
-	acid esters
KU38	phorate, formaldehyde, phosphorodithioic and phosphorothioic acid estens
8030	phosphorodithioic and phosphorothioic acid
•	esters
K040	phorate, formaldehyde, phosphorodithioic and
	phosphorothioic acid esters
K041	
	hexachiorobenzene; ortho-dichlorobenzene
	2.4 disblossebased 2.6 disblossebased 2.4.6
K043	
	trichlorophenot
K044	inchlorophenol N.A. N.A.
K044 K045 K046	Inchlorophenot N.A. N.A. Isad
K044 K045 K046 K047	trichlorophenot N.A. N.A. Isad N.A.
K044 K045 K046 K047 K048	trichlorophenot N.A. N.A. lead N.A. chromium, lead
K044 K045 K046 K047 K048 K048	Inchlorophenot N.A. N.A. Iead N.A. chromium, lead chromium, lead
K044 K045 K046 K047 K048 K049 K050	Inchlorophenot N.A. Isad N.A. chromium, lead chromium, lead chromium, lead
K044 K045 K046 K047 K048 K049 K050 K051	hichlorophenol N.A. Isad N.A. Isad chromium, Isad chromium, Isad chromium, Isad
K044 K045 K046 K047 K048 K049 K059 K051 K052	Inchlorophenot N.A. Isad N.A. chromium, lead chromium, lead chromium, lead chromium, lead lead
K044 K045 K046 K046 K048 K048 K059 K051 K052 K053	Inchlorophenot N.A. Isad N.A. chromium, lead chromium, lead chromium, lead lead chromium
K044 K045 K046 K047 K048 K048 K050 K051 K052 K053 K054	hichlorophenot N.A. Isad N.A. Isad chromium, Isad chromium, Isad chromium, Isad chromium, Isad Isad chromium, Isad Isad
K044 K045 K047 K048 K048 K050 K050 K051 K051 K053 K055 K055	Inchlorophenot N.A. Isad N.A. chromium, Isad chromium, Isad chromium, Isad Isad chromium chromium chromium chromium chromium, Isad
K044 K045 K047 K048 K048 K050 K051 K052 K053 K055 K054	trichtorophenot N.A. NA. lead N.A. chromium, lead chromium, lead chromium, lead chromium, lead chromium chromium chromium, lead chromium, lead
K044 K045 K046 K047 K047 K047 K049 K051 K051 K055 K055 K055 K055 K055 K055	Inchlorophenot N.A. N.A. Iead N.A. chromium, lead
K044 K045 K046 K048 K048 K050 K051 K053 K055 K055 K055 K055 K055 K055 K055 K055	Inchlorophenot N.A. N.A. Isad N.A. chromium, lead chromium, lead
K044 K045 K046 K047 K049 K050 K052 K052 K055 K055 K055 K055 K055 K055 K057 K058 K059 K060	Inchlorophenot N.A. N.A. Isad N.A. chromium, lead chromium, lead
K044 K045 K046 K047 K049 K050 K052 K052 K055 K055 K055 K055 K055 K055 K057 K058 K059 K060	Trichlorophenot N.A. N.A. Isad N.A. chromium, lead chromium, lead
K044 K045 K046 K047 K049 K050 K052 K055 K055 K055 K055 K055 K057 K058 K059 K060 K060	Inichiorophenot N.A. N.A. lead N.A. chromium, lead chromium, lead
K044 K045 K046 K047 K049 K050 K052 K052 K055 K055 K056 K058 K058 K058 K065 K061 K061	Sichlorophenol N.A. N.A. Iead N.A. Iead Chomium, Iead chromium, Iead
K044 K045 K046 K047 K048 K059 K052 K052 K055 K055 K055 K055 K055 K055 K059 K059 K059 K060 K061 K061	Trichlorophenot N.A. N.A. Isad N.A. Isad Chromium, Isad chromium, Isad
K044 K045 K046 K047 K049 K059 K052 K055 K055 K055 K055 K055 K055 K058 K059 K060 K063 K063 K063 K064	Trichlorophenot N.A. N.A. Iead N.A. Iead Chromium, Iead chromium, Iead Iead, cadmium Iead, cadmium
K044 K045 K046 K049 K059 K052 K055 K055 K055 K055 K055 K058 K058 K059 K060 K060 K063 K063 K064	Trichlorophenot N.A. N.A. Iead N.A. Iead Chromium, Iead chromium, Iead Iead, cadmium Iead, cadmium
K044 K045 K048 K049 K050 K052 K053 K055 K055 K055 K055 K055 K055 K056 K060 K061 K064 K064 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065 K065	hichlorophenot N.A. N.A. Iead N.A. chromium, lead chromium, lead

N.A.--Waste is hazardous because it meets either the ignitability, corrosivity or reactivity charactenstic.

-1-1-1-1-

Source: Ref. 25.

Method	Reference Method	
Sampling		
Extremely viscous liquid	ASTM ^a D140-70	
	D346-75	
	D420-69	
	D1452-65	
Fly Ash	ASTM D2234-76	
Containerized liquid wastes	EPA (new methods)	
Liquid waste from ponds, lagoons, etc.	EPA (new methods)	
Analysis		
Ignitability	ASTM D-93-79 or ASTM D-3278-78	
Corrosivity	EPA (new methods)	
Reactivity	45 FR 33122 Section 261.23	
EP Toxicity	EPA (new methods) or	
	45 FY 33127 (Appendix II)	
Acute hazard	See Sec. 2.2.1	
Toxic	See Sec. 2.2.1	

Table 2.7 Test Methods for Evaluating Solid Wastes

^aAmerican Society for Testing and Materials.

- domestic sewage or treated domestic sewage (criteria do apply to disposal of sludge resulting from the treatment of domestic sewage
- solid or dissolved materials in irrigation return flows
- source, special nuclear or by-product materials
- industrial discharges subject to permits under Section
 402 of the Clean Water Act as amended
- hazardous waste disposal facilities subject to regulation under Subtitle C of RCRA
- underground well injection facilities subject to regulations for the Underground Injection Control Program.³⁴

The criteria are flexible and provide the opportunity for state and local solid waste management agencies to take into account site-by-site variations and make assessments on local conditions. The EPA tried to set specific performance standards that defined unacceptable environmental effects so as to provide a concise and measurable means of determining compliance. However, in some situations it was not possible to devise a meaningful performance standard for an environmental effect, given the lack of experience with regulation of solid waste.³³

The criteria are the same for existing facilities and new facilities, although it was suggested that there be less stringent criteria for existing

Table 2.8 Analytical Methods for Organic Chemicals

Cumpound	A	Non-GC	Mea	surement loc	hniques	Compound	Semple handling	Non-GC	Measure	munt techniqu	
	Sample handling class/fraction	Non-GC _ methods	GC/M8	Cor GC	ventional Detector		class/fraction	methoda	GC/MS	GC	onal Detector
										8.09	FID
cetonivile	Volatile		8.24	8.03	NSD	Nivobenzene	Extractable/BN			8.09	ECD. FIG
nien	Volatile	****************	8.24	8.03	NSD	4-Nitrophenol	Extractable/A			8.04	ECD, FID
a da muda	Volatile		8.24	8.01	FID	Paraldehyde (trimer of	Volatile			8.01	FID
o logitile	Volatila		8.24	8.03	NSD	acetaldehyde).	1				
NZ0N9	Volatila		8.24	8.02	PID	Pentachiorophenol	Extractable / A			8.04	ECD
wiz(a)anthracana	E-wactable/RN	B 10 MPL CL.	8.25	8.10	FID	Phenol	Extractable / A	**********		8.04	
mzo(#)py ene	Extractable/AN	B 10 (HPLC)	8.25	8.10	FID	Phorele				8.22	ECD, FID
mzovichloride	Extractable /BM		8.25	8.12	ECD	Phosphorodithuoic acid esters					FPD
nzyl chlonde	Volatile or Extractable/RN	,	8.24	8.01	HSD	the option of the state of the	EAD BOILDIG! DP	*******		8.06	ECO, FID
	Toreard of Extraordorer of them	************************	8.25	8.12	ECO					8.09	ECD, FID
	Extractable/BN	A 10 0491 C1	8.25	8.10	FIO	Phthelic enhydride	Extra stable (DA)			8.22	FPD
mz(b)/lucenthene		D. 10 (m Coj	8.24	8.01	HSO		EXTRCIRCIO/EPV			8 06	ECD, FID
s(2-chloroethoxymethene)		#2 446 - C + C + C + C + C + C + C + C + C + C	6.24	8.01	HSD	0 Des 11-12	.			8.09	ECD, FIO
s(2-chiloroethyl)ather	VOIAUR9	******************************	8.24	8.01	HSD	2-Picoine	Extractable/BN			8.06	ECD, FID
s(2-chioroisopropyi)ether		******************		8.01	HSD	D -14	—			6.09	ECD, FID
arbon disulfide	VOIELING		8.24	8.01		Pyvidine	Extractable/BN			8.06	ECD, FID
arbon tutractionide	Voletile	***********************	8.24		HSD	.				8.09	ECO, FIO
Nordane	Extractable/BN		8.25	8.06	HSD	Tetrachlorobenzene(s)				8.12	ECD
Norinated depenzodiouina	Extractable/BN	*****	8.25	8.08	ECD	Tetrachloroethane(s)		********		8.01	HSD
horinated biohemvis	Extractable/BN		8.25	8.06	HSD	Tetrachioroethene				8.01	HSD
vioroscelaidehyde	Volatile	*****	8.24	6.01	HSD	Tetrachlorophenol	Extractable/A		8.24	8.04	ECO
Norobanzene	Volatile	*****	8.24	8.01	HSD	Tokuene			8.24	8.02	PID
		· · ·		8.02	PID	Toluenediamine				0.04	(CIL)
Norolorm	Volatile		8.24	8.01	HSD	Toluene disocyanate(s)				8.06	FID
Joromethane	Volatile		8.24	8.01	HSD	Touphene					
Chloropharol	Extractable /BM		6.25	8.04	FID. ECD	Trichloroethane	Veletie			8.06	HSD
Yysone	Cutractable /BM	8 10 (HPI C)	6.25	8.10	FID	Trichtoraethanafal		**********		8.01	HSD
905019	Extractable (DN)	. 0.1V (THE LOJ	8.25	8.10	ECD	Trichloroethene(s)	Voisting			6.01	HSD
905019	Exemple Ale 14		8.25	8.04	FID, ECD	Trichlorofluoromethane	····· Volauta ······			- 6.01	HSD
esol(s)	Extractedie/A		8.25	8.04	FID. ECO	Trichlorophenol(s)				8.04	HSD
esylic scid(s)	Exageration A	***************************************		8.01	HSD	2.4.5-TP (Silvex)	Extractable/A			8.40	HSD
ichlorobenzene(s)	Extractable/BN		8.25			Trichloropropane	Volatile			8.01	HSD
1 A				6.02	PID	Vinyl chloride	Volatile			8.01	HSD
			1	8.12	ECD	Viryldene chloride				8.01	HSD
ichiorosihane(s)	Volatile		8.24	6.01	HSD	Xylone	, Volatile			8.02	PID
ichloromethane	Volatile		0.24	8.01	HSD	·····					
chlorophenoxy-acetic acid	Extractable/A		8.25	6.40	HSD						
ichloropropanol			8.25	8.12	ECD	Analyze for phonenthrene (and carbazole; if these are	present in a reti	o between 1.4:1 and	d 6:1, crececie	should be co
4-Dimethylphenol	Extractable/A		8.25	6.04	FID, ECD	ered present.					
nirobenzene	Extractable/RN		8.25	8.09	FID. ECD	ECO - Electron contras de					
6-Dinotro-o cresol	Extractable/A	•	8.25	8.04	FID, ECD	ECD = Electron capture de	eteror; FIU ~ Flame Ionizi	HOOM COMECTOR, P	PD = Hame phot	ometric detect	or; HSO = H
4-Dentrotoluene	Extractable/BM			8.09	FID, ECD	epecific detector; HPLC = High	bueening schild chromotobu	aphy; NSO = N	itrogen-specific det	ector; PID = 1	Photoionizatio
				8.08	HSD	lector.	•	• .		11 N 11 N 11	
hy ether				8.01	FID	•					
KIÅ1 #11404 ·····	• • • • • • • • • • • • • • • • • • •	***********	9.64	8.02	FID						
i i i i i i i i i i i i i i i i i i i	bladadda	÷.,	8.24	8.01	FID						
ormaldehyde				8.06	FID						
mic acid											
ptachlor				8.06	HSD	•					
xachiorobenzene	. Extractable/BN		8.25	8.12	ECD						
xachlorobutadiene	. Extractable/BN		8.25	8.12	ECD	4					
xachioroethane				8.12	ECD						
xachiorocyclopentadiene	. Extractable/BN		8.25	8.12	ECD						
dana				8.08	HSD						
sleic anhydride				8.05	ECO, FIO						
	. Volatily		8.24	8.01	FID						
inanoi						A State of the second sec					
	. LAN SUMMER / DAY			8.01	FID						
sthomy!				0.01		1					
sthomy!			W-6-0		EID.						
ethomyl ethyl ethyl ketone	. Volatile			8.02	FID						
ethanol ethoryl ethyl ethyl ketone ethyl isobutyl ketone	. Volatile		8.25	8.01	FID					-	
sthomyl sthyl ethyl ketone sthyl isobutyl ketone	. Volatile		8.25	8.01 8.02	FID FID						
nthomyl http://ethyl.ketone	. Volatile		8.25 8.25	8.01	FID	Source:	Ref. 29.				

Species	Sample Handling Class	Measurement Technique	Method Number
Antimony	Digestion	Atomic Absorbtion-Furnace/Flame	8.50
Arsenic	Gaseous Hydride	Atomic Absorbtion-Flame	8.51
Barium	Digestion	Atomic Absorbtion-Furnace/Flame	8.52
Cadmium	Digestion	Atomic Absorbtion-Furnace/Flame	8.53
Chromium	Digestion	Atomic Absorbtion-Furnace/Flame	8.54
Cyanides	Hydrolysis	Atomic Absorbtion-Spectroscopy	8.55
Lead	Digestion	Atomic Absorbtion-Furnace/Flame	8.56
Mercury	Cold Vapor	Atomic Absorbtion	8.57
Nickel	Digestion	Atomic Absorbtion-Furnace/Flame	8.58
Selenium	Gaseous Hydride		
	Digestion	Atomic Absorbtion-Furnace/Flame	8.59
Silver	Digestion	Atomic Absorbtion-Furnace/Flame	8.60

Table 2.9 Analytical Methods for Inorganic Species

Source: Ref. 29.

facilities. However, with regard to implementation of the criteria, the Act does recognize the need to continue controlled use of existing facilities, while alternatives that comply with the criteria are being developed. A state may issue compliance schedules that allow use of the facility while it is being upgraded or while alternative options are developed.³⁵

In addition, the criteria apply to both small and large facilities, both urban and rural. The EPA felt that exclusion of small facilities would foster the development of additional small facilities in order to escape the cost of compliance.³⁶ The standards established in the criteria constitute minimum requirements. The criteria do not preempt other state and federal requirements.³³

The states have the responsibility of evaluating existing disposal facilities to determine whether they comply with the Section 4004 criteria. Those facilities that do not satisfy the criteria are "open dumps", and the EPA will publish a list of open dumps in the Federal Register. The inventory of "open dumps" will serve two major functions. First, it will inform Congress and the public about the extent of the problem. Second, it will provide an agenda for action by identifying problem facilities routinely used for disposal which should be addressed in state solid waste management plans in accordance with Section 4003 of the Act.³⁷ Specific criteria developed in Section 4004 from disposal of solid wastes are discussed below.

Floodplains

The three components of this criterion are that facilities or practices in flood plains shall not: (1) restrict the flow of the base flood (a flood with a 1% or greater chance of occurring in any one year); (2) reduce temporary water storage of the floodplain; and (3) result in a washout of solid waste that would pose a hazard to human life, wildlife, or land or water resources.33

It is generally desirable to locate disposal facilities outside of floodplains because wastes may be carried from the site, affecting downstream water quality and structures. In addition, filling the floodplain may restrict the flow of water causing greater flooding upstream, reduce the effectiveness of the flood-flow retaining capacity, and cause more rapid flooding downstream. The floodplain criterion prevents these adverse impacts; however, it does not prohibit location of a facility in a floodplain.

Endangered Species

The endangered species criterion states that facilities or practices shall not cause or contribute to the "taking" of any endangered or threatened species of plants, fish, or wildlife or destroy or modify the critical habitat of these species.³⁸

The "taking" definition is very broadly stated and emcompasses a variety of adverse effects. Taking is defined as harassing, harming, pursuring, hunting, wounding, killing, trapping, capturing or collecting or attempting to engage in such conduct. The proposed criteria used a "jeopardize" standard; however, it was decided that it was inappropriate for a definition that would be applied to a vast number of site specific conditions and that the "taking" definition was more in keeping with EPA's general intent to establish concise, measurable performance standards wherever possible.³⁹

Surface Water

The surface water criterion requires compliance with the Clean Water Act (CWA) as amended. It requires that a facility or practice shall not (1) cause a discharge of pollutants in violation of the National Pollutant Discharge Elimination System (NPDES) under Section 402 of the CWA, (2) cause a discharge of dredged or fill materials that is in violation of Section 404 of the CWA, and (3) cause nonpoint pollution of waters that violates the legal requirements of implementing the water quality management plan developed under Section 208 of the CWA.³⁸

In the final regulation, EPA has sought to coordinate the surface water standards with programs developed under the CWA. However, concerns have been raised over the ability of NPDES permitting agencies to process applications and issue permits for point source discharges of pollutants from solid waste disposal facilities because not many permits have been issued for such discharges.⁴⁰ In addition, very few approved state 208 plans exist.

Groundwater

The groundwater criterion states that a facility or practice shall not contaminate underground drinking water beyond the solid waste boundary or any boundary established by an approved state solid waste management agency.⁴¹ Contamination occurs when leachate from the disposal activity causes the concentrations of certain pollutants in groundwater to either (1) exceed the maximum contaminant level (based on the primary drinking water standards specified for that pollutant), or (2) increase at all where the background concentration of the pollutant already exceeds the applicable contaminant level. An underground drinking water source is an aquifer currently supplying drinking water for human consumption or an aquifer in which the concentration of total dissolved solids is less than 10,000 mg/L.40

In establishing the criterion, the EPA recognized that groundwater quality is important for other uses and that differing standards may be appropriate for these other purposes; however, at this time human health effects from direct consumption have the highest priority. In addition, the EPA has developed standards for drinking water but has not established standards for other uses.⁴⁰

Disease

The criterion states that the facility must control the vectors of disease through the periodic application of cover material or other techniques that are appropriate to public health. The criterion also closely defines the conditions under which sewage sludge or septic tank pumpings may be applied to the land surface.⁴²

Air

The air criterion has two components. First, there shall be no opening burning of residential, commercial, institutional, or industrial solid waste. This provision does not apply to infrequent burning of agricultural wastes, silvicultural waste, land clearing debris, and debris from emergency cleanup operations. Second, air emissions caused by a solid waste disposal facility shall not violate requirements developed for SIP's under the Clean Air Act.⁴² No variance on open burning was allowed because it does not lessen the need for disease vector control or leachate control for maintaining groundwater quality. In addition, variance procedures would be difficult to administer because of the dynamic nature of the many variables involved (e.g.,wind speed, and vertical dispersion efficiency of the burn).⁴³

Safety

The regulation requires that the concentration of explosive gases do not exceed 25% of the lower explosive limit for the gases in the facility structure and the lower explosive limit for gases at the property boundary. The criterion also contains provisions dealing with fires, bird hazards to air craft, and access.⁴² Although this standard could potentially be applicable to several explosive gases, it is presently only applied to methane.⁴³

The issues that might affect implementation of Section 4004 for disposal of solid wastes are discussed below.

Criteria Flexibility

The criteria were designed to be flexible so that state and local solid waste management agencies can take site-specific conditions into account; however, this flexibility may present a problem. There is concern that too much room exists for individual interpretation and that inspection and evaluation of disposal facilities and subsequent listing on EPA's open dump list may be a very subjective undertaking despite the efforts to make the criteria as objective as possible.⁴⁴

Flexibility is a key issue, especially when one takes into account that most states have little experience in solid waste management and few if any, precedents have been set. Under such conditions, it is difficult for industry to determine how the state plans to act. The EPA has developed a manual (see Ref. 45) to instruct states on how to conduct the inventory, and they will hold training sessions for state personnel; however, it will be up to the individual states to interpret the criteria, conduct the open dump inventory, and determine the process for compliance.

Institutional Barriers

Once of the most critical problems in solid waste management today is the lack of acceptable disposal facilities due, in part, to public opposition to their siting. EPA recognizes this fact and hopes that implementation of the criteria will increase the credibility of disposal operations, thereby aiding in reducing public opposition to acceptable and needed facilities.³³ However, others feel that citizen reaction against facilities will actually intensify because the EPA is calling attention to the bad practices of the past and present by publishing the open dump inventory. Although public opposition may eventually change, it is unlikely that it will do so in the immediate future. Implementation of the RCRA criteria and development of effective solid waste management programs will take years and it is unlikely that public opinion will change before that time.

State Preparedness

An important issue revolves around the question of whether or not the states are prepared to use the criteria to evaluate solid waste disposal facilities. Indications are that most states are not ready. Solid waste management programs in many states are in their infancy. Implementation of the criteria will place a variety of new responsibilities on the states including development and implementation of new laws and regulations, development of assessment procedures, and establishment of monitoring wells. Some critieria will be more easily met than others, but it appears that a majority of the states are not prepared to use a majority of the criteria. Table 2.10 provides a summary of the degree of readiness of the states.

2.6.5 Hazardous Waste Disposal Requirements

The regulations for hazardous waste disposal under Section 3004 of the Act set interim operating and technical standards for the treatment, storage,

Criteria	Territories and States Not Complying	Comments
Open burning of refuse	22	
Open burning of dis- eased plants	14	About half the jurisdiction require regulations upgraded
Gas emission	27	Monitoring requirements will affect almost every juris- diction
Fire control	7	No difficulties complying
Bird hazard to aircraft	33	Urban Northwest will experi- ence problems
Access	0	No difficulties complying
Surface water	53	Totally new sets of regula- tions and procedures in all jurisdictions
Groundwater	48	Substantial changes in mon- itoring procedures
Endangered species	50	Total revision of existing laws and regulations
Disease vectors	1	No difficulties complying
Floodplains	21	Some procedural changes in all jurisdictions

Table 2.10 State Readiness to Use the Solid Waste Disposal Criteria

Source: Ref. 44.

and disposal of hazardous wastes. However, the EPA is aware that it may take several years, in some cases, to adequately develop the data necessary to resolve the more complex technical issues raised by the regulations in a way that will allow promulgation of national, acceptable, detailed standards.46

The interim regulations will go into effect in November 1980. By this time all existing facilities must have applied to the EPA for a permit and upgraded their facilities to meet the interim standards. As soon as a facility applies for a permit it obtains interim status, however, EPA recognizes that processing permits could take years for some facilities.

Theoretically, a facility could obtain a permit from a state solid waste management agency; however, it is not anticipated that any states will have approved hazardous waste management programs in the near future. The interim status standards are minimum requirements that the EPA feels are broadly applicable to large numbers of facilities and vast amounts of hazardous wastes. The standards address manifests, recordkeeping, reporting, waste

analysis, training, contingency plans, groundwater monitoring, and closure (see Table 2.11 for a complete listing). These standards have a significant degree of flexibility.⁴⁶

These interim status standards, however, are only the bare outline of what will occur in Phases II and III. EPA expects to publish the Phase II regulations in the fall of 1980. They will be a set of technical regulations based on the agency's best engineering judgement of technical requirements that a facility must meet. The regulations will allow permits to be processed in a manner that takes into account both site-specific factors and the nature of the waste being handled. The Phase III regulations will be more definitive counterparts of the Phase II regulations and are expected to make the permitting process even more straightforward. The Phase III standards may also include standards for specific industries and wastes that require special management standards. No date has been set for the issuance of these regulations.⁴⁷

The EPA used three major criteria to decide which standards should apply during the interim status. First, the standards had to be met in a straightforward manner without need for substantial interpretation by the The intent of the EPA was to minimize individual contact during the EPA. interim status period so it can concentrate on other aspects of this program. Second, it had to be possible for compliance to be achieved within the sixmonth period between the date the regulations were promulgated and the date The EPA thought it unreasonable to require costly they became effective. construction that might be disallowed or required to be modified during the final permitting process.⁴⁶ Although, the EPA used these criteria as guidelines to develop the interim regulations, they also included requirements that are exceptions to these guidelines when such requirements were judged to be of unusual importance. The two main exceptions to these criteria are the postclosure and groundwater regulations, which will be discussed in more detail below.

Hazardous Waste Disposal - Interim Status Standards

Table 2.11 provides a list of all items subject to regulation under the Interim Status Standards for Owners and Operators of Hazardous Waste Treatment Storage and Disposal Facilities. The closure and groundwater monitoring standards are considerably more specific and strict than the other interim standards. However, the EPA felt that the benefits obtained from early implementation substantially outweighed the disadvantages. The closure standard requires that facilities closed during interim status will be required to meet full closure and postclosure care requirements, including the requirement to have the plans for those activities approved by the EPA. Although facilities will have an additional 12 months to comply, all hazardous waste landfills, surface impoundments, and land treatment facilities must have groundwater monitoring systems unless a hydrogeological study demonstrates that such a system is unnecessary. The delayed schedule for compliance was allowed so that there would be sufficient time to install the sytems.⁴⁸

Subpart		Section
3 - General Facility Standards	265.10	Applicability
	265.11	Indentification number
	265.12	Required notices
	265,13	General waste analysis
	265.14	Security
	265.15	General inspection requirements
	265.16	Personnel training
	265.17	General requirements for ignit- able, reactive, or incompatible wastes
C - Preparedness and Prevention	265.30	Applicability
	265.31	Maintenance and operation of facility
	265.32	Required equipment
	265.33	Testing and maintenance of equipment
	265.34	Access to communications or alarm system
	265.35	Required aisle space
	265.36	[Reserved]
	265.37	Arrangements with local authorities
) - Contingency Plan and Emergency	265.50	Applicability
Procedures	265.51	Purpose and implementation of contingency plan
	265.52	Content of contingency plan
	265.53	Copies of contingency plan
	265.54	Amendment of contingency plan
	265.55	Emergency coordinator
	265.56	Emergency procedures

Table 2.11 Interim Status Standards for Hazardous Waste Disposal

Table 2.11 (Cont'd)

Subpart		Section		
E -	Manifest System,	Recordkeeping,	265.70	Applicability
	and Reporting		265.71	Use of manifest system
			265.72	Manifest discrepancies
			265.73	Operating record
			265.74	Availability, retention, and disposition of records
		• •	265.75	Annual report
			265.76	Unmanifested waste report
			265.77	Additional reports
			265.78-2	65.89 [Reserved]
F -	Groundwater Monit	oring	265.90	Applicability
			265.91	Groundwater monitoring system
			265.92	Sampling and analysis
			265.93	Preparation, evaluation, and response
			265.94	Recordkeeping and reporting
			265.95-2	65.109 [Reserved]
G -	Closure and Postc	losure	265.110	Applicability
	and the second sec		265.111	Closure performance standard
			265.112	Closure plan; amendment of plan
			265.113	Time allowed for closure
			265.114	Disposal or decontamination of equipment
			265.115	Certification of closure
			265.116	[Reserved]
			265.117	Post-closure care and use of property; period of care
			265.118	Post-closure plan; amendment of plan
			265.119	Notice to local land authority
			265.120	Notice in deed to property

Table 2.11 (Cont'd)

Subpart		Section
H - Financial Requirements	265.140	Applicability
	265.141	[Reserved]
	265.142	Cost estimate for facility closure
	265.143	[Reserved]
	265.144	Cost estimate for post-closure monitoring and maintenance
	265.145-	265.169 [Reserved]
I - Use and Management of	265.170	Applicability
Containers	265.171	Condition of containers
	265.172	Compatibility of waste with container
•	265.173	Management of containers
	265.174	Inspections
	265.175	[Reserved]
	265.176	Special requirements for ig- nitable or reactive waste
	265.177	Special requirements for in- compatible wastes
• • • • • • • • • • • • • • • • • • •	265.178-	265.189 [Reserved]
J - Tanks	265.190	Applicability
	265.191	[Reserved]
	265.192	General operating requirements
	265.193	Waste analysis and trial tests
	265.194	Inspections
	265.195-	265.196 [Reserved]
	265.197	Closure
	265.198	Special requirements for ig- nitable or reactive waste
	265.199	Special requirements for in- compatible wastes
	265.200-	265.219 [Reserved]

Table 2.11 (Cont'd)

< < 1

Subpart	Section
K - Surface Impoundments	265.220 Applicability
	265.221 [Reserved]
	265.222 General operating requirements
	265.223 Containment system
	265.224 [Reserved]
	265.225 Waste analysis and trial tests
	265.226 Inspections
	265.227 [Reserved]
	265.228 Closure and post-closure
	265.229 Special requirements for ig- nitable or reactive waste
	265.230 Special requirements for in- compatible wastes
	265.231-265.249 [Reserved]
L - Waste Piles	265.250 Applicability
	265.251 Protection from wind
	265.252 Waste analysis
	265.253 Containment
	265.254-265.255 [Reserved]
	265.256 Special requirements for ig- nitable or reactive waste.
	265.257 Special requirements for in- compatible wastes
	265.258-265.269 [Reserved]
M - Land Treatment	265.270 Applicability
	265.271 [Reserved]
	265.272 General operating requirement
	265.273 Waste analysis
	265.274-265.274 [Reserved]
	265.276 Food chain crops
	265.277 [Reserved]
	265.278 Unsaturated zone (zone of aeration) monitoring

Issues

Many of the same issues that are associated with solid waste disposal apply to hazardous waste disposal. The issue of public opposition to siting is even more intense for hazardous waste disposal facilities. The data from a recent study indicate that successful siting in most regions of the country is dubious at best, and grim at worst, using present siting approaches.⁴⁹ Both state and EPA preparedness is going to be a factor in both the development and implementation of hazardous waste regulations. It is clear that hazardous waste disposal practices are not going to change overnight. It will be several years before both the states and the EPA develop the technical expertise and effective management plans to deal with the disposal problem.

2.6.6 Future Options

Disposal requirements for both solid wastes and hazardous wastes will continually be refined as more information becomes available. As states begin to develop their own solid waste management programs, many of them will add more stringent standards than those required by the "open dump" inventory criteria. Hazardous waste regulations are truly in their infancy, and the EPA is already planning on issuing more detailed and technical standards.

The development of new approaches to hazardous waste siting will be critical to the success of the RCRA. It is estimated that between 1980 and 1985 about 100 new hazardous waste facilities will be needed, 50 and public opposition is considered to be the most critical problem in the siting of these facilities. National publicity concerning abandoned sites has made citizens increasingly aware of hazardous waste problems. Even if opposition is not successful, opponents may increasingly turn to the courts to delay siting.⁴⁹

Unless circumstances change, it will be up to the states, not the EPA, to play the lead role in siting. Thus, it will be up to the states to develop and implement innovative approaches to siting. However, the EPA plans to provide assistance and is considering grants for projects that develop different approaches to siting. The first such grant is for the New England Regional Commission, which will develop siting criteria for the New England states, explore compensation and incentive approaches, and develop a regionwide implementation strategy.⁵⁰

3 SOURCES AND NATURE OF ENERGY-RELATED SOLID WASTES

Solid wastes from energy-related activities can vary in form from liquids and wet sludges to dry particles, depending on the technology and process. This section presents characteristics of the wastes from conventional coal combustion, atmospheric fluidized bed combustion, coal gasification, coal liquefaction, oil shale mining and retorting, and other energy activities including geothermal, tar sands, nuclear, and gas and oil exploration.

This characterization of solid waste is of a general nature since there is a great deal of variation in the quantity and composition of wastes even within the same technology. For example, the character of the coal will determine both the quantities and composition of coal ash. The amount of ash produced will depend on the ash content of the coal which can vary from 5 to 25%. The quantities of trace elements in coals can also vary widely.

The quantity of waste produced is dependent in large part on air pollution regulations. The amount of spent solid from fluidized bed combustion (FBC) or sludge from flue gas desulfurization (FGD) will depend on both the sulfur content of the coal and the amount of SO₂ that needs to be removed to comply with regulations. The nature of the waste depends on the particular technology employed. Some gasifiers produce a dry ash whereas others produce a molten slag.

We compared the quantities of solid waste produced by the various technologies at a heat input of 10^{12} Btu. In order to take into consideration the different efficiencies of the processes, we also considered the waste produced from the production of 10^{12} Btu of energy. Both sets of values are listed in Table 3.1. However, care must be taken when comparing such technologies since the forms of energy produced are different, e.g., electricity from FBC and gas from coal gasification.

3.1 SOLID WASTES ASSOCIATED WITH COAL UTILIZATION

Utilization of coal as an energy source results in large amounts of solid waste in six major categories: (1) Chars and ashes from combustion and conversion (gasification and liquefaction), (2) inorganic solids and sludges from FBC, air and water pollution control, and acid gas removal, (3) tars and oil sludges, (4) biosludges, (5) spent catalysts, and (6) coal cleaning wastes. Some, if not all, of these wastes may pose environmental hazards if not managed carefully. This section reviews the sources and characteristics of these wastes. Their hazard potentials are discussed in Sec. 4.

The wastes listed above are produced regularly from energy generation activities. There are other wastes that are typically part of a processing step and not commonly handled. These process streams may be under high pressure or temperature and pose a serious danger to occupational safety. If wastes from these streams must be removed from the system because of process malfunction or mishap, e.g., valve, pump, or line failure, the handling and deposition of these wastes in an environmentally sound manner may become a significant problem. Characterization of transient material from process failure is outside the scope of the present study. It would require a more

	Solid Waste Generation			
	tons/10 ¹² Btu	$tons/10^{12}$ Bt		
	heat input	produced		
Technology and Waste Stream	(dry weight)	(dry weight)		
Conventional Coal Boiler				
Ash	5,000	16,000		
Limestone/limestone scrubber				
sludge	5,200	16,000		
AFBC	•			
Ash	5,000	13,000		
Spent bed material	12,500	33,800		
Coal Gasification				
Coal cleaning	1,330	2,300		
Gasifier ash	13,000	22,480		
Boiler ash	1,160	2,000		
Boiler FGD sludge	280	480		
Spent catalysts	NAa	NA		
Acid gas cleanup sludge	17	30		
Tar and oil sludges	NA	NA		
Biosludges	500	850		
Coal Liquefaction				
Coal cleaning	17,055	27,070		
Liquefaction waste (chars,				
ash, filter cake)	7,000	11,100		
Boiler ash	225	360		
Spent catalysts	NA	NA		
Acid gas cleanup sludge	NA	NA		
Boiler FGD sludge	260	420		
Tar and oil sludges	NA	NA		
Biosludges	730	1,160		
Oil Shale				
Raw shale dust		4,600		
Spent shale	+	180,000		
Spent shale dust		360		
Arsenic waste		0.5		
Spend catalysts		2.0		
Nuclear Energy				
High-level waste (ft ³)	5	16		
Low-level waste (ft ³)	165,000	500,000		

Table 3.1 Quantities of Solid Waste Generated

 $a_{\rm NA}$ = not available.

exhaustive literature search, a more detailed analysis of the available data, and direct sampling and testing of process streams. It should be noted that the issues relating to the hazard potential of these wastes are significant and should be addressed when data are available.

3.1.1 Coal Ash and Char

Ashes and chars are the primary solid residue produced in coal utilization processes. The characteristics of solid residues produced from combustion and conversion (gasification and liquefaction) could be somewhat different and are discussed separately below.

3.1.1.1 Ash From Coal Combustion

Coal combustion produces several types of ash ranging in diameter from $< 1\mu$ to 4 cm and consisting of the inorganic mineral constituents present in coal, as well as the incompletely burned organic matter.

Fly ash is that fraction of noncombustible coal residue that is too small to settle out in the combustion chamber and becomes suspended in the high velocity flue gas. The fly ash fraction generally consists of fine spherical particles ranging in diameter from 0.5 to 100μ . As much as 5% by weight or 20% by volume of fly ash consists of cenospheres, which are silicate glass spheres filled with nitrogen and carbon dioxide. These very lightweight particles tend to float on ash pond surfaces.

The bottom ash fraction of the coal combustion residue is composed primarily of coarser, heavier particles with porous surfaces. If the bottom ash melts to slag at burner operating temperatures, the residue resolidifies as angular, black particles with a glassy appearance.

The type of particulate collector employed determines the particle size distribution and total surface area of the collected fly ash. An electrostatic precipitator collects a much higher percentage of the very small particles (smaller than 1.5μ) than does a mechanical collector. The collected fly ash, however, is much less sensitive to changes in efficiency of collection than is the fly ash released to the atmosphere. The difference is most dramatic in the total mass. A change from 98% removal of total mass to 99% removal results in slightly more than a 1% increase in the mass of fly ash collected but a 50% decrease in the mass emitted to the atmosphere.

Mather⁵¹ analyzed size-differentiated fractions of fly ash and concluded that lithophile materials (aluminosilicates) and alkalies (Na and K) were generally more concentrated in the finer fractions and thus in ash collected by an electrostatic precipitator. Magnetite-hematite materials (iron-bearing) were more concentrated in the coarser fractions of ash collected from the mechanical collector than they were in ash collected from the electrostatic precipitator. Carbon particles also increased in abundance as the particle size increased. Natusch⁵² demonstrated that the toxic trace elements arsenic, antimony, cadmium, lead, selenium and thallium were most concentrated in the smallest respirable particles emitted from coal burning plants. These elements are probably volatilized during combustion and

preferentially adsorb or condense on small particles with the greatest surface area. As collection efficiency is increased, larger fractions of these particles with high concentrations of toxic elements will be collected as solid waste. Since the total additional mass is small, however, this will not lead to great changes in the overall concentration of these toxic elements in the solid waste.

The major constituents of coal ash, including silicon, aluminum, iron, and calcium, make up 95-99% of the total composition. Minor constituents, such as magnesium, titanium, sodium, potassium, sulfur, and phosphorus, generally make up 0.5-3.5%. Coal ash can also contain trace concentrations of from 20 to 50 elements, including antimony, arsenic, barium, beryllium, boron, copper, fluorine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, tin, uranium, vanadium, and zinc. A partial identification of trace elements in coal ash is given in Table 3.2.⁵³.

<u>Trace Elements</u> - Coal ash is composed almost entirely of oxides. The composition varies over a wide range and there is no typical ash analysis. Table 3.3 gives the range of variation of the principal constituents of coal ash.⁵⁴

Available data indicate that partitioning and concentration of trace metals occur during combustion and that certain elements can concentrate in selected size ranges of particulates.^{55,56} Enrichment and volatilization behavior of trace elements in coal combustion is determined by the geochemical properties of the elements, the nature of the combustion process, and the reactions occurring in the emission control devices. Geochemically, the trace elements in coal are separated into four general classes: (I) lithophile; (II) chalcophile; (III) volatile elements; and (IV) unclassified elements.⁵⁷ Trace elements in each class are listed in Table 3.4.

Trace elements in Class I are lithophiles and are associated with aluminosilicate minerals in coal. As such they are high boiling compounds and do not decompose on combustion. Elements in this class are not enriched during combustion.

Class II elements are generally present in coal as sulfides. These sulfides may be fairly volatile or, upon combustion may decompose, leaving the trace elements in the vapor phase. The volatile sulfides or elements can then condense on the extensive surface area presented by particulates, thus leading to a surface enrichment. This enrichment is usually most prevalent in the fine particle fraction.

Class III elements boil below the furnace and flue gas temperatures and can exit from the stack as vapors.

The elements in Class IV are judged to exhibit behavior intermediate between the first two groups. Chromium and nickel tend to show chalcophile (or volatile) characteristics.

Many recent studies have attempted to quantify the chemical constituents of coal ash. Table 3.5 is a composite of these studies, showing the maximum and minimum value found for 64 elements present in bottom ash and

Gallium (Ga)	Samarium (Sm)
Germanium (Ge)	Scandium (Sc)
Hafnium (Hf)	Selenium (Se)
Holmium (Ho)	Silicon (Si)
Indium (In)	Silver (Ag)
Iodine (I)	Sodium (Na)
Iron (Fe)	Strontium (Sr)
Lanthanum (La)	Tantalum (Ta)
Lead (Pb)	Tellurium (Te)
Lithium (Li)	Terbium (Tb)
Lutetium (Lu)	Thallium (T1)
Magnesium (Mg)	Thorium (Th)
Manganese (Mn)	Tin (Sn)
Mercury (Hg)	Titanium (Ti)
Molybdenum (Mo)	Tungsten (W)
Neodymium (Nd)	Uranium (U)
Nickel (Ni)	Vanadium (V)
Niobium (Nb)	Ytterbium (Yb)
Potassium (K)	Yttrium (Y)
Praseodymium (Pr)	Zinc (Zn)
Rubidium (Rb)	Zirconium (Zr)
	Germanium (Ge) Hafnium (Hf) Holmium (Ho) Indium (In) Iodine (I) Iron (Fe) Lanthanum (La) Lead (Pb) Lithium (Li) Lutetium (Lu) Magnesium (Mg) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Neodymium (Nd) Nickel (Ni) Niobium (Nb) Potassium (K) Praseodymium (Pr)

Table 3.2A Partial Identification of TraceElements in Coal Ash

Source: Ref. 53.

flyash. The studies were made on different sizes and types of systems with respect to megawatt output, furnace type, collector configuration, and, of course, type of coal burned.⁵⁴ The data illustrate a tremendous variability in the concentrations of many elements present in coal ashes.

<u>Trace Organics</u> - Researchers at Oak Ridge National Laboratory have reported trace quantities of hydrocarbon compounds in coal ash.⁵⁹ Individual hydrocarbon compounds exhibited concentration ranges from 66-816 ppb, with a total detected concentration of about 9 ppm. The C28-C30 hydrocarbons were in greatest concentration, with C29 the highest. Table 3.6 summarizes the estimated hydrocarbon concentration in the ash sampled. The same ash was analyzed by ORNL for the presence of polycyclic aromatic hydrocarbons (PAH). Concentrations were low, ranging generally from about 10 to 20 ppb for

Table 3.3 Major Chemical Constituents of Coal Ash

Constituents	Range (%)
Silica (SiO ₂)	6.0 - 68
Alumina (Al ₂ 0 ₃)	4.0 - 44
Ferric Oxide (Fe ₂ O ₃)	1.0 - 44
Calcium Oxide (CaO)	0.2 - 52
Magnesium Oxide (MgO)	0.1 - 14
Titanium Dioxide (TiO ₂)	0.4 - 4.17
Potassium Oxide (K ₂ O)	0.1 - 4.0
Sodium Oxide (Na ₂ 0)	0.09 - 28
Sulfur Trioxide (SO ₃)	0.1 - 32
Carbon (C) and Volatiles	0.1 - 20

Source: Ref. 54.

Table 3.4. The Separation of Elements in the Geochemical Classification Scheme

Class I	Class II	Class III	Class IV
Al Mn	As	Нg	Cr
Ba Rb	Cd	C1	Cs
Ce Sc	Cu	Br	Na
Co Si	Ga	F	Ni
Eu Sm	РЪ	4	U
Fe Sr	Sb		V
Hf Ta			
K Th			
La Ti		.	
Mg			

Source: Ref. 58

	Flyash	(ppm)	Bottom Ash/	Slag (ppm)
Element	Minimum	Maximum	Minimum	Maximum
Aluminum (Al)	11,500.0	144,000.0	88,000.00	135,000.0
Antimony (Sb) ^a	0.8	1,000.0	0.14	12.0
Arsenic (As) ^a	2.3	1,700.0	0.98	40.0
Barium (Ba)	96.0	13,900.0	500.00	4,000.0
Beryllium (Be) ^a	1.0	1,000.0	3.00	10.6
Bismuth	<10.0	30.0		
Boron (B)	10.0	3,000.0	70.00	300.0
Bromine (Br)	0.3	670.0	2.00	11.0
Cadmium (Cd) ^a	0.1	250.0	<0.50	<250.0
Calcium (Ca)	5,400.0	177,100.0	8,400.00	50,600.0
Cerium (Ce)	28.0	320.0	84.00	310.0
Cesium (Cs)	1.4	17.0	7.70	
Chlorine (Cl)	13.0	25,000.0	<1,100.00	1,800.0
Chromium (Cr) ^a	11.0	7,400.0	15.00	270.0
Cobalt (Co)	6.0	1,500.0	3.60	380.0
Copper (Cu)a	30.0	3,020.0	2.80	720.0
Dysprosium (Dy)	4.2	31.0	37.00	
Europium (Eu)	1.0	16.7	1.11	15.0
Fluorine (F)	0.4	624.0	10.60	100.0
Gallium (Ga)	10.0	10,000.0	5.00	64.0
Germanium (Ge)	<10.0	11,000.0		
Gold (Au)	0.004	0.5	0.10	
Hafnium (Hf)	1.4	11.0	4.60	8.5
Indium (In)	0.1	2.4	1.00	
Iodine (I)	0.1	200.0	9.50	
Iron (Fe)	7,800.0	289,000.0	27,000.00	203,000.0
Lanthanum (La)	17.0	270.0	155.00	75.0
Lead (Pb) ^a	3.1	1,600.0	<5.00	35.0
Lithium (Li)	77.0	120.0	60.00	78.0
Lutetium (Lu)	0.41	4.3	2.50	-
Magnesium (Mg)	4,900.0	60,800.0	4,500.00	32,500.0
Manganese (Mn)	31.0	4,400.0	100.00	720.0
Mercury (Hg) ^a	0.01	22.0	0.01	<4.0
	and and a second se			

Table 3.5 Chemical Constituents of Bottom Ash and Flyash

Table 3.5 (Cont'd)

	Flyash	(ppm)	Bottom Ash/Slag (ppm)			
Element	Minimum	Maximum	Minimum	Maximum		
Molybdenum (Mo)	6.5	500.0	3.00	45.0		
Nickel (Ni) ^a	1.8	8,000.0	10.00	700.0		
Niobium (Nb)	16.0	<20.0	12.00	<20.0		
Palladium (Pd)	0.2					
Phosphorus (P)	600.0	2,500.0	300.00	1,600.0		
Platinum (Pt)	0.7					
Potassium (K)	1,534.0	34,700.0	7,300.00	15,800.0		
Rhodium (Rh)	0.02					
Rubidium (Rb)	25.0	300.0	48.00	300.0		
Samarium (Sm)	3.7	43.0	8.20	46.0		
Scandium (Sc)	2.0	400.0	10.00	85.0		
Selenium (Se) ^a	1.2	<500.0	0.08	7.7		
Silicon (Si)	196,000.0	271,000.0	180,000.00	273,000.0		
Silver (Ag)a	1.0	50.0	25.00			
Sodium (Na)	1,180.0	20,300.0	1,800.00	13,100.0		
Sulfur (S)	0.11	0.25	0.06	0.09		
Strontium (Sr)	40.0	9,600.0	170.00	1,800.0		
Tantalum (Ta)	0.5	2.6	0.95	1.03		
Tellurium (Te)	0.11	10.0	<0.02			
Thallium (Ti)	1,1	100.0	0.25	0.30		
Thorium (Th)	1.8	68.0	12.00	15.0		
Tin (Sn)	<3.0	4,250.0	·			
Titanium (Ti)	400.0	15,900.0	3,300.00	7,210.0		
Tungsten (W)	2.9	42.0	38.00			
Uranium (U)	0.8	30.1	6.78	14.9		
Vanadium (V)	20.0	1,180.0	44.00	670.0		
Ytterbium (Yb)	1.7	23.0	18.00	0.0		
Yttrium (Y)	21.0	800.0	30.00	44.0		
Zinc (Zn) ^a	14.0	13,000.0	24.00	950.0		
Zirconium (Zr)	100.0	5,000.0	220.00			

^aOn the EPA list of 65 priority pollutants.

Source: Ref. 54.

Componen	t Concer	ntration, ppb
C ₁₅		T ^a
c ₁₆		192
c ₁₇		608
c ₁₈	· .	740
C19		383
C ₂₀		308
C ₂₁		528
C ₂₂		548
C ₂₃		480
C ₂₄		308
C ₂₅		319
C ₂₆		366
C ₂₇		516
C28		664
C29		816
C ₃₀		660
c ₃₁		596
C32		344
C33		199
C ₃₄		66
Total		8.6 ppm

Table 3.6 Estimated Saturated n-Hydrocarbon Concentrations in Coal Ash

 $a_{\rm T}$ = Trace.

Source: Ref. 59.

individual species. The total PAH concentration was estimated to be at maximum about 0.2 ppm. Table 3.7 gives the PAH concentrations found in the ash sampled.

Concentrations of monomethyl and dimethyl sulfate in fly ash collected in the flue-line of a power plant buring low-sulfur coal were found to be as high as 830 ppm. Dimethyl sulfate has been shown to have mutagenic and carcinogenic properties.*

*Lee, M.L., et al., Dimethyl and Monomethyl Sulfate: Presence in Coal Fly Ash and Airborne Particulate Matter, Science, 207:186-188 (1980).

РАН	Concentration ppb
Naphthalene	8.3
2-Methylnaphthalene	5.0
l-Methylnaphthal	5.2
Biphenyl	10.3
1,6- and/or 1,3-Dimethylnaphthalene	Ta
2,6-Dimethylnaphthalene	T ^a
1,5- and/or 2,3-Dimethylnaphthalene	T ^a
9,10-Dihydroanthracene	12.6
Phenanthrene	17.6
2-Methylanthracene	9.1
l-Methylphenanthrene	<24.8 ^b
Fluoranthene	<13.4 ^b
Pyrene	<19.0 ^b
1,2-Benzofluorene	36.8
2,3-Benzofluorene	11.8
l-Methylpyrene	T
Picene	Т
Total	<0.2 ppm ^b

Table 3.7Estimated Polycyclic Aromatic
Hydrocarbon (PAH) Concentra-
tion in Coal Ash

^aT = Trace

b< = Interference allows estimate only of maximum possible concentration.

Source: Ref. 59.

Polycyclic aromatic hydrocarbons are among the most common chemical carcinogens. Considering coal's polycyclic aromatic nature, it is not surprising that many coal products are potentially carcinogenic. Even in the late 1700s it was recognized that some coal products were carcinogenic, as evidenced by the high incidence of scrotal cancer in chimney sweeps working in areas where bituminous coal was used as fuel.

Radionuclides - The presence of radionuclides in coal ash was studied by Coles, et al.⁵⁷ Natural radionuclides identified in coal bottom ash and fly ash are listed in Table 3.8. The results of their analysis of specific concentrations of the various radionuclides in ash are given in Table 3.9. All of the radionuclides studied do become enriched in ash relative to the

Natural Decay Chain Origin	Source After Fractionation	Gamma-Producing Nuclide	Gamma Energ (keV)		
232 _{Th}	228 _{Ra}	228 _{Ac}	338		
232 _{Th}	228 _{Ra}	228 _{Ac}	911		
232 _{Th}	228 _{Th}	212 _{Pb}	238		
232 _{Th}	228 _{Th}	208 _{T1}	583		
238 _U	234 _{Th}	234 _{Th}	63		
238 _U	226 _{Ra}	226 _{Ra}	185		
238 _U	226 _{Ra}	214 _{Pb}	295		
238 _U	226 _{Ra}	214 _{Pb}	352		
238 _U	214 _{Bi}	214 _{Bi}	609		
238 _U	214 _{Bi}	214 _{Bi}	1120		
238 _U	214 _{Bi}	214 _{Bi}	1764		
238 _U	210 _{Pb}	210 _{Pb}	46		
235 _U	235 _U	235 _U	185		

Table 3.8 Natural Radionuclides Observed in Coal, Bottom Ash, and Flyash

Source: Ref. 57.

input coal and in general tend to concentrate on the finer particles. The control of radionuclide emissions to the atmosphere may become a major EPA initiative under NESHAPS requirements.

3.1.1.2 Ash and Char From Coal Conversion

Three types of coal ash can be produced in gasification and liquefaction operations: (1) dry (including fly ash); (2) melted (slag); or (3) softened (self-agglomerating). Some conversion processes, such as Synthane gasification, and H-Coal liquefaction, also produce char.

Nearly all of the inorganic constituents present in the feed coal are contained in the ashes and chars. Reported values for the residual carbon in ash and char range from a few percent to over 50%. The carbonaceous material in chars and ashes is primarily elemental carbon with small amounts of highly polymeric aromatic and heterocyclic organics.

Char Characteristics⁶⁰,61

If carbon removal during the conversion process is incomplete, char will be produced. Char is the solid residue after removal of moisture and volatile matter from coal. Depending on the nature of the process, coal

. . . .

		ppm		pCi/g ^b						
	U	Th	K	40 _K	228 _{Th}	228 _{Ra}	210 _{Pb}	226 _{Ra}	238 _U	235 _U
Plant A ^C	·									
Coal	0.71	1.6	860	0.73	0.17	0.17	0.26	0.21	0.24	0.01
ESP fly ash	5.6	15	9400	8.1	1.7	1.7	1.4	2.3	1.9	0.09
Bottom ash	4.6	14	7900	6.8	1.5	1.5	0.58	1.9	1.5	0.07
Plant B ^d										
Coal	2.6	5.0	1660	1.4	0.56	0.55	0.68	0.64	0.85	0.03
ESP fly ash	11	22	7400	6.3	2.4	2.4	2.2	2.9	3.5	0.14
Bottomash	8.4	19	7200	6.2	2.2	2.1	0.84	2.5	2.8	0.11
Scrubber ash	11	22	7200	6.2	2.5	2.5	2.8	3.0	3.6	0.14
Plant B ^d										
Post-ESP										
(stack)										
Fly ash (mmd) ^e										
17 µm	16	25	8200	7.0	2.8	2.7	4.3	3.3	5.4	0.17
6 µm	20	31	8600	7.3	3.3	3.5	10	4.6	6.8	0.28
3.8 µm	30	36	8600	7.4	3.3	4.0	14	5.3	10	0.39
2.5 µm	36	38	8100	7.0	3.3	4.2	17	5.9	12	0.50

Table 3.9 Contents of the Various Radionuclides in Coal, Bottom Ash, and Fly Ash^a

^DPicocuries per gram.

^CSamples form Plant A; input coal contains 11.3% H2O, 9.2% ash, and 0.52% sulfur.

^dSamples from Plant B; input coal contains 6.8% H2O, 23.2% ash, and 0.46% sulfur.

emmd = mass median diameter determined by centrifugal sedimentation.

Source: Ref. 57.

conversion can produce net char amounts ranging between 10 and 55% of coal feed weight.⁵³ A single gasification plant can produce as much as four to five million tons of char per year. In general, there is a considerable reduction in total sulfur, volatile matter, hydrogen, and oxygen in char, compared to the original coal. Table 3.10 shows the analyses of the coal feeds and resulting chars for the synthane gasification process.⁵³ Table 3.11 shows the analysis of the inorganic content of the char from the H-Coal liquefaction process using Illinois #6 coal.⁶²

After extraction, char can be used in a variety of ways. Provided that there is sufficiently high carbon content, char can be used for conversion chamber feedstock, utility combustion fuel as a hydrocarbon source, or as an absorbent in pollution control devices. Ash produced from utilization of char may have characteristics similar to that from combustion or conversion of coal.

Ash Characteristics^{60,61}

The composition of ash from conversion processes is a function of the coal characteristics, severity f treatment, and location within a reactor

Component	Illinois Number 6	Western Kentucky	Wyoming Subbituminous	North Dakota Lignite	Pittsburg Steam	
Coals						
Moisture	8.3	4.3	18.1	20.6	2.5	
Volatile matter	37.5	34.6	31.9	32.9	30.9	
Fixed carbon	43.0	44.5	32.0	38.2	51.5	
Ash	11.2	16.6	18.0	8.3	15.1	
Hydrogen	5.3	4.7	5.4	5.7	4.7	
Oxide	15.9	10.9	30.3	32.6	9.3	
Carbon	63.0	62.7	45.2	51.5	68.4	
Nitrogen	1.1	1.2	0.6	0.7	1.2	
Sulfur	3.5	3.9	0.5	1.2	1.3	
Chars						
Moisture	0.8	1.2	0.5	1.2	1.4	
Volatile matter	4.0	4.8	5.1	10.0	1.6	
Fixed carbon	69.9	63.3	38.1	50.2	69.3	
Ash	25.3	30.7	56.3	38.6	27.7	
Hydrogen	1.0	1.0	1.0	0.9	1.0	
Oxygen	1.3	1.1	1.2	0.0	1.7	
Carbon	70.4	64.5	40.6	58.9	68.9	
Nitrogen	0.6	0.7	0.4	0.2	0.5	
Sulfur	1.4	2.0	0.5	2.0	0.2	

Table 3.10 Representative Analyses of Coals and Chars (Wt. %)

Source: Ref. 53.

Table 3.11 Inorganic Elements in the Mineral Residue from the H-Coal Process Utilizing Illinois Number 6 Coal

Concentration in Coal Residue (ppm)
17,253 1.2 1.5
40 1.8 300
6.7 0.4 7,862
16 1.7 1,000
27.5 4.45 14
0.69 100 4.6
4.9 _ 0.86
23,662 9.8 32
- 0.024 884
77 6.4
21 44 2,490
16 2.3 4.1
- 39,641 0.16

Concentration in Coal Residue (ppm				
619 30 18,000				
0.17 0.1 1.7				
3.5 0.6 1,019				
4.4 5.7 33				
1.0 71 41				

Table 3.11 (Cont'd)

bed. Similar to coal combustion ash, major components of conversion ash include such substances as SiO_2 , Fe_2O_3 , and Al_2O_3 ; lesser components will include CaO, MgO, and SO₃. In addition, many trace elements will be included and enriched in comparison to their abundance in coal. However, it is possible that the composition of conversion ash may vary substantially from that of ash generated in conventional power plants because portions of the ash may be produced by different pathways (e.g., at lower temperature in some conversion processes).

A few studies have generated the data on the composition of coal and the ash from coal conversion. Trace element concentrations of coal and the ash generated by various conversion processes are given in Tables 3.12 and 3.13.53,63

3.1.2 Inorganic Solids and Sludges

The major sources of inorganic solids and sludges from coal utilization facilities include: (1) sludges and solids from SO_2 emission control processes; (2) spent residues from FBC boilers; (3) bottom sludges from acid gas treatent processes; and (4) sludges from chemical treatment of wastewater and water supplies. Sources and characterization of these wastes are presented below.

	Illino	is Numb	ber	5 Coal		. <u></u>	Ash			
Element	Peabody ^a		Arg	onne ^b		Peabody ^a		Arg	onne ^b	*
Ag	0.3					3.0				
As	1.6	1.9	+	1.003	(B)	0.3				
В	307					673				
Ba							490	+;	250	(B)
Ве	2.2	2.0	<u>+</u>	0.1		22	19.8	Ŧ	1.0	
Br		6.6	+	1.0	(A)			-		
Cd	<0.3	0.0	÷	1.0	(11)	<0.3				
Ce	(0.5						41	. +	4	(AA)
Co	3.7	3.8	+	0.6	(A)		38	+	4	(AA)
Cr	15	15	Ŧ	2	(A)	551	592	+ + + + + + + + + + + + + + + + + + + +	59	(AA)
Cs							11	+	2	(A)
Cu	10					273				
Dy	10					270				
Eu										
F	59	55	<u>+</u>	11			4.6	+	0.9	
Fe (x10 ⁴)		1.3	+	0.1	(AA)		15	+	2	(AA)
Hg	0.20	0.17	7 +	0.02	(/	0.01	0.016	+	0.00	
$K(x10^3)$	0120	0.17 1.3 3.6	Ŧ	0.1	(AA)		14	Ŧ	1	_ (AA)
La		3 6	÷	0.5	(A)		42	+	4	(AA)
Li	5.5	5.0	<u> </u>	0.5	(11)	54			·	()
Mn	21	23	<u>+</u>	2	(AA)	338	305	+	30	(AA)
Mo	7	_				8				
Na (x10 ²)	• -	2.8	+	0.3	(AA)		29	<u>+</u>	3	(AA)
Ni	32					462			10	
РЬ	30	28.1	<u>+</u>	2.8		219	200	+	10	
Sb	0.3	0.1	+	0.02	(A)	0.3	19	+	2	(AA)
Sc		1.6	Ŧ	0.2	(AA)					
Se		9	Ŧ	5	(B)			•		
Sm To							1.3	-	0.7	(B)
Та							1.5	<u> </u>	0.7	
ТЪ						181				(C)
V	21					181			·	· · · · ·
Yb					4		11	<u>+</u>	2 2	(B)
Zn (x10 ²)	1.82	2.4	+	1.2	(B)	15.8	16	+	2	(A)

Table 3.12 Trace Element Concentrations (ppm) in Illinois Coal and in the Unquenched Gasifier Ash Obtained from Lurgi Gasification

	Illino	Illinois Number 6 Coal					Ash				
Element	Peabody ^a		Arg	onne ^b		Peabody ^a		Arg	onne ^b		
Ag As	0.3 1.0	2.1	+	1.0	(B)	3.8 0.1 622					
B Ba	132					022					
Be	1.8	1.55	+	0.08		14	13.4	<u>+</u>	0.7		
Br Cd	<0.3	4.1	+ ,	0.7	(A)	<0.3			•	-	
Ce		•					38	+	4	(AA)	
Co Cr	4.3 22	3.2 18.3	++++	0.5	(A) (A)	40 705	34 806	+ + +	3 81	(AA) (AA)	
Cs Cu	12					239					
Dy		· · ·					8.5	<u>+</u>	1.3	(A)	
Eu F	79	0.2 79	+++	20.1 16	(B)		5.2	<u>+</u>	1.0		
Fe (x10 ⁴) Hg	1.00 ^c	1.2 1.18	++++	0.1 0.12	(AA)	0.04	13 0.007	++++	1 0.00	(AA) 1	
$\begin{array}{c} \text{K} (x10^3) \\ \text{La} \\ \end{array}$		1.5 3.9	+++++++++++++++++++++++++++++++++++++++	0.1 0.4	(AA) (AA)		16 40	++++	2 20	(AA) (B)	
Li Mn	9.2 20	18.6	+	1.9	(AA)	74 243	156	+	16	(AA)	
Mo	7				•	6					
Na (x10 ²) Ni	14	3.0	, <mark>+</mark>	0.3	(AA)	456	27	<u>+</u>	3	(AA)	
Pb	12	8.0	• • • •	0.8		96	46.0	<u>+</u>	2.3		
Sb Sc	0.1	2.1	*	0.2	(C) (AA)	0.2	24	+	2	(AA)	
Se Sm Ta		0.00	5 <u>+</u>	0.003	(C) 3 (B)						
ТЪ							3.1	+	1.6	(B)	
V Yb	29	1.4	+	0.7	(B)	301	11	·+ '	2	(A)	
Zn (x10 ²)	0.43				(C)	4.69				(C)	

Table 3.12 (Cont'd)

^aThe precision of the Peabody results is estimated to be +10% in all cases.

^bThe accuracy of the Argonne results for mercury is estimated to be 10%; the precision of the Argonne results for beryllium is +5%; for lead +5 to 10%; for fluorine +20%. The confidence ratings shown for the Argonne results obtained by neutron activation analysis correspond to the following accuracy levels: AA--10%; A--+15%; B--+50%; and C--identification only.

^cNot representative of seam; contamination suspected.

Source: Ref. 53.

Element	Waste l	Waste 2	Waste 3	Waste 4
		wt. %	× .	
A1	8.8	10.1	8.8	6.7
Ca	18.5	2.9	2.2	2.4
Fe	3.8	13.4	17.2	13.3
K	0.6	1.5	1.4	1.4
Mg	4.9	0.8	0.5	0.5
Na	0.3	1.8	0.2	0.3
Ti	0.5	0.6	0.6	0.4
Si	17.9	22.5	20.1	16.4
S	0.4	0.3	3.8	4.0
C	1.0	1.8	1.7	20.2
		µg/g		
Ag	1.0	0.3	0.3	0.5
B	287.3	1302.2	590.7	386.4
Ba	654.5	454.0	531.0	1013.0
Ве	10.3	18.1	12.6	6.3
Cd	1.0	0.8	1.6	5.0
Ce	146.5	85.2	25.9	49.6
Со	7.2	137.3	33.7	16.3
Cr	78.1	386.1	642.0	145.4
Cu	29.8	61.9	93.5	58.7
Ga	65.9	103.6	106.0	98.6
La	152.1	92.5	89.2	61.4
Li	86.3	80.7	63.7	41.4
Mn	3987.2	425.4	293.2	249.4
Mo	4.0	18.8	72.6	43.5
Nb	17.2	11.9	1.7	1.3
Ni	73.0	254.0	150.0	148.0
P	466.7	275.5	436.3	544.8
Sc	30.2	24.4	19.3	12.4
Sr	519.8	503.3	182.1	139.1
Th	28.8	16.2	15.8	12.2
V	154.3	237.2	449.5	416.8
Y	54.8	53.6	41.1	23.8
Zn	8.3	65.7	96.1	413.2
Zr	191.7	196.6	170.2	97.4

Table 3.13 Chemical Composition of Coal Ashes From Gasification/Liquefaction Plants

Source: Ref. 63.

3.1.2.1 SO₂ Emission Control Wastes

Most of the sulfur in coal is converted to sulfur dioxide in combustion and to hydrogen sulfide in conversion. In combustion processes, removal of SO₂ from flue gas is necessary to meet the Clean Air Act requirements. Removal of sulfur compounds from raw coal-conversion gas prior to gas processing is necessary to prevent fouling of catalysts. In coal conversion processes, sulfur recovery units are used to convert stripped sulfur compounds to either dilute sulfuric acid or elemental sulfur. The vast majority of sulfur recovery units are designed to utilize Claus technology and to recover sulfur in its elemental form. Tail gas treatment units are usually included as part of the Claus technology units to reduce sulfur emissions. Unrecovered sulfur in Claus plant tail gas includes mainly hydrogen sulfide, elemental sulfur, sulfur dioxide, and lesser amounts of other sulfur compounds. Sulfur dioxide removal technologies developed for industries such as power plants and sulfuric acid plants may be directly applicable to Claus emissions from coal facilities.

The removal of sulfur dioxide by means of scrubbers is accomplished by two general processes -- throwaway and regnerable. The first scrubber type refers to those flue gas desulfurization scrubbers that produce a solid waste stream that is not at present marketable and requires disposal. Regenerable scrubber systems are those which, because of their specific chemical reactions, produce a marketable product of sulfur and, in some cases, regenerate the solvent for reuse. Some common examples of regenerable processes are the Wellman-Lord Sulfite, Westvaco Activated Carbons, AI Aqueous Carbonate, and IFP Catalytic, all of which produce a usable sulfur by-product, such as elemental sulfur, sulfuric acid, or gypsum.

Some sulfur by-products, such as elemental sulfur and gypsum, are likely to contain impurities originating from coal. The nature and extent of contamination are, however, largely unknown, and tests to determine the quality of sulfur by-products from the standpoint of their environmental effects are required.

The wet throwaway processes are at present the major systems used by the utilities for several reasons including lower capital costs in comparison to regenerable processes, availability and ease of use of sorbent, and relative simplicity. They have the major disadvantage of producing large amounts of waste. No dry systems are at present operating commercially. However, four companies have developed spray dryer-based systems, and these are expected to be operating by 1980 and 1981.⁶⁴ The dry systems do not at present achieve as high a degree of SO₂ removal as do the wet systems. However, the NSPS for utility boilers will require some degree of scrubbing, and dry systems could be used in conjunction with low sulfur coal. They may also be used by industry if SO₂ scrubbing is required under the NSPS being developed by the EPA.

The major wet scrubbing systems employ a slurry of either lime or limestone to remove the SO₂ and produce a waste consisting of calcium sulfate, calcium sulfite and unreacted limestone. Factors influencing the composition of sludge from a specific application include composition of the coal, the alkali added, the scrubber process operation, oxidation, and alkali utilization efficiency. Chemical analyses of lime process sludges from various power plant sources are shown in Tables 3.14 and 3.15. They reveal that a great many elements can be included in FGD sludge and that the sludge component concentrations can be highly variable.⁵³ Concentrations of trace elements in leachate from ponded scrubber sludges are the focus of the greatest concern about impacts from flue gas desulfurization processes. As can be seen in Table 3.16, which contains results of leachate monitoring, the

						·
Component	A	В	С	D	Е	F
CaO	18.1	43.2	40.7	43.4	25.6	43.8
MgO	2.4	0.2	b	0.0001	1.2	Ъ
Total sulfur	7.2	18.9	18.1	20.0	10.9	22.9
so ₂	12.1	33.0	32.9	29.2	10.8	45.8
S03	2.9	5.9	4.8	13.6	13.6	С
co ₂	3.2	6.7	2.3	7.1	2.2	1.0
Free carbon	Ъ	Ъ	Ъ	2.8	0.14	c
Si0 ₂	31.6	4.9	3.76	0.58	21.3	0.18
A1203	18.3	3.4	1.71	12.1	11.3	0.39
Fe ₂ 0 ₃	4.3	0.6	0.86	0.39	5.6	0.29
Na ₂ 0	Ъ	Ъ	Ъ	0.35	0.76	0.09
к ₂ 0	Ъ	Ъ	Ъ	0.03	0.98	0.01
Free base as CaO	0.3	1.3	7.9	0.06	0.06	с
				•		

Table 3.14 Chemical Analysis of Lime Process Sludges on a Dry Solid Basis (%)

^aA-power station prior to fly ash collections; B-power station after ash collection; C-Chemico using carbide lime; D-power plant using proprietary scrubbing; E-wet limestone pilot plant scrubber; Fmolybdenum sulfide pilot plant scrubbing effluent.

^bNot determined.

^cNot detected.

Source: Ref. 53.

concentration of arsenic, barium, boron, cadmium, chromium, lead, mercury, and selenium in leachate equals or exceeds public water supply standards.

In addition to trace elements, the chemical oxygen demand (COD), total dissolved solids (TDS), and the higher levels of sulfate, chloride, calcium, and magnesium are additional sources of potential pollution.

The quality of wet scrubber wastes can be improved by oxidation to gypsum or by chemical stabilization. These treatments are discussed in Sec. 5.

The major dry systems are either a spray drier or dry injection. In the spray drier, the flue gas is contacted with a calcium-based slurry or sodium solution such that the gas is evaporated to apparent dryness. The dry injection system involves the introduction of a dry sorbent, the most promising being nahcolite (sodium bicarbonate), into the flue gas. The

Component	Sludg	e Elutriate/Leachat
Total organic carbon	•	- X
(elutriate only)		
Total solids	X	
Dissolved solids		X
Suspended solids (leachate o	nly)	X
pH		X
Hardness (elutriate only)		X
Conductivity		X
Arsenic	X	X
Beryllium	X	X
Cadmium	X	X
Calcium	X	X
Chromium	X	X
Copper	X	X
Lead	X	X
Magnesium	X	X
Manganese	X	Х
Mercury	X	X
Nickel	X	X
Selenium	X	X
Zinc	X	X
Chloride	•	X
Cyanide	X	X
Fluoride (calcium fluoride s	ludge only)	
Nitrate	x	X
Nitrite	x	X
Sulfate	X	X
Sulfite	X	X

Table 3.15 Chemical Analysis of Flue Gas Desulfurization Sludges

Source: Ref. 53.

resulting waste, consisting of a dry mixture of sodium or calcium sulfite and sulfate, is collected by a baghouse. A major difference between the dry and wet systems is that in the majority of wet systems, the ash is collected by a precipitator prior to the scrubber, whereas in the dry systems the ash and scrubbing waste are collected together.

Very little information is available on the characteristics of dry scrubbing wastes. The lime spray dryer systems are expected to have similar impacts to wet lime/limestones systems. However, being dry, the waste should be easier to handle and dispose. There is, however, concern about the sodiumbased systems because sodium compounds are 100 times more soluble than calcium compounds.⁶⁵

3.1.2.2 FBC Spent Residues

Fluidized bed combustion (FBC) technology involves the combustion of crushed coal in a bed of inert ash and limestone or dolomite, which has been

Public Water		Leachate Composition (mg/L)		Drinking Water Standard
Element	Supply Element Standard	Max.	Min.	Exceeded
As	0.05	0.130 0.300	0.0010 0.0080	yes
Ba	1.00	2.000	0.0020	yes
В	1.00	40.000	0.2200	yes
Cd	0.01	0.047	0.0005	yes
Cr	0.05	0.011 0.250	0.0010	yes
Cu	1.00	0.560	0.0020	no
РЪ	0.010	0.040	0.0030	yes
Hg	0.002	0.070 0.003	0.0004	yes
Ni		0.050	0.0150	no
Se	0.01	0.540	0.0005	yes
v		0.200	0.1000	
Zn	5.00	4.200	0.0100	no

Table 3.16	Elemental	Composition	of	Scrubber	Sludge
	Leachate				

Source: Ref. 54.

fluidized by the injection of combustion air through the bottom of the bed. The limestone or dolomite in the bed reacts with the sulfur dioxide released by the combustion of the coal and forms a solid sulfate material that can be disposed of as a stable dry solid along with the ash. Instead of disposal sulfated lime residues can be regenerated for reuse in the combustor by contacting it with an appropriate reducing agent under appropriate conditions (e.g., hydrogen and carbon monoxide gases at about 2000°F in a fluidized bed).

There are two major waste streams, both dry, from a FBC plant, the spent bed material and the elutriated fines captured by particulate collection equipment. Potentially, very large amounts of solid waste will be produced if regeneration is not used. At a Ca/S mole ratio of 2:1, the FBC process generates about 0.35 to 0.40 pound of waste per pound of coal burned. This is more than a conventional system and should amount to about 700,000 tons per year at a typical 500 MW plant.⁶⁶

Using limestone as the sorbent the spent bed material is expected to be composed primarily of calcium sulfate and calcium oxide in the approximate ratio of 2:3, with small amounts of calcium carbonate and magnesium oxide.⁶⁷ If dolomite is used, the major components are calcium sulfate and magnesium oxide in the approximate proportion of 3:1.⁶⁸ It is expected that virtually all the coal ash will be elutriated along with approximately 40% of the spent bed material. About 12% of the carbon is unburnt in the main bed and is elutriated. There will then be a carbon burn up cell that will combust an additional 90% of the remaining carbon. This leaves about 1% of the original carbon in the solid waste. The elutriated material will be collected in a cyclone followed by a baghouse. It is expected that the collected particulate matter will be added to the bed material for disposal.

FBC spent sorbent does not contain CaSO3, which, in the form of its hemihydrate, tends to occlude water and impart thioxotropic properties to the slurry (sludge) discharged by the FGD systems. Thus, even if exposed to rainwater or runoff water, FBC spent sorbent is not expected to form a sludge. However, the greater solubility of CaSO4, compared to CaSO3 (2000-3000 vs. 40 ppm), poses a somewhat greater threat of groundwater pollution by leaching. Also, if the calcium oxide is "active," a water runoff of very high pH would result. This possibility has been verified by leaching tests.^{70,71} However, it is also possible that calcium oxide could be rendered "inactive" if it is surrounded by an insoluble calcium sulfate shell. There is some evidence that such a shell may form, at least under certain operating conditions.⁶⁷

The retention of trace elements by the ash will be higher than their retention in the ash of a conventional boiler. Therefore a larger total quantity of trace elements will be present in the waste material. The total concentration, however, might not differ greatly due to the larger amounts of material.⁶⁷

Preliminary tests on the spent bed material and collected elutriated matter from the DOE's Morgantown Energy Research Center⁷² suggest that the following leachate characteristics do not appear to present problems. Total organic carbon and sulfide leachate concentrations are below detection limits. Leachate concentrations of trace metals, for which some type of drinking water standard, regulation, or criterion exists, through the EPA, the Public Health Service, or the World Health Organization (Ag, As, Ba, Be, Cd, Cr, Co, Fe, Hg, Mn, Ni, Pb, Se, Sn, and Zn), are below the water drinking standards. However, these conclusions are tentative.

3.1.2.3 Acid Gas Treatment Sludges

In coal gasification and liquefaction technologies, removal of H_2S and trace sulfur species from raw product gas from the conversion reactor is necessary to prevent catalyst poisoning in the subsequent methanation step. Removal of CO_2 is also necessary to obtain a product gas with heating value equivalent to that of natural gas. H_2S and CO_2 may be removed either simultaneously or separately, depending on the specific acid gas removal process chosen and its design.

Acid gas removal processes utilize at least one of three possible techniques: (1) absorption into a solvent, (2) chemical conversion into another compound, and (3) adsorption on solids. Depending on the characteristics of the acid gas and the acid gas treatment process employed, a sorbent blowdown containing a high concentration of solids (including some organics) may be produced. The treatment of this stream may generate a sludge requiring disposal. Such a sludge would most likely contain coal-derived particulate matter, sorbent, and sorbent degradation products.⁷³ Characteristic data of acid gas treatment sludges are not available.

3.1.2.4 Sludges From Chemical Treatment of Water and Wastewater

In coal-fired combustion or conversion facilities, large quantities of water are used in treatment of coal, as feed for boilers or conversion reactors, and for cooling or quenching. Water treatment chemicals are used to demineralize and clarify most water supplies.

On the other hand, there are wastewater streams from coal combustion or conversion facilities, such as: (1) coal washing effluents, (2) sluice water from slags and ashes, (3) gas liquor (coal conversion), and (4) condensates from steam units. These wastewater streams require treatment before being discharged or reused.

Some wastewater streams are highly contaminated. For example, the gas liquor of coal conversion contains various components of the product gas (carbon monoxide, carbon dioxide, hydrogen, hydrogen cyanide, and methane) in addition to pollutants such as sulfur and nitrogen compounds, ash, phenols, emulsified tar and oils, and soluble salts. Soluble salts may accumulate in aqueous streams in concentrations as high as 300 ppm.⁵³

Water supply and wastewater treatment may involve the use of chemicals such as lime, iron, and aluminum salts for chemical precipitation (e.g., of heavy metals) or for coagulation of particles from process wastewaters. The sludge produced from such chemical treatments may contain precipitated inorganics (e.g., ferric and aluminum hydrolysis products, other metal hydroxides, and calcium carbonate) and inorganic particulate matter removed from the wastewater.

3.1.3 Tars and Oil Sludges

Tars and oils are produced in several coal conversion processes. Some of these such as BIGAS, CO₂-Acceptor, and Synthane ("deep-bed" coal injection mode of operation), produce little or no tar and oil. Other processes including (gasification)-Hygas, Lurgi, Slugging Gasifier, and COGAS, and (liquefaction)-H-Coal, SRC, and Donor Solvent, produce varied quantities of tar and oil.

Initially, tars and oils may be contained in process water, the treatment of which by gravity separation and/or flotation and by emulsion breaking results in the production of tar and oil sludges. These sludges can contain considerable amounts of water depending on the nature of the raw wastewater and emulsions and the system design. Oil content ranging from 7% to as much as 98% has been reported in sludges from the API separators in petroleum refineries. The organic fraction of the sludge is expected to have characteristics similar to the bulk tars and oils in the process. Furthermore, tar and oil sludge is likely to contain high levels of coal-derived organic and inorganic particulate matter.⁵³ Table 3.17 lists the major components of coal tar produced in the German high-temperature conversion process. The highest reported concentrations are for naphthalene, phenanthrene, and fluoranthene.⁷³

Component	Boiling point (°C)	Melting point (°C)	Average Weight (%)
Naphthalene	217.9	80.3	10.0
Phenanthrene	338.4	100.0	5.0
Fluoranthene	383.5	111.0	3.3
Pyrene	393.5	150.0	2.1
Acenaphthylene	270.0	93.0	2.0
Fluorene	297.9	115.0	2.0
Chrysene	441.0	256.0	2.0
Anthracene	340.0	218.0	1.8
Carbazole	354.8	244.4	1.5
2-Methylnaphthalene	241.1	34.6	1.5
Diphenylenoxide	285.1	85.0	1.0
Indene	182.4	-1.5	1.0
Acridine	343.9	111.0	0.6
1-Methylnaphthalene	244.7	-30.5	0.5
Phenol	181.8	40.9	0.4
Cresol	202.2	12.2	0.4
Benzene	80.1	5.5	0.4
Dipheny1	255.0	69.2	0.4
Acenaphthene	227.5	95.0	0.3
2-Phenylnaphthalene	359.8	101.0	0.3
Toluene	110,6	-95.0	0.3
Chinoline	237.1	-14.2	0.3
Diphenylenesulfide	331.4	97	0.3
Thionaphthene	219.9	31.3	0.3
m-Xylene	139.1	-47.9	0.2
o-Cresol	191.1	31.0	0.2
p-Cresol	201.9	34.7	0.2
Isochinoline	243.3	26.5	0.2
Chinaldine	247.6	-1.0	0.2
Phenanthridine	349.5	107.0	0.2
7,8-Benzochinoline	340.2	52.0	0.2
2,3-Benzodiphenylenoxide	394.5	208.0	0.2
Indole	254.7	52.5	0.2
3,5-Dimethylphenol	221.7	63.3	0.1
2,4-Dimethylphenol	210.9	24.5	0.1
Pyridine	115.3	-41.8	0.02
a-Picoline	129.4	-66.7	0.02
b-Picoline	129.4	-18.3	0.02
y-Picoline	144.1	-18.5 3.7	0.01
	145.4	-6.1	0.01
2,6-Intidine			
3,4-Intidine	158.4	-64.0	0.01

Table 3.17Major Components of German High-Temperature
Conversion Process Coal Tar

Source: Ref. 73.

3.1.4 Biosludges

In gasification and liquefaction processes, the raw gas scrubber water for gas quenching can be highly contaminated. For example, the gas quench water from gasification processes such as Lurgi, Synthane, and Hygas contain high levels of organics (e.g., up to 6600 mg/L of phenols and up to 10,000 mg/L of total organic carbon). These quench waters also contain varying concentrations of trace organics such as carbazoles, benzofurans and benzo(a)pyrenes, which can be hazardous. Table 3.18 presents the identification and levels of organics in product water from a coal gasification process. In addition to trace organics, the quench waters can also contain significant levels of certain trace elements originally present in the coal. Table 3.19 presents the trace elements concentrations in Synthane and HYGAS quench waters

Compound	Quantity (ppm)
Phenol	3400
Cresols	2840
C ₂ -Phenols	1090
C ₃ -Phenols	110
Dihydrics	250
Benzofuranols	70
Indanols; acetophenones	150
Hydroxybenzaldehyde; benzoic acids	60
Naphthols	160
Indenols	90
Benzofurans	na ^b
Dibenzofurans	NA
Biphenols	40
Benzothiophenols	110
Pyridines	NA
Quinolines	NA
Indoles	NA

Table 3.18 Organics in Product Water from Gasification of Illinois No. 6 Coal^a

^aLow-voltage mass spectrometry data. ^bNA: Not available. Source: Ref. 53.

•	Trace Element Concentration (mg/L)		% of Element Originally Present in Coal	
Element	Synthane PDU ^a	Hygas Pilot Plant	Lurgi (at Sasol)	
Hg	0.027	-	32	
As	0.001	_	90	
Zn	0.13	37-63	-	
Mn	0.2	40-206	36	
Cr	0.043	<24	-	
F	39	· _ ·	42	
B	43	251-12000	3.5	
Be	-	<2	1.6	
Cđ	-	<20	35	
Pb	-	<60	3.2	
V	-	<200	0.06	
Sb	-	_	36	

Table 3.19 Trace Elements Reported in Product Gas Quench Waters

^aProcess Development Unit. Source: Ref. 73.

and the percentages of the trace elements found in the aqueous condensate from the Lurgi facility at SASOL, South Africa, and originally present in the $coal.^{73}$

When biological processes are employed for the treatment of quench water and other aqueous wastes, the degradation of organics and the physical entrapment of settling suspended particles produce a biosludge. Sludges produced in the activated sludge and trickling filtration processes are settled in the clarifiers, which follow the aeration tank or the trickling filter. In these processes a portion of the settled sludge is recycled to the aeration tank or the trickling filter, while the excess sludge is wasted and requires disposal. Sludges removed from final clarifiers typically contain 2 to 5% solids, which generally contain 50 to 70% volatile matter. When lagoons and stabilization basins are used for biological treatment, the biological sludge that is produced, and the settleable matter in the raw wastewater, settle to the bottom; the degradable material in the settled sludge undergoes aerobic and/or anaerobic decomposition. Depending on the nature and quantity of the solids in the raw wastewater and the lagoon design, periodic cleaning of the lagoons to remove the settled sludge may be necessary. Certain elements (e.g., heavy metals) and refractory organics that may be present in

the raw wastewater at relatively low concentrations may concentrate in the biosludges. Trace organics and metals may present an environmental problem for disposal of biosludge from coal conversion.

3.1.5 Spent Catalysts

Many types of catalysts are used in coal gasification and liquefaction technologies (see Table 3.20). These catalysts are used to enhance chemical reactions (coal conversion, shift, methanation) and process stream purification. While some organics are used as catalysts, the majority of catalysts are metal-containing solid particles. For example, the shift catalysts are generally cobalt molybdate-based, and the methanation catalysts are nickel-based materials supported on an inert substance such as alumina or silica.

Due to contamination, catalyst activity decreases with increased operating time. Catalysts are frequently poisoned (deactivated) by free carbon, sulfur, and chlorine. The characteristics of the feedstock and catalyst, as well as the operating conditions, are factors that determine the rate of catalyst deactivation. The conceptual design for commercial SNG facilities in the U.S. assumes a catalyst life of six months to two years.⁵³

Spent catalysts can either be regenerated by returning to the manufacturer, or disposed of along with other solid wastes such as coal ash. Because of the proprietary nature of the catalysts, very little information relative to their environmental effects is available. However, it is possible that disposal of spent catalysts may cause environmental problems. For example, it has been indicated that the spent catalysts from both shift conversion and methanation operations contain coal-derived trace elements (e.g., arsenic, cadmium), elemental carbon, and highly polymeric organic materials, in addition to cobalt and/or nickel originally existing in the catalysts.⁷³

3.1.6 Coal Cleaning Wastes

About half of the total coal mined in the U.S. is prepared or cleaned before use to remove some of the noncombustible materials. Coal cleaning is usually done at the minehead, although some may be done at utilization sites. Coal cleaning wastes consist of rocks and mineral matter such as clays, quartz, pyrites, marcasite, as well as small amounts of residual coal and unidentified matter. The rejected material represents, on the average, about 20% by weight of the raw coal.

Most of the coal in the U.S. is cleaned by physical methods.⁷⁴ The mineral wastes produced by such methods amount to 100 million tons per year. Coal cleaning is receiving increased attention as a means of reducing the coal sulfur content, and the annual production rate of coal cleaning waste is expected to double within a decade.⁷⁵

It has been known for several years that the acidic drainage from coal refuse disposal sites is often highly contaminated with various species such as iron, manganese, and sulfate ions. More recently Los Alamos Scientific Laboratory has investigated the structure, weathering, and leaching behavior

Catalysts	Use
Activated carbon	Purification
Iron oxide	Purification
Methanol	Purification
Propylene carbonate	Purification
Sodium carbonate	Purification
Potassium carbonate	Purification
Amines	
Monethanolamine Diethanolamine	Purification Purification
Diglycolamine	Purification
Zinc oxide	Purification
Cobalt-molybdenum	Shift conversion, liquefaction (hydrotreating), purification
Limestone-dolomite	Sulfur recovery
Molten salt	
Nickel	Methanation or liquefaction
Vanadium	
Dolomite	Purification
Bauxite	Sulfur recovery
Iron	Shift conversion or liquefaction
Isopropyl ether	Phenol recovery
n-methyl-2-pyrrolidine	Purification
Dimethyl ether polyethylene glycol	Purification
K3As03	Liquefaction
Tungsten	Liquefaction
Zinc chloride 🔪	Liquefaction
Sodium sulfite	Purification
Co-Mo/SiO ₂ -A1 ₂ O ₃	Liquefaction
Sulfoxide	Sulfur recovery
Chelated iron salt	Sulfur recovery
Nickel-tungsten	Liquefaction (hydrotreating)
Ruthenium	Methanation

Table 3.20 Catalysts Used in Coal Conversion Processes

Source: Ref. 53.

of trace elements in selected samples of coal cleaning wastes.^{76,77} The study revealed the great potential of these wastes for releasing harmful quantities of trace elements.

Oxidative degradation of the pyrite and marcosite present in the coal cleaning wastes produces leachates with pH values below 2, which would put many untreated coal cleaning wastes on the corrosive waste list, even under the recently relaxed RCRA criteria. The highly acidic leachates can easily dissolve a variety of trace elements present in the wastes, including fluorine, aluminum, manganese, iron, cobalt, nickel, copper, zinc, arsenic, and lead. Some of these elements (e.g., copper, zinc, and cadmium) have been found in concentrations significantly exceeding public water supply criteria (see Table 3.21). On the basis of a priority system using the MEG (Multimedia Environmental Goals) system, six elements (iron, aluminum, manganese, calcium, nickel, and zinc) were identified as present at levels of possible environmental concern, particularly for the wastes resulting from high sulfur coal. The severity of contamination caused by the low sulfur waste would be less pronounced than that caused by the high sulfur wastes.

Element	Leachates Concentration (mg/L)	EPA Public Water Supply Criteria (mg/L)
Na	21 - 700	<u> </u>
Mg	61 - 369	-
A1	8.1 - 910	-
K	21 - 28	-
Ca	130 - 532	-
Mn	5.6 - 44	-
Fe	610 - 12,000	. -
Со	3.7 - 28	-
Ni	5.6 - 43	
Cu	0.3 - 8	-
Zn	2.2 - 55	5.0
Cd	0.02 - 0.24	0.01
PH	1.7 - 2.9	5.9

Table 3.21 Trace Element Concentration for Drainage Produced by Illinois Basin Coal Refuse

Source: Ref. 77.