Appendix A Case 1: Texaco gasifier and steam reforming of natural gas (including fugitive emissions study)

CASE 1

The following report gives a brief description of each of the units in the block flow diagram. All capital cost data in this report, except where otherwise specified, has been estimated from similar installations described in the <u>Houston Area Medium-BTU Coal</u> <u>Gasification Project Final Report</u>, published in June 1982 by Union Carbide [1] (All references to material in this report will be referred to as <u>Houston</u>, and all scaling exponents from the Houston report are 0.65). The plant consumes 0.96 million metric tons of coal, 0.82 million metric tons of oxygen, 0.18 billion standard cubic meters of natural gas, and produces 0.50 million metric tons of mixed alcohols per year.

SYNGAS PRODUCTION FROM NATURAL GAS

Compressed natural gas (stream 14) and steam (stream 15) are reacted in the Steam Reformation Block. The cooled output gas (stream 17) goes to the Rectisol Block. The cost for this unit was estimated from data found for a hydrogen production facility, with a scaling exponent of 0.8 [2]. The fuel gas usage for this block is estimated to be 30% of the natural gas feed.

COAL PREPARATION

Coal (stream 10) and water (stream 12), are sent to the Coal Preparation Block. The coal is crushed, mixed with the water, and pumped to the gasifier as a ~60% solids mixture by weight (stream 13). The Coal Preparation Block is composed of four plants from the <u>Houston</u> report. Plant 01 is the Coal Slurry Preparation Plant. The cost of this plant was scaled linearly due to its multiple train format; where each train can handle up to 1,150 tons of coal per day. Plant 61 is the Reclaiming, Transfer, and Crushing Plant. The cost of this plant was scaled exponentially. Plant 22 is the Barge Terminal. This plant was scaled exponentially. Plant 60 is Coal Receiving and Storage and again the cost for this plant was scaled exponentially.

CRYOGENIC OXYGEN PLANT

Compressed air (stream 1) is cooled and sent to the Cryogenic Oxygen Plant Block, and is separated into high purity oxygen (stream 2), nitrogen (stream 3), argon (stream 6), and a water and carbon dioxide waste mixture (stream 28). A small quantity of nitrogen

(stream 19) is sent to the Rectisol Block. The Cryogenic Oxygen Plant Block does not include the inlet air compressors or the outlet oxygen compressors. In the cryogenic system, there are provisions for gaseous and liquid oxygen backups sufficient to maintain downstream plant operation in the event of a shutdown in the cryogenic facility. We also assume that some scale down is possible for this system, so the capital investment has been calculated linearly for the reduction in trains, and exponentially for throughput reduction per train. Each train can produce up to 2,000 tons of oxygen per day. The Houston plants that comprise the Cryoplant Block are 02 and 08.

RECTISOL

The cooled raw gas streams (streams 17 and 18), nitrogen gas (stream 19) for methanol regeneration, and methanol make-up (stream 20) for vapor loss all enter the Rectisol Block. H₂S levels are reduced to the ppb range and CO₂ levels to the ppm range. The clean syngas (stream 22) is sent to the alcohol synthesis loop. A CO₂-N₂ mixture (stream 24) and a CO₂ rich stream (stream 23) are produced as byproducts. Condensed water is also removed (stream 17A). This block is the same as <u>Houston</u> Plant 05. The cost for this plant was estimated by using exponential scaling.

TEXACO GASIFIER

The coal slurry (stream 13) is mixed with compressed oxygen (stream 9) and burned at 1,200-1,400°C and 8,000 kPa in the Texaco Gasifier Block. The hot, raw gas (stream 8) is sent to the Syngas Heat Recovery Block, and the slag (stream 33) is sent to the Slag Handling Block. The equivalent of the Texaco Gasifier Block is Plant 03 in the <u>Houston</u> report, and each train can handle up to 958.3 tons of coal per day.

SLAG HANDLING

Molten slag from the Texaco Gasifier Block (stream 33) is direct quenched with water and sent to slag disposal (stream 37). A small amount of water (stream 36) is purged from the closed loop and is replaced by water make-up (stream 34). This block is the same as <u>Houston</u> Plant 63. The cost for this plant was estimated by exponential scaling.

COS HYDROLYSIS

The sulfide rich stream from the Rectisol Block (stream 25) and steam are sent to the COS Hydrolysis Block where COS is converted to H_2S . The product gas (stream 41) is sent to the Claus Sulfur Recovery Block. The COS Hydrolysis Block cost is assumed to be negligible.

SYNGAS HEAT RECOVERY

The raw gas stream from the Texaco Gasifier Block (stream 8) at 1,300°C and 8,000 kPa enters the Syngas Heat Recovery Block and is cooled against process boiler feed water at 25°C (stream 71). The raw gas stream exits at 300°C (stream 18), and the boiler feed exits as steam at 10,000 kPa and 535°C (stream 68). It is assumed that the raw gas stream is cooled further prior to entering the Rectisol Block. This block is part of <u>Houston</u> Plant 04.

CLAUS PLANT

Hydrogen sulfide rich gas (stream 41) is mixed with air (stream 42) and converted in a two-step reaction to elemental sulfur (stream 46). The unreacted hydrogen sulfide (stream 45) is then sent to the Beavon Plant for further treatment. This block is the same as <u>Houston</u> Plant 06. The cost for this plant was estimated by exponential scaling.

BEAVON PLANT

The Claus tail gas (stream 45) and air (stream 47) go to the Beavon Block. Additional sulfur is made (stream 51), and the gas leaving (stream 50) is sufficiently free from sulfides that it can be vented to the atmosphere. A sour water stream (stream 54) is sent from the plant for treatment. The cost of this block was estimated from data collected from various sources, with a scaling exponent of 0.65 [3].

MoS₂ ALCOHOL SYNTHESIS LOOP

Clean syngas (stream 26) at 140 atmospheres enters the catalytic reactor along with the syngas recycle (stream 56B). The products (stream 26A) are taken to the separations block where the unreacted syngas is removed (stream 59). Part of this stream (stream 27) is sent to power generation while the rest (stream 56) is sent to CO_2 removal. The cost of this block was estimated from the cost of a methanol synthesis loop, with a scaling exponent of 0.565 [4].

CO₂ REMOVAL

This block is very similar to the Rectisol Block. Recycled gas from the alcohol separation block (stream 56) is the only feed. CO_2 free syngas (stream 56A) is then recompressed and sent back to the reactor. CO_2 is taken off as a product (stream 57). The cost of this block is calculated the same way as in the Rectisol block. Its power requirements are included in the Rectisol block.

COMBUSTION GAS TURBINE

The light hydrocarbons extracted from the reactor recycle (stream 27) in the Alcohol Synthesis Loop are sent to a combustion gas turbine with hot gas heat recovery. The power from the combustion gas turbines is assumed to be 35% of the HHV of the fuel in stream 27. This is consistent with recent studies on IGCC plants using medium BTU synthesis gas [9]. The cost for this block was estimated from data taken from an EPRI report, where each train can produce up to 200 MW with a scaling exponent of 0.67 [10].

EXHAUST GAS HEAT RECOVERY

The hot exhaust gas stream from the Gas Turbine Block (stream 70) at 590°C and 101 kPa enters the Exhaust Gas Heat Recovery Block and is cooled against process boiler feed water at 25°C (stream 73). The exhaust gas stream exits at 200°C (stream 75), and the boiler feed exits as steam at 10,000 kPa and 535°C (stream 74). The cost for this block was estimated from data taken from an EPRI report, where each train can generate up to 425 tons of steam per hour with a scaling exponent of 0.67 [10]. This block also supplies the reheat between the high pressure and intermediate pressure steam turbines.

POWER GENERATION

The steam from the Syngas Heat Recovery Block and the Exhaust Gas Heat Recovery Block is let down in the steam turbines for power production. The cost for this block was estimated from data taken from an EPRI report, where each train can produce up to 500 MW with a scaling exponent of 0.67 [10]. This is a 3-stage steam turbine system. The high pressure stage inlet is 535°C, 10,000 kPa steam. The exhaust at 3,000 kPa is reheated to 535°C before entering the intermediate pressure stage. The final stage exhausts to a surface condenser at 7.4 kPa. Each turbine has an assumed efficiency of 75%.

IMPORTANT POINTS OF INFORMATION

Several decisions were made for the creation of this case that should be outlined. Also, there are alternatives that have not been fully considered which will be considered in more detail later. They are listed below along with the reasons behind them.

• Catalytic steam/methane reformation used to adjust the H₂:CO ratio upwards. The ratio from coal gasification is less than 1. Since the optimal ratio for higher alcohol synthesis is approximately 1.1 - 1.2, an additional source of hydrogen was required. The reformer was assumed to operate at equilibrium, as suggested in the literature [8]. Other alternatives to this block are available and will be considered.

- The traditional method for purifying high quantities of pure oxygen is by cryogenics, which is used for this case. However, recent reports suggest that membrane and catalytic processes are becoming economically competitive with cryogenics. Therefore, we will examine these alternatives.
- The Rectisol system was chosen for this case for H_2S and CO_2 removal. The major alternative to Rectisol is Selexol. The literature indicates that Rectisol has a higher installed capital cost, but a lower fixed operating cost than Selexol. Both of these systems are capable of removing H_2S to the ppm level and beyond. However, there is some evidence that quantities of H_2S are beneficial if the reaction involves the MoS_2 catalyst. If this is so, then a system such as the Benfield acid gas removal process might be more suitable. The Benfield system does not remove as much H_2S and has lower capital and operating costs.
- The operating pressure for the Texaco gasifiers has been set at 8,000 kPa. This is the highest pressure indicated in the literature at which a Texaco gasifier has been run. Since the pressure required at the reactor is 14,000 kPa, we would of course like to run the gasifiers at as high a pressure as possible. Another limiting factor is the oxygen feed pressure. According to various sources, the highest pressure available with conventional centrifugal compressors is around 80 atmospheres. It is assumed that, because of the size of this case, a higher cost for the oxygen compressor would be acceptable in return for savings on feed gas compression. In addition, other gasification systems will also be investigated.

TOTAL ESTIMATED CAPITAL INVESTMENT (MM\$)

Synthesis Gas via Natural Gas	15.9
Coal Preparation	40.8
Texaco Gasifier	156.7
Slag Handling	3.0
Gas Turbines	45.0
Steam Turbines	*22.1
Exhaust Gas Heat Recovery	9.9
Synthesis Gas Heat Recovery	4.6
Cryogenic Oxygen Production	89.3
Rectisol (Acid Gas Separation)	34.9
Claus (Sulfur Recovery)	10.3
Beavon	2.2
Alcohol Synthesis Loop	47.2
CO2 Removal	26.9
Other Compressors	54.1
	~
	5/0.0

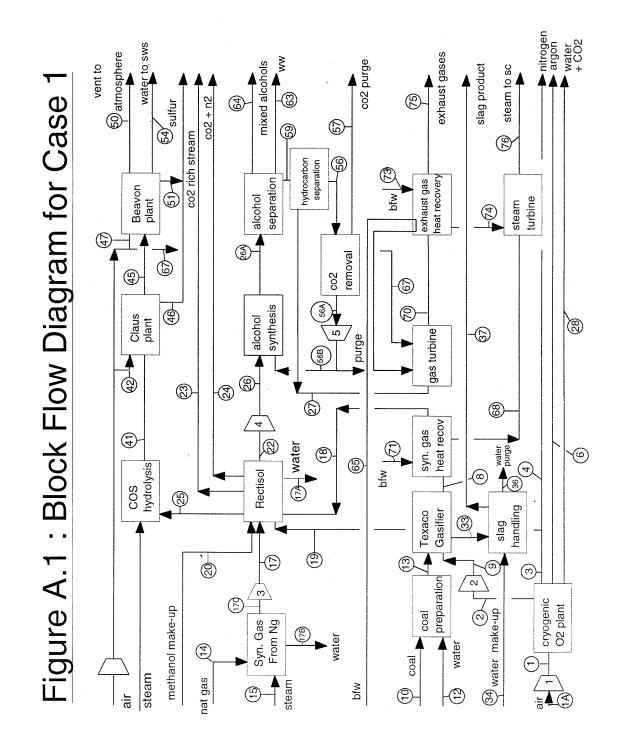
TOTAL 562.8 (sum of individual block costs does not exactly equal the total due to round-off)

OVERALL ECONOMIC EVALUATION

The following table gives the totals and breakdowns for the yearly operating costs as well as the total installed cost for the plant.

TOTAL ESTIMATED INSTALLED CAPITAL COST (MM\$)		562.8
TOTAL ESTIMATED OPERATING COSTS (MM\$/YR)		149.6
Coal (\$33/metric ton delivered)	31.8	
Natural Gas (\$106/1000 cubic meters)	18.7	
Other Expenses	99.2	
TOTAL ESTIMATED CREDITS (EXCLUDING ALCOHOLS) (MM\$/YR)	46.6
Power (\$0.05/kWh)	39.2	
Slag (\$5.5/metric ton) (6)	0.6	
Sulfur (\$300/metric ton) (7)	6.9	

Credits for nitrogen, argon, and other rare gases have not been included because prices were not available and potential markets have not yet been identified.


STAND ALONE COMPRESSORS AND POWER SUMMARY

There are 5 compressors that are not included in any of the blocks. Their inlet, outlet, pressure change, power rating, and installed capital cost are listed below. Following that is a summary of the total plant power output/input (5). An efficiency of 70% is assumed for all compressors, with a maximum pressure ratio of 5 for a single stage of compression. Multiple compression stages with intercooling are used for services with pressure ratios greater than 5.

FUNCTION	INLET	Р	OUTLET	Ρ	POWER	COST
	STREAM	(kPa)	STREAM	(kPa)	(MW)	(MM\$)
Air Prep	1A	101	1	500	-31.1	28.3
O2 Prep	2	500	9	8136	-10.8	10.1
Reform Comp	17C	1400	17	8106	-6.4	5.8
Rxtr Prep	22	8106	26	14000	-7.1	6.2
Recy Comp	56A	12666	56B	14000	-3.6	3.6
Total compresso	or needs				-58.9	
Other in plant n	eeds				-10.1	
Total produced	in steam and	d gas turbir	nes		167.0	
Net power outp	out				98.0	
Total installed c	ompressor co	osts (1992 c	iollars)			54.1
	•					

REFERENCES

- 1. *Final Report on the Houston Area Medium-BTU Coal Gasification Project, Volumes 2 and 3.* Prepared by the Linde Division of Union Carbide Corporation, June 1982.
- 2. Baasel, William D., *Preliminary Chemical Engineering Plant Design, 2nd edition,* Van Nostrand Reinhold, New York, 1990, pp. 268-269.
- 3. "Beavon Sulfur Removal Process," Hydrocarbon Processing, April 1984, p. 78.
- 4. Frank, Marshall E. "Methanol: Emerging Uses, New Syntheses," *Chemtech*, June 1982, p. 358-362.
- 5. Baasel, pp. 529-530.
- 6. T. Torries, personal communication
- 7. Chemical Marketing Reporter, August 31, 1992.
- 8. Rase, Howard F., *Chemical Reactor Design for Process Plants, Volume 2, John Wiley & Sons, New York, 1977, pp. 133-138.*
- 9. Report TR-101789, Houston Lighting and Power Company's Evaluation of Coal Gasification Coproduction Energy Facilities, EPRI Project 3226-04, 1992.
- EPRI Report TR-100319, Evaluation of a 510-MWe Destec GCC Power Plant Fueled With Illinois No. 6 Coal, Prepared by Fluor Daniel, Inc., EPRI Project 2733-12, 1992.

				ton at not						
	100	0018	002	003	004	900	008	600	010	012
	142.5	142.5				142.5				
									6646.6	
снзон										
C2H5OH					-					
сзн7он										
C4H9OH										
C5H110H										
							4770.4			
~	4.9	4.9			2		1861.6			
							8.9			
caco3										
							3649.6		2716.0	
	368.3	368.3	•				3098.6		76.5	4061.1
		,					80.4			
	11933.5	11933.5		11933.5	11694.5		54.3		58.8	
							9.1			
	3208.2	3208.2	3208.2					3208.2	523.5	
									89.3	
A1203									124.4	
C3H6O2	54 									
C4H802									-	
CH4					Ċ,		5.7			
C2H6								-		•
	15657 5	15657.5	3208.2	11933.5	11694.5	142.5	13538.5	3208.2	10235.2	4061.1
ka / hr	449349.1	449349.1	102664.0	<u>م</u>	327447.3	5700.1	283586.3	102664.0	120516.7	73098.9
Temp. (C)	25.0	25.0	25.0	1	25.0	25.0	1300.0	225.0	25.0	25.0
							0 1010	0125 0	101 3	c 101

	013	014	015	017	0178	0178	0170	018	019	020	022
			х - с								
	6646.6										
CH 30H										6	
C2H5OH											
сзн7он											
с4н9он											
C5H110H											
8				611.7			611.7	4770.4			5382 1
C02				143.1			143.1	1861.6			1.4000
cos			-				- t	8.9			
caco3											
	2716.0			2407.5			2407.5	3649.6			6057.1
Н2О	4137.6		1785.3		3098.6	887.3		3098.6			
H2S								80.4			
	58.8							54.3	238.9		
NH3								9.1			
	523.5										
	89.3										
A1203	124.4										
СЗН6О2											
C4H8O2											
CH4		755.4		0.6			0.6	5.7			5 7
С2Н6											•
		-									
kmo1/hr	14296.2	755.4	1785.3	3162.9	3098.6	887.3	3162.9	13538.5	238.9	0.9	11444.9
kg/hr	193615.7	12086.3	32134.7	28248.8	55773.9	15972.2	28248.8	283586.3	6690.6	29.3	162904.7
Temp.(C)	25.0	25.0	300.0	25.0	25.0	25.0	25.0	300.0	25.0	25.0	25.0
Press.(KPA)	8135.8	1480.0	1480.0	8106.0	8106.0	1400.0	1400.01	8106.0	500.01	101	8106 0

026A 027 628.3 628.3 655.4 655.4 145.0 36.5 1493.7 15. 7001.9 714 1493.7 15. 1493.7 15. 1493.7 15. 140.1 803 140.1 803 140.1 140.1 140.1 140.1 140.1 11.9 11.9 446 171.6 17 171.6 17 171.6 17 22578.5 2134 22578.5 25983 310.0 25	027 028 3 4 4 152.4 9 714.2 714.2 4.9 9 714.2 9 714.2 9 714.2 9 714.2 152.4 4.9 152.4 4.9 152.4 4.9 152.4 4.9 152.4 4.9 152.4 7.9 17.5 17.5 2134.7 373.3 35983.3 6847.1	024 025 026		0	•					• •	8.9	6057.1	80.4	293.2	9_1					7.c		1202 8 994 8 100 E 1111 C		22002.0 /861.0 1629	98.0
	028 028 028 028 028 368.3 368.3 368.3 368.3 368.3 368.3 368.3 368.3 368.3 368.3 368.3 368.3 368.3 25.0 25.0				628.3	655.4	145.0	36.5	15.2									18.0	11.9		.6	_			
033 034 033 034 7689.1 7689.1 124.4 124.4 124.4 124.4 7689.1 12693.4 1300.00			036								-		7689.1										7680 1	1.6001	0.10.00

Ar C											
	037	041	042	045	046	047	050	051	054	056	056 A
										-	
Снзон		6.0	-	0.9			6.0				
C2H5OH								-			
СЗН7ОН											
C4H9OH											-
C5H110H											
8										6287.7	6287.7
c02		109.1		109.1			109.1			1341.4	
cos								-			
caco3											
H2										7076.3	7076.3
H20				84.8					89.3		
H2S		89.3		4.5							
N2			159.6	159.6	·	21.1	180.6				
NH3		9.1		9.1			9.1				
02			42.4			5.6	3.4				
S					84.8			4.5	-		
A1203	124.4										
СЗН602											
С4Н802											
CH4										3933.9	3933.9
C2H6										154.1	154.1
			000	0.0	0 1 0	6 90	1 505		80.3	18793 3	17452 D
Kmo1/nr	124.4	1 .007	10.202	0.000	2.10	1.035		0 6 1 1		316794 0	257773 6
kg/nr	12093.4	25.0	1.0200	0.1010	175.01	25.0	0.001	125.0	50.0	25.0	
	101	101 3	101 3	101.3	101.3	101.3	101.3			12666.0	12666

	0568	057	059	063	064	.065	067	068	070	071
				9						
										·
СНЗОН					628.3					
С2Н5ОН					655.4					
СЗН7ОН					145.0					
С4Н9ОН					36.5					
C5H11OH					15.2					
	6287.7		7001.9							
C02		1341.4	1493.7						1348.4	
cos										
caco3										
	7076.3		7880.0							
H2O				140.1		967.2		10615.6	1 212	10615 6
H2S										0.01001
							20422.1		20422.1	
	4						5428.7		3714.7	
A1203										
СЗН602				18.0						
С4н802				11.9						
	3933.9		4380.8							
С2Н6	154.1		171.6							
kmol/hr	17452.0	1341.4	20928.0	170.1	1480.4	967.2	25850.8	10615.6	28202.4	10615.6
kg/hr	257773.6	59020.4	352777.2	4905.1	62996.0	17409.0	745536.0	191080.1	798928.2	191080.1
Temp.(C)	45.0	25.0		25.0	25.0	25.0	25.0	535.0	590.0	25.0
Press.(KPA)	14000.0	12666.0	12666.0	12666.0	12666 0	00001	101	00001	C F C F	00001

	073	074	075	076	077	078
Ar						
υ						
СНЗОН						
C2H5OH						
СЗН7ОН						
С4н9он						
C5H11OH						
co						
co2			1348.4			
cos						
caco3						
H2						
H2O	3600.0	3600.0	2717.1	14215.6	14215.6	14215.6
H2S						
N2			20422.1			
NH3						
02			3714.7			
S						
A1203						
СЗН602						
С4нво2					·	
CH4						
C2H6						
			-			
kmol/hr	3600.0	3600.0	28202.4	14215.6	14215.6	•
kg/hr	64800.6	64800.6	798928.2	255880.7	255880.7	255880.7
Temp.(C)	25.0	535.0	200.0	40.0	380.0	535.0
Press. (KPA)	100001	10,00001	101 31	7.4	3000.0	3000.0

Table A.2 Case 1 Energy Analysis

ELECTRICITY		
Plant	Electricity Used (MW)	Electricity Produced (MW)
Coal Preparation Plant	2.0	0.0
Cryogenic Oxygen Plant	4.3	0.0
Rectisol Plant	2.3	0.0
Texaco Gasifier	0.6	0.0
Syn. Gas Heat Recovery	0.9	0.0
Claus Plant	0.1	0.0
Gas Turbine	0.0	80.7
Steam Turbine	0.0	86.3
Compressor 1	31.1	0.0
Compressor 2	10.8	0.0
Compressor 3	6.4	0.0
Compressor 4	7.1	0.0
Compressor 5	3.6	0.0
Total	69.1	167.0

EMISSIONS FROM THE SULFUR REMOVAL PROCESS BASE CASE 1

Base Case 1 is primarily a model of a process that will turn coal into an alcohol based fuel additive. This plant is very large, and will have a production of roughly 0.5 million metric tons of mixed alcohols per year. In order to properly design this Plant, it is important to compare the emissions of this facility with the Threshold Emission levels allowed by the government before Best Available Control Technology (BACT) is required. If BACT is required it will significantly affect the cost of our plant. The emissions were estimated from the Sulfur Removal portion of the plant because all of the sulfur compounds, along with a major part of the plant's CO, ozone producing compounds (VOC's that are precursors to ozone formation), and two Hazardous Air Pollutants (HAP's), methanol and COS, are found in this part of the process. After the estimations were completed, it was found that the H₂S, Total Reduced Sulfur (including H₂S), Reduced Sulfur Compounds (including H₂S and COS), Ozone producing VOC's, and the HAP's were all above the Threshold Values.

If the size of the plant increases, the total emissions will also increase. The stack emissions will go up with any raise in production. However, the fugitive emissions will grow only if the amount of equipment increases, for example, more trains are added.

The estimation of emissions for the sulfur removal process, which includes four blocks from Base Case 1; the Rectisol, COS Hydrolysis, Claus, and Beavon blocks (see Figure A.1), includes stack emissions and an estimation of the fugitive emissions for the blocks. The stack emissions were taken from the Base Case 1 flowsheet (see Figure A.1 and Tables A.1), while the fugitive emissions had to be estimated.

The fugitive emissions were estimated by using average emission factors.

$$E_{ij} = m_i F_i N_j$$

 $\label{eq:interm} \begin{array}{l} i = a \ type \ of \ equipment \\ j = a \ component \\ E_{ij} = Emissions \ of \ component \ j \ in \ equip. \ i \ (kg/hr) \\ m_j = mass \ fraction \ of \ component \ i \\ F_i = SOCMI \ Emission \ Factor \ for \ equipment \ i \ (kg/hr/source) \\ N_i = number \ of \ equipment \ i \end{array}$

The average emission factors (F_i) were taken from the Average Emission Factors for Synthetic Organic Chemical Manufacturing Industry (SOCMI) Fugitive Emissions (see Table A.1), which was taken from the U.S. Environmental Protection Agency, <u>Emission</u> <u>Factors for Equipment Leaks of VOC and HAP</u>, EPA-450/3-86-002, Research Triangle Park, NC, 1986.

Table A.3

....*****

EQUIPMENT	SERVICE	EMISSIONS FACTOR, ka/hr/source
Vdves	Gas	0.0056
	Light Liquid	0.0071
	Heavy Liquid	0.00023
Pumps	Light Liquid Heavy Liquid	0.0494 0.0214
Compressors	Gas	0.228
Pressure Relief Vdves	Gas	0.104
Flanges and Other Connectors	All	0.00083
Open-Ended Lines	All	0.0017
Sampling Connectors	All	0.015

A "light liquid " is defined by SOCMI as any fluid that is a liquid at the operating conditions and that either:

(1) Has a vapor pressure greater than 0.3 kPa at 20° C, or

(2) Contains at least 20% (by weight) of any component that has a vapor pressure greater than 0.3 kPa at 20°C .

A "heavy liquid" is any fluid that is a liquid at the operating conditions and that is not a "light liquid."

The mass fractions for each component in every stream were estimated from actual flowsheets and process specifications. The last estimation made was the quantity of each type of equipment that released fugitive emissions. This estimation involved a classification of each piece of equipment. For example, a reactor would be classified as a vertical vessel (see Table A.4). From these classifications, the total number of valves could be calculated, by using the Valve Estimations provided by the Chemical

Manufacturers Association, <u>Improving Air Quality: Guidance for Estimating Fugitive</u> <u>Emissions from Equipment</u>, p. 25, Washington, DC, January 1989, along with a correlation of the quantity of valves to the number of open-ended lines and flanges.

VALVE ESTIMA	TION
Flow Sheet Predicting Item	Estimating Factor Valves per Item
Pressure Relief Volves	3
Flow Transmitter	6
Storage	13
Pump	11
Turbine Meter and Prover Connection	14
Vertical Vessel (reactor)	23
Horizontd Vessel (settler)	21
Heat Exchanger-Heated Side	8
Heat Exchanger-Cooled Side	17
Localing or Unicading Point	4

Table A.4

Number of open ended lines = 50% of the number of valves

ı

5

Number of flanges = 420% of the number of valves

After the estimations and calculations were completed, the total emissions for the sulfur removal process were compared to the <u>West Virginia Administrative Regulations</u>, <u>Air Pollution Control Commission</u>, Chapter 16-20, Series 14, p. 14-5, 1984. If the quantity of a substance released is above its threshold value, then BACT applies. Table A.5 shows the comparison.

Tabl	le .	A.	5

CLASSIFICATION	COMPONENTS EMITTED	THRESHOLD VALUES (fon/vr)	T OT AL EMISSIONS (ton/vr)
<u> </u>	00	100	42.8
NOx	n/a	40	0
SOx	SO2	40	3.52
H2S	H2S	. 10	20.49
Total Reduced Sulfur Including H2S	H2S	10	20.49
Reduced Sulfur Compounds Including H2S	H2S, COS	10	21.39
Ozone (VOC excluding non-reactives)	СНЗОН	40	73.69

SIGNIFICANT MISSIONS FROM THE SULFUR REMOVAL PROCESS

The total emissions for the sulfur removal process were compared to the <u>1990 Clean</u> <u>Air Act Amendment</u>, Section 301. Any plant that emits 25 tons per year of any combination of HAP's, or more than 10 tons per year of any HAP compound is classified as a "major source" and is subject to stringent air pollution control. This portion of the plant has two HAP's: methanol and COS. The COS emitted is 0.9 tons per year, which is well below the limit. However, the methanol is well above the limit, 73.69 tons per year, which pushes the plant over the combined 25 tons per year limit by 49.59 tons per year. Thus, the plant is a major source of HAP's.

The conclusion is that for SO_x compounds, we will have no trouble meeting regulations because no other place in our plant has any SO_x . However, H₂S, Total Reduced Sulfur Including H₂S, Reduced Sulfur Compounds Including H₂S, and Ozone (VOC excluding non-reactives) are above the thresholds for BACT. The threshold value is not just for a particular part of the plant, it is a cumulative valve that includes the entire plant. Therefore it is a possibility that CO emissions will surpass the threshold, along with an increase in the Ozone (VOC) emissions because all of the alcohols (which are VOC's) are produced in the other portion of the plant. Also the plant is well over the HAP's limit, due to the large amount of methanol going up the stack.

The following tables (A.6-A.8) contain a summary of the emissions from the Stack, the fugitive emissions, and the total emissions for the sulfur removal process.

.

STACK EMISSIONS FROM THE SULFUR REMOVAL PROCESS

	STACK EMISSIONS	FROM:	T OT AL ST ACK	T OT AL ST ACK
COMPONENT	Rectisol Plant (kamol/hr)	Beavon Plant (kgmol/hr)	EMISSIONS (kamal/hr)	EMISSIONS (ton/yr)
CO2	1535	84.2	.• 1619	560983
N2	247.5	152.8	400	88255
СНЗОН	0	0.19	0.19	48
NH3	0	8	8	1111

Table A.7

ESTIMATED FUGITIVE EMISSIONS FROM THE SULFUR REMOVAL PROCESS

	SULFUR	REMOVAL EMISS	SIONS FROM	M :	T OT AL SULFUR REMOVAL
COMPONENT	Rectisol (kg/hr)	CCS Hydrolysis (kg/hr)	Claus (kg/hr)	Beavon (kg/hr)	EMISSIONS (ton/yr)
СНЗОН	3.28	0	0	0	25.82
CH4	0.03	0	0	0	0.21
00	4.06	1.37	0	0	42.80
CO2	4.54	0.77	2.65	1.76	76.50
COS	0.07	0.05	0	0	0.90
H2	0.33	0	0	0	2.58
H2O	1.28	0	0.48	4.66	50.52
H2S	0.81	0.53	0.79	0.48	20.49
N2	0.65	0.08	2.31	3.31	49.99
NH3	0.01	0.03	0.1	0.06	1.63
02	0	0.02	0	0.07	0.74
SO2	0	0	0,45	0	3.52

Table A.8

TOTAL (stack plus fugitive) EMISSIONS FROM THE SULFUR REMOVAL PROCESS

,

CLASSIFICATION	COMPONENT'S EMITTED	THRESHOLD VALUES (fon/yr)	T OT AL EMISSIONS (ton/yr)
0	00	100	42.8
NOX	n/a	40	0
S Ox	S 02	40	3.52
H2S	H2S	10	20.49
Total Reduced Sulfur Including H2S	H2S	10	20.49
Reduced Sulfur Compounds Including H2S	H2S, COS	10	21.39
Ozone (VOC excluding non-reactives)	СНЗОН	40	73.69

RECTISOL PLANT

The flowsheet for the Rectisol Plant was taken from the <u>Houston Area Medium-BTU</u> <u>Coal Gasification Project Final Report</u>, published in June 1982 by Union Carbide (Further references to this will be referred to as <u>Houston</u>). The information needed for the flow estimations was taken from <u>Houston</u> as well as the <u>Gas Process Handbook '92</u>, <u>Hydrocarbon Processing</u>, April 1992, p. 125.

Table A.9

			EMISSIONS	FROM :			TOTAL
COMPONENT	Vdves (kg/hr)	Pumps (kg/hr)	Compressors (ka/hr)	Præsure Relief Vdves (kg/hr)	Flanges (kg/hr)	Open- Ended Lines (ka/hr)	EMISSIONS (kg/hr)
00	2.02E+ 00		4.22E-01	1.76E-01	1.16E+ 00		4.06
CO2	2.45E+ 00		0	4.56E-01	1.32E+ 00		4.54
COS	4.02E-02	2.79E-03	0	1.34E-03	2.01E-02	4.90E-03	0.07
H2	1.63E-01	0	3.42E-02	1.42E-02	9.37E-02	2.28E-02	0.33
H20	6.80E-01	0	0	1.48E-01	3.65E-01	8.89E-02	1.28
H2S	4.67E-01	3.24E-02	0	1.55E-02	2.33E-01	5.69E-02	0.81
N2	3.67E-01	0	0	8.17E-03	2.25E-01	5.48E-02	0.65
NH3	8.42E-03	0	0	9.02E-04	4.36E-03	1,06E-03	0.01
CH4	1.43E-02	0	0	2.78E-03	7.73E-03	1.88E-03	0.03
СНЗОН	1.87E+ 00	2.61E-01	0	9.13E-03	9.18E-01	2.24E-01	3.28

RECTISOL PLANT OVERALL FUGITIVE EMISSIONS FOR TWO TRAINS

The following tables (A.10-A.25) are the actual estimations made for the Rectisol Plant in Base Case 1.

•

. · ·

ESTIMATION OF FUGITIVE EMISSIONS FOR THE RECTISOL PLANT

	RECTISOL PLANT
QUANTITY	EQUIPMENT TYPE
3	Pumps
7	Vertical Vessles
0	Horizontal Vessles
0	Storage Tanks
4	Pressure Relief Valves
3	Heat - Exchangers (Heating Side)
6	Heat - Exchangers (Cooling Side)
0	Loading or Unloading Point
37	Flow Transmitters
0	Turbine Meter and Prover Connection

QUANTITY	ACTUAL EQUIPMENT
3	Separators (Knockout Drums)
4	Towers
4	Heat Exchangers
3	Pumps
]	Compressor
4	Pressure Relief Valves
37	Flow Transmitters

QUANTITY	ESTIMATED EQUIPMENT
623	Valves
312	Open - Ended Lines
2617	Flanges

QUANTITY	EQUIPMENT WITH FUGITIVES
623	Valves
3	Pumps
]	Compressors
4	Pressure Relief Valves
2617	Flanges
312	Open - Ended Lines

INLET STREAM (gas) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

Ľ					
EQUIPMENT TYPE	QUANTITY	FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
Pumps	0	00	4673	130830	4.56E-01
Vertical Vessles	0	CO2	1619	71245	2.48E-01
Horizontal Vessles	0	COS	4	210	7.31E-04
Storage Tanks	0	H2	5260	10520	3.66E-02
Pressure Relief Valves	0	H20	3893	70074	2.44E-01
Heat - Exchangers (Heating Side)	0	H2S	72	2448	8.52E-03
Heat - Exchangers (Cooling Side)	0	N2	46	1277	4.45E-03
Loading or Unloading Point	0	NH3	8	141	4.91E-04
Flow Transmitters	2	CH4	27	434	1.51E-03
Turbine Meter and Prover Connection	0	CH3OH	-	22	7.80E-05
		TOTAL FLOW	15602	287201	

ł							
EQUIPMENT WITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines	
				Valves			
EMISSION FACTOR	0.0056	0	0	0	0.00083	0.0017	
QUANTITY	12	0	0	0	50	ý	

TOTAL	EMISSIONS	(kg/hr)	5.43E-02	2.96E-02	8.72E-05	4.37E-03	2.91E-02	1.02E-03	5.30E-04	5.86E-05	1.80E-04	9.30E-06
	Open - Ended Lines	(kg/hr)	4.65E-03	2.53E-03	7.46E-06	3.74E-04	2.49E-03	8.69E-05	4.53E-05	5.01E-06	1.54E-05	7.96E-07
	Flanges	(kg/hr)	1.91E-02	1.04E-02	3.06E-05	1.53E-03	1.02E-02	3.57E-04	1.86E-04	2.06E-05	6.32E-05	3.26E-06
	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
EMISSIONS FROM :	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Valves	(kg/hr)	3.06E-02	1.67E-02	4.91E-05	2.46E-03	1.64E-02	5.73E-04	2.99E-04	3.30E-05	1.01E-04	5.24E-06
	COMPONENT		CO	C02	COS	H2	H20	H2S	N2	NH3	CH4	CH3OH

FEED HEAT EXCHANGER AND KNOCKOUT VESSEL (gas) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

FOUIPMENT TYPE	CHANTITY	EI OW SUMAADV	DV hamol/hr	bathr.	man fraction
· F				III/AN	
Pumps	0	8	3071	85991	5.19E-01
Vertical Vessles		C02	810	35622	2.15E-01
Horizontal Vessles	. 0	- COS	2	105	6.33E-04
Storage Tanks	0,	H2	. 3425	6850	4.13E-02
Pressure Relief Valves	0	H20	1947	35037	2.11E-01
Heat - Exchangers (Heating Side)	0	H2S	36	1224	7.38E-03
Heat - Exchangers (Cooling Side)	-	N2	23	638	3.85E-03
Loading or Unloading Point	0	NH3	4	11	4.26E-04
Flow Transmitters	2	CH4	14	217	1.31E-03
Turbine Meter and Prover Connection	0	CH3OH	0	11	6.76E-05
		TOTAL FLOW	W 9331	165766	

essors Pressure Relief Flanges Open - Ended Lines Valves	0 0.00083 0.0017	
Pumps Compressors	0	C
Valves	0.0056	52
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

	TOTAL	EMISSIONS	(kg/hr)	2.68E-01	1.11E-01	3.27E-04	2.14E-02	1.09E-01	3.82E-03	1.99E-03	2.20E-04	6.76E-04	3.49E-05
5 .		Open - Ended Lines	(kg/hr)	2.29E-02	9.50E-03	2.80E-05	1.83E-03	9.34E-03	3.26E-04	1.70E-04	1.88E-05	5.78E-05	2.99E-06
		Flanges	(kg/hr)	9.40E-02	3.90E-02	1.15E-04	7.49E-03	3.83E-02	1.34E-03	6.98E-04	7.71E-05	2.37E-04	1.22E-05
	FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
	EMISSIONS (kg/hr) FROM :	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	1.51E-01	6.26E-02	1.84E-04	1.20E-02	6.15E-02	2.15E-03	1.12E-03	1.24E-04	3.81E-04	1.97E-05
		COMPONENT		co	CO2	COS	H2	H20	H2S	N2	NH3	CH4	СНЗОН

GAS ABSORBER WASH TOWER (gas) Estimation of fugitive emissions for one unshifted rectisol train

EQUIPMENT TYPE	QUANTITY	FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
Pumps	0	0	4673	130830	4.56E-01
Vertical Vessles	Ļ	CO2	1619	71245	2.48E-01
Horizontal Vessles	0	COS	4	210	7.31E-04
Storage Tanks	0,	H2	5260	10520	3.66E-02
Pressure Relief Valves	0	H20	3893	70074	2.44E-01
Heat - Exchangers (Heating Side)	0	H2S	72	2448	8.52E-03
Heat - Exchangers (Cooling Side)	0	N2	46	1277	4.45E-03
Loading or Unloading Point	0	NH3	8	141	4.91E-04
Flow Transmitters	-	CH4	27	434	1.51E-03
Turbine Meter and Prover Connection	0	CH3OH	-	22	7.80E-05
	2	TOTAL FLOW	15602	287201	
					1

EQUIPMENT WITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines	
				Valves			
EMISSION FACTOR	0.0056	0	0	0	0.00083	0.0017	
QUANTITY	29	0	0	0	122	15	

	TOTAL	EMISSIONS	(kg/hr)	1.31E-01	7.15E-02	2.11E-04	1.06E-02	7.03E-02	2.46E-03	1.28E-03	1.42E-04	4.35E-04	2.25E-05
. . *		Open - Ended Lines	(kg/hr)	1.12E-02	6.11E-03	1.80E-05	9.03E-04	6.01E-03	2.10E-04	1.10E-04	1.21E-05	3.72E-05	1.92E-06
		Flanges	(kg/hr)	4.61E-02	2.51E-02	7.39E-05	3.70E-03	2.47E-02	8.62E-04	4.49E-04	4.97E-05	1.53E-04	7.88E-06
	FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
	EMISSIONS (kg/hr) FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	7.40E-02	4.03E-02	1.19E-04	5.95E-03	3.96E-02	1.38E-03	7.22E-04	7.98E-05	2.45E-04	1.27E-05
		COMPONENT		CO	C02	cos	H2	H20	H2S	N2	NH3	CH4	СНЗОН

GAS ABSORBER WASH TOWER (liquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPMENT TYPE	QUANTITY	FLOW SUMMARY	_	kgmol/hr	kg/hr	mass fraction
Pumps	0	00		0	0	0
Vertical Vessles		CO2		0	0	0
Horizontal Vessies	0	COS		0	0	0
Storage Tanks	0	H2		0	0	0
Pressure Relief Valves	0	H20		0	0	0
Heat - Exchangers (Heating Side)	0	H2S		0	0	0
Heat - Exchangers (Cooling Side)	0	N2		0	0	0
Loading or Unloading Point	0	NH3		0	0	0
Flow Transmitters		CH4		0	0	0
Turbine Meter and Prover Connection	0	CH3OH	Ŧ	50	1600	-
		TOTAL FLC	MO	50	1600	

es Open - Ended Lines	0.0017	15
Flanges	0.00083	122
Pressure Relief Valves	0	0
Compressors	0	0
Bumps	0	0
Valves	0.0071	29
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

TOTAL	EMISSIONS	(kg/hr)	0	0	0	0	0	0	0	0	0	3.32E-01
	Open - Ended Lines	(kg/hr)	0	0	0	0	0	0	0	0	0	0.02
	Flanges	(kg/hr)	0	0	0	0	0	0	0	0	0	0.10
FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	- 0	0	0	0	0	0	0
EMISSIONS (kg/hr) FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Valves	(kg/hr)	0	0	0	0	0	0	0	0	0	0.21
	COMPONENT		CO	CO2	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH

H2, CO RECLAIMER #1 (liquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

	OLANITIV	ELOW SLIVANDY	1 Isomol Ibr	100 /hr	man fraction
7				RU/III	
Pumps	0	CO	350	9811	4.30E-01
Vertical Vessles	_	CO2	270	11876	5.21E-01
Horizontal Vessles	0	- COS	0	0	0.00E+00
Storage Tanks	, 0	H2	398	795	3.49E-02
Pressure Relief Valves	_	H20	0	0	0.00E+00
Heat - Exchangers (Heating Side)	0	H2S	0	0	0.00E+00
Heat - Exchangers (Cooling Side)	1	N2	8	213	9.34E-03
Loading or Unloading Point	0	NH3		23	1.03E-03
Flow Transmitters	3	CH4	5	72	3.17E-03
Turbine Meter and Prover Connection	0	CH3OH	0	0	0.00E+00
		TOTAL FLOW	1031	22790	

, S		
Open - Ended Lines	0.0017	31
Flanges	0.00083	256
Pressure Relief Valves	0,104	L
Compressors	0	0
Pumps	0	0
Valves	0.0071	61
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

						4	
			EMISSIONS (kg/hr) FROM:	FROM :			TOTAL
COMPONENT	Valves	Pumps .	Compressors	Pressure Relief	Flanges	Open - Ended Lines	EMISSIONS
	(kg/hr)	(kg/hr)	(kg/hr)	Valves (kg/hr)	(kg/hr)	(kg/hr)	(kg/hr)
CO	1.86E-01	0	0	4.48E-02	9.15E-02	2.23E-02	3.45E-01
CO2	2.26E-01	0	0	5.42E-02	10-311.1	2.70E-02	4,18E-01
COS	0	0	0	0	0	0	0
H2	1.51E-02	0	0	3.63E-03	7.42E-03	1.81E-03	2.80E-02
H20	0	0	0	0	0	0	0
H2S	0	0	0	0	0	0	0
N2	4 04E-03	0	0	6.71E-04	1.99E-03	4.84E-04	7.48E-03
NH3	4.46E-04	0	0	1.07E-04	2.19E-04	5.34E-05	8.25E-04
CH4	1.37Ę-03	0	0	3.30E-04	6.75E-04	1.65E-04	2.54E-03
CH3OH	0	0	0	0	0	0	0

H2, CO RECLAIMER #2 (liquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPMENT TYPE	QUANTITY	FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
Pumps	0	00	350	9811	4.14E-01
Verticai Vessles		CO2	270	11876	5.02E-01
Horizontal Vessles	0	COS		70	2.96E-03
Storage Tanks	0,	H2	398	795	3.36E-02
Pressure Relief Valves		H20	0	0	0
Heat - Exchangers (Heating Side)	0	H2S	24	816	3.45E-02
Heat - Exchangers (Cooling Side)		N2	8	213	8.99E-03
Loading or Unloading Point	0	NH3	l	23	9.91E-04
Flow Transmitters	3	CH4	5	72	3.05E-03
Turbine Meter and Prover Connection	0	CH3OH	0	0	0
		TOTAL FLOW	1056	23677	

QUIPMENT WITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines
			-	Valves		
MISSION FACTOR	0:0071	0	0	0.104	0.00083	0.0017
NANTITY	19	0	0		256	31

	TOTAL	EMISSIONS	(kg/hr)	3.32E-01	4.02E-01	2.38E-03	2.69E-02	0	2.76E-02	7.20E-03	7.94E-04	2.45E-03	0
. •		Open - Ended Lines	(kg/hr)	2.15E-02	2.60E-02	1.54E-04	1.74E-03	0	1.79E-03	4.66E-04	5.14E-05	1.58E-04	0
		Flanges	(kg/hr)	8.81E-02	1.07E-01	6.30E-04	7.14E-03	0	7.33E-03	1.91E-03	2.11E-04	6.50E-04	0
	FROM :	Pressure Relief	Valves (kg/hr)	4.31E-02	5.22E-02	3.08E-04	3.49E-03	0	3.58E-03	9.35E-04	1.03E-04	3.18E-04	0
	EMISSIONS (kg/hr) FROM	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	1.79E-01	2.17E-01	1.28E-03	1.45E-02	0	1.49E-02	3.89E-03	4.29E-04	1.32E-03	0
		COMPONENT		CO	CO2	COS	H2	H20	H2S	N2	NH3	CH4	CH3OH

.

H2, CO RECYCLE STREAM (gas) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPMENT TYPE	QUANTITY	FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
Pumps	0	00	10/	19622	9.25E-01
Vertical Vessles	0	CO2	0	0	0
Horizontal Vessles	0	COS	0	0	0
Storage Tanks	0 1	Ч	795	1590	7.50E-02
Pressure Relief Valves	0	H20	0	0	0
Heat - Exchangers (Heating Side)	0	H2S	0	0	0
Heat - Exchangers (Cooling Side)	_	N2	0	0	0
Loading or Unloading Point	0	NH3	0	0	0
Flow Transmitters	5	CH4	0	0	0
Turbine Meter and Prover Connection	0	CH3OH	0	0	0
		TOTAL FLOW	1496	21212	

JIPMENT WITH FUGITIVES	Valves	Pi impe	Compresente	Dracei ira Daliaf	Elander	Coop Endod ling	
	2	5		Valves	softimit		
AISSION FACTOR	0.0056	0	0.228	0	0.00083	0.0017	
UANTIFY	47	0		0	197	24	

			-			. .	
			EMISSIONS (kg/hr) FROM:	FROM :			TOTAL
COMPONENT	Valves	sdund	Compressors	Pressure Relief	Flanges	Open - Ended Lines	EMISSIONS
	(kg/hr)	(kg/hr)	(kg/hr)	Valves (kg/hr)	(kg/hr)	(kg/hr)	(ka/hr)
co	2.43E-01	0	2.11E-01		1.52E-01	3.70E-02	6.43E-01
CO2	0	0	0	0	0	0	0
COS	0	0	0	0	0	0	0
H2	1.97E-02	0	1.71E-02	0	1.23E-02	2.99E-03	5.21E-02
H20	0	0.	0	0	0	0	0
42S	0	0	0	0	0	0	0
N2	0	0	0	0	0	0	0
NH3	0	0	0	0	0	0	0
CH4	0	0	0	0	0	0	0
CH3OH	0	0	0	0	0	0	0

PURIFIED GAS STREAM ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

FOUIPMENT TVPF	CHANTITY	EL ONA SLIVANA DV	I lamol/hr	100 100	man freetien
				III/Bx	
Pumps	0	00	2336	65416	9.26E-01
Vertical Vessles) 0	CO2	0	0	0
Horizontal Vessles	0	COS	0	0	0
Storage Tanks	, 0	H2	2630	5260	7.44E-02
Pressure Relief Valves	0	H20	0	0	0
Heat - Exchangers (Heating Side)	2	H2S	0	0	0
Heat - Exchangers (Cooling Side)	0	N2	0	0	0
Loading or Unloading Point	0	NH3	0	0	0
Flow Transmitters	2	CH4	0	0	0
Turbine Meter and Prover Connection	0	CH3OH	0	0	0
		TOTAL FLOW	4966	70676	

Г			1	ŧ
	Open - Ended Lines		0.0017	14
	Hanges		0.00083	118
	Pressure Relief	Valves	0	0
Č	Compressors		0	0
ſ	Pumps		0	0
	Valves		0.0056	28
	EQUIPMENT WITH FUGILIVES		EMISSION FACTOR	QUANTITY

	TOTAL	EMISSIONS	(kg/hr)	2.58E-01	0	0	2.07E-02	0	0	0	0	0	0
¢.		Open - Ended Lines	(kg/hr)	2.20E-02	0	0	1.77E-03	0	0	0	0	0	0
				9.03E-02		0	7.26E-03	0	0	0	0	0	0
	FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
	EMISSIONS (kg/hr)	Compressors Pressure	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	1.45E-01	0	0	1.17E-02	0	0	0	0	0	0
		COMPONENT		CO	CO2	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH

UNSHIFTED GAS METHANOL - WATER SEPARATION TOWER (liquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPMENT TYPE	QUANTITY		FLOW SUMMARY
Pumps	0		00
Vertical Vessles			CO2
Horizontal Vessles	0		COS
Storage Tanks	0,		H2
Pressure Relief Valves	-		H20
Heat - Exchangers (Heating Side)	0		H2S
Heat - Exchangers (Cooling Side)	0		N2
Loading or Unloading Point	0		CHN
Flow Transmitters	က		CH4
Turbine Meter and Prover Connection	0	-	CH3OH
			TOTAL ELONA

			_						_			
mass fraction	0	2,41E-01	7.12E-04	0	7.12E-01	8.27E-03	4.31E-03	4.77E-04	1.46E-03	3.26E-02		
kg/hr	0	23747	70	0	70200	816	426	47	144	3214	98665	
kgmol/hr	0	540	L	0	3900	24	15	Э	6	001	4592	
FLOW SUMMARY	CO	CO2	SOO	H2	H20	H2S	N2	NH3	CH4	CH3OH	TOTAL FLOW	

compressors Pressure Relief Flanges Open - Ended Lines	Valves	0 0.104 0.00083 0.00017	
Pumps C		0	
Valves		0.0071	VV
EQUIPMENT WITH FUGITIVES		EMISSION FACTOR	CHIANTITV

	<u> </u>			-	r	<u> </u>	<u> </u>						-
	TOTAL	EMISSIONS	(kg/hr)	0	1,46E-01	4.32E-04	0	4.32E-01	5.02E-03	2.62E-03	2.90E-04	8.89E-04	1.98E-02
ţ.		Open - Ended Lines	(kg/hr)	0	9.00E-03	2.66E-05	0	2.66E-02	3.09E-04	1.61E-04	1.79E-05	5.48E-05	1.22E-03
		Flanges	(kg/hr)	0	3.69E-02	1.09E-04	0	1.09E-01	1.27E-03	6.62E-04	7.32E-05	2.25E-04	5.00E-03
	FROM :	Pressure Relief	Valves (kg/hr)	0	2.50E-02	7.40E-05	0	7.40E-02	8.60E-04	4.49E-04	4.96E-05	1.52E-04	3.39E-03
	EMISSIONS (kg/hr) FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	-	Valves	(kg/hr)	0	7.52E-02	2.22E-04	0	2.22E-01	2.58E-03	1.35E-03	1.49E-04	4.57E-04	1.02E-02
		COMPONENT		000	CO2	COS	H2	H20 <	H2S	N2	NH3	CH4	CH3OH

UNSHIFTED GAS STRIPPING COLUMN (IIquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessles	_
Horizontal Vessles	0
Storage Tanks	0,
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	2
Turbine Meter and Prover Connection	0

FLOW

mass fraction	0	8.84E-01	2.61E-03	0.00E+00	0	3.04E-02	1.58E-02	1.75E-03	5.39E-03	5.96E-02		
kg/hr	0	23756	70	0	0	816	426	47	145	1600	26859	
kgmol/hr	0	540	-	0	0	24	15	3	6	50	642	
FLOW SUMMARY	co	C02	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH	TOTAL FLOW	

EQUIPMENT WITH FUGITIVES	Valves	sdwnd	Compressors	Pressure Relief Valves	Flanges	Open - Ended Lines	•
EMISSION FACTOR	0.0071	0	0	0	0.00083	0.0017	
QUANTITY	35	0	0	0	147	18	

r			r	r		r	_	<u> </u>				
TOTAL	EMISSIONS	(kg/hr)	0	3.54E-01	1.05E-03	0.00E+00	0	1.22E-02	6.34E-03	6.99E-04	2.16E-03	2.38E-02
	Open - Ended Lines	(kg/hr)	0	2.63E-02	7.78E-05	0.00E+00	0	9.04E-04	4.71E-04	5.20E-05	1.60E-04	1.77E-03
	Flanges	(kg/hr)	0	1.08E-01	3.19E-04	0.00E+00	0	3.71E-03	1.93E-03	2.13E-04	6.57E-04	7.27E-03
FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
EMISSIONS (kg/hr)	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Valves	(kg/hr)	0	2.20E-01	6.49E-04	 0.00E+00 	0	7.55E-03	3.94E-03	4.34E-04	1.34E-03	1.48E-02
	COMPONENT		co	CO2	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH
	EMISSIONS (kg/hr) FROM :	EMISSIONS (kg/hr) FROM : Pumps Compressors Pressure Relief Flanges Open - Ended Lines	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief Flanges (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr)	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines El (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0	EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 2.65-02 0 0	EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 2.63E-02 0 <td< td=""><td>EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(g/hr) (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 2.63E-02 0</td><td>EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 0 0 0 0 0 6.49E-04 0 0 0 0 3.19E-01 2.63E-02 1.78E-05 0 <</td><td>EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(g/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 0 0 0 6.49E-04 0 0 0 0 2.65E-02 2.65E-02 0 0</td></td<> <td>EMISSIONS Kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(g/hn) (kg/hn) (kg/hn) Valves (kg/hn) (kg/hn) 0 0 0 0 0 0 0 0 2.20E-01 0</td> <td>EMISSIONS Kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Vg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) Valves 0 0 0 0 0 0 0 2.20E-01 0<!--</td--><td>EMISSIONS Kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Vg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) 0</td></td>	EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(g/hr) (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 2.63E-02 0	EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 0 0 0 0 0 6.49E-04 0 0 0 0 3.19E-01 2.63E-02 1.78E-05 0 <	EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(g/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 2.20E-01 0 0 0 0 0 0 0 6.49E-04 0 0 0 0 2.65E-02 2.65E-02 0 0	EMISSIONS Kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines V(g/hn) (kg/hn) (kg/hn) Valves (kg/hn) (kg/hn) 0 0 0 0 0 0 0 0 2.20E-01 0	EMISSIONS Kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Vg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) Valves 0 0 0 0 0 0 0 2.20E-01 0 </td <td>EMISSIONS Kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Vg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) 0</td>	EMISSIONS Kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Vg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) (kg/hn) 0

UNSHIFTED GAS STRIPPING COLUMN (gas) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPMENT TYPE	QUANTITY
bumbs	0
Vertical Vessles	
Horizontal Vessles	0
Storage Tanks	0,
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	l
Turbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
00	0	0	0
CO2	0	0	0
cos	0	0	0
H2	0	0	0
H20	0	0	0
H2S	0	0	0
N2	101	2828	
NH3	0	0	0
CH4	0	0	0
CH3OH	0	0	0
TOTAL FLOW	101	2828	

és		
Open - Ended Lines	0.0017	15
Flanges	0.00083	122
Pressure Relief Valves	0	0
Compressors	0	0
bumps	0	0
Valves	0.0056	29
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

													_
	TOTAL	EMISSIONS	(kg/hr)	0	0	0	0	0	0	2.88E-01	0	0	0
ţ.ª		Open - Ended Lines	(kg/hr)	0	0	0	0	0	0	2.47E-02	0	0	0
		Flanges	(kg/hr)	0	0	0	0	0	0	1.01E-01	0	0	0
	FROM :	Pressure Relief	Valves (kg/hr)		0	0	0	0	0	0	0	0	0
	EMISSIONS (kg/hr) FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	C
		Valves	(kg/hr)	0	0	0	0	0	0	1.62E-01	0	0	С
		COMPONENT		co	CO2	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH

UNSHIFTED METHANOL REGENERATION TOWER (gas feed) Estimation of fugitive emissions for one unshifted rectisol train

FOUR TVPF	CHANTITY
	0
/ertical Vessles	_
Horizontal Vessles	0
Storage Tanks	0
ressure Relief Valves	
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	
-oading or Unloading Point	0
Flow Transmitters	9
Furbine Meter and Prover Connection	0

mass fraction	0	9.30E-01	2.77E-03	0	0	3.19E-02	1.67E-02	1.84E-03	5.66E-03	1.13E-02	
kg/hr	0	11876	35	0	0	408	213	23	72	145	12772
kgmol/hr	0	270	-	0	0	12	8	_	5	5	301
FLOW SUMMARY	00	C02	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH	TOTAL FLOW

EQUIPMENT WITH FUGITIVES	Valves	sdwnd	Compressors	Pressure Relief	Flanges	Open - Ended Lines
				Valves		
EMISSION FACTOR	0.0056	0	0	0.104	0.00083	0.0017
QUANTITY	61	0	0		256	31

TOTAL	EMISSIONS	(kg/hr)	0	6.60E-01	1.97E-03	0	0	2.27E-02	1.18E-02	1.30E-03	4.02E-03
	Open - Ended Lines	(kg/hr)	0	4.82E-02	1.44E-04	0	0	1.66E-03	8.64E-04	9.52E-05	2.94E-04
	Flanges	(kg/hr)	0	1.98E-01	5.89E-04	0	0	6.79E-03	3.54E-03	3.91E-04	1.20E-03
FROM :	Pressure Relief	Valves (kg/hr)	0	9.67E-02	2.88E-04	0	0	3,32E-03	1.73E-03	1.91E-04	5.89E-04
EMISSIONS (kg/hr) FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0
	Valves	(kg/hr)	0	3.18E-01	9.47E-04	0	0 Ó	1.09E-02	5.69E-03	6.27E-04	1.93E-03
	COMPONENT		co	CO2	COS	H2	H20	H2S	N2	NH3	CH4

UNSHIFTED METHANOL REGENERATION TOWER (liquid feed) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPIVIEINI I YPE	GUAINITY
Pumps	
Vertical Vessles	
Horizontal Vessles	0
Storage Tanks	0,
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	L
Loading or Unloading Point	0
Flow Transmitters	3
Turbine Meter and Prover Connection	0

mass fraction	0	0	2.82E-02	0	0	3.28E-01	0	0	0	6.44E-01	-
kg/hr	.0	0	70	0	0	816	0	0	0	1600	2486
kgmol/hr	0	0		0	0	24	0	0	0	20	75
FLOW SUMMARY	co	C02	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH	TOTAL FLOW

_

			r	-	r	r –	r	r	_		,	
TOTAL	EMISSIONS	(kg/hr)	0	0	2.37E-02	0	0	2.75E-01	0	0	0	5.40E-01
	Open - Ended Lines	(kg/hr)	0	0	1.66E-03	0	0	1.92E-02	0	0	0	3.77E-02
	Flanges	(kg/hr)	0	0	6.79E-03	0	0	7.89E-02	0	0	0	1.55E-01
FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
EMISSIONS (kg/hr) FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	1.39E-03	0	0	1.62E-02	0	0	0	3.18E-02
	 Valves 	(kg/hr)	0	0	1.38E-02	0	0	10-319'1	0	0	0	3,15E-01
	COMPONENT		CO	CO2	COS	H2	H20	H2S	N2	NH3	CH4	CH3OH

METHANOL RECYCLE STREAM (Inquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE UNSHIFTED RECTISOL TRAIN

EQUIPMENT TYPE	QUANTITY
Pumps	2
Vertical Vessles	0
Horizontal Vessles	0
Storage Tanks	0 '
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	1
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	4
Turbine Meter and Prover Connection	0

FLOW

mass fraction	0	0	0	0	0	0	0	0	0	-		
kg/hr	0	0	0	0	0	0	0	0	0	3200	3200	
kgmol/hr	0	0	0	0	0	0	0	0	0	100	001	
FLOW SUMMARY	CO	CO2	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH	TOTAL FLOW	

equipment with fugitives	Valves	Pumps	Compressors	Pressure Relief Valves	Flanges	Open - Ended Lines
EMISSION FACTOR	0.0071	0.0494	0	0	0.00083	0.0017
	54	2	0	0	227	27

TOTAL	EMISSIONS	(kg/hr)	0	0	0	0	0	0	0	0	0	7.16E-01
	Open - Ended Lines	(kg/hr)	0	0	0	0	0	0	0	0	0	4.59E-02
	Flanges	(kg/hr)	0	0	0	0	0	0	0	0	0	1.88E-01
EMISSIONS (kg/hr) FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	9.88E-02
	Valves	(kg/hr)	0	0	0	0	0	0	0	0	0	3.83E-01
	COMPONENT		CO	CO2	COS	H2	H20	H2S	N2	NH3	CH4	CH3OH
		EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief Flanges	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Valves Pumps Compressors (kg/hr) (kg/hr) Valves	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief (kg/hr) (kg/hr) (kg/hr) Valves 0 0 0 0	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Valves Pumps Compressors (kg/hr) (kg/hr) Valves 0 0 0 0 0 0 0 0 0	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines (kg/hr) (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Valves (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines (kg/hr) (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EMISSIONS (kg/hr) FROM : Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines (kg/hr) (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 0	EMISSIONS (kg/hn) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines (kg/hn) (kg/hn) (kg/hn) Valves Vg/hn) (kg/hn) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Valves (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 0	EMISSIONS (kg/hr) FROM: Valves Pumps Compressors Pressure Relief Flanges Open - Ended Lines Valves (kg/hr) (kg/hr) Valves (kg/hr) (kg/hr) (kg/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H2S , COS RICH STREAM (gas) Estimation of fugitive emissions for one unshifted rectisol train

EQUIPMENT TYPE	QUANTITY		FLOW SUMMAF
Pumps	0		8
Vertical Vessles	0		CO2
Horizontal Vessles	0	1	cos
Storage Tanks	0		H2
Pressure Relief Valves	0		H20
Heat - Exchangers (Heating Side)	0		H2S
Heat - Exchangers (Cooling Side)	0		N2
Loading or Unloading Point	0		NH3
Flow Transmitters	2		CH4
Turbine Meter and Prover Connection	0		CH3OH
			TOTAL FLOW

FLOW SUMMARY	00	CO2	

-		_		·			-	-	_	_		
ITTUSS IFUCTION	0	5.59E-01	3.30E-02	0	0	3.85E-01	0	2.22E-02	0	9.56E-04		
kg/nr	0	3555	210	0	0	2448	0	141	0	6	6360	
kgmol/nr	0	81	4	0	0	72	0	8	0	0	165	
FLOW SUMMARY	00	CO2	cos	H2	H20	H2S	N2	NH3	CH4	CH3OH	TOTAL FLOW	

equipment with fugitives	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines
		-	-	Valves)	-
EMISSION FACTOR	0.0071	0	0	0	0.00083	0.0017
QUANTITY	12	0	0	0	50	6

TOTAL	EMISSIONS	(kg/hr)	0	7.67E-02	4.53E-03	0	0	5.28E-02	0	3.04E-03	0	1.31E-04
	Open - Ended Lines	(kg/hr)	0	5.70E-03	3.37E-04	0	0	3.93E-03	0	2.26E-04	0	9.75E-06
	Flanges	(kg/hr)	0	2.34E-02	1.38E-03	0	0	1.61E-02	0	9.28E-04	0	4.00E-05
FROM :	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0	0
EMISSIONS (kg/hr) FROM :	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0	0
	Valves	(kg/hr)	0	4.76E-02	2.81E-03	0	0	3.28E-02	0	1.89E-03	0	8.14E-05
	COMPONENT		CO	CO2	COS	H2	H20	H2S	N2	NH3	CH4	CH3OH

COS HYDROLYSIS PLANT

The flowsheet for the COS hydrolysis along with the information needed for the stream estimations were taken from the <u>Gas Process Handbook '84</u>, <u>Hydrocarbon</u> <u>Processing</u>, April 1984, p. 78.

Table A.26

			EMISSIONS	FROM :			TOTAL
COMPONENT	Vdves	Pumps	Compressors	Pressure Relief Valves	Flanges	Open- Ended Lines	EMISSIONS
	(ka/hr)	(ka/hr)	(ka/hr)	(kg/hr)	(ka/hr)	(ka/hr)	(kg/hr)
	6.65E-01	0	0	1.93E-01	4.14E-01	1.01E-01	1.37
CO2	3.74E-01	0	0	1.08E-01	2.33E-01	5.67E-02	0.77
COS	2.21E-02	0	0	6.40E-03	1.37E-02	3.50E-03	0.05
H2	7.36E-04	0	0	2.13E-04	4.58E-04	1.12E-04	0
H2S	2.57E-01	0	0	7.47E-02	1.60E-01	3.91E-02	0.53
N2	3.65E-02	0	0	1.06E-02	2,27E-02	5.54E-03	0.08
NH3	1.48E-02	0	0	4.30E-03	9.23E-03	2.25E-03	0.03
CH3CH	6.39E-04	0	0	1.85E-04	3.98E-04	9.70E-05	0
02	1.11E-02	0	0	3.22E-03	6.91E-03	1.68E-03	0.02

COS HYDROLYSIS PLANT OVERALL FUGITIVE EMISSIONS

.

The following tables (A.27-A.29) are the actual estimations made for the COS Hydrolysis Plant in Base Case 1.

ESTIMATION OF FUGITIVE EMISSIONS FOR THE COS HYDROLYSIS PLANT

	COS HYDROLYSIS
QUANTITY	EQUIPMENT TYPE
0	Pumps
1	Vertical Vessles
0	Horizontal Vessles
0	Storage Tanks
1	Pressure Relief Valves
1	Heat - Exchangers (Heating Side)
0	Heat - Exchangers (Cooling Side)
0	Loading or Unloading Point
5	Flow Transmitters
0	Turbine Meter and Prover Connection

QUANTITY	ACTUAL EQUIPMENT
1	Preheater
1	Hydrolysis Reactor
]	Pressure Relief Valves
5	Flow Transmitters

QUANTITY	ESTIMATED EQUIPMENT
64	Valves
32	Open - Ended Lines
269	Flanges

	1
QUANTITY	EQUIPMENT WITH FUGITIVES
64	Valves
0	Pumps
Ω	Compressors

٩

1	Pressure Relief Valves	
269	Flanges	s
32	Open - Ended Lines	······

MIXER - PREHEATER ESTIMATION OF FUGITIVE EMISSIONS FOR COS HYDROLYSIS

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessles	0
Horizontal Vessles	0
Storage Tanks	0,
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	ſ
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	3
Turbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
co	3.5	98	9.28E-01
C02	81	3555	5.21E-01
cos	4	210	3.08E-02
H2	4	7	1.03E-03
H2S	72	2448	3.59E-01
N2	12	347	5.09E-02
NH3	8	141	2.07E-02
CH3OH	0	9	8.91E-04
02	3	106	1.55E-02
TOTAL FLOW	184	6820	

langes Open - Ended Lines	00083 0.0017	09 13 13
Pressure Relief Flan Valves	0.00	0 0 1
os Compressors	0	0
Valves Pump:	0.0056 0	26 0
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

	TOTAL	EMISSIONS	(kg/hr)	2.40E-01	1.35E-01	7.95E-03	2.65E-04	9.27E-02	1.32E-02	5.34E-03	2.30E-04	4.00E-03
,ª		Open - Ended Lines	(kg/hr)	2.05E-02	1.15E-02	6.80E-04	2.27E-05	7.93E-03	1.13E-03	4.57E-04	1.97E-05	3.42E-04
			Flanges	(kg/hr)	8.41E-02	4.72E-02	2.79E-03	9.30E-05	3.25E-02	4.61E-03	1.88E-03	8.08E-05
		Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0
	EMISSIONS FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
			(kg/hr)	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	1.35E-01	7,59E-02	4.48E-03	1.49E-04	5.23E-02	7.41E-03	3.01E-03	1.30E-04	2.25E-03
		COMPONENT		CO	CO2	COS	H2	H2S	N	NH3	CH3OH	02

HYDROGENATION / HYDROLYSIS REACTOR ESTIMATION OF FUGITIVE EMISSIONS FOR COS HYDROLYSIS

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessles	
Horizontal Vessles	0
Storage Tanks	0
Pressure Relief Valves	_
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	2
Turbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
8	0	0	0
CO2	87	3846	5.57E-01
cos	0	0	0
H2	0	0	0
H2S	76	2567	3.72E-01
N2	12	347	5.03E-02
NH3	8	141	2.04E-02
CH3OH	0	9	8.80E-04
02	0	0	0
TOTAL FLOW	184	6907	

WITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief Valves	Flanges	Open - Ended Lines	•
ACTOR	0.0056	0	0	0.104	0.00083	0.0017	
	38	0	0	-	160	19	

	TOTAL	EMISSIONS	(kg/hr)	4.47E-01	2.51E-01	1.48E-02	4.94E-04	1.73E-01	2.45E-02	9.96E-03	4.29E-04	7.46E-03
5 8		Open - Ended Lines	(kg/hr)	3.00E-02	1.68E-02	9.95E-04	3.32E-05	1.16E-02	1.64E-03	6.68E-04	2.88E-05	5.00E-04
		Flanges	(kg/hr)	1.23E-01	6.91E-02	4.08E-03	1.36E-04	4.75E-02	6.74E-03	2.74E-03	1.18E-04	2.05E-03
		Pressure Relief	Valves (kg/hr)	9.65E-02	5.42E-02	3.20E-03	1.07E-04	3.73E-02	5.29E-03	2.15E-03	9.27E-05	1.61E-03
	EMISSIONS FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	1.97E-01	10-311/1	6.55E-03	2.18E-04	7.64E-02	1.08E-02	4.40E-03	1.90E-04	3.29E-03
		COMPONENT		CO	CO2	COS	H2	H2S	N2	NH3	CH3OH	02

CLAUS PLANT

The flowsheet for the Claus Plant was taken from <u>Houston</u>. The information needed for the flow estimations was taken from <u>Houston</u> as well as the <u>Gas Process</u> <u>Handbook '84, Hydrocarbon Processing</u>, April 1984, p. 74.

Table A.30

CLAUS PLANT OVERALL FUGITIVE EMISSIONS FOR TWO TRAINS

			EMISSIONS	FROM :			TOTAL
COMPONENT .	Vdves	Pumps	Compressors	Pressure Relief Vdves	Flanges	Open- Ended Lines	EMISSIONS
	(ka/hr)	(ka/hr)	(ka/hr)	(ka/hr)	(ka/hr)	(kg/hr)	(ka/hr)
CO2	1.33E+ 00	0	0	2.93E-01	8.25E-01	2.01E-01	2.65
H2O	2.33E-01	0	0	6.51E-02	1.45E-01	3.54E-02	0.48
H2S	4.07E-01	0	0	6.44E-02	2.53E-01	6.18E-02	0.79
N2	1.12E+ 00	0	0	3.23E-01	6.97E-01	1.70E-01	2.31
CH3OH	2.10E-03	0	0	4.65E-04	1.31E-03	3.19E-04	0.00
S	3.39E-03	0	0	2.77E-03	2.11E-02	5.15E-03	0.06
S (C2	2.11E-01	0	0	7.21E-02	1.32E-01	3.21E-02	0.45
02	0	0	0	0	0	0	0.00
NH3	4.87E-02	0	0	1.08E-02	3.03E-02	7.39E-03	0.10

The following tables (A.31-A.37) are the actual estimations made for the Claus Plant in Base Case 1.

ESTIMATION OF FUGITIVE EMISSIONS FOR THE CLAUS PLANT

	CLAUS PLANT
QUANTITY	EQUIPMENT TYPE
0	Pumps
6	Vertical Vessles
6	Horizontal Vessles
0	Storage Tanks
8	Pressure Relief Valves
8	Heat - Exchangers (Heating Side)
0	Heat - Exchangers (Cooling Side)
0	Loading or Unloading Point
28	Flow Transmitters
0	Turbine Meter and Prover Connection

QUANTITY	ACTUAL EQUIPMENT
2	Separators (Knockout Drums)
2	Thermal Incinerators
2	Boilers
6	Reheaters
2	3 - Staged Catalytic Reactors
2	Sulfur Condensers
8	Pressure Relief Valves
28	Flow Transmitters

QUANTITY	ESTIMATED EQUIPMENT
520	Valves
260	Open - Ended Lines
2184 `	Flanges

QUANTITY	EQUIPMENT WITH FUGITIVES
520	Valves
0	Pumps
0	Compressors
8	Pressure Relief Valves
2184	Flanges
260	Open - Ended Lines

SEPARATOR ESTIMATION OF FUGITIVE EMISSIONS FOR ONE CLAUS TRAIN

EQUIPMENT TYPE	QUANTITY
	0
/ertical Vessles	0
Horizontal Vessles	
Storage Tanks	ç
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
oading or Unloading Point	0
low Transmitters	5
urbine Meter and Prover Connection	

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
CO2	87	3846	5.57E-01
H2O	0	0	0
H2S	7.6	2567	3.72E-01
N2	12	347	5.03E-02
CH3OH	0	6	8.80E-04
S	0	0	0
so2	0	0	0
02	0	0	0
NH3	8	141	2.04E-02
TOTAL FLOW	184	6907	

· .		
Open - Ended Lines	0.0017	26
Flanges	0.00083	214
Pressure Relief Valves	0	0
Compressors	0	0
Pumps	0	0
Valves	0.0056	51
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

TOTAL	EMISSIONS	(kg/hr)	2.82E-01	0	1.88E-01	2.55E-02	4.46E-04	0	0	0	1.04E-02
	Open - Ended Lines	(kg/hr)	2.41E-02	0	1.61E-02	2.18E-03	3.82E-05	0	0	0	8.86E-04
	Flanges	(kg/hr)	9.90E-02	0	6.61E-02	8.94E-03	1.56E-04	0	0	0	3.63E-03
	Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0
EMISSIONS FROM :	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0
	Valves	(kg/hr)	1.59E-01	0	1.06E-01	1.44E-02	2.51E-04	0	0	0	5.83E-03
	COMPONENT		CO2	H2O	H2S	N2	СНЗОН	S	SO2	02	NH3

THERMAL INCINERATOR AND BOILER ESTIMATION OF FUGITIVE EMISSIONS FOR ONE CLAUS TRAIN

EQUIPINENI I YPE	
Pumps	0
Vertical Vessles	0
Horizontal Vessles	
Storage Tanks	0,
Pressure Relief Valves	
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	
Loading or Unloading Point	0
Flow Transmitters	0
Turbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
C02	29	1282	2.81E-01
H2O	12	222	4.86E-02
H2S	11	385	8.43E-02
N2	67	1883	4,12E-01
CH3OH	0	2	4.49E-04
S	2	61	1.33E-02
SO2	11	685	1.50E-01
02	0	0	0.00E+00
NH3	3	47	1.03E-02
TOTAL FLOW	135	4566	

ITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines	•
				Valves			
STOR	0.0056	0	0	0.104	0.00083	0.0017	
	41	0	0		172	21	

TOTAL	EMISSIONS	(kg/hr)	1.44E-01	2.49E-02	4.31E-02	2.11E-01	2.29E-04	6.81E-03	7.67E-02	0.00E+00	5.27E-03
	Open - Ended Lines	(kg/hr)	9.78E-03	1.69E-03	2.94E-03	1.44E-02	1.56E-05	4.64E-04	5.23E-03	0.00E+00	3.59E-04
	Flanges	(kg/hr)	4.01E-02	6.95E-03	1.20E-02	5.89E-02	6.41E-05	1.90E-03	2.14E-02	0.00E+00	1.47E-03
	Pressure Relief	Valves (kg/hr)	2.92E-02	5.06E-03	8.77E-03	4.29E-02	4.66E-05	1.38E-03	1.56E-02	0.00E+00	1.07E-03
EMI	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
	Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0
	Valves	(kg/hr)	6.45E-02	1.12E-02	1.94E-02	9.47E-02	1.03E-04	3.06E-03	3.44E-02	0.00E+00	2.37E-03
	COMPONENT		CO2	H2O	H2S	N2	CH3OH	S	so2	02	NH3

FIRST REHEATER AND FIRST REACTOR STAGE ESTIMATION OF FUGITIVE EMISSIONS FOR ONE CLAUS TRAIN

EQUIPMENT TYPE	QUANTITY
	0
/ertical Vessles	
forizontal Vessles	0
Storage Tanks	0,
Pressure Relief Valves	
Heat - Exchangers (Heating Side)	_
Heat - Exchangers (Cooling Side)	0
-oading or Unloading Point	0
low Transmitters	e
urbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
CO2	44	1923	3.40E-01
H2O	12	222	3.92E-02
H2S	24	813	1.44E-01
N2	69	1940	3.43E-01
CH3OH	0	3	5.37E-04
S	0	0	0
SO2	Ē	685	1.21E-01
02	0	0	0.00E+00
NH3	4	12	1.25E-02
TOTAL FLOW	164	5656	

•		
Open - Ended Lines	0.0017	26
Hanges	0.00083	218
Pressure Relief Valves	0.104	
Compressors	0	0
Pumps	0	0
Valves	0.0056	52
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

	TOTAL	EMISSIONS	(kg/hr)	2.11E-01	2.44E-02	8.92E-02	2.13E-01	3.34E-04	0	7.51E-02	0.00E+00	7.74E-03
ŗ t		Open - Ended Lines	(kg/hr)	1.50E-02	1.73E-03	6.35E-03	1.52E-02	2.38E-05	0	5.35E-03	0.00E+00	5.51E-04
		Flanges	(kg/hr)	6.16E-02	7.11E-03	2.60E-02	6.22E-02	9.74E-05	0	2.19E-02	0.00E+00	2.26E-03
		Pressure Relief	Valves (kg/hr)	3.54E-02	4.08E-03	1.49E-02	3.57E-02	5.59E-05	0	1.26E-02	0.00E+00	1.30E-03
	EMISSIONS FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	9.90E-02	1.14E-02	4.18E-02	9.99E-02	1.57E-04	0	3.53E-02	0.00E+00	3.63E-03
		COMPONENT		CO2	H2O	H2S	N2	СНЗОН	S	SO2	02	NH3

SECOND REHEATER AND SECOND REACTOR STAGE ESTIMATION OF FUGITIVE EMISSIONS FOR ONE CLAUS TRAIN

EQUIPMENT TYPE	QUANTITY
sdund	0
/ertical Vessles	
Horizontal Vessles	0
Storage Tanks	0
Pressure Relief Valves	
Heat - Exchangers (Heating Side)	-
Heat - Exchangers (Cooling Side)	0
oading or Unloading Point	0
Flow Transmitters	2
urbine Meter and Prover Connection	0

LOW SUMMARY	kgmol/hr	kg/hr	mass fraction
CO2	44	1923	3.93E-01
H2O	28	509	1.04E-01
H2S	8	1/2	5,55E-02
N2	69	1940	3.97E-01
CH3OH	0	3	6.21E-04
s	0	0	0
SO2	3	175	3.58E-02
02	0	0	0.00E+00
NH3	4	12	1.44E-02
TOTAL FLOW	156	4893	

Open - Ended Lines	0.0017	23
Flanges Open	0.00083	193
Pressure Relief Valves	0.104	~
Compressors	0	0
Pumps	0	0
Valves	0.0056	46
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

	TOTAL	EMISSIONS	(kg/hr)	2.20E-01	5.84E-02	3.11E-02	2.23E-01	3.49E-04	0	2.01E-02	0.00E+00	8.09E-03
ç*		Open - Ended Lines	(kg/hr)	1.54E-02	4.07E-03	2.17E-03	1.55E-02	2.43E-05	0	1.40E-03	0.00E+00	5.64E-04
		Flanges	(kg/hr)	6.30E-02	1.67E-02	8.89E-03	6.36E-02	9.96E-05	0	5.75E-03	0.00E+00	2.31E-03
		Pressure Relief	Valves (kg/hr)	4.09E-02	1.08E-02	5.77E-03	4.12E-02	6.46E-05	0	3.73E-03	0.00E+00	1.50E-03
	EMISSIONS FROM	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	. 0	0	0	0	0
		Valves	(kg/hr)	1.01E-01	2.68E-02	1.43E-02	1.02E-01	1.60E-04	0	9.23E-03	0,00E+00	3.71E-03
		COMPONENT		CO2	H2O	H2S	N2	CH3OH	S	5O2	02	NH3

THIRD REHEATER AND REACTOR STAGE ESTIMATION OF FUGITIVE EMISSIONS FOR ONE CLAUS TRAIN

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessles	
Horizontal Vessles	-
Storage Tanks	0,
Pressure Relief Valves	_
Heat - Exchangers (Heating Side)	
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	2
Turbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
CO2	44	1923	3.97E-01
H2O	33	585	1.21E-01
H2S	4	128	2.63E-02
N2	69	1940	4.01E-01
CH3OH	0	e	6.28E-04
s	0	0	0
so2	e	192	3.97E-02
02	0	0	0.00E+00
NH3	4	12	1.46E-02
TOTAL FLOW	156	4841	

0 201 TO 10 1							
FUGIIIVES	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines	
				Valves			
	0.0056	0	0	0.104	0.00083	0.0017	
	67	0	0	-	281	34	

						r		r—		·		
	TOTAL	EMISSIONS	(kg/hr)	3.06E-01	9.30E-02	2.03E-02	3.09E-01	4.83E-04	0	3.05E-02	0.00E+00	1.12E-02
•		Open - Ended Lines	(kg/hr)	2.26E-02	6.88E-03	1.50E-03	2.28E-02	3.58E-05	0	2.26E-03	0.00E+00	8.30E-04
		Flanges	(kg/hr)	9.28E-02	2.82E-02	6.15E-03	9.36E-02	1.47E-04	0	9.26E-03	0.00E+00	3.40E-03
		Pressure Relief	Valves (kg/hr)	4.13E-02	1.26E-02	2.74E-03	4.17E-02	6.53E-05	0	4.12E-03	0.00E+00	1.52E-03
	EMISSIONS FROM:	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	1.49E-01	4.53E-02	9.88E-03	1.506-01	2.36E-04	0	1,49E-02	0.00E+00	5.47E-03
		COMPONENT		CO2	H2O	H2S	N2	СНЗОН	S	SO2	02	NH3

SULFUR CONDENSER ESTIMATION OF FUGITIVE EMISSIONS FOR ONE CLAUS TRAIN

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessles	0
Horizontal Vessles	
Storage Tanks	0 r
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	4
Turbine Meter and Prover Connection	0

160 7050 95 1714 95 1714 28 939 275 7704 0 11 34 1086 14 924 0 0 15 259 622 19687	-	 	-		to 5.52E-02			9 1.31E-02	87
				0		14 92	0		

Flanges Open - Ended Lines	0.00083 0.0017	189 23
Pressure Relief Valves	0	0
Compressors	0	0
Pumps	0	0
Valves	0.0056	45
EQUIPMENT WITH FUGITIVES	EMISSION FACTOR	QUANTITY

	TOTAL	EMISSIONS	(kg/hr)	1.60E-01	3.89E-02	2.13E-02	1.75E-01	2.54E-04	2.47E-02	2.10E-02	0.00E+00	5.88E-03
ų.		Open - Ended Lines	(kg/hr)	1.37E-02	3.33E-03	1.82E-03	1.50E-02	2.17E-05	2.11E-03	1.80E-03	0.00E+00	5.03E-04
		Flanges	(kg/hr)	5.62E-02	1.37E-02	7.48E-03	6.14E-02	8.90E-05	8.65E-03	7.36E-03	0.00E+00	2.06E-03
		Pressure Relief	Valves (kg/hr)	0	0	0	0	0	0	0	0	0
	EMISSIONS FROM :	Compressors	(kg/hr)	0	0	0	0	0	0	0	0	0
		Pumps	(kg/hr)	0	0	0	0	0	0	0	0	0
		Valves	(kg/hr)	9.02E-02	2.19E-02	1.20E-02	9.86E-02	1.43E-04	1.39E-02	1.18E-02	0.00E+00	3.31E-03
		COMPONENT		CO2	H2O	H2S	N2	CH3OH	S	SO2	02	NH3

BEAVON PLANT

The flowsheet for the Beavon Plant along with the information needed for the stream estimations were taken from the <u>Gas Process Handbook '84</u>, <u>Hydrocarbon Processing</u>, April 1984, p. 88.

Table A.38

BEAVON PLANT OVERALL FUGITIVE * EMISSIONS

			EMISSIONS	FROM :			TOTAL
COMPONENT	Vdves (ka/hr)	Pumps (kg/hr)	Compressors (ka/hr)	Pressure Relief Vdves (kg/hr)	Flanges (ka/hr)	Open- Ended Lines (ka/hr)	EMISSIONS (ka/hr)
CO2	9.91E-01	8.12E-02	0	0	5.53E-01	1.35E-01	1.76
02	3.77E-02	0	0	1.00E-02	1.85E-02	4.51E-03	0.07
S	1,46E-01	0	0	2.56E-02	7.17E-02	1.75E-02	0.26
H20	2.61E+ 00	2.58E-02	0	4.06E-01	1.30E+ 00	3.17E-01	4.66
H2S	2.65E-01	5.39E-03	0	4.00E-02	1.35E-01	3.29E-02	0.48
N2	1.86E+ 00	8.20E-02	0	1.42E-01	9.82E-01	2.39E-01	3.31
NH3	3.64E-02	2.98E-03	0	0	2.03E-02	4.95E-03	0.06
СНЗОН	1.57E-03	1.28E-04	0	0	8.75E-04	2.13E-04	0.00

The following tables (A.39-A.48) are the actual estimations made for the Beavon Plant in Base Case 1.

ESTIMATION OF FUGITIVE EMISSIONS FOR THE BEAVON PLANT

	BEAVON PLANT
QUANTITY	EQUIPMENT TYPE
4	Pumps
16	Vertical Vessles
6	Horizontal Vessles
2	Storage Tanks
6	Pressure Relief Valves
2	Heat - Exchangers (Heating Side)
2	Heat - Exchangers (Cooling Side)
0	Loading or Unloading Point
42	Flow Transmitters
0	Turbine Meter and Prover Connection

QUANTITY	ACTUAL EQUIPMENT
2	Preheater
2	Hydrolysis Reactor
4	Boilers
4	Pumps
2	Desuperheater Contact Condenser
2	Venturi Scrubber-Stripper
8	Pressure Relief Valves
4	Oxidizer Tanks
2	Slurry Tank
2	Balance Tank
2	Separation Wash and Reslurry
2	Sulfur Collector Drum
46	Flow Transmitters

QUANTITY	ESTIMATED EQUIPMENT
442 `	Valves
221	Open - Ended Lines
1856	Flanges

QUANTITY	EQUIPMENT WITH FUGITIVES
442	Valves
4	Pumps
0	Compressors
8	Pressure Relief Valves
1856	Flanges
221	Open - Ended Lines

FEED COOLER ESTIMATION OF FUGITIVE EMISSIONS FOR ONE BEAVON TRAIN

NT TYPE QUANTITY	0	0	0	0	0	ating Side) 0	ooling Side) 1	boint 0	2	
EQUIPMENT TYPE	Pumps	/ertical Vessles	Horizontal Vessles	Storage Tanks	Pressure Relief Valves	Heat - Exchangers (Heating Side)	Heat - Exchangers (Cooling Side)	Loading or Unloading Point	Flow Transmitters	

FLOW SUMMARY	kgmol/hr	ka/hr	mass fraction
C02	44	1923	4.11E-01
02	0	0	0.00E + 00
S	0	0	0
H20	34	611	1.31E-01
H2S	4	128	2.73E-02
N2	69	1942	4.15E-01
NH3	4	11	1.51E-02
СНЗОН	0	3	6.50E-04
TOTAL FLOW	165	4677	

JUIPMENT WITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines
				Valves		
FACTOR	0.0058	•	0	c	0.00083	0.0017
					C000010	1100.0
	58	0	•	c	122	1
						2

			EMISSIONS FROM :				TOTAL
COMPONENT	Valves (kg/hr)	Pumps (ka/hr)	Compressors (ka/hr)	Pressure Retief Value (Kolbri	Flanges	Open - Ended Lines	EMISSIONS
C02	6.68E-02	0	0	0	4 18F-02	1.015-02	(Kg/hr)
02	0.00E + 00	0	0	c	0 ODE TOO	0.005 +000	0.001.00
S	0	0	0	, c	0	0.00	0.00E + 00
H20	2.12E-02	0	c	, ,	1 225 02	2 225 22	5
H2S	4 43E-03			5	1.325-02	3.225-U3	3.77E-02
	7.100.00	5	þ	0	2.76E-03	6.72E-04	7.86E-03
7N	6./4E-02	0	0	0	4.20E-02	1.02E-02	1 205-01
NH3	2.45E-03	0	0	0	1 53F-03	3 725-04	4 267 00
СНЗОН	1.06E-04	0	0	0	A 575-05	1 ADE OF	4.30E-U3
						1.001.00	40-3/0-1

DESUPERHEATER CONTACT CONDENSER (Hquid Immed) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE BEAVON TRAIN

Г

Pumps Vertical Vessies Horizontal Vessies Storage Tanks Pressure Relief Valves	~ ~ 0 0 0
Heat - Exchangers (Heating Side) Heat - Exchangers (Cooling Side) Loading or Unitoading Point Flow Transmitters Turbine Meter and Prover Connection	-0000

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
C02	44	1923	4.11E-01
02	0	0	0.00E + 00
S	0	0	0
H20	34	611	1.31E-01
H2S	4	128	2.73E-02
N2	69	1942	4.15E-01
NH3	4	71	1.51E-02
СНЗОН	0	3	6.50E-04
TOTAL FLOW	165	4677	

				The second s		
EQUIPMENT WITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief Valves	Flanges	Open - Ended Lines
AISSION FACTOR	0.0071	0.0494	0	0	0.00083	0.0017
UANTITY	83	2	0	0	349	42

	-		EMISSIONS FROM :				TOTAL
COMPONENT	Valves	Pumps	Compressors	Pressure Relief	Flanges	Open - Ended Lines	EMISSIONS
	(kg/hr)	(kg/hr)	(kg/hr)	Valves (kg/hr)	(kg/hr)	(kg/hr)	(kg/hr)
C02	2.42E-01	4.06E-02	0	0	1.19E-01	2.90E-02	4.31E-01
02	0.00E + 00	0.00E + 00	0	0	0.00E + 00	0.00E + 00	0.00E+00
S	0	0	0	0	0	0	0
H20	7.70E-02	1.29E-02	0	0	3.78E-02	9.22E-03	1.376-01
H2S	1.61E-02	2.69E-03	0	0	7.896-03	1.92E-03	2.86E-02
N2	2.45E-01	4.10E-02	0	0	1.20E-01	2.93E-02	4.35E-01
NH3	8.89E-03	1.49E-03	0	0	4.36E-03	1.06E-03	1.58E-02
CH30H	3.83E-04	6.42E-05	0	0	1.88E-04	4.596-05	6.81E-04

Teble A.42

DESUPERHEATER CONTACT CONDENSER (vapor imas) Estimation of fugitive emissions for one beavon train L

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessies	1
Horizontal Vessles	0
Storage Tanks	0
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	2
Turbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
C02	44	1923	4.11E-01
02	0	0	0.00E + 00
S	0	0	0
H20	34	611	1.31E-01
H2S	4	128	2.736-02
N2	69	1942	4.15E-01
NH3	4	11	1.51E-02
СНЗОН	0	e	8.50E-04
TOTAL FLOW	166	4677	

EQUIPMENT WITH FUGITIVES	Valves	Pumpe	Compressors	Pressure Relief	Flanges	Open - Ended Lines
				Valves		
EMICCION EACTOR	0.001.0					
-	0.000	0	0	0	0 00083	71000
					000000	1100.0
	22	0	•	c	147	9
						2

		EMISSIONS	(xg/ur)	1.43E-01	0.00F+00		9	4.54F-02		8.48E-03	1.44E-01		0.205-03	2.26E-04	
	Onen - Endad Lines		1 225 02	1.445-02	0.00E+00			3.896-03	0 115 AA	0.11.04	1.24E-02	4 405-04		1.93E-05	
	Flannes	(ka/hr)	E OPE OP	0.021-02	0.00E + 00	-		1.59E-02	3 335.03		9.U/E-UZ	1 R4F-03		7.93E-05	
	Pressure Relief	Valves (ko/hr)	0		0	0		0	0			.0		-	
EMISSIONS FROM :	Compressors	(ka/hr)	0		D	0		þ	0	-	>	0	4	>	
	Pumps	(kg/hr)	0		>	•		•	•	c		0		>	
	Valves	(kg/hr)	8.06E-02	0 OVE TOO	0.00L TUU	0	2 6.8E.02	4.00L 02	5.34E-03	8.14E-02	2 0 0 L 0 0	2.98E-03	1.27E-04		
	COMPONENT	-	C02	03		S	H20		H2S	N2		NH3	CH3OH		

VENTUR! SCRUBBER / STRIPPER (Vapor Ind) Estimation of fugitive emissions for one beavon train

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessles	2
Horizontal Vessles	0
Storage Tanks	0
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	0
Turbine Meter and Prover Connection	0

155 155	Kurtour Kg/hr 44 1923 0 0 0 0 34 611 4 128 99 1942 69 1942 19 71 4 71 60 3 155 4877	FLOW STRAMABY			
44 1923 0 0 0 0 0 0 34 611 1 4 128 1 69 1942 1 69 3 1 155 4677 1	44 1923 0 0 0 0 0 0 34 61 128 69 1942 71 63 71 71 155 4677 3		kgmol/nr	kg/hr	mass fraction
0 0 0 0 0 0 34 611 1 4 128 134 69 1942 1 4 71 1 6 3 3 155 4677 367	0 0 0 0 0 0 34 611 1 4 128 128 69 1942 1 63 1942 1 63 1343 1 155 4877 3	C02	44	1923	4.115-01
0 0 0 34 611 61 4 128 61 69 1942 71 6 3 71 155 4677 71	0 0 0 34 611 4 4 128 942 69 1942 7 4 71 1 6 0 3 155 4877	02	0	0	0.00F +00
34 611 4 128 69 1942 60 33 0 3 155 437	34 611 4 128 09 1942 4 71 6 3 155 4677	S	0	0	0
4 128 69 1942 6 71 0 3 155 4877	4 128 69 1942 4 71 0 3 155 4677	H20	34	611	1315-01
69 1842 4 71 0 3 155 4677	69 1942 4 71 0 3 155 4677	H2S	4	128	2 73E.02
4 71 0 3 155 4877	4 71 0 3 155 4677	N2	69	1942	A 166 01
0 3 155 4677	0 3 155 4677	CHN	4	1/2	1 615.00
155 4877	155 4677	СНЗОН	0		A FOF OA
		TOTAL FLOW	155	4677	0.00E-04

 Valves	Pumps	Compressors	Pressure Relief Valves	Flanges	Open - Ended Lines
0.0058	0	0	c	0.0002	11000
46				CB000.0	/100.0
•	0	0	0	193	23

			EMISSIUNS FHUM:				TOTAL
COMPONENT	Valves	Pumps	Compressors	Pressure Relief	Flannes	Onen - Ended Liner	
	(kg/hr)	(ka/hr)	(ka/hr)	Valvae (balba)			EMISSIONS
C02	1.08E-01	Ċ			(NQ/IN/)	(kg/hr)	(kg/hr)
03	0.005 + 00				6.59E-02	1.61E-02	1.88E-01
	0.001 100	5	0	•	0.00E+00	0.00F+00	0.005 1.00
8	0	0	0		~		0.00E +00
H20	3 375-02				0	0	0
			0	0	2.10E-02	5.11E-03	E GTE AD
HZS	7.02E-03	0	c		1 015 00		0.016-02
N2	1 075-01	c			4.3/6-03	1.0/E-03	1.25E-02
CHIN			5	0	6.66E-02	1.62E-02	1 90E-01
CIN	3.89E-U3	0	0	c	2 475.02	E OOL OA	
СНЗОН	1.67E-04	0			2:721-03	0.306-04	6.89E-03
				5	1.04E-04	2.54E-05	2.97E-04

240

VENTURI SCRUBBER / STRIPPER (Iquid Innos) Estimation of fugitive emissions for one beavon train

٢

EQUIPMENT TYPE	QUANTITY
Pumps	0
Vertical Vessles	2
Horizontal Vessles	0
Storage Tanks	0
Pressure Relief Valves	0
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
Loading or Unloading Point	0
Flow Transmitters	9
Turbine Meter and Prover Connection	0

FLOW SUMMARY	kgmol/hr	kg/hr	mass fraction
C02	0	0	0
02	0	0	0
S	0	0	0
H20	20	360	5.81E-01
H2S	-	34	5.49E-02
N2	8	225	3.64E-01
CHN	0	0	0
CH30H	0	0	0
TOTAL FLOW	29	619	

EQUIPMENT WITH FUGITIVES	Valves	Pumpe	Compressors	Pressure Relief Valves	Flanges	Open - Ended Lines	•
SSIDN FACTOR	0.0071	0	0	0	0.00083	0.0017	
NTITY	78	0	0	0	319	38	

COMPONENT V CO2						and the second of the second se	
	Valves		Compressors	Pressure Reliaf	Flanges	Open - Ended Lines	EMISSIONS
	(ka/hr)	(kg/hr)	(kg/hr)	Valves (kg/hr)	(kg/hr)	(kg/hr)	(kg/hr)
	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	14E-01	0	0	0	1.54E-01	3.75E-02	5.05E-01
	98F-02	0	0	0	1.45E-02	3.55E-03	4.77E-02
	1.96E-01	0	0	0	9.64E-02	2.35E-02	3.16E-01
	0	0	0	0	0	0	0
Снаон	0	0	0	0	0	0	0

OXIDIZER TANK (Iquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE BEAVON TRAIN

EQUIPMENT TYPE	QUANTITY	
Pumps	0	
Vertical Vessies	2	
Horizontal Vessles	0	
Storage Tanks	0	
Pressure Ratiaf Valves	1	
Heat - Exchangers (Heating Side)	0	
Heat - Exchangers (Cooling Side)	0	
Loading or Unioading Point	0	
Flow Transmitters	1	
Lurbine Mater and Prover Connection	0	

	٤'		
-	1427	69	TOTAL FLOW
0	0	0	СНЗОН
0	0	0 ×	CHN
1.586-01	226	8	N2
1.136-01	162	6	H2S
6.81E-01	971	64	H20
0	0	0	s
4.82E-02	69	2	02
0	0	0	C02
mass fraction	kg/hr	kgmol/hr	FLOW SUMMARY

T WITH FUGITIVES Valves Pumps Compressors Pressure Rallef Flanges FACTOR 0.0071 0 0 0.00083 0.00083 FACTOR 55 0 0 1 231							
0.0071 0 <th>EQUIPMENT WITH FUGITIVES</th> <th>Valves</th> <th>Pumpe</th> <th>Compressors</th> <th>Pressure Relief</th> <th>Flanges</th> <th>Open - Ended Lines</th>	EQUIPMENT WITH FUGITIVES	Valves	Pumpe	Compressors	Pressure Relief	Flanges	Open - Ended Lines
0.0071 0 <th></th> <th></th> <th></th> <th></th> <th>Valves</th> <th></th> <th></th>					Valves		
	EMISSION FACTOR	0.0071	0	0	0.104	0.00083	0.0017
	QUANTITY	55	0	0	1	231	28

			EMISSIONS FROM :				TOTAL
COMPONENT	Valves	Pumpe	Compressors	Pressure Relief	Flanges	Open - Ended Lines	EMISSIONS
	(kg/hr)	(kg/hr)	(kg/hr)	Valves (kg/hr)	(kg/hr)	(kg/hr)	(kg/hr)
C02	0	0	0	0	0	0	0
02	1.88E-02	0	0	6.01E-03	9.25E-03	2.26E-03	3.53E-02
S	. 0	0	0	0	0	0	0
H20	2.66E-01	0	0	7.08E-02	1.306-01	3.18E-02	4.89E-01
H2S	4.42E-02	0	0	1.186-02	2.17E-02	5.29E-03	8.30E-02
N2	6.17E-02	0	0	1.64E-02	3.03E-02	7.39E-03	1.16E-01
EHN	0	0	0	0	0	0	0
СНЗОН	0	0	0	0	0	•	0

SLURRY TANK AND WASH (Rquid) Estimation of fugitive Emissions for one beavon train

EQUIPMENT TYPE	QUANTITY
Pumos	•
Vartical Vessies	0
Horizontal Vessies	-
Storage Tanks	-
Pressure Relief Valves	-
Heat - Exchangers (Heating Side)	0
Heat - Exchangers (Cooling Side)	0
London or Unionding Point	0
Flow Transfitters	2
Turbles Mater and Prover Connection	0

FI OW SUMMARY	kamol/hr	kg/hr	mass fraction
C02	0	0	0
02	. 0	0	0
s	9	173	1.23E-01
H20	64	871	6.92E-01
H2S	1	34	2.42E-02
SN	8	226	1.81E-01
NH3	0	0	0
СНЗОН	0	0	0
TOTAL FLOW	88	1403	-
		3	

						Inter Cadad lines
EQUIPMENT WITH FUGITIVES	Valves	Pumps	Compressors	Pressure Relief Valves	-langes	Open - Ended Lines
					00000	0.0017
	1700.0	0	0	0.104	0.00063	212212
EMISSION FACTOR	1,00.0				anc	26
	40	0	0	1	0/7	
QUANTITY						

.

			FAISSIONS FROM :				TOTAL
				And And And A		Ionen - Ended Lines	EMISSIONS
COMPONENT	Valves	Pumps	Compressors				
COMPONENT		Acres 1	(ka/hr)	Valves (kg/hr)		(kg/m/)	(M3/64)
	(kg/hr)	(m)/f(w)				0	•
	<	c	0	-	~		
C02	>				c	0	•
	<	0	- -	0	~		
02	×		•	1 205.03	2 10F-02	5,136-03	8.18E-02
	4 2RF-02	0	>	1.401.02			
0			4	7 205.02	1.185-01	1 2.88E-02	4.00E-U1
0011	2 41F-01	0	>	1.205.05			00 100 1
HZU		í	<	2 62E-A3	4.146-03	1.01E-03	1.01E-02
361	8.435.03	2	2			00100	1 035 04
674			•	1 A7F-02	2.74E-02	6.08E-U3	1.0/6-01
N.S	1 5.59E-02	0				4	· · ·
74		<	<	0	0	0	>
NH3	0	0	>		Ċ		c
		c	0	0	2		
CH30H	2						

BALANCE TANK (Rquid) ESTIMATION OF FUGITIVE EMISSIONS FOR ONE BEAVON TRAIN

				0		de) 0	(e) 0	0		
EQUIPMENT TYPE	Pumps	Vertical Vessies	Horizontal Vessies	Storage Tanks	Pressure Relief Valves	Heat - Exchangers (Heating Side)	Heat - Exchangers (Cooling Side)	Loading or Unloading Point	Flow Transmitters	Turbine Meter and Prover Connection

╺╋╋╋╋				
0 0 0 0 0 0 0 20 360 380 380 1 34 34 34 8 225 34 34 29 0 0 0 20 29 0 0 0 23 29 0 0 0 13	FLUW SUMMARY	kgmol/hr	kaAv	
0 0	C02	0		TIASS TRACTION
0 0 0 20 360 380 1 34 34 8 225 34 0 0 0 0 29 619 619	02	0		0
20 360 1 34 8 225 0 0 29 619	s			0
1 34 1 34 8 225 0 0 29 619	H20			0
8 235 0 0 29 01 29 01	H2S	2-	300	5.81E-01
29 01 29 01 29 01	N2		5	5.49E-02
29	NH3		7270	3.64E-01
29	снаон		0	0
	TAL FLOW	200	0	0
			619	

5

ES	
FUGITIV	
WITH	
UPMENT	

Veve Duros	Compressors Pres		30 0.0017 0.0003 0.0017	
EQUIPMENT WITH FUGITIVES		EMISSION FACTOR	QUANTITY	

.

		ENESIONS		(Mg/Mr)	0		5			2.60E-01	2 46E.A3	20-20-2	1.03E-01		
		Open - Ended Lines	(kafte)		2	C		2	1 4RF-02	70 702.	1.40E-03	8 2RE-03		0	0
			(ka/hr)	c		0		>	6.08E-02		0./4E-03	3.816-02		,	0
	ŧ	Pressure Relief	Valvas (kg/hr)	0		0	0		6.04E-02	6 71E.03	CO. 31 1:0	3.78E-02	c		0
FAISSIONS EDOAL	WOUL CHOICE	Compressore	(kg/hr)	0			0		•	•		>	0		
	ſ		1 million	5	•	•	h	<		0	-		0	c	
	Valvas	(ka/hr)			5	6		1.24E-01	1 175.00	1.1/5.02	7.75E-02			0	
	COMPONENT		C02	03		S		140	H2S		NZ	CHN CHN	00000	LINEND	

WATER - SULFUR SEPARTOR ESTIMATION OF FUGITIVE EMISSIONS FOR ONE BEAVON TRAIN

EQUIPMENT TYPE	QUANTITY	
Pume	0	
Vertical Vessies	0	
Horizontal Vessies	-	
Storage Tanke	0	
Pressure Relief Valves	0	
Heat - Exchangers (Heating Side)	0	
Heat - Exchangers (Cooling Side)	0	
Loading or Unioading Point	0	
Flow Transmitters	Э	
Furbine Mater and Prover Connection	0	

FLOW SUMMARY	kamol/hr	kg/hr	mass fraction
C02	0	0	0
02	0	0	0
s	6	173	1.096-01
H20	64	1161	7.27E-01
H28	1	34	2.16E-02
N2	8	226	1.42E-01
CHN	0	0	0
СНЗОН	0	0	0
TOTAL FLOW	78	1583	

.

						Doon Ended Lines
COLINDARENT WITH FUGITIVES	Valves	Pumpe	Compressors	Pressure Helier	Linger	
				Valves		
LOCION CACTOD	0.0071	0	0	0	0.00083	0.0017
VISSION FACTOR	90	c	0	0	164	20
UANTITY	90	2				

			FMISSIONS FROM:				TOTAL
	Webser		Compressors	Pressure Rollaf	Flanges	Open - Ended Lines	EMISSIONS
COMPONENT		(ka/hr)	(ka/hr) Valv	Valves (kg/hr)	(kg/hr)	(kg/hr)	(kg/hr)
			c	0	0	0	0
C02	2					c	0
02	0	0	0			0.000	4 017 0.0
J. J	3.025-02	0	•	0	1.486-02	3.62E-03	4.B/E-UZ
2	10100		0	0	9.88E-02	2.416-02	3.24E-01
HZO	2.015.01			•	2.92E-03	7.126-04	9.586-03
H2S	b.86E-03	2			1 945 03	4 725.03	A 36F-02
N2	3.94E-02	0	0	0	1.346-02	7.1 4.5 2.2	
C.T.V	0	0	0	0	0	0	0
CUN			c	c	0	0	0
CH30H	5						