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EXECUTIVE SUMMARY

The objective of the research was to develop the methodology for the catalytic
synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methy] tertiary butyl ether
(MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol
(isobutanol). The overall scheme involves gasification of coal, purification and shifting of
the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of
the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that
has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and
smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene
at low pressures.

The effectiveness of solid acid catalysts for the conversion of methanol and isobutanol
mixtures to ethers or precursors to ethers was investigated. The target ethers are those
which possess beneficial fuel additive characteristics such as high octane or high cetane
values for use in gasoline or diesel fuels, respectively. In addition, these ethers possess
environmentally beneficial properties in that they are oxygenates and their use in automotive
fuels reduces carbon monoxide emissions. Indeed, the use of oxygenated fuels is required
in many major metropolitan areas during winter months.

Several very selective novél reactions have been discovered over the course of this
work. H-Mordenite can selectively convert, at relatively low temperatures, i.e. 90-150°C, the
methanol in the methanol/isobutanol mixture to dimethyl ether (DME) while leaving the
isobutanol unconverted. Acidic ion-exchange resins, particularly Nafion-H, have been shown

to directly couple the two alcohols to MIBE selectively at 90°C,

Sulfate-modified zirconia converts isobutanol selectively, in high yield, in the presence




of an equimolar amount of methanol, to isobutene with minimal conversion of methanol.
This essentially converts the methanol/isobutanol mixture to a methanol/isobutene mixture
that is the direct feedstock in the current commercial process for MTBE production. This
highly selective and novel reaction is the critical step in the efficient produrtion of MTBE
from C, sources such as coal, natural gas, and biomass.

The direct conversion of methanol and isobutanol to MTBE, although
thermodynamically viable, has been found to be kinetically unfavored over other acid
catalyzed reactions. The conversion, however, may be realized in a 2-step process utilizing
the high selectivity of sulfate-modified zirconia catalyst for the initial dehydration of
isobutanol to isobutene. Then the methanol/isobutene mixture can be converted, at lower
temperafure over Amberlyst-15, to MTBE. Because the initial isobutanol dehydraﬁon
occurs in the presence of methanol, the need fbr a costly alcohol separation step following
higher alcohol synthesis is eliminated.

The sulfate-modified zirconia was characterized extensively. The treatment of the
zirconia precursor with sulfate was found to be crucial as the sulfate-free zirconia was found
to be totally inactive for the methanol-isobutanol reactions even at elevated temperatures.
The addition of sulfate was also found to stabilize the high surface area of the catalyst.
X-ray photoelectron spectroscopy (XPS) of pyridine adsorbed on Zr02/5042' shows the
presence of both Bronsted and Léwis type acid centers. Aqueous titration of water-treated
sulfated zirconia revealed that all of the sulfate groups can be converted to mono;protic

surface Bronsted acid.
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