

UOP

25 East Algonquin Road Des Plaines, Illinois 60017-5017 Telephone 708-391-2000 FAX: 708-391-2253 Telex: 211442

January 18, 1996

Mr James Huemmrich U. S. Department of Energy Pittsburgh Energy Technology Center P.O. Box 10940, MS 921-143 Pittsburgh, PA 15236

SUBJECT:

OXYGENATED OCTANE ENHANCERS:

SYNGAS TO ISOBUTYLENE

Contract Number: DE-AC22-91PC90042

Dear James:

Enclosed find copies of the final version of Technical Progress Report No 17. This report has been approved by Dr Arun Bose. This report contains patentable material which was disclosed in an earlier patent disclosure. Therefore it is marked "patent hold" on the appropriate pages.

If you have any questions concerning this report, please contact me at (708) 391-2038.

Regards,

Sr. Development Specialist

TLM/bls

Enclosures

Document Control Center - U.S. DOE-PETC - MS 921-143 CC:

Dr Arun Bose -- DOE PETC - MS 922 Sarla Nanda -- DOE PETC - MS 58-M217

CLEARED BY PATENT COUNSEL MASTE

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED MY

RC/PF: NVD-Syngas to Isobutylene (DOE) CC: JBaptist, PTBarger, BVVora, TLMarker

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTRACT TITLE AND NUMBER:

Development of a Catalyst for Conversion of Syngas-Derived Materials to Isobutylene DE-AC22-91PC90042

Date:
Quarterly Report No. 17
Reporting Period:
4/1/95-6/31/95

Contractor:

UOP

50 E. Algonquin Rd.

Des Plaines, IL 60017-5016

Author:

Paul T. Barger and Paul R. Kurek

Contract Period: March 15, 1991 to September 14, 1995

QUARTERLY TECHNICAL REPORT

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. The research will identify and optimize key catalyst and process characteristics. In addition, the commercial potential of the new process will be evaluated by an economic analysis.

The effects of temperature, pressure and methanol/ethanol molar feed ratio on the performance of the 2% Pt on Zn/Mn/Zr Oxide catalyst has been evaluated in a series of pilot plant tests. Temperature has been varied from 325°C to 375°C, pressure from 30 psig to 300 psig and MeOH/EtOH ratio from 10/1 to 1/1. Raising temperature increases alcohol conversion, but reduces selectivity and productivity to the desired branched C_4 oxygenates. The higher pressure operation shifts the product ratio from isobutyraldehyde to isobutanol. Decreasing the feed ratio from 10/1 to 7/1 increases methanol conversion as well as selectivity to each of the i C_4 oxygenates. However, further reduction of the feed ratio to 4/1 does not give additional improvement. Based on these findings a pilot plant test at optimized conditions is planned using the 2% Pt on Zn/Mn/Zr oxide catalyst.

The effects of H_2 , CO and CO_2 co-feeds on the performance of the have also been evaluated using the reference catalyst. Co-feeding H_2 has very little effect, whereas CO has a deleterious effect. CO_2 addition results in higher CO formation, but no substantial change in CO_2 selectivity. Therefore, it appears that the use of a CO_2 recycle would not be effective for reducing the formation of carbon oxide products.

A copper-lined reactor has been constructed that gives acceptable blank activity at temperatures up to 450° C and used to evaluate the activity of the 2% Pt on Zn/Mn/Zr oxide catalyst for methanol-only conversion. At temperatures greater than 350° C, minimal branched C₄ oxygenates are formed. Instead, the primary products are CO and CO₂. Therefore, this catalyst system does not appear to be promising for the conversion of methanol alone to higher alcohols.

1

CLEARED BY PATENT COUNSEL

EXPERIMENTAL

Catalysts

Pt on Zn/Mn/Zr Oxide Catalysts. The preparation of these catalysts by coprecipitation of an aqueous solution of metal nitrates with KOH at pH 11, followed by impregnation of the calcined support with an aqueous Pt chloride solution has been described previously. A large-scale batch of the Zn/Mn/Zr (60/20/20) support was prepared by combining the products from 2 separate precipitations prior to calcination. A small portion of the calcined support was impregnated with 2% Pt, dried and calcined using the standard procedure to afford a sample to certify the support. Upon successful testing of this sample, a 200 g portion of the support was impregnated with 2% Pt, dried and calcined. This material has been used for the process variable studies described in this report.

Catalytic Testing Procedure

The pilot plant testing of catalysts for the conversion of a methanol/ethanol blend to isoalcohols was accomplished as follows. The catalyst, as 20-40 mesh granules, was loaded into a 1/2" I.D. stainless steel reactor. The reactor was purged N_2 at 250 °C, 10 psig, 0.5 scf/hr for 1 hour then pressure tested with N_2 at 250 °C, 500 psig for 1 hour. After restarting the N_2 purge, temperature and pressure were adjusted to the desired conditions. After 2 hours, the methanol/ethanol blend (10/1 molar) was cut into the plant at the desired rate and continued for 16 hours. Product analyses were obtained using two on-line GCs to analyze the total hydrocarbon/oxygenate product and the overhead gas. Conversions, selectivities and productivities (including CO and CO_2) are based on moles of carbon. A listing of the pilot plant runs included in this report is given in Table 1. H_2 , CO and CO_2 co-feeds were added using independent feed systems that are manifolded with the N_2 and methanol/ethanol feed systems immediately before the reactor inlet. In all cases, the co-feed was established with the N_2 purge for 2 hours prior to the addition of the methanol/ethanol blend.

Previous attempts to evaluate catalysts for alcohol conversion at temperatures greater than 400°C have been unsuccessful due to high decomposition of the feed to CO, CO₂ and light hydrocarbons. In order to prevent these side-reactions, a copper-lined reactor was fabricated by silver soldering a 5/8" ID copper tube inside a 3/4" ID stainless steel reactor. Blank tests in this reactor before and after methanol conversion testing show only minimal methanol decomposition. The testing procedure for methanol-only conversion was similar to that described above, except that a pure methanol feed was used in place of the 10/1 methanol/ethanol blend. A single run with C_2 co-feed was accomplished by replacing the CO_2 cylinder described above with C_2 feed was cut-in with the N_2 , prior to alcohol addition.

RESULTS AND DISCUSSION

Large-Scale Preparation of 2% Pt on Zn/Mn/Zr (60/20/20) Oxide Catalyst

Catalysts consisting of Pt impregnated on a Zn/Mn/Zr mixed metal oxide support have been identified as promising for the synthesis of higher branched alcohols, particularly isobutanol, from lower alcohols in previous work in this program.¹⁻⁵ The optimization of the catalyst formulation (Task 2.0 of the program) was described in the previous Quarterly Reports^{4,5}. A catalyst composition of 2% Pt on a 60/20/20 (molar) Zn/Mn/Zr oxide support was found to give the best performance for higher oxygenate production. A scaled-up preparation of this material (from 30 g to 200 g) has been completed. Pilot plant testing of this material has shown comparable performance to previous samples with the same nominal composition (Table 2). This large supply of catalyst has been used for the process variable studies described in this report.

Process Variable Studies for Methanol/Ethanol Conversion

The effects of temperature, pressure and methanol/ethanol molar feed ratio on the performance of the 2% Pt on Zn/Mn/Zr Oxide catalyst has been evaluated in a series of pilot plant tests. Temperature has been varied from 325°C to 375°C, pressure from 30 psig to 300 psig and MeOH/EtOH ratio from 10/1 to 1/1. Table 3 summarizes the average conversions, selectivities and productivities obtained from 9-16 hours on stream at each of the conditions employed.

Raising temperature increases alcohol conversion, but reduces selectivity and productivity to the desired branched C_4 oxygenates. CO and light hydrocarbons production is substantially higher 375°C compared with 325°C, while CO_2 and methyl acetate (presumably from Cannizzaro condensation) are lower. Higher temperature also shifts the C_4 oxygenates product ratio toward isobutyraldehyde from isobutanol and methyl isobutyrate. Based on these results, it appears that lower temperature, with the use of lower space velocity to maintain conversion, is the preferred operating condition.

The major effect of higher pressure operation is to shift the product ratio from isobutyraldehyde to isobutanol. CO selectivity is also increased, which is surprising considering the thermodynamics of methanol decomposition to CO and H_2 should be disfavored by raising pressure. Operation at 300 psig affords the highest productivities of isobutanol and to iC₄ oxygenates observed with a 10/1 methanol ethanol feed. With the combination of higher pressure and lower temperature it may be possible to obtain these better oxygenate selectivities and productivities while reducing the amount of CO produced.

Variation of the methanol/ethanol feed ratio has been used to gain a understanding of the mechanism of alcohol coupling. Decreasing the feed ratio from 1.0/1 to 7/1 increases methanol conversion as well as selectivity to each of the iC₄ oxygenates. CO_x selectivities are also slightly reduced. However, further reduction of the methanol/ethanol feed ratio to 4/1 does not give additional improvement as light esters, presumably arising from base-catalyzed Cannizzaro reactions, and unidentified heavy by-products increase. At a 1/1 feed ratio branched higher alcohol products are substantially reduced and light ester products dominant the observed product. The highest i-C₄ oxygenates productivity has been obtained at a 7/1 methanol/ethanol feed ratio. This indicates that an excess of ethanol is required to prevent other base catalyzed coupling reactions (such as the Cannizzaro reaction) from occurring over this catalyst.

Based on these findings a pilot plant test at optimized conditions is planned using the 2% Pt on Zn/Mn/Zr oxide catalyst. The conditions to be used will be 325° C, 300 psig, 1 hr⁻¹ MeOH WHSV and 7/1/2 MeOH/EtOH/N₂ molar feed ratio.

Co-feeding H₂ at a 2/1 H₂/MeOH feed ratio had very little effect on the performance of the Pt on Zn/Mn/Zr oxide catalyst (Table 4). Methanol conversion is higher and selectivity shifts from isobutyraldehyde to isobutanol with H₂ giving an overall slightly higher productivity for isobutanol. It has been speculated that the dehydrogenation of methanol and ethanol to the corresponding aldehydes is a key first step in the coupling mechanism. The presence of an H₂ co-feed might be expected to inhibit the formation of these intermediates and hinder the formation of higher alcohols. However, it appears that this is not a problem to the low H₂ feed ratio used in this experiment. Future work will include a pilot plant test at a high H₂/MeOH feed ratio, similar to that observed in the product effluent of a commercial methanol synthesis process. The H₂ co-feed does appear effect the hydrogenation/dehydrogenation equilibrium between alcohol and aldehyde and, therefore, can be a factor in determining product selectivity.

Table 4 also shows that co-feeding CO has a deleterious effect on catalyst performance. Alcohol conversions and isobutanol selectivities are decreased. A large increase in other oxygenates and unidentified heavy products suggests that side-reaction such as carbonylation may be occurring. Due to the unattractiveness of this result further characterization of the reaction products has not been pursued.

The coupling of methanol and ethanol to isobutanol produces two equivalents of water as a co-product. At the conditions used for this process, the water gas shift equilibrium greatly favors the conversion of H_2O and CO to CO_2 , which a major product observed in the pilot plant tests. Therefore, this water co-product results in a substantial loss in carbon efficiency. One approach to overcome this loss is to recycle CO_2 to the process, thus forcing the production of H_2O . Two levels of CO_2 co-feed (1.5 and 2.8 $CO_2/MeOH$) have been evaluated in order to determine whether

this approach has merit with the Pt on Zn/Mn/Zr catalyst system. Table 4 summarizes the results of this testing. CO_2 addition has a minimal effect on conversion levels, but results in lower selectivities to the desired iC₄ oxygenates due to higher CO formation. CO_2 selectivity is not substantially reduced. Therefore, it appears that the use of a CO_2 recycle would not be effective for reducing the formation of carbon oxide products with this catalyst.

Methanol-Only Conversion over Pt on Zn/Mn/Zr Oxide Catalyst

The previous quarterly report in this project described the evaluation of three 2% Pt on Zn/Mn/Zr oxide catalyst formulations for the conversion of methanol only to higher branched oxygenates at 350°C5. Test conditions were identical to those employed with the 10/1 methanol/ethanol blend, except that a pure methanol feedstock was used. For all of these catalysts, the products containing C-C bonds were virtually eliminated when a methanol only feed is used. Selectivities to total C4+ products were less than 3%. The major products observed were due to other reactions including methanol decomposition (CO, CO2, H2), hydrogenation (methane), etherification (DME) and Cannizzaro condensation (methyl formate). Attempts to test these catalysts at temperatures greater than 350 °C were unsuccessful due to substantial methanol decomposition to CO, CO2 and H2. A blank reactor test using the standard 316 stainless steel reactor loaded with glass beads at 250 °C to 500 °C showed excessive methanol decomposition at 450 °C (35%) and 500 °C (68%)5. A copper-lined stainless steel reactor has been fabricated to allow catalyst testing at temperatures greater than 350°C. Table 5 shows the results of a blank test in this reactor at 350, 400 and 450°C. Methanol decomposition is less than 10% are all temperature. At 350°C, C2 oxygenates (DME and methyl formate) are the major products, while carbon oxides, particularly CO become more predominant at higher temperatures.

The performance of the reference 2% Pt on Zn/Mn/Zr oxide catalyst for the conversion of methanol only to higher oxygenates has been evaluated using the copper-lined reactor at 350, 400 and 450°C. Table 5 shows that minimal branched C_4 oxygenates are formed. Instead, the primary products are CO and CO_2 . Therefore, the performance of this catalyst system for methanol only conversion is not improved by operation at higher temperatures.

Based on the results obtained with to date with Pt on Zn/Mn/Zr oxide catalysts with methanol only feed, this catalyst systems does not appear to be promising for the conversion of methanol alone to higher alcohols. It appears that this catalyst is active only for the aldol condensation step, in which a C_2 aldehyde intermediate is condensed with C_1 species, in the overall mechanism. Therefore, the final pilot plant demonstration runs and the economic evaluation of this catalyst system will be directed at the conversion of methanol with ethanol to higher alcohols.

CONCLUSIONS

The effects of temperature, pressure and methanol/ethanol molar feed ratio on the performance of the 2% Pt on Zn/Mn/Zr Oxide catalyst has been evaluated in a series of pilot plant tests. Temperature has been varied from 325°C to 375°C, pressure from 30 psig to 300 psig and MeOH/EtOH ratio from 10/1 to 1/1. Raising temperature increases alcohol conversion, but reduces selectivity and productivity to the desired branched C_4 oxygenates. The major effect of higher pressure operation is to shift the product ratio from isobutyraldehyde to isobutanol. Decreasing the feed ratio from 10/1 to 7/1 increases methanol conversion as well as selectivity to each of the i C_4 oxygenates. CO_x selectivities are also slightly reduced. However, further reduction of the methanol/ethanol feed ratio to 4/1 does not give additional improvement. Based on these findings a pilot plant test at optimized conditions is planned using the 2% Pt on Zn/Mn/Zr oxide catalyst. The conditions to be used will be 325°C, 300 psig, 1 hr⁻¹ MeOH WHSV and 7/1/2 MeOH/EtOH/N₂ molar feed ratio.

The effects of H_2 , CO and CO_2 co-feeds on the performance of the have also been evaluated using the reference catalyst. Co-feeding H_2 at a 2/1 H_2 /MeOH feed ratio has very little effect, whereas CO at a similar level has a deleterious effect as it reduces alcohol conversions and isobutanol selectivity. CO_2 addition has a minimal effect on conversion levels, but results in lower selectivities to the desired iC_4 oxygenates due to higher CO formation. CO_2 selectivity is not substantially reduced. Therefore, it appears that the use of a CO_2 recycle would not be effective for reducing the formation of carbon oxide products with this catalyst.

A copper-lined reactor has been constructed that gives acceptable blank activity at temperatures up to 450° C. Using this reactor, the activity of the 2% Pt on Zn/Mn/Zr oxide catalyst for methanol conversion has been evaluated at temperatures up to 450° C. At these higher temperatures minimal branched C_4 oxygenates are formed. Instead, the primary products are CO and CO_2 . Therefore, this catalyst system does not appear to be promising for the conversion of methanol alone to higher alcohols.

REFERENCES

- 1) P. T. Barger, DOE Quarterly Report No. 12, (1994).
- 2) P. T. Barger, DOE Quarterly Report No. 13, (1994).
- 3) P. T. Barger and P. R. Kurek, DOE Quarterly Report No. 14, (1994).
- 4) P. T. Barger and P. R. Kurek, DOE Quarterly Report No. 15, (1995).
- 5) P. T. Barger and P. R. Kurek, DOE Quarterly Report No. 16. (1995)....

Table 1. Run List

_	_==		=	<u>=</u>	=:	<u></u> :	==	==	==	==	==	==	==	==	==	==	=	=	=	=	==	==	=	=	=	=	==	==	==	==	==	==	==	=	==	===	==	==	==	:
	FEED RATIO MeOH/EtOH/N2/Others	1 / 0.14 / 2 N2	1 / 0.25 / 2 N2	1/1.00/2N2	1/0.25/2 N2		1/0.10/2N2		1/0.10/ZNZ	1/0.10/2NZ	1/0.10/2 NZ	1/0.10/2 NZ		2H 2 / 2N 2 / 0.10 / 1	1/0.10/2NZ/ZCO	1/0.10/2 NZ/ (COZ)	1/0/2NZ/ZCZ=	1/0.10/2 N2/No COZ	1/0.10/2 N2/1.5 CO2	1 / 0.10 / 2 N2 / 2.8 CO2			1/0/2N2	1/0/2N2	1/0/2N2	1/0/2N2	1/0/2N2				1/0/2/2					-	1/0/2 N2		-	
43	MeOH WHSV		. N	~	8		N	•	~	8	8	8	•	N	N	N.	8	8	8	٥			8	8	8	~	8	1	N (2	N (N C	N 6	4 6	N C	N		~ 1		
CONDITIONS	ا ہے		8 8	30	8		සි.	. ;	္က	9	\$	300	;	ස	ස	8	ဗိ	ස	30	30	;		30	8	30	30	30		္က	9	္က မ		8 8			300			300	
O	TEMP (C) INLET MAX		350	350	320		320	_	325	375	320	320	-	320	320	320	350	350	350	350	===	=:	## 200 200	450	400	350	300	:=-	450	320	320	007	450	nee ii		0\$ *	350	400	450	=
=	LOADING II	***************************************	n 1	ם ני	- u	,	ຜ		ຮ	z,	ιΩ	2		2	z,	ı,	ıc	ı.) K	ט ני	,								ຜ		ı,			ı,						
			20-40M	20-40M	20-40M	110t-107	20-40M		20-40M	20-40M	20-40M	20-40M		20-40M	20-40M	20-40M	20-40M	20-40M	70-401	20 140M	Z0-40M								20-40M		20-40M		:	20-40M						
																							HOS	0-12	12-24	24 - 30	48-60		0-16	16-32	0-16	16-32	32-48	0-16	16-32	32-48	4	16-32	32-48	
	CATALYST DESC	CAIALISI A	2.0%PV / Zh/Mn/Zr (60/20/20) Oxide	2.0%Pt / Zn/Mn/Zr (60/20/20) Oxide	2.0%Pt / Zn/Mn/Zr (60/20/20) Oxlde	2.0%Pt/Zn/Mn/Zr (60/20/20) Oxlde	o sector in the life tendon Collda	2.0%FT/ Litiminizi (ou)zuzu Onica		2.0%PT/Zn/Mn/Zr (60/20/20) Oxide	2.0%Pt / Zn/Mn/Zr (60/20/20) Oxide	2.0%Pt / Zn/Mn/Zr (60/20/20) Oxide	2.0%Pt/Zn/Mn/Zr (60/20/20) Oxide	of the Control of the	2.0%PT / Zn/Mn/Zr (60/Z0/Z0) Oxide	2.0%Pt / Zn/Mn/Zr (60/Zu/Zu) Oxide	2.0%PY / Zn/Mn/Zr (60/20/20) Oxide	2.0%Pt / Zn/Mn/Zr (60/20/20) Oxlde			Glass Beads in Copper-Lined Reactor						2.0%H/ Znimizi (bujzujzuj Oxide	opin (Calcado) Children (March	Z.U. Art / Zilimitzi (ovizuzu) Onizu		a sacto (2 mater 2) tentrolon) Oxida	2.0%PT/ Lithmiter (bu/eu/eu/ Oxide			Glass Beads in Copper-Lined Heactor					
	CATALYST	# ROOK #																																						
	CATALYST	A Book#	A285_0A	B265-98	8265-98	8265-98		8265-98		8265-98	8265-98	8265-98	8265-98		8265-98	8265-98	8265-98	8265-98	A265-98	R265-98	8265-98			None		-	-			8565-98		8265-98	=	-	8265-98	==	==	Nome	=:	==
	==:	E N	- 70¢	305	308	307	==: }	308	=	309	310	311	312	=	313	314	315	316	347	===	319			320	2					321		322			323			324		

Table 2. Pilot Plant Performance of Pt on Zn/Mn/Zr Oxide

8265-76	8265-95	8265-98
2% Pt on Z	n/Mn/Zr (60/20)/20) Oxide
Initial Prep	Certification	Large Prep
(g)	(g)	(g)
272	297	308
350°C, 30	psig, 2 hr ⁻¹ Me	OH WHSV,
1/0.1/2	WeOH/ETOH/N ₂	(moiar)
58.7	50.2	53.4
100.0	99.0	99.1
0.0	0.5	0.4
4	1	0.1
		11.6
1	i	18.0
[B	4.3 1.5
	1	7.3
5.3	5.7	7.5
5.4	4.5	4.1
1.9	2.2	1.4
25.4	23.2	22.3
26.0	25.9	28.0
5.2	5.5	5.1
	2% Pt on Z Initial Prep (g) 272 350°C, 30 1/0.1/2 58.7 100.0 0.0 0.0 11.1 17.7 5.3 2.0 5.3 5.4 1.9 25.4	2% Pt on Zn/Mn/Zr (60/20 Initial Prep (g) Certification (g) 272 297 297 297 297 350°C, 30 psig, 2 hr-1 Met 1/0.1/2 MeOH/EtOH/N ₂ 58.7 50.2 99.0 50.0 0.1 11.1 13.0 17.7 16.2 5.3 5.4 2.0 3.2 5.3 5.7 5.4 4.5 1.9 2.2 25.4 23.2 26.0 25.9

Effect of Process Variables on Performance of Pt on Zn/Mn/Zr Oxide Catalyst for Methanol/Ethanol Conversion Table 3.

Run Number 309 Conditions Temperature (°C) 325 Pressure (psig) 30 MeOH/EtOH (molar) 10/1	308 3 350 3 10/1 1	310							
ons re (°C) psig) (molar)	., -		308	311	312	308	304	307	306
re (°C) psig) (molar)		2 hr ⁻¹ N	MeOH WHSV,		/1 N ₂ /M	2/1 N ₂ /MeOH (molar)	olar)	-	
psig/ (molar)		375	350	350	350	350	350	350 30	350 30
		10/1	10/1	10/1	10/1	10/1	7/1	4/1	=======================================
(%)	_	64.2	53.4	46.0	56.4	53.4	57.4	58.8	65.5
\dashv	+	1,00	23.1	23.7	5,75	;	<u>: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</u>		
Selectivities (mole %)		-	0.4	0.3	0.8	0.4	1.0	2.9	2.0
		0.1	0.1	0.0	0.0	0.1	0.1	0.5	1.2
•		5.7	11.6	14.4	20.7	11.6	15.3	9.1	0.3
IC, Aldehyde 16.6	18.0	13.4	18.0	11.2	7.2	18.0	19.0	12.9	0.0
ate		2.1	4.3	5.1	5.6	4.3	5.4	6.9	0.2
S		4.4	7.5	8.	1.4	1.5	9.6	9.7	
Others (No ID) 8.5		8.1	7.3	5.8	2.1	7.3	2.	13.4	14.1
CC. Oxygenates 7.2	4.1	2.2	4.1	3.3	3.0	4.1	4.1	6.9	6.99
CC. Hydrocarbons 0.7		3.5	1.4	2.7	5.6	1.4	ر . ن	0.9	0.7
		33.9	22.3	26.2	31.2	22.3	18.1	13.0	5.1
CO ₂ 27.5	28.0	25.5	28.0	29.2	25.2	28.0	26.2	25.8	5.6
Productivities									
iC_0H 5.5	5.1	2.9	5.1	5.6	9.5	5.1	8.1	5.9	0.4
ates		10.8	14.9	11.9	15.4	14.9	21.0	17.4	2.8

Table 4. Effect of H₂, CO and CO₂ Co-Feeds on Performance of Pt on Zn/Mn/Zr Oxide Catalyst for Methanol/Ethanol Conversion

Catalyst		2% Pt on Zr	8265-98 2% Pt on Zn/Mn/Zr (60/20/20) Oxide	:0/20) Oxide	
Run Number	308	313	314	318	319
Conditions		325°C, 30	325°C, 30 psig, 2 hr¹ MeOH WHSV	eOH WHSV	
MeOH/EtOH	10	10	10	10	10 .
N ₂ /MeOH	7	2	2		2 2
Other/MeOH	None	2 H ₂	2 CO	1.5 CU2	2.8 .02
Conversion (%)	(C C	c	70	55 A
MeOH	53.4 99.1	58.3 99.5	29.3 90.5	93.6	98.9
Selectivities (mole %)	5	0	2.9	0.5	0.5
בניים	t [0.0	0.2	0.0	0.0
10.0H	11.6	14.0	1.6	9.6	7.7
iC, Aldehyde	18.0	11.6	7.5	18.0	15.9
Me iButyrate	4.3	7.3	6.0	6.5	6.9
Other Oxygenates	1.5	3.2	12.8	2.2	2.4
Others (No ID)	7.3	6.4	12.5	4.4	
soften const	4.1	3.9	4.9	2.4	1.5
C -C Hydrocarbons	4.1	2.6	1.6	1:	9.0
00	22.3	24.4	28.1	32.6	36.1
co,	28.0	26.4	27.2	23.0	27.3
Productivities					
iC,0H	5.1	9.9	0.5	4.2	3.4
iC4 Oxygenates	14.9	15.5	3.1	14.9	12.6

Table 5. Methanol-Only Conversion Using 2% Pt on Zn/Mn/Zr Oxide Catalysts

Catalyst	0	Glass Beads (Blank)	8		2%	8265-98 2% Pt on Zn/Mn/Zr Oxide	8265-98 1 Zn/Mn/Zr O	xide	
Run Number		324			322			323	
Hours on Stream	9-16	25-32	41-48	9-16	25-32	41-48	9-16	25-32	41-48
Conditions			2 hr.¹ M	leOH WH	SV, 2/1 N	2 hr¹ MeOH WHSV, 2/1 N₂/MeOH (molar)	molar)		
Temperature (°C) Pressure (psig)	350 30	400 30	450 30	350 30	400	450 30	350 300	400	450 300
Conversion (%) MeOH	0.2	2.1	8.8	45.9	92.6	95.7	46.7	95.4	96.3
Selectivities (mole %) nC ₃ OH	0.0	1.8	1.2	0.0	0.0	0.0	0.0	0.0	0.0
10,0H	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
iC, Aldehyde	0.0	0.0	0.0	0.5	- 6	0.0	2.0	0.7	. c
Me iButyrate	. 0.0	0.0	0.0	0.0	0,0	0:0	0.1	0.0	0.0
Other Oxygenates Others (No ID)	7.8	1.2	0.3	0.4	0.6	0.8	0.3	0.3	0.3
C ₁ -C ₂ Oxygenates	87.5	54.6	35.0	17.6	0.1	0.1	12.4	0.0	0.1
C ₁ -C ₄ Hydrocarbons CO	0.0	4.2 30.9	5.0 51.7	5.2 67.3	6.9 81.2	7.6 80.6	2.4 76.5	2.6 90.9	3.4 90.7
CO ₂	0.0	5.0	6.8	9.0	9.6	9.9	7.9	5.1	5.1
Productivities (mole/kg/hr) iC ₄ OH	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0