
DE95011376

BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY. QUARTERLY REPORT, JANUARY--MARCH 1994

DEPARTMENT OF ENERGY, PITTSBURGH, PA. PITTSBURGH ENERGY TECHNOLOGY CENTER

1994

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of government-initiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

Search the NTIS Database from 1990 forward

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. Department of Energy Pittsburgh Energy Technology Center

Baseline Design/Economics for Advanced Fischer-Tropsch Technology

Contract No. DE-AC22-91PC90027

Quarterly Report

0 S T.1

October - December 1993

We have no objection from a patent standpoint to the publication or dissemination of this material.

Much Detock 4
Office of Intellectual
Property Counsel
DOS Field Office, Chicago

U.S. Department of Energy Pittsburgh Energy Technology Center

Baseline Design/Economics for Advanced Fischer-Tropsch Technology

Contract No. DE-AC22-91PC90027

Quarterly Report

January – March 1994

Content

Secti	on		Page
1	INTI	RODUCTION AND SUMMARY	1-1
	1.1	INTRODUCTION	1-1
	1.2	SUMMARY	1-2
2	TAS	K 1 - BASELINE DESIGN AND ALTERNATIVES	2-1
	2.2	WESTERN COAL CASE	2-1
3	TAS	K 2 - BASELINE AND ALTERNATIVES ECONOMICS	3-1
4	TAS	K 4 - ASPEN/SP SIMULATION MODEL DEVELOPMENT	4-1
	4.1	ENHANCEMENTS TO P201 F-T REACTOR MODEL	4-1
	4.2	REVISIONS TO THE THREE PFS MODELS	4-2
5	TAS	K 6 - ASPEN/SP SIMULATION MODEL DOCUMENTATION	5-1
6	PRO	JECT MANAGEMENT & STAFFING REPORT	6-1
	6.1	PROJECT MANAGEMENT	6-1
	6.2	STAFFING REPORT	6-1

Tables

Table		Page
2-1	Material Balance Summary - Plant 201 Western Coal Case	2-2
2-2	Material Balance Summary - Plant 202 Western Coal Case	2-4
2-3	Material Balance Summary - Plant 203 Western Coal Case	2-5
2-4	Material Balance Summary - Plant 204 Western Coal Case	2-6
2-5	Material Balance Summary - Plant 205 Western Coal Case	2-8
2 -6	Material Balance Summary - Plant 206 Western Coal Case	2-9
2-7	Material Balance Summary - Area 300 Western Coal Case	2-10
2-8	Overall Utility Balance Summary - Western Coal Case	2-14
2-9	Overall Catalyst and Chemical Requirements - Western Coal Case	2-17

Figures

Figu	re	Page
2-1	Overall Steam/Condensate Distribution - Western Coal Case	2-18
6-1	Overall Milestone Schedule	6-2

Baseline Study F-T

Section 1

Introduction and Summary

This report is Bechtel's tenth quarterly technical progress report and covers the period of January through March, 1994.

1.1 INTRODUCTION

Bechtel, with Amoco as the main subcontractor, initiated a study on September 26, 1991, for the U.S. Department of Energy's (DOE's) Pittsburgh Energy Technology Center (PETC) to develop a baseline design and computer model for advanced Fischer-Tropsch (F-T) technology. This 24-month study, with an approved budget of \$2.3 million, is being performed under DOE Contract Number DE-AC22-91PC90027.

The objectives of the study are to:

- o Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin.
- o Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case.
- o Develop a process flowsheet simulation (PFS) model.

The baseline design, the economic analysis and computer model will be major research planning tools that PETC will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

The study has been divided into seven major tasks:

- o Task 1: Establish the baseline design and alternatives.
- o Task 2: Evaluate baseline and alternative economics.
- o Task 3: Develop engineering design criteria.
- o Task 4: Develop a process flowsheet simulation (PFS) model.
- o Task 5: Perform sensitivity studies using the PFS model.

- o Task 6: Document the PFS model and develop a DOE training session on its use.
- o Task 7: Perform project management, technical coordination and other miscellaneous support functions.

1.2 SUMMARY

During the reporting period, work progressed on Tasks 1, 2, 4, 6 and 7. This report covers work done during the period and consists of four sections:

- o Introduction and Summary.
- o Task 1 Baseline Design and Alternatives.
- Task 2 Evaluate baseline and alternative economics.
- o Task 4 Process Flowsheet Simulation (PFS) Model.
- o Task 6 Document the PFS model and develop a DOE training session on its use.
- o Project Management and Staffing Report.

Completed work on Task 1, during the period of this report, consisted primarily of finalizing and reporting the Western Coal Case design. A Topical Report was prepared, summarizing the design basis and considerations, material and utility balances, capital and operating cost estimates. A similar report was written for the Alternate (ZSM-5) Refining Case reported earlier.

Under Task 2, preliminary economic analyses were performed on both the Alternate Refining Case and the Western Coal Case. Results were compared with each other and with that of the Baseline design. The same set of economic assumptions, taken directly from the Direct Liquefaction Baseline Study, as specified in the original Request of Work, was used for the analysis. This information was presented and discussed in the February 2, 1994 Technical Progress Meeting.

Under Tasks 4 and 6, some of the individual plant simulation models were further revised and enhanced. The three complete process simulation models were tuned to the latest utility balances and cost estimates, and the models were tested to verify that they were operable over the required ranges. A Topical Report, documenting the ASPEN process simulation models was drafted.

Under Task 7, cost and schedule control was the primary activity. A technical progress meeting was held at Bechtel San Francisco office, on February 2, 1994.

Task 1 - Baseline Design and Alternatives

Work progressed during this quarter consisted mainly of finalizing the Western Coal Case design. A Topical Report was drafted, documenting the design basis and considerations, material and utility balances, capital and operating cost estimates.

2.1 WESTERN COAL CASE

Area 100 (Syngas Production) plant PFDs and process descriptions, along with material balance tables were reported in the fifth (October-December' 92) Quarterly Report. Description of the Western Coal Case zero-discharge raw water treatment plant was presented in the last quarterly report (October-December '93).

Of the remaining design information, material balance summaries for Areas 200 and 300 are given in Tables 2-1 to 2-7, along with the overall plant utility summary (Table 2-8), steam flow distribution (Figure 2-1), and catalyst and chemical requirements, Table 2-9.

As a result of the February 2, 1994 technical progress review meeting, a new Fischer-Tropsch catalyst/wax separation scheme using Kerr McGee's Critical Solvent Extraction (ROSE) unit will be developed and incorporated into the baseline design. The Alternative Upgrading and Western Coal Case design will be revised as appropriate.

Table 2-1

Material Balance Summary

Plant W201-Fischer Tropsch Synthesis
(Wyoming Coal)

Stream No.	201.1	201.2	201.3	201.4	201.5	201.6	201.7
5	Syngss	Water	Feed To F-T	F-7	Wax	Aqueous	Off Gas
	from sulfur	addition	Reactor	Vapor		Oxygenates	Τo
	Polishing	To FT					Fuel
Phase	Vap	Liq	Vap	Vap	Liq	Liq	Vap
Component Flows		1	}	1		1	
LBmol/hr		1	ł	ļ.			
H2	36,553.00	1	48,926.00	14,439.00	0.64	0.00	3.4
N2	742.68	1	2,150.16	2,149.58	0.09	1	0.4
02		i i		1			
œ	89,801.00		96,990.00	11,780.00	0.51	0.00	2.7
CO2	6.195.78		7,952.02	53,747.00	10.25	3.34	23.6
H2O		4,610.32	9,565.39	2,607.01	3.55	2,205.05	1.9
CH4	23.29		416.34	1,368.12	0.13	0.00	0.4
C2H4			0.01	389.11	0.09		0.1
C2H6		}	0.01	97.28	0.03		0.0
C3H6				345.05	0.20		0.2
C3H8			ì	60.89	0.04		0.0
IC4HB	1	1		13.46	0.02		0.0
NC4H8				255.63	0.30	l	0.2
IC4H10			1	3.36	0.00		0.0
NC4H10				63.90	0.08		0.0
C5H10	1	1		209.00	0.40		0.1
IC5H12	1	j	Į.	6.96	0.01	ì	0.0
NC5H12				62.68	0.15		0.0
C6H12	1		Į	173.20	0.67		0.1
IC6H14]			5.77	0.02		0.0
NC6H14	l i	i		51.94	0.22		0.0
C7-C19			Į.	975.99	52.64		0.1
WAX		1		3.04	453.69		
OXVAP		· · · · · · · · · · · · · · · · · · ·		43.10	0.10	0.38	0.0
OXHC	i l		Ţ	163.51	1.48	1	0.0
OXH2O				157.96	0.36	157.96	0.0
Catalyst							
Total	133,315.75	4,610.32	165,989.94	89,172.53	525.66	2,366.73	34.1
Total lb/hr	2,882,900	83,056	3,404,400	3,111,000	292,120	47,087	1,264
Moi. Wt.	21.62	18.02	20.51	34.89	555.72	19.90	36.9
MMSCFD	1,214.24		1,511.84	812.18			

Table 2-1 (Cont.)

Material Balance Summary

Plant W201-Fischer Tropsch Synthesis (Wyoming Coal)

Stream No.	201.8	201.9	201.10	201.11	201.12	201.13
	Water	Aqueous	HC	Unconverted	Pretreated	Waste
	For	Water To	Liquid	Syngss	Catalyst	Catalyst To
	Oxyg Wash	Treatment			To F·T	Disposal
Phase	Llq	Llq	Liq	vap	Sturry	Solid
Component Flows						
LBmol/hr						
H2		0,15	5.85	14,433.00		
N2			1.33	2,148.24		
02		·				
œ		0.05	7.95	11,772.00		
CO2		0.00	345.15	53,399.00		
H2O	1,200.00	1,200.00	44.49	357.51		
CH4		0.00	2.39	1,365.73		
C2H4			2.31	386.79	•	
C2H6			0.82	96.45		
C3H6			7.72	337.33		
C3H8			1.56	59.33		
IC4H8			0.84	12.62		
NC4H8			16.22	239.40		
IC4H10		1	0.18	3.18		
NC4H10		ì	4.68	69.22		
C5H10		1	31.12	177.88		
IC5H12			1.06	6.90		
NC5H12			11,76	50.92		
C6H12			61.41	111.79		
IC6H14			1.89	3.88		
NC6H14			20.38	31.56		
C7-C19			859.61	116.57		
WAX	1		3.04		1652.25*	24.2
OXVAP		27.11	15.60			
OXHC		Ì	146.06	17.45	i	
OXH2O	1	}	1	}	Ì	
Catalyst			[429.75	479.75
Total	1,200.00	1,227.32	1,599.43	85,185.77		
Total Ib/hr	21,618	23,000	173,750	2,888,800	2132	50
Mol. Wt.	18.02	18.74	109.04	33.91		
MMSCFD		ĺ	_ i	775.87		

('Indicates flow in lb/hr; Catalyst replacement rate is 11,514 tb/day)

Table 2-2
Material Balance Summary
Plant W202-CO2 Removal
(Wyoming Coal)

Stream No.	202.1	202.2	202.3	202.4
	Unconverted	Deethanizer	Recycle Gas	Scrubbed
	Syngas	Overhead	То	CO2
	From F-T	Vapor	Compressor	
Phase	Vap	Vap	Vap	Vap
Component Flows				
Lbmol/hr				
H2	14.433.00	19.17	14,452.00	
N2	2.148.24	13.54	2,161.85	
02				1
ω	11,772.00	89.62	•	1
CO2	53,399.00	500.65	269.50	53,630.00
H2O	357.51	0.00	357.52	
CH4	1,365.73	58.07	1,423.80	
C2H4	386.79	256.12	642.90	ម
C2H6	96.45	124.58	221.02	1
C3H6	337.33	16.91	354.24	
СЗН8	59.33	1.78	61.11	
IC4H8	12.62		12.62	
NC4H8	239.40		239.40	l l
IC4H10	3.18		3.18	
NC4H10	59.22		59.22	
C5H10	177.88		177.88	
IC5H12	5.90		5.90	
NC5H12	50.92		50.92	
C6H12	111.79		111.79	
IC6H14	3.88		3.88	
NC6H14	31.56		31.57	
C7-C19	116.57		116.57	
WAX				
OXVAP		•		
OXHC	17.45		17.45	
OXH2O				
Total	85,185.77	1,080,43	32,635,33	53,630.00
Total Ib/hr	2.888.800	37.614	566,150	2.360.200
Mol.Wt	33.91	34.81	17.35	44.01
MMSCFD	775.87	9.84	297.24	488.46

Table 2-3 Material Balance Summary Plant W203-Compression & Dehydration (Wyoming Coal)

Stream No.	203.1	203.2	203.3	203.4	203.5	203.6	203.7
300000 110.	Syngae From	Liquid	Synges To	Water To	Unused Fuel	Fuel Gas From	Total Fuel Gas
	CO2	Hydrocarbons	Hydrocarbons	Waste	Gas Froin H2	H2 Recovery/	To
	Removal	To Deethanizer	Recovery	Treatment	Recovery	Regeneration	Gas Header
Phase	Vap	Llq	Vaρ	Llq	Vap	Vap	Vap
Component Flows							
LBmol/hr			1			2005 14	4060.8
H2	14,452.00		14,452.00		1,795.70	2265.14	746.5
N2	2,161.85	0.15	2,161.70		330.11	416.41	740.5
02					4 000 00	2281.79	4090.6
ω	11,861.00		11,860.00		1,808.90		38.5
CO2	269.60		269.25		17.04	21,50	89.3
H2O	357.52			259.57		202.00	544.8
CH4	1,423.80		1,423.48		240.93	303.92 75.17	134.7
C2H4	642.90		642.37		59.59		132.5
C2H6	221.02		220.76		58.63	73.96	8.2
C3H6	354.24		353.02		3.66	4.62	1.1
C3H8	61.11	0.24	60.87		0.50	0.63	0.0
1C4H8	12.62		12.49		0.01	0.02	0.5
NC4H8	239.40		236.85		0.24	0.31 0.01	0.0
IC4H10	3,18		3.15		0.01	0.01	0.1
NC4H10	59.22		58.49	i	0.04	0.08	0.0
C5H10	177.88		172.72		0.02	0.02	0.0
ICUH12	5.90		5.73	1		0.00	0.0
NC5H12	50.92		49.04		0.00	0.00	0.0
C6H12	111.79		102.06				0.0
IC6H14	3.88		3.59			-	
NC6H14	31.57		28.42				
C7-C19	116.57	41.72	74.84				
WAX]]					1
OXVAP		}]	[
OXHC	17.45	11.51	5.95	į.			
OXH2O			1)
Total	32,635.33	90,26	32,196.79	259.57	4,315.41	5,443.54	9,848.2
Total Ib/hr	588,150		552,030	4,676	71,782	90,548	
Mol. Wt.	17.35		17.16	18.02	16.63	16.63	16.6
MMSCFD	297.24	· ·	293.25	J	39.30	49.58	89.7

Table 2-4

Material Balance Summary

Plant W204-Hydrocarbon Recovery

(Wyoming Coal)

Stream No.	204.1	204.2	204.3	204.4	204.5	204.6	204.7
	Synges	Syngas	HC Liquids	HC Liquids	HC Liquids	Deethanizer	Deethanizer
	То	From	To	From	From	Underflow	Overhead
ŀ	H2 Recovery	Dehydration	Deethenizer	Compr & Dehy	F-T Reactor		Vapor
Phase	vap	Vap	Llq	Liq	Liq	Liq	Vap
Component Flows							
Lbmol/hr		I					40.4
H2	14,439.00	14,452.00	12.66	0.66	5.85		19.1
N2	2,149.64	2,161.70	12.05	0.15	1.33		13.5
02	i		•				00.0
∞	11,779.00	11,860.00	80.74		7,95		89.6
CO2	110.97	269.25	158.27		345.15	3.02	500.6
H2O		•		8,64	44.49	53.12	50.0
CH4	1,368.12	1,423.48	55.36		2.39		58.0
C2H4	388.07	642.37	254.30		2,31	1.03	256.1
C2H6	90,99	220.76	129.77		0.82	6.28	124.5
СЭН6	23.84	353.02	329,18		7,72	321.21	16.9
C3H8	3.26	60.87	57.62		1.56	57.63	1.7
IC4H8	0.09	12.49	12.41	0.13	0.84	13.37	
NC4H8	1.59	236.85	235.26		16.22		
IC4H10	0.03	3.15	3.12				
NC4H10	0.29	58.49	58.20				
C5H10	0.11	172.72	172.61			208,89	
IC5H12	0.00		6.73		1.06		
NC5H12	0.02		49,02		11.76		
C6H12	0.01		102.05			173.19	
1C8H14		3.59	3.59				
NC6H14	0.00		28.41				
C7-C19		74.84	74.84	41.72		976.18	
WAX				'	3,04	3.04	
OXVAP	i			_	15.60		
ОХНС		5.95	5.95	11.51	146.06	163.51	
OXH2O							
Total	30,355.05	32,196.79	1,841.13	90.26	1,593.43		1,080.
Total Ib/hr	461,000		91,030		173,750	235,010	37.6
Mol. Wt.	15.19		49.44		109.04	96,14	34.
MMSCFD	276.47						9,8

Table 2-4 (Cont.)

Material Balance Summary Plant W204-Hydrocarbon Recovery (Wyoming Coal)

Stream No.	204.12	204.13	204.14	204.15	204.16	204.19
	Feed To	Fractionator	Condensate	Naphtha To	Distillate To	Wax To
	Product	Overhead	To water	Hydrotreating	Hydrotreating	Hydrocracking
	Fractionator	To Alkylation	Treatment	Plent	Plant	Plant
Phase	Liq	Vap	Llq	Llq	Llq	Liq
Component Flows						
Lbmol/hr						
H2	0.64	0.64				
N2	0.08	0.09				
02						
ω	0.51	0.51				
CO2	13.27	10.62	2.65			
H2O	56.68	8.50	48.18			
CH4	0.13	0.13				1
C2H4	1.12	1.12				
C2H6	6.31	6.31				
C3H6	321.41	321.41				
C3H8	57.67	57.67				
IC4H8	13.39	13.39				
NC4H8	254.33	254.33				
IC4H10	3.33	3.33	'			
NC4H10	63.69	63.69				
C5H10	209.30	208.76		0.54		
IC5H12	6.97	6.97		0.00		
NC5H12	62.81	22.58		40.22		
C6H12	173.86			173.86		
IC6H14	5.80			5.80		
NC6H14	52.16			52.16		
C7-C19	1,028.82		-	594.01	434.81	
WAX	456.73					456.73
OXVAP						
OXHC	164.99			79.19	85.79	
OXH2O						l
Total	2,953.99	980.05	50.83	945.78	520.60	456.73
Total Ib/hr	526,314	52,620		98,654	91,879	282,170
Mol. Wt.	178.17	53.69	19.37	104.31	176.49	617.81
MMSCFD		8.93				

Table 2-5
Material Balance Summary
Plant W205-Hydrogen Recovery
(Wyoming Coal)

Stream No.	205.1	205.2	205.3	205.4	205.5
	H2 From Cat.	Recycle Gas	H2 Product	Fuel (Furge)	Autothermai
	Reformer	From	From	Gas	Reformer
	Area 300	Plant 204	PSA		_ Feed
Phase	Vap	Vap	Vap	Vap	Vap
Component Flows		į			
Lbmol/hr					
H2	2.113.03	14,439.00	3,066.51	4060.84	9,424.75
N2		2,149.64		746.52	1,403.13
O 2	1				
ω		11,779.00		4090.69	7.688.69
CO2		110.97		38.54	72.44
H2O					
CH4	69.73	1,368.12		544.85	893.01
C2H4		388.07		134.77	253.30
C2H6	100.99	90.99	Ì	132.59	59.39
C3H6	Į	23.84		8.28	15.56
C3H8		3.26		1.13	2.13
IC4H8		0.09		0.03	0.06
NC4H8		1.59		0.55	1.04
IC4H10		0.03		0.01	0.02
NC4H10	Į.	0.29		0.10	0.19
C5H10		0.11		0.04	0.07
IC5H12		0.00		0.00	0.00
NC5H12		0.02		0.01	0.01
C6H12		0.01		0.00	0.00
IC6H14		0.00			
NC6H14		0.00			0.00
C7-C19					
WAX					
OXVAP	Ì				
OXHC					
OXH2O					
Total	2,283.75	30,355.05	3,066.51	9,758.95	19,813.8
Total lb/hr	8,415	461,000	6,181	162,330	300,900
Mol. Wt.	3.68	15.19	2.02	16.63	15.19
MMSCFD	20.80	276.47	27.93	88.88	180.40

Table 2-6
Material Balance Summary
Plant W206-Autothermal Reformer
(Wyoming Coal)

Stream No.	206.1	206.2	206.3	206.4
	Oxygen	Steem	Syngas	Recycle Gas
	Addition To	Addition To	From	То
	Reformer	Reformer	H2 Recovery	F-T Reactor
Phase	Vap	Vap	Vap	Vap
Component Flows	į.			
Lbmol/hr				
H2	Ī		9,424.75	12,373.00
N2	4.36		1,403.13	1,407.48
02	832.51	•		
∞			7,688.69	7,188.96
CO2			72.44	1,756.24
H2O		6.147.93		4,945.06
CH4			893.01	393.05
C2H4			253.30	0.01
C2H6			59.39	0.01
C3H6			15.56	
СЗН8			2.13	
IC4H8			0.06	
NC4H8			1.04	
IC4H10			0.92	
NC4H10			0.19	
C5H10			0.07	
IC5H12			0.00	
NC5H12			0.01	
C6H12			0.00	
IC6H14				
NC6H14			0.00	
C7-C19			i	
WAX		1		
OXVAP				
OXHC				
OXH2O				
Total	836.86	6,147.93	19,813,80	28.063.83
Total lb/hr	26,761	110,760		
Moi. WŁ	31.98	18.02		15.62
MAISCED	7.62	56.00		255.61

Table 2-7 (1) Material Balance Summary Area W300 -Product Upgrading and Refining Summary (Wyoming Coal)

	4		Nephtha Hydrotrepting>							
	Feed	H2 Required	C4-	C5/C6	C7+ Nachtha	H2O Prodcod	Feed	H2 Required	C4-	Diesel
Component	204.2	300.3	303.1	303,2	303.3	303.4	204.15	300.2	302.1	302.2
H2		1471	0	0	0		[726	0	0
N2) 0		0	0	0		0		0	0
1 2	Ĭ		Ō	0	0		0		0	O
XX XXX	1 6		Ö	0	0		0		0	0
120	١٥		Ŏ	Ó	0		0		0	0
120 31	ŏ		358	Ö	Ó		0		84	0
	١٥		0	ō	Ō		l o		0	0
C2=	1 6		1378	ŏ	ŏ		0		127	0
02	1		0	Ö	ŏ		٥		0	0
23≖	0			0	ŏ		اة		296	0
23	0		1752	0	ő		Ö		127	0
C4	0		243	-	-		0		211	D
nC4	0		1171	0	0		0		Ö	ò
C4=	0		0	0	0		l ö		ŏ	ŏ
C5	25		0	78	0				0	o
nC5	3625		0	4287	0		0		Ö	0
C5=	0		0	0	0		0		0	0
C6=	14632		0	0	0		0		_	a
C6	499		0	2000	0		0		0	ů ů
nC6	4495		0	17996	0		0		0	
C7-C10 (Naphiha)	69258		0	G	0		0		0	0
C11-C19 (Distillate)	0		0	0	0		84480		0	0
C19+ (Wax)	0		. 0	0	0		0		0	0
180-300OX	6960		0	0	0		0	,	0	0
300-350OX	730		0	0	0		0		0	0
350-700OX	0		0	0	0		6528		0	0
Reformate	١٥		Ö	Ö	Ō		0		0	0
C3 Alkylate	1 0		ŏ	ō	Ŏ		0		0	0
	1 0		ŏ	ŏ	ŏ		0		0	0
C4 Alkylate	1 0		ŏ	ŏ	ŏ		0		0	0
C5 Alkylate	0		0	Ö	ŏ		ì		0	0
C5 Isomerate			Ö	ő	ŏ		1 6		Ō	0
C6 Isomerate	1		0	Ö	ŏ		١٥		0	0
C7-300 HC	0		0	0	Ö		ŏ		ŏ	ō
300-350 HC	0		. 0	0	ŏ		l ŏ		Ŏ	Ō
350-500 HC	0		ŏ	0	ŏ		lŏ		ō	Ō
500-700 HC	0		0	0	54500		l ŏ		ŏ	ō
C7-300 HTU	0		-				l ŏ		ŏ	Ö
300-350 HTU	0		0	0	15471		1 0		Ö	54305
350-500 HTU	0		0	0	0				0	35751
500+ HTU	0		0	0	0		0		-	
HLO Produced) 0		0	0	0	2437	0		0	0
Total (Lb/hr)	100225	1471	4902	24361	69971	2437	91008	726	845	90056
Total (BPSD)	9545			2545	67 58	167	8054		105	8093
Density (lb/ft3)	44.4110		31.2678	40.9151	44.2551	62.2978	48.2960		34.4807	47.558
Mol. Wt	99.87	2.02	37.08	83.28	117.85	18.02	192.53	2.02	38.40	192.28

Table 2-7 (2)

Material Balance Summary
Area W300 -Product Upgrading and Refining Summary
(Wyoming Coal)

		<u> </u>		Wax Hydrocr		1.55 11 11 11		H2O Produced	Olelin Feed	iC4 Makeu
	H2O Produced	Feed	H2 Required	C4-	C5/C6's	C7 Naphiha	Distillato	301.5	204.9+204.13	305.1
omponent	302.3	204.12	300.1	301.1	301.2	301.3	301.4	301.5	0	0
2			3809	0	0	0	0		1 0	Ó
2	į l	0		0	0	0	0			_
0	Į J	0		0	0	0	0		0	0
02]	0		0	0	. 0	0		0	•
20	1	0		0	0	0	0		0	0
1	[0		139	0	0	0		1 6	0
2.	1 1	0		0	0	0	0		"	0
2	1 1	0		139	0	0	0		13525	0
3=	1 1	0			0	0	0		2543	Ö
3		0		4148	0	0	0		194	46198
Ä	1 i	0		5494	0	0	0		1	1924
C4		0		4457	0	0	0		3702	
4=	1	0		D	0	0	0		15021	0
5	1	0		0	6838	0	0		478	0
C5	i !	0		0	5776	0	0		906	0
5.	1	0		0		0	0		14679	0
6-	1	0		0	0	0	0		0	0
8	1 [0		0	10875	0	0		0	0
~ C6	1	0		0	6670	0	0		0	0
7-C10 (Naphiha)	1	0		0	0	0	0		0	0
11-C19 (Distillate)	1 [0		0	0	0	0		0	0
19+ (Wax)	1	282174		0	0	0	0		0	0
80-300OX	1	0		0	0	0	0		0	0
00-350OX	1	0		0	0	0	0		0	0
50-700OX] ;	0		0	0	0	0		0	0
leformate	1	0		0	0	0	0		0	0
3 Alkylate	1 1	0		0	0	0	0		0	0
4 Alkylate	1 1	0		0	0	0	0		0	0
5 Alkylate	1 1	0		0	0	0	0		0	0
5 Isomerate	1	0		0	0	0	0] 0	0
6 Isomerate	1 1	0		0	0	0	0		. •	0
7-300 HG	1	o		0	0	40588	0		0	0
00-350 HC	1	Ó		0	0	13034	0		0	0
50-500 HC	1 1	Ō		0	0	0	59426		0	0
00-700 HC) I	Ó		0	0	0	126506		0	0
7-300 HTU	1 !	0		0	0	0	0		0	0
00-350 HTU	1 1	0		0	0	0	0		0	0
50-500 HTU	[0		0	0	0	0		0	0
00+ HTU	1 1	0		0	0	0	0		0	0
20 Produced	833	0		0	0	0	0	1892	0	0
Total (Lb/hr)	033	202174	3809	14378	30159	53622	185932	1892	51040	40122
Total (BPSD)	57	20730			3205	5178	16365	130	6009	5060
Density (16/113)	62.2970	50.1770			40.2197	44.2642	48.5581	62.2978	36,3062	35,1006
Mol. WI	10.02	617.82	2.02	51.61	79.70			18.02	54.17	58.12

Table 2-7 (3)

Material Balance Summary Area W300 -Product Upgrading and Refining Summary (Wyoming Coal)

	C3/C4	C5 Alkylation	·	· · · · · · · · · · · · · · · · · · ·	< C4 Ison			< C5/C6 Isc		
	C4's	Alkylate	C3.	HC Acid Loss	Purchased C4		Fuel Gas	C4-	Isomerate	Н2 Пединес
Component	307.1	307.2	307.3	307.4	300.4	300.5	305.2	306.1	306.2	300.6
12	0	0	0		υ	22	0	0	0	78
V2	0	0	0		0		0	0	0	
x i	Ó	0	0		0		0	O	0	
202	0	0	0		0		0	0	0	
H2O	0	0	0		0		0	0	0	
oi l	Ó	0	0		0		92	49	0	
C2×	0	0	0) o		0	0	0	
C2	0	0	0		0		207	16	0	
3₃	0	0	0		0		Ü		0	
23	0	0	2543		0		559	644	0	
iC4	0	0	0		1323		0	300	0	
nC4	5626	0	0		25145		0	0	0	
C4=	0	0	0		0		0	0	0	
C5	0	478	0		Į.		0	0	0	
nC5	0	906	Q		0		0	0	0	
C5 ₌	0	0	0		0		0	0	0	
C6=	0	0	0		lo		0	0	0	
C6	0	0	0		0		0	0	0	
i¢6	0	0	0		(0		O .	0	0	
C7-C10 (Naphiha)	0	0	0		0		0	0	0	
C11-C19 (Distillate)	0	0	0		0		0	0	0	
C19+ (Wax)	0	0	0		0		0	0	0	
180-300OX	0	0	0		0		0	0	0	
300-350OX	0	. 0	0		0	•	0	0	0	
350-700OX	0	0	0		0		0	0	0	
Reformate	0	0	0		0		0	0	0	
C3 Alkylate	0	32216	0		0		0	0	0	
C4 Alkylate	0	30779	0		0		0	0	0	
C5 Alkylate	0	25682	0		0		0	0	0	
C5 Isomerate	0	0	0		0		Q	0	16680	
C6 isomerate	0	0	0		0		0	0	36899	
C7-300 HC	0	0	Q		0		0	0	0	
300-350 HC	0	0	0		0		0	0	0	
350-500 HC	0	0	0		0		0	0	0	
500-700 HC	0	0	0		0		0	0	0	
C7-300 HTU	0	0	0] 0		0	0	0	
300-350 HTU) 0	0	0		0		0	0	0	
350-500 HTU	0	0	0		0		0	0	0	
500+ HTU	jo	0	0		0		0	0	0	
H2O Produced	0	0	0	932	0		0	0	0	
Total (Lb/hr)	5626	90051	2543	932	28469	22	858	1010	53588	78
Total (BPSD)	661	8695			3115			l	5635	
Density (lb/(l3)	35.3878	44.2698	31.5859		36.3205		31.7323	34.0043	40,6473	
Moi. Wt	58.12	106.87	44.10		58.12	2.02	33.92	100.27	81.26	2.02

Table 2-7 (4)

Material Balance Summary

Area W300 -Product Upgrading and Refining Summary (4)

(Wyoming Coal)

	Catalytic		C3/C4	C4'S	Saturated Gas C2- Fuel Gas	C3	H20	Gasoline	Diesel
<u> </u>	Rolormate 304.1	H2/C2-	304.3	308.1	308.2	308.3	300.4	308.5	308.6
Component H2	0	4254	0	0	1 300.2	0	1 300.4	0	0
		0	ŏ	0	2	Ö		ŏ	Ö
N2	0	0	0	0	14	• 0		Õ	0
	0	0	0		467	0		0	0
XX2	0	0	_	1 -	0	0	153	o	0
20	0	-	0	0	_	0	153	0	0
31	0	1117	0	0	725			0	0
2=	0		0	0	31	0		-	
72	0	3033	0	0	2015	41		0	0
3•	0		0	0	0	0		0	0
' 3	0	0	3856	0	0	13798		0	0
24	0	0	2319	8313	0	170		0	0
C4	0	0	2865	8550	0	174		0	0
4 •	0	0	0	. 0	0	0		0	0
C5	0	0	0	0	0	0		478	0
C5	0	0	0	0	0	0		908	0
5.	0	0	0	0	0	0		0	0
6-	0	0	0	0	0	0		0	0
26	0	0	0	0	0	0		0	0
C6	0	0	0	0	0	0		0	0
7-C10 (Naphiha)	0	0	0	0	0	0		0	0
11-C19 (Distillate)	0	0	0	1 0	0	0		0	0
19+ (Wax)	0	0	0	1 0	0	0		0	0
80-300OX	0	Ô	Ö	ا ه	Ō	0		0	0
00-350OX	١٠٥	ŏ	ŏ	١٠٥	Ō	Ö		Ō	0
50-700OX	١٠٥	ň	Ö	١٠	Ö	Ď		Ŏ	Ö
leformate	106130	ŏ	ŏ	l ŏ	ŏ	Ď		106130	Ŏ
3 Alkylate	1 00130	ŏ	ŏ		ő	Ö		32216	ŏ
•	0	0	ŏ	lŏ	ŏ	ŏ		30779	ŏ
4 Alkylate	0	0	ŏ	iŏ	Ö	Ö		25682	ŏ
5 Alkylate	1 6	0	ŏ	l ö	ŏ	0		16688	0
5 Isomerate	lö	0	ŏ	ı	Ö	ŏ		36899	ŏ
6 Isomerate 7-300 HC	Ĭ	Ď	Ö	l ŏ	ŏ	Ö		0	ŏ
00-350 HC	l ö	o	0	0	ŏ	Ö		ŏ	ŏ
50-500 HC	6	0	ő		ŏ	Ó		ŏ	59426
	l ö	0	0	0	ŏ	0		0	126506
00-700 HC	l ö	0	0	1 6	ŏ	0		0	0
7-300 HTU		-	0	0	0	0		0	0
00-350 HTU	0	0			_	0		-	_
50-500 HTU	0	0	0	0	0	•		0	54305
DO+ HTU	0	0	0	0	0	0		0	35751
20 Produced	0	0	0	0	0	0		0	0
otal (Lb/hr)	106130	8404	9059	16864	3257	14103	153	249778	275988
ote! (BPSD)	9429		1143	2018		1916	11	23750	24458
ensity (lb/ft3)	48.1078		33.8653	35.7152		31. 63 56	62.2978	44.9339	48.2275
lei. Wi	i	3.68	51.19	58.12	25.51	44.30	10.02		

Table 2-8 (1)

Western (Wyoming) Coal Design Utility Balance Summary

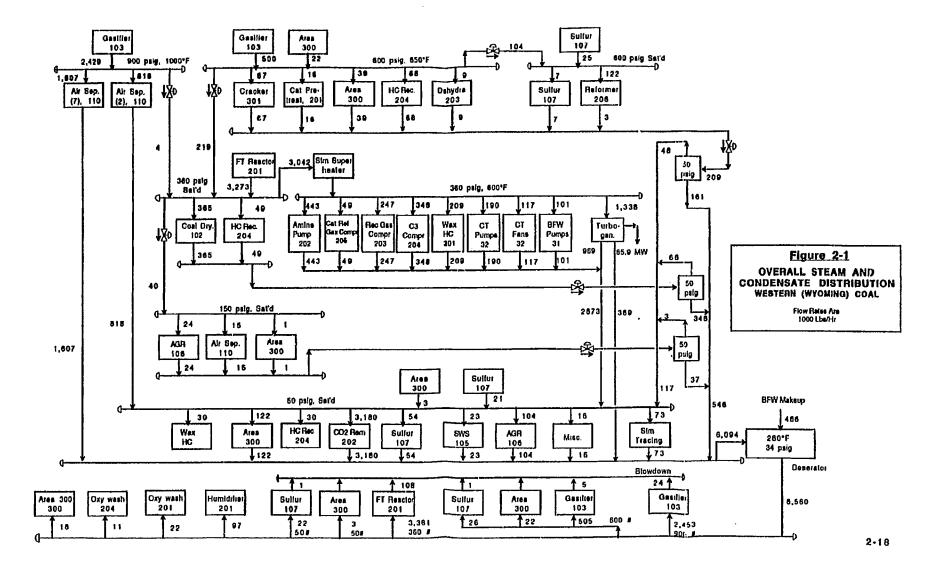
Plant	Plent	Load	Power	1		team, M ib			
No.	Description	ļ		900 Psig/10		600 Psig		600 Psig	
		BHP	kW	Produced	Consumed	Produced	Consumed	Produced	Consumed
	Area 100								
W101	Coal Recieving/Storage	2900	2403	<u> </u>					ļ
	Coat Drying/Grinding	40696	33732	<u> </u>					ļ
	Shell Gasification	66160	551 34	2429	ļ	500			
	Sour Water Stripping	146	121	ļ		<u> </u>			ļ
W106		9050	7542	ļ	<u> </u>				ļ <u>-</u> -
	Sulfur Recovery/TGT	347	288	ļ				25	7
W108	Sultur Polishing	0	ა	Ļ			<u> </u>		<u> </u>
W109	Syngas Wet Scrubbing	792	660	↓					
W110	Air Separation	458	381		2425		ļ <u>.</u>		7
	Subtotal:	120549	100261	2429	2425	500	0	25	
	Area 200			↓	ļ				ļ <u> </u>
W201	F-T Synthesis	4894	4045	ļ			16		ļ <u> </u>
	CO2 Removal	9595	7930		<u> </u>	ļ			ļ
	Dehydration/Compress	0	0	 	<u> </u>		9		
	Hydrocarbon Recovery	1198	990	ļ	 	<u> </u>	68	ļ	
	Hydrogen Recovery	16	12	 	ļ				105
W206	Autothermal Reforming	0	0		<u> </u>	<u> </u>	 		122
	Subtotal:	15704	12977	0	0	0	93	0	122
	Area 300			<u> </u>	ļ		ļ <u>. </u>	ļ	1
	Wax Hydrocracking	2479	1999	.	ļ	ļ	67		 -
	Distillate Hydrotreating	1365	1075		ļ		ļ	ļ	
	Naphtha Hydrotreating	947	746	ļ	ļ		ļ	ļ	
	Catalytic Reforming	3754	2956		ļ	22	 -		
_	C4 (somenization	872	687	.ļ		ļ	7	<u> </u>	
	C5/C6 Isomerization	118	93		Ļ	 	6		
	C3/C4/C5 Alkylation	8463	6664		ļ		17		
W308	Saturated Gas Plant	119	94	 		 	9		
	Subtotal:	18119	14314	0	0	22	106	0	0
	Offsites				<u> </u>	 			
	Relief and Blowdown	23	19	 	4	ļ	323	104	
W20	Tankage	87	72	ļ					
W21	Intercon. Piping System	0	0		-	 	ļ	 	
W22	Product Shipping	1617	1270	 	 	 	 		
W23	Tank Car/Truck Loading	39	32	 	 	 	 	 	
W24	Coal Reluse/Ash Disposal	60	50	 		 	 	 	
W25	Cat./Chem. Handing	60	50	 	 	 	 	 	
W31	Steam and Power Gener.	-83921	-65900	+	 		 		
W32	Raw/Cooking/Pot. Water	10519	8260	 	 	 	 		
W33	Fire Protection System	53	44		 	 	 		
W34	Sewage/Elff, Treatment	6234	4895	+	 	 			
W35	instrument/Plant Air	3685	2894	 	 	 	 	 	+
W36	Purge/Plush Oil System	0	0	 	 	 	+		 -
W37	Solid Waste Management	59	49	 		 	 	 	
W40	General Site	0	0	 	 -	 	 	 	
W41	Buildings	3428	2692	+	 	 	 		+
W42	Telecommunications	16	13	 	+	 	 		
Other	Miscellaneous	2710	2128	 	4	-	323	104	-
	Subtotal	-55331	-43432	0	2429	1 0	323	104	129

⁽⁻⁾ indicates Production

Table 2-8 (2)
Western (Wyoming) Coal Design
Utility Balance Summary

Plant	Plent		teem, M lb/			Steam, M lb/hr			
No.	Description	360 Psig/(360 Psig	/Sard	150 Psi	/Sard	50 Psig	Sard
		Produced	Consumed	Produced	Consumed	Produced	Consumed	Produced	Consume
	Area 100								
	Coal Recieving/Storage								
	Coal Drying/Grinding				365			58	
	Shell Gasilication								
	Sour Water Stripping	ļ							23
	And Gas Removal						24	2	104
	Sulfur Recovery/TGT						Ī	23	54
	Sullur Polishing			_					
	Syngas Wet Scrubbing								Ì
W110	Air Separation						15	819	
	Subtotal:	0	0	0	365	0	39	902	181
	Area 200								
W201	F-T Synthesis			3273			 	4	
	CO2 Removal		443					443	3180
	Dehydration/Compress		247				 	249	3.50
	Hydrocarbon Recovery		348		49		 	371	30
W205	Hydrogen Recovery		49		 		 	49	1 35
	Autothermal Reforming				 		 	1	
	Subtotal:	<u> </u>	1087	3273	49	-	0	1117	1 2040
	Area 300		100/	3273	- 43			1117	3210
W201	Wax Hydrocracking								<u> </u>
	Distribute Hydrotreating	ļ	209			<u> </u>	ļ	224	30
			——		.			3	
M303	Naphtha Hydrotreating		<u> </u>		ļ				ļ
	Catalytic Reforming		ļ		! -				<u> </u>
	C4 Isomenzation		<u> </u>				1	2	72
	C5/C6 Isomerization		 			ļ			<u> </u>
W307	C3/C4/C5 Alkylation		 _			<u> </u>	<u> </u>	4	50
A308	Saturated Gas Plant					L	<u> </u>	2	<u> </u>
	Subtotal:	0	209	0	0	0	1	236	152
101- 0	Offsites		ļ	<u> </u>					
W19	Relief and Blowdown		<u> </u>	223	40	40			
M50	Tankage	<u> </u>	<u> </u>	ļ					
W21	Intercon. Piping System						I		
W22	Product Shipping							L	
	Tank Car/Truck Loading								
W24	Coal Refuse/Ash Disposal							I	
	Cat./Chem. Handing								
	Steam and Power Gener.	3042	1439		3042			1070	I
	Raw/Cooling/Pot. Water		307			I	Ţ T	307	
	Fire Protection System								
W34	Sewage/Effl. Treatment				1		f	——————	<u> </u>
W35	Instrument/Plant Air						 	† -	
W36	Purge/Plush Oil System					<u> </u>	†	 	
W37	Solid Waste Management			Ì		<u> </u>	†	 	
W40	General Site		<u> </u>	-	 	 	†		+
W41	Buildings	1		<u> </u>	†	 	 	 	
W42	Telecommunications	t		—	 	 	 	 	+
Other	Miscellaneous	 			 			 	122
	Subjetal:	3042	1746	223	3082	40	0	1377	89
TOTAL		3042	3042	3496	3496	40	40	3632	3632

⁽⁻⁾ indicates Production


Table 2-8 (3)
Western (Wyoming) Coal Design
Utility Balance Summary

Plant	Plant			Water		Cooling,MMB	tu/hr	Fuel,
lo.	Description	Concensale	BFW	Process	C.W. Circ.			MMBtu/hr
	·	Mlb/hr	Mlb/hr	Mlb/hr	GPM	Air	Water	Total Fire
	Area 100							
W101	Coal Recieving/Storage							
W102	Coal Drying/Grinding	-307						600
W103	Shell Gasification		2958		88587		1240	
W105	Sour Water Stripping	-23			732	15	10	
W106	Acid Gas Removal	-126			5612		79	
W107	Sultur Recovery/TGT	-59	48		411		- 6	25
W108	Sulfur Polishing						Ĺ	70
W109	Syngas Wet Scrubbing				5460	188	77	
W110	Air Separation	-1621			56890		796	
	Subtotal:	-2136	3006	0	157692	203	2208	695
	Area 200						I	
W2C1	F-T Synthesis	-12	3381	119	2092	285	29	5
	CO2 Removal	-3180			35250	2414	494	
	Dehydration/Compress	-7			1915		27	
W204	Hydrocarbon Recovery	-94		10	3723	144	52	38
W205	Hydrogen Recovery				381		5	
W206	Autothermal Reforming	-2						
	Subtotal:	-3295	3381	130	43361	2843	607	43
	Area 300							
W301	Wax Hydrocracking	-52			224	375	3	91
	Distillate Hydrotroating				191	24	3	12
	Naphtha Hydrotreating	1			2867		40	57_
	Catalytic Reforming		25		761		10	110
	C4 Isomerization	-78		 	69	78	1	2
	C5/C6 Isomerization	-5		1	52		1	3
	C3/C4/C5 Alkylation	-63		1 B	1228	105	17	
	Saturated Gas Plant	-7			1204	4	17	11
	Subtotal:	-205	25	18	6596	586	92	285
	Offsites						†	
W19	Relief and Blowdown				 			
W20	Tankage			i	 	1		
W21	Intercon. Piping System	 			 	1		
W22	Product Shipping			i .				
W23	Tank Car/Truck Loading						<u> </u>	
W24	Coal Refuse/Ash Disposal	 		 				
W25	Cat./Chem, Handing	 			1			
W31	Steam and Power Gener.	-369			11907	· · · · · · · · · · · · · · · · · · ·	167	312
W32	Raw/Cooling/Pot, Water	1			1			
W33	Fire Protection System	 			 	- 		
W34	Sewage/Elff, Treatment			 	 			0
W35	Instrument/Plant Air	-		 	+	+	†	1
W36	Purge/Plush Oil System			 	 	<u> </u>	 	
W37	Solid Waste Management			 	 	- 	 	
W40	General Site	 			+	+	 	
W41	Buildings	 		 	 	 	1	
W42	Telecommunications	1		 	 	 	1	
Other		-89		 	†	 	 	1
Ciner	Subtotal:	-458	0	0	11907	0	167	312
TOTAL		-6094	6412	148	219555	3632	3074	1335

⁽⁻⁾ indicates Production

Table 2-9
Overall Catalyst and Chemical Requirements
Western (Wyoming) Coal Case

		Initial	Annual
Catalyst	Plant	Requirement	Consumption
Area 100			
Sulfuric acid, 25 wt%	W105		16,030 lb/hr
Claus (Kaiser S-201)*	W107	3450 cft	690 cft/yr
SCOT catalyst*	1 1	1,220 cft	244 ctt/yr
2" SS Pall rings"	1 1	470 cft	157 ctt/yr
MDEA'	1	94 lbi	9 gal/d
Sulfur polishing (ZnO)	W108	526 cft	111 cft/yr
	W109	526 Cit	5.322 lb/h r
Caustic, 25 wt%	1 103		5,322 10111
Area 200	<u> </u>		
FT Ppt. Fe-catalyst	W201	2.302.869 lb	11,514 lb/d
MDEA for CO2 removal	W202	1,211,580 lb	302895 lb/yr
Molecular sieve	W203	155.000 lb	0
Reformer, C14-2	W206	2.76€ cu ft	553 ctt/yr
Heldingt, O14-2	11200	2,700 00 10	JJO GIVYI
Area 300			
UOP LPHC Catalyst	W301	233,900 lb	33,420 lb/yr
NiMo Based Catalyst	W302	34,690 lb	6,940 lb/yr
NiMo Based Catalyst	W303	252,900 lb	50.540 lb/yr
UOP Platform Catalyst	W304	160,600 lb	48,380 lb/vr
3A Molec. Sieve	W305	4120 lb	818 lb/vr
Englehard Isom. Catalysi		11.140 lb	2230 lb/vr
1° Raschig Rings Pack	1	182 tt3	0 ft3/yr
Carbon Tetrachloride		11,140 lb	1340 tb/yr
Caustic		242 lb	141 lb/yr
KOH		818 lb	5 lb/vr
	W306	8220 lb	/
3A Molec Sieve	44306		1646 lb/yr
Englehard Isom. Catalyst		44,980 lb	9000 lb/yr
1" Raschig Rings Pack	ļ.	197 ft3	0 tt3/yr
Carbon Tetrachloride	ł	12,330 lb	162 lb/yr
Caustic		270 lb	167 tb/yr
KOH		904 ib	5 tb/yr
H2SO4 (98.5 wt%)	W307	919 ton	37530 ton/yr
Caustic (100% NaOH)	1	5370 lb	314,600 lb/yr
Offsite	1	<u> </u>	
		10.000 !!	
Alum	W32	19,000 lbs	2,900 lb/d
Polymer	1	6,000 lbs	1,100 lb/d
98% H ₂ SO ₄	1	9,000 gals	9,900 lb/d
50% NaOH	1	19,000 gals	24,400 lb/d
Chlorine	W34	2,000 lbs	350 tb/d
Polymer	1	3.000 lbs	450 lb/d
Pac	1	6.000 lbs	2,000 lb/d
Pat	1	0,000 105	2,000 100

Section 3

Task 2 - Evaluate Baseline and Alternative Economics

Preliminary economic analyses were performed on the Baseline Design and the Alternatives cases, using the same set of financial assumptions that was taken directly from the Direct Liquefaction Baseline Study, as requested by DOE. Most of the assumed parameters, however, can be varied in the discounted cash flow (DCF) economic spreadsheet.

Results were compared with each other, and reviewed in the February 2, 1994 Technical Progress Review Meeting. The alternate (ZSM-5) Refining Case has the lowest capital cost and the highest hydrocarbon production per unit of coal feed. The Western Coal Case, on the other hand, has the highest capital and the lowest hydrocarbon product per unit of coal feed. However, the economics expressed in terms of a crude oil equivalent price, favored the Western Coal Case because of its low coal (S4.5 versus \$24.0 per ton of as received Illinois No. 6 coal) and labor costs.

It is recognized that these preliminary economical analyses did not consider other factors which may have significant impacts on the viability of a F-T coal liquefaction plant. These include: a) the F-T facility's proximity to existing refineries, b) its operating flexibility, and c) the value of its premium upgraded products as blending stocks.

Section 4

Task 4 - ASPEN/SP Simulation Model Development

Previous quarterly progress reports described the development of ASPEN process simulation models for each of the individual plants in the indirect coal liquefaction complex and their integration into three complete process simulation models for

- 1. The baseline design case which processes Illinois No. 6 coal at a plant located in southern Illinois
- An alternate refining case in which the vapor products from the slurry bed Fischer-Tropsch reactors are upgraded in a close-coupled reactor containing ZSM-5 catalyst
- 3. A Western coal case processing Powder River Basin coal in a plant located in Wyoming.

During this quarter, some of the individual plant models were enhanced, the three complete process simulation models were tuned to the latest utility balances and cost estimates, and the models were tested to verify that they were operable over the required ranges.

As they now stand, the three ASPEN process simulation models essentially are completed and match the current Bechtel designs. However, as a result of the February technical project review meeting, a new Fischer-Tropsch catalyst/wax separation scheme using a Kerr-McGee ROSE unit will be developed, and the models will be revised as appropriate. However, these revisions are not expected to be extensive.

4.1 ENHANCEMENTS TO THE 201 FISCHER-TROPSCH SYNTHESIS REACTOR MODEL

The Fortran user block model for Plant 201, the Fischer-Tropsch synthesis plant, is the most sophisticated of all the Fortran user block models. This block model consists of thirteen Fortran subroutines. It models the slurry bed Fischer-Tropsch reactions, predicts the yields, predicts the utilities consumptions and productions for the entire Fischer-Tropsch plant, and sizes the slurry bed reactors.

During this quarter, three revisions were made to this model. These involved extending the model to predict the average wax properties as a function of processing conditions, adding a catalyst activity parameter, and improving the convergence of an internal loop in the reactor sizing routine.

The yields section of the Fischer-Tropsch reactor model was extended to predict the average boiling point and API gravity of the wax. Since this model already predicted the average molecular weight of the wax as a function of reactor temperature (wax

yield), correlations were developed to predict the average boiling point and API gravity of the wax by extrapolating normal paraffin and 1-olefin data to heavier molecular weights. Some minor adjustments to a few additional model parameters were required to compensate for slight shifts in other areas of the plant as a result of using the new wax property predictions.

The Fischer-Tropsch slurry bed reactor sizing model was extended to add a new design parameter, a catalyst activity multiplier. As a result of this addition, the effect of catalyst activity (relative to that of the baseline design) on the size and cost of the slurry bed Fischer-Tropsch reactors now can be studied.

The convergence procedure in the Fischer-Tropsch reactor sizing model was improved to make it more robust. During a sensitivity study which examined the effect of relative catalyst activity on reactor size and cost, a problem was discovered with the original convergence procedure at low relative catalyst activities. Modifications were made to extend the range of catalyst activities which can be studied by improving the stability of this internal convergence procedure.

4.2 REVISIONS TO THE THREE PROCESS SIMULATION MODELS

The three ASPEN process simulation models for the baseline design, alternate refining, and Western coal cases were revised and tuned to match the latest utility balances and cost estimates. Also, some of the summary report files were revised to make them easier to read.

Another revision was made to improve the way the model predicted of the raw water makeup rate. Since most of the water loss occurs by evaporation in the cooling towers, the makeup water rate now is predicted as a function of the total cooling water circulation rate rather than as a function of the coal feed rate.

All three process simulation models were tested over the 5,000 to 50,000 tons/day coal feed rate range to verify that they function correctly over this required range. Some minor adjustments were made to the extend the limits in some ASPEN design specifications and to adjust some maximum unit sizes to obtain adequate behavior over the entire range.

The ASPEN input files for the three process simulation models were cleaned up and additional comments were added to make them easier to follow and use. Additional caveats and warnings were added to the input files to help the user avoid some pitfalls when changing them.

In order to avoid confusing the reader with several versions of preliminary and possibly conflicting results, the ASPEN model results for the baseline design case which were presented in the eighth (July-September '93) Quarterly Report are those for the current plant design. Similarly, the results for the alternate refining case using ZSM-5 catalyst and those for the Western coal case that were presented in the ninth Quarterly Report (October-December '93) are for the current plant designs. Therefore, they are not reprinted here.

Section 5

Task 6 - ASPEN/SP Simulation Model Documentation

Presentations describing the ASPEN process simulation models and LOTUS spreadsheet economics model were delivered at the February 2, 1994 Technical Progress Meeting.

A draft of the Topical Report for Task IV documenting the ASPEN process simulation models has been prepared. This report documents the models, presents and compares their results with the detailed designs, provides users' instructions for running them on ASPEN/SP, and contains an overview of the LOTUS spreadsheet economics model. A separate restricted addendum has been prepared to document the LOTUS spreadsheet economics model.

This draft report documenting the ASPEN process simulation models will be useful to those individuals converting them from ASPEN/SP to ASPEN PLUS. In addition, this draft report will be used during the model training course which will be given to DOE personnel at PETC after the models have been converted to ASPEN PLUS.

The Topical Report for Task IV and its restricted addendum will be submitted for review by PETC after the final revisions for the improved catalyst/wax separation scheme have been made.

Project Management & Staffing Report

6.1 TASK 7 - PROJECT MANAGEMENT

During this reporting period, cost and schedule control was the primary activity. A technical progress meeting was held at Bechtel San Francisco office on February 2, 1994.

6.2 KEY PERSONNEL STAFFING REPORT

The key personnel staffing report for this reporting period as required by DOE/PETC is shown below:

Name	Function	% Time Spent ^(a)
Bechtel		
Samuel S. Tam	Project Manager	25
Gerald N. Choi	Process Engineer	90
Amoco		
R.D. Kaplan	Subcontract Manager	4
S. S. Kramer	Process Model/Simulation	74

⁽a) Number of hours spent divided by the total available working hours in the period and expressed as a percentage.

Figure 6-1

Overall Milestone Schedule

(as of March 13, 1994)

TLE Ba	seline Design/Economics for Adv scher-Tropsch Technology	enced	2. MEPOXITING PERIOD 2/14/93 to 3/13/94	1. IDENTIFICATION NUMBER DE-ACIZH-916	*C80027	
VITOPAN	IT NAME AND ADDRESS	Bechtel Corporation 50 Beale Street		S START DATE 62891		
		San Francisco, CA 941	105	6 COMPLETION DATE 4/30	PE4	
ENEX.	E REPORTING ELEMENT	DAY OH	ex 63	== 04	· Maide ion:	
X6		M JI JI AI SI	ONDJFMAMJJ	A S O INIDIJ FIW	A la Par	1 47.0
25K 1	Baseline Design	•	0, 0 🔨		100	10
ask 2	Economic Evaluation		\triangle	i i	100	10
25k 3	Engineering Design Criteria			1	100	10
ase 4	Process Flowsheet Simulation Model				7.	
ask S	Sensitivity Studies		,		52	5
ask 6	Documentation and Training				-√ '°	.,
as x 7	Project Management & Administration					3.
				ļ		
\triangle	Completion Second progress meeting	3 Baseline case ec	quipment list transmitted to Cost Estimate	ng i		T
ō	Baseline case design complete					
SOUTU	ME OF PARTICIPANTS PROJECT WHAGER	MODATE Samuel	S. Tam	1/1/94		·

SATISFACTION GUARANTEED

NTIS strives to provide quality products, reliable service, and fast delivery. Please contact us for a replacement within 30 days if the item you receive if we have made an error in filling your order. E-mail: info@ntis.gov defective or

1-888-584-8332 or (703)605-6050

Reproduced by NTiS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at http://www.ntis.gov.

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000