4.2.7 Notation

it

Energy parameter in Peng-Robinson equation of state [bar em6/gmole?)
Peng-Robinson mixture parameter [bar cm®/gmole2]

Size parameter in Peng-Robinson equation of state (em3/gmole)
Peng-Robinson mixture parameter [bar em6/gmole?]

Peng-Robinson mixture parameter [bar cm6/gmoie?]

Average diameter of sphere possessing the same surface area as a piece
of packing [em]

Molecular diffusivity [cm2/sec]
Gravitational acceleration [cm/sec?]

Gibbs free energy

Grashof number = dggaAo/u 2

Mass transfer factor = ShRe~15¢-1/3

Mixing expansivity

Binary interaction parameters

Mass transfer coefficient [gmole/em? sec mole-fraction]
Total height of bed [cm]

Molecular weight [g/gmole]

Number of perfect mixers

Gas constant = 83.14 [bar em3/gmole OK]
Reynolds number = pdpug/u

Cross section area of packed bed [em2]
Schmidt number = /oDy,

Sherwood number = kqod,/Dy

Absolute temperature [OK]

Partial molar volume of solute i {em3/gmole]
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Yy = Mole fraction

2 = Compressibility factor

z = Change of compressibility factor with respect to the mole fraction at
constant temperature ang pressure

Greek Letters

aij = Adjustable parameter

Bij = Adjustable parameter [em3/gmole]

€ = Void fraction

u = Viseosity [g/em sec]

r = Density [g/em3)

; = Density change with respect to the mole fraction at constant
temperature and pressure [g/em3-mole fraction)

P mol = Molar density [gmole/cm3]

Ap = Density difference between the fluid at the solid surface and the
fiuid in the bulk phase (COg-naphthalene mixture)

Ao = Density difference between the the fluid at the solid surface and the

pure pure COq

E = Chemical potential

Subseripts

1 = Solute component

2 = Solvent component

F = Forced convection

m = Average properties

N = Natural convection

T = Total combined natural and forced convection

76



Superscripts

Infinite dilution limit

*

Equilibrium condition
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4.4 Appendix to Task 4.2

PHYSICAL PROPERTIES
In addition to mass transfer coefficients, the development of mass transfer
correlations needs knowledge of three physical properties: (1) viseosity of the SCF,

(2) diffusion coefficient of the solute and (3) mixture density of the SCF phase.

4.4.1 Viscosity: In the present study the viscosity of the system is approximated as
that of pure COq (Stephan and Luecas, 1979). It is shown as a funetion of pressure as

(Figure A-1) shown by by Chung et al. (Sherwood et al., 1975).

4.4.2 Diffusivity: At low to moderate pressures, diffusion coefficients vary
inversely with pressure or density. Paulaitis et al. (1983) plotted diffusion
coefficients as a function of reduced pressure of the solvents for the systems COg-
naphthalene, COg -benzene and ethylene-naphthalene, which showed Dy was
inversely proportional to reduced pressure at low pressure (up to about P, = 0.5; Po
= 73.80 bar for COj3), but as the pressure approached the ceritical, this linearity was
no longer true. Tsekhanskaya (1971) showed that the diffusion coefficient abruptly
dropped to essentially zero near the lower critical end point (LCEP) where T =
34.59C, P = 79.8 bar, y.-— 3.1x 1074 and PCOq = 0.47 (Tsekhanskaya et al., 1962) and
increased as the distance from this point increased. For low solubility systems, the
LCEP is usually very close to the critical point of the solvent. The very small
diffusivity near the LCEP can be explained by two points of view. The first is to
assume that the diffusion in this region results from chemical potential gradients
rather than concentration gradients. At the binary mixture critical point the
second partial derivative of Gibbs free energy with respect to mole fraction is
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FIGURE A-1 Viscosity of Pure Carbon Dioxide
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equal to zero for a stable phase (3 sz/ay 21 = 0) and consequently the parfial
derivative of the chemical potential with respect to the mole fraction becomes
zero (3u/a y1 = 0). Therefore, the diffusion coefficient becomes zero and no
diffusion occurs even though there is a finite eoncentration gradient. The second
assumes that near the mixture critical point the diffusion process is econtrolled by
the mobility of clustered molecules rather than single molecules which is common
at normal conditions. As the pressure and temperature approach the mixture
critical point, the size of clusters is dramatically increased (Debenedetti, 1987).
The mobility of clusters decreases sharply with size resulting in an essentially zero
diffusivity near the LCEP. The value of diffusivity near the LCEP is, however,
very uncertain due to its extreme sensitivity to the temperatures and pressures {(or
densities). At 35°C and pressures up to 60.8 bar, we use the diffusivity
interpolated from the experimental literature data (Morozov and Vinkler, 1975;
Vinkler and Morozov, 1975) by assuming that Dy is inversely proporfional to the

density of COg.

= 0.712546 x 10~° {g/cm-sec) at 35°C and pressures
up to 60.8 bar (A-1)

DCO2 Dv
Near the LCEP (35°C and 73.80-80.5 bar), we use the diffusivity interpolated from
the experimental data obtained by Tsekhaskaya (1971) for the correlation given by
equation (12). We use the equation below (A-2) for the correlation given by
Equation (13). See the text for an explanation.

At pressures above the LCEP estimation of diffusion coefficients is more
complex than below the LCEP. Even though no reliable correlation for diffusion

coefficients at supercritical conditions has been developed, several
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researchers (Swaid and Schneider, 1979; Feist and Schneider, 1982; Debenedetti,
1986) have shown a linear relationship befween log Dy and pocQ, at constant
temperature in supercritical fluids. In the present study aﬁalytical relationships
are determined for pressures above the critical using the experimental diffusion
coefficient data for the COg-naphthalene system presented by lomtev and

Tsekhanskaya (1964) at 35 and 45°C (Figure 6).

D, = 4.2980 x 107 x 108-8212 2cp, (cn?/sec) at 35% and
91.2-202.7 bar (A-2)

D, = 2.7290 x 10™% x 10703805 °co, (cm?/sec) at 45°C and
101.1 bar : {A-3)

The above equations, (A-2) and (A-3), are used to calculate diffusion coefficients at

pressures above 91.2 bar at 35 and 459C, respectively, in this study.

4.4.3 Density: The mixture densities of the COg-naphthalene system are required
at different compositions, temperatures and pressures. The mixture density is
determined from the modified Peng-Robinson equation of state with temperature
and density dependent binary interaction parameters, (Mohamed and Holder, 1987;
Lim et al., 1988), and the average mixture density (o) for the experimental
. conditions is obtained by taking the arithmetic average of the three mixture
densities at each cell. This average mixture density is used to calculate the
average density differences {(Ap ;) between the mixture fluid at the interface and
the bulk. These average density and density difference were used to determine the

values of dimensionless groups such as Re, Se and Gr.
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The standard form other P-R EOS (Peng and Robinson, 1976) is

RT a

P =V - V{Vb) + B [Vob)

(A-4)

By considering both temperature and density effects on the binary interaction

parameters, its standard form can be modified as:

k1j=a‘ij+aij am1=a”+8”/\l (A-5)

Then, the modified P-R EOS becomes

RT a' - ¢ - d/V

P = V5 - V(V#B) + 5 (V-b) (A-6)
using the following mixing rule:

a' = ; g ¥i¥; /a_i_ag

b = ; ¥ib;

c = ; ; Yi¥j /2435 {A-T)

d = ; § yyyj /aiajs”
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At each temperature (35-55°C), two adjustable parameters ajj and g are
optimized to minimize the percent absclute average relative deviation (% AARD)
between the estimated solubilities and the experimental solubilities, the
experimental solubilities obtained by Tsekhanskaya et al. (1964) and by McHugh
and Paulaitis (1980) and Lim et al. (1989).

The densities of pure COg are obtained from the literature (Angus et al.,
1976) for the estimation of physical propgrties above. To get more accurate
mixture densities, the mixture density calculated by the modified P-R EOS is
corrected by the difference between the calculated pure COq density and its
literature value at the same temperature and pressure. Note that this ecorrection

cancels in estimating values of ap.
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