

DE86011515

TWO-STAGE PROCESS FOR CONVERSION OF SYNTHESIS GAS TO HIGH QUALITY TRANSPORTATION FUELS. FINAL REPORT

MOBIL RESEARCH AND DEVELOPMENT CORP. PAULSBORO, NJ

OCT 1985

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

Tailored to Your Needs!

Selected Research In Microfiche

SRIM[®] is a tailored information service that delivers complete microfiche copies of government publications based on your needs, automatically, within a few weeks of announcement by NTIS.

SRIM[®] Saves You Time, Money, and Space!

Automatically, every two weeks, your SRIM^{*} profile is run against all *new* publications received by NTIS and the publications microfiched for your order. Instead of paying approximately \$15-30 for each publication, you pay only \$2.50 for the microfiche version. Corporate and special libraries love the space-saving convenience of microfiche.

NTIS offers two options for SRIM[®] selection criteria:

Standard SRIM[®]-Choose from among 350 pre-chosen subject topics.

Custom SRIM[®]–For a one-time additional fee, an NTIS analyst can help you develop a keyword strategy to design your Custom SRIM[®] requirements. Custom SRIM[®] allows your SRIM[®] selection to be based upon *specific subject keywords*, not just broad subject topics. Call an NTIS subject specialist at (703) 605-6655 to help you create a profile that will retrieve only those technical reports of interest to you.

SRIM[®] requires an NTIS Deposit Account. The NTIS employee you speak to will help you set up this account if you don't already have one.

For additional information, call the NTIS Subscriptions Department at 1-800-363-2068 or (703) 605-6060. Or visit the NTIS Web site at *http://www.ntis.gov* and select SRIM[®] from the pull-down menu.

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000 http://www.ntis.gov

DOE/PC/60019--9A DE86 011515

D0E/PC/60019-9A Dist. Category UC-90D

APPENDIX - RESTRICTIVE DISTRIBUTION (Declassified, May 8, 1986)

TWO-STAGE PROCESS FOR CONVERSION OF SYNTHESIS GAS TO HIGH QUALITY TRANSPORTATION FUELS

Received by OSTI

JUN 1 2 1986

REPORT PREPARED BY: J. C. W. KUO

FINAL REPORT

CUNTRIBUTORS:

- P. DI SANZO F. W. E. GARWOOD K. M. **GUPTE** K. LANG C. Т. M. LEIB MALLADI M.
- T. MOLINA D. M. NACE
- J. SMITH
- N. TARALLO

08066

J. F. VAN KIRK

MOBIL RESEARCH AND DEVELOPMENT CORPORATION PAULSBORD, NEW JERSEY

OCTOBER 1985

PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY UNDER CONTRACT NO. DE-AC22-83PC60019

DISCLAIMER

bility for the accuracy, completences, or usefulness of any information, apparatus, product, or report was prepared as an account of work sponsored by an agency of the United States employees, makes any warranty, express or implied, or assumes any legal liability or responsiprocess disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, Government. Neither the United States Government nor any agency thereof, nor any of their manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Governmert or any agency thereof. The views reflect those 5 opinions of authors expressed herein do not necessarily state Jaited States Government or any agency thersof. je, Ę

of the

TABLE OF CONTENTS

		Page
	List of Tables	ARD-iii
	List of Figures	ARD-v
	Abstract	ARD-vi
I.	Summary	ARD-I-1
II.	Potentially Patentable Subject Matter	ARD-II-1
	A. Task 2 - Scoping Studies of Fischer-Tropsch Reactor-Wax Upgrading	ARD-II-1
	B. Task 5 - Development of Conceptual Process Schemes	ARD-II-16
	C. Nomenclature	ARD-II-42
	D. References	ARD-II-44
III.	Contractor's Proprietary Information	ARD-III-1
	A. Task 2 - Scoping Studies of Fischer-Tropsch Reactor-Wax Upgrading	ARD-III-1
	B. Nomenclature	ARD-III-2
	C. References	ARD-III-2

.

LIST OF TABLES

Table	Title	Page
ARD-II- 1	Hydrocracking of a Fischer-Tropsch Reactor-Wax (Mobil Proprietary Catalyst)	ARD-II- 2
ARD-II- 2	Products from Hydrocracking of a Fischer- Tropsch Reactor-Wax (Mobil Proprietary Catalyst)	ARD-II- 3
ARD-II- 3	Hydrocracking of a Fischer-Tropsch Reactor-Wax (Ketjen 742 Catalyst)	ARD-II- 6
ARD-II- 4	Products from Hydrocracking of a Fischer- Tropsch Reactor-Wax (Ketjen 742 Catalyst)	AFD-II- 8
ARD-II- 5	Hydrodewaxing of a Fischer-Tropsch Reactor-Wax	ARD-II-10
ARD-II- 6	Products from Hydrodewaxing of a Fischer-Tropsch Reactor-Wax	ARD-II-11
ARD-II- 7	Fischer-Tropsch Reactor-Wax Upgrading Using FCC	ARD-II-13
ARD-II- 8	Products from FCC Upgrading of a Fischer-Tropsch Reactor-Wax	ARD-II-14
ARD-II- 9	Comparison of Fischer-Tropsch Reactor- Wax Upgrading Methods	ARD-II-15
ARD-II-10	Process Conditions Base Case	ARD-II-18
ARD-II-11	Hydrocracker Feed and Product Yields	ARD-II-19
ARD-II-12	Hydrocracker C11 ⁻ Gasoline Feed to Second-Stage Reactor	ARD-II-20
ARD-II-13	Second-Stage Product from Hydrocracker Gasoline	ARD-II-21
ARD-II-14	Overall Product Yields	ARD-II-22
ARD-II-15	Process Conditions Sensitivity Case	ARD-II-23
ARD-II-16	FCC Feed and Product Yields	ARD-II-24
ARD-II-17	MOGD Products from FCC Gasoline and Gas	ARD-II-25

•

LIST OF TABLES (Continued)

Table	Title	Page
ARD-II-18	Overall Material Balance (Base Case)	ARD-II-27
ARD-II-19	Overall Material Balance (Sensitivity Case)	ARD-II-28
ARD-11-20	Slurry Fischer-Tropsch/ZSM-5 Process Material Balance, Reactor Section	ARD-II-35
ARD-II-21	Slurry Fischer-Tropsch/2SM-5 Process Material Balance, Distillation Section	ARD-II-36
ARD-II-22	Slurry Fischer-Tropsch/2SN-5 Process Material Balance, Wax Hydrocracking	ARD-II-38
ARD-II-23	Slurry Fischer-Tropsch/ZSM-5 Conceptual Design Plant Scoping Cost Estimates	ARD-II-41

•

•

.

٩

LIST OF FIGURES'

Figure	Title	Page
ARD-II-1	Hydrocracking of a Fischer-Tropsch Keactor-Wax	ARD-II- 5
ARD-II-2	Process Scheme for High-Wax Mode Operation	ARL-II-17
ARD-II-3	Slurry Fischer-Tropsch/ZSM-5 and Reactor-Wax LPHC	ARD-II-29
ARD-II-4	Slurry Fischer-Tropsch/ZSM-5 and Reactor-Wax FCC/MOGD	ARD-II-30
ARD-II-5	Slurry Fischer-Tropsch/ZSM-5 Reactors and Reactor-Wax Separation	ARD-II-31
ARD-II-6	Product Distillation Section	ARD-II-32
ARD-II-7	Low Pressure Reactor-Wax Hydrocracking	ARD-II-33

ABSTRACT

Scoping studies using conventional refinery technology to upgrade Fischer-Tropsch reactor-waxes were carried out. A Fischer-Tropsch reactor-wax, unlike the petroleum residues and waxes, is found very acceptable to conventional cracking processes. It was found that FCC followed by a Mobil proprietary olefins-to-(G+D) process gave the highest G+D yield and high G and D quality. Also described is a conceptual process design and scoping cost estimate for a 30,700 BPD G+D commercial plant.

I. Summary

Ż

Scoping studies of Fischer-Tropsch reactor-wax upgrading using convention refinery processes were performed starting in January 1984. The objective was to identify the processes which showed the greatest potential for commercial application and then to use it in a conceptual process design scheme.

Low pressure hydrocracking over Ketjet 742 catalyst gave high quality distillate and good G+D yields and was chosen for use in the base case wax upgrading scheme. Fluid Catalytic Cracking produced very low coke yields, moderate cetane index distillate, and highly olefinic light gas and gasoline. By applying Mobil's proprietary olefins-to-(G+D) process, excellent octane gasoline and the highest G+D yield among the processes studied was achieved. These two processes in series were therefore selected for the sensitivity case wax upgrading scheme. Hydrodewaxing gave acceptable quality distillate only at low conversions, so it was not considered further.

Unlike petroleum residues and waxes, a Fischer-Tropsch reactor-wax was found very acceptable to conventional cracking processes. This is probably resulted from its unique straight-chain hydrocarbon molecules. The wax also contains no nitrogen and heavy metal compounds that will temporarily or permanently deactivate the cracking catalyst.

The investment cost of a battery-limit commercial plant with a capacity of 30,700 BPD (G+D) was estimated at \$705 million (1985 \$) using the base case wax upgrading, and \$735 million for the sensitivity case.

A proprietary method of using a high gradient magnetic separator was successfully used to remove the small amount of the Fischer-Tropsch catalyst in a Fischer-Tropsch reactor-wax.

II. Potentially Patentable Subject Matter

<u>NOTE</u>: This document copy, since it is transmitted in advance of patent clearance, is made available in confidence solely for use in performance of work under contract with the U.S. Department of Energy. This document is not to be published nor its contents otherwise disseminated or used for purposes other than specified above before patent approval for such release or use has been secured, upon request, from the Chief, Office of Patent Counsel, U.S. Department of Energy, 9800 South Cass Avenue, Argonne, Illinois 60439.

- A. Task 2 <u>Scoping Studies of</u> Fischer-Tropsch Reactor-Wax Upgrading
- A.1. Low Pressure Hydrocracking of a Fischer-Tropsch Reactor-Wax

Two sets of scoping hydrocracking studies were performed in a microreactor containing 5-10 cm³ catalyst, using Run CT-256-4 reactor-wax. The solid content of this wax was reduced from 0.13 wt % to less than 0.015 wt % using a Mobil proprietary technique described in Subsection III.A.1. A total of 3.2 kg clean wax was prepared. The first set of the studies used a Mobil proprietary hydrocracking catalyst. The conditions were 329-371°C, 4.58 MPa, 0.5-2 LHSV and 675 NL H₂/L.

The gas product was analyzed using gas chromatography. The liquid product was distilled into gasoline (to $177^{\circ}C$), distillate ($177-344^{\circ}C$) and residue ($344^{\circ}C^{+}$). The gasoline was analyzed for PONA using liquid chromatography, and the octane numbers were obtained from a correlation based on its composition. The distillate fraction was analyzed for pour point, and the cetane index was determined from a correlation using the density and the simulated distillation midpoint. In addition, hydrogen consumption was estimated from hydrogen balance using the hydrogen contents of the hydrocarbon products and the feed reactor-wax. The results are summarized in Tables ARD-II-1 and ARD-II-2.

The major findings from high severity runs (Runs 1 to

- 3) are:
 - 80-100 wt % conversion of 344°C⁺ but moderate G+D yield (47-70 wt % gasoline, 1-10 wt % distillate).
 - Increased G+D (48 to 80 wt %) and decreased methane + ethane yields (1.7 to 0.2 wt %) with decreasing severity (371 to 329°C).

Hydrocracking of a
Fischer-Tropsch Reactor-Wax(1)
(Mobil Proprietary Catalyst,
Run CT-256-4 Reactor-Wax)

Run No.					5
DOS	1.7	2.7	3.4	5.0	5.7
Temperature, °C	371	344	329	330	329
LHSV, cm ³ per hr/cm ³ -cat.	.5	.5	.5	1	2
Recovery, wt %	95.3	105.2	93.8	98.4	97.7
Conversion, wt %(2)	98.9	98.0	80.0	12.1	5.8
H ₂ Consumption, NL/L Conv.	234	200	151	-	34
Selectivity, wt % (G+D+C ₄ ⁻)					
C ₁	0.5	0.1	0.1	0	0
C ₂ /C ₂ =	1.2/0	0.3/0	0.3/0	0/.4	0/0
C ₃ -C ₄ Olefins	0.7	0.6	0.4	.8	0
С ₃	7.5	3.3	4.0	7.3	4.9
iC4	18.1	16.0	15.0	11.9	8.9
nC4	24.2	10.9	5.0	1.4	0
C5-177*C	46.8	66.4	65.2	53.8	37.1
177-344°C	1.0	2.4	10.0	24.4	49.1
Total	100.0	100.0	100.0	100.0	100.0

(1)5-10 cc catalyst, 4.58 MPa, 0.5 LHSV, 675 NL H₂/L.
(2)Based on 344°C⁻ Product.

ARD-II-2

Products from Hydrocracking of a Fischer-Tropsch Reactor-Wax (Mobil Proprietary Catalyst, Run CT-256-4 Reactor-Wax)

Run No.				4	5
LHSV, cm ³ per hr/cm ³ -cat.	0.5	0.5	0.5	1	2
Temperature, °C	371	344	329	330	329
Distillate					
Cetane Index	34	-	65	51	59
Pour Point, °C	-52	-32	-36	-11	- 2
Raw Gasoline					
Paraffin, wt %	96 .5	91.5	89.7	-	-
Olefin	.05	3.6	6.1	- '	-
Naphthene	.05	3.1	4.1	- :	-
Aromatic	2.4	1.8	.1	_/	-
	100.0	100.0	100.0	-	
Octane Number (E+O)	83.9	80.8	73.5		-

Other major findings are:

- Very low conversion (6-12 wt % of 344°C⁻ product) and high G+D yields (78-86 wt %) at low severity (1-2 LHSV).
- Highly paraffinic, and consequentl, low to moderate octane number (74-84 R+0) gasoline.
- High cetane index (51-65) but high pour point (-2 to -36°C) distillate at low severity (329°C, 1-2 LHSV).
- Significant increases in G+D yield, distillate cetane index and distillate pour point, but a decrease in gasoline octane number with decreased severity (low temperature and high LHSV).

The very low conversion during low severity (1-2 LHSV) operation is inconsistent with the higher severity results. This is shown in Figure ARD-II-1, by plotting conversion versus LHSV. The dotted line is the expected theoretical curve for first order kinetics. As shown, the 1 and 2 LHSV points are well below the expected conversions. For higher order kinetics, the discrepancy is even larger. A possible explanation for this discrepancy is that the catalyst was not at the same state between these two groups of experiments, as approximately one month elapsed between them.

In the second set of experiments, a Ketjen 742 catalyst was used. Six scoping runs were performed in a microreactor containing 10 cm³ catalyst. The conditions were $342-454^{\circ}C$, 4.58 MPa, 0.5 LHSV, and 675 NL H₂/L.

The gas product was analyzed using gas chromatography. The liquid product was distilled into gasoline (to 177°C), distillate (177-344°C) and residue (344°?⁺). The results are summarized in Table ARD-II-3:

The major findings are:

- The converison ranged from 3-72 wt % of 344°C⁺, with acceptable conversion only at high temperatures (>426°).
- The G+D yield ranged from 86-93 wt % of G+D+C₄⁻, and it increased with increasing severity (temperature).
- The liquid product was predominantly in the distillate range (G/D of .03-.21), and the G/D ratio increased with severity.
- The methane + ethane yield ranged from 3.6-7.6 wt %, and it decreased with increasing severity.

ARD-II-5

Hydrocracking of a <u>Fischer-Tropsch Reactor-Wax(1)</u> (Ketjen 742 Catalyst, Run CT-256-4 Reactor-Wax)

Run No.	6		8	9	10	11
DOS	0.8	1.7	2.6	3.5	4.4	5.3
Temperature, °C	342	371	400	414	426	454
Recovery, wt %	98.9	101.3	99.3	99.6	99. 0	98.5
Conversion, wt %(2)	3.2	4.1	6.4	11.0	18.9	71.5
Selectivity, wt % (G+D+C4 ⁻))					
c ₁	3.2	4.7	4.5	3.7	2.6	1.9
C ₂ /C ₂ =	4.4/0	1.6/4	.9 3.5/0	3.5/0	1.0/0	2.2/0
C ₃ -C ₄ Blef.	0	0.8	0.7	0.9	0	0.3
C ₃	Ŏ	1.9	2.0	2.4	3.0	2.3
iC4	1.6	0	2.5	3.1	1.9	0.2
nC ₄	0	0	0	0	O Ì	0.6
C5−177 ° C	8.2	2.7	5.0	3.9	7.5	16.2
177-344°C	82.6	83.4	81.8	82.6	84.0	76.3
Total	100.0	100.0	100.0	100.0	100.0	100.0

(1)10 cm³ catalyst, 4.58 MPa, 0.5 LHSV, 675 NL H₂/L (2)_{Based} on $344^{\circ}C^{-}$

The G+D yields were better than those with the Mobil hydrocracking catalyst. The best yield is slightly lower than that reported by SASOL (Dry, 1976), i.e., 93 versus 95 wt %.

The gasoline products from the two high temperature runs (Runs 10 and 11) were analyzed for PONA using liquid chromatography, and the octane numbers were estimated by using an in-house blending model. Table ARD-II-4 shows that these gasolines are highly paraffinic. Furthermore, the analysis showed that the paraffins are mostly normal (80%), thus giving very low octane number. Hence, further upgrading of this gasoline may be required.

The distillate products were analyzed for pour point and their cetane indexes were estimated from a simulated ASTM distillation, and from measured density at 16°C. The results are also shown in Table ARD-II-4. At high severity, the distillate is of good quality, having very high cetane index and acceptable pour point.

The hydrogen consumption was also estimated from analysis of the hydrogen content of the wax and liquid products, and from the hydrogen content of the hydrocarbons in the product gas. The estimate for the highest severity is given in Table ARD-II-4. The hydrogen consumption for lower severity runs could not be estimated with sufficient accuracy.

In conclusion, hydrocracking over Ketjen 742 catalyst gave good G+D yields and conversion, with mostly high quality distillate and a small yield of low octane gasoline. This process is being chosen for our conceptual design study in Task 5. The temperature used here is higher than the temperature nominally used in petroleum-based hydrocracking while the pressure is substantially lower. We believe that further catalyst exploratory may lead to a lower temperature catalyst and operation.

A.2. Fischer-Tropsch Reactor-Wax Hydrodewaxing

Scoping hydrodewaxing studies were performed in a microreactor containing 5 cm³ catalyst, using Run CT-256-4 reactor-wax. The conditions were 316-343°C, 2.86 MPa, 1.0 LHSV and 422 NL H₂/L. The catalyst was a ZSM-5 class Mobil proprietary hydrodewaxing catalyst.

Table ARD-II-4 .

Products from Hydrocracking of
a Fischer-Tropsch Reactor-Wax
(Ketjen 742 Catalyst,
Run CT-256-4 Reactor-Wax)

.

Run No.	6	7	8	9	10	11
DOS	.8	1.7	2.6	3.5	4.4	5.3
Temperature, °C	342	371	400	413	426	454
Conversion, wt %(1)	3.2	4.1	6.4	11.0	18.9	71.5
H ₂ Consumption, NL/L Conv.	-	-	-	-	-	110
Selectivity, wt % (G+D+C ₄ ⁻)						
C4-	9.2	13.9	13.2	13.5	8.5	7.5
C5-177°C Gasoline	8.2	2.7	5.0	3.9	7.5	16.2
177-343°C Distillate	82.6	83.4	81.8	82.6	84.0	76.3
Total	100.0	100.0	100.0	100.0	100.0	100.0
Product Properties						
C5-177°C Gasoline						
Paraffin, wt %	-	-	_	-	63.3	69.3
Olefin	-	-	-	-	14.9	3.2
Naphthene	-	-	-	- .	9.7	13.1
Aromatic	-	-	-	-	12.1	14.4
Total					100.0	100.0
R+O	-	-	-	-	39	35
177-343°C Distillate						
Cetane Index	-	-	-	-	68	72
Pour Point, *C	4	3	-14	-1	-6	-16

(1) Based on 343° C⁻ Product

.

The gas product was analyzed using gas chromatography, the liquid product was analyzed using simulated distillation chromatography, and it was distilled into gasoline (to 177°C), distillate (177-344°C) and residue (344°C⁺) fractions. The results of the analyses are summarized in Table ARD-II-5. The gasoline and distillate fractions were also analyzed for their properties as described in the preceding Subsection. The results are summarized in Table ARD-II-6.

The major findings are:

- 15-71 wt % conversion to 344°C⁻ and moderate G+D yield (53-61 wt % gasoline, 11-26 wt % distillate).
- G+D yield increased only moderately (70 to 79 wt %) while conversion decreased significantly (71 to 15 wt %) with decreasing severity (343 to 316°C).
- Low hydrogen consumption (<51 NL/L converted).
- Highly paraffinic (52-61 wt %) and moderate octane number (81-86 R+0) gasoline.
- High cetane index (61-68) but also relatively high pour point (6 to -30°C) distillate from low severity operation (<330°C reactor temperature).
- Significant increase in the distillate cetane index and the gasoline octane number, but also some increase in the distillate pour point with lower reactor temperature.

It appears that acceptable distillate yields can only be obtained at very low conversions, this being probably due to the shape selectivity of the ZSM-5 class catalyst. Therefore, no further scoping studies are planned, the effort being focused on other more promising reactor-wax upgrading schemes.

A.3. Fischer-Tropsch Reactor-Wax Catalytic Cracking

Scoping studies were performed in a Fluid Catalytic Cracking (FCC) riser (Unit CT-180) using Run CT-256-4 reactor wax. The conditions were 1 s residence time, 4.2-5.5 cat/oil ratio, 478-524°C maximum temperature, 465-506°C top temperature, 0.11 MPa oil partial pressure. The catalysts were commercial equilibrium and coke zeolite (Engelhard HEZ-53) and equilibrium Si/Al cracking catalyst.

Hydrodewaxing of a
Fischer-Tropsch Reactor-Wax(1)
(2SM-5 Class Catalyst,
Run CT-256-4 Reactor-Wax)

Run No.	1	2	3
DOS ·	1.7	2.6	3.5
Temperature, °J	343	330	316
Recovery, wt %	93.5	103.4	104.8
Conversion, wt %(2)	70.8	31.6	14.9
H ₂ Consumption, NL/L Conv.	51	-	-
Selectivity, wt % (G+D+C ₄ -)			
C2*	1.0	0.6	0.4
C ₃ -C ₄ 0lef.	1.0	3.3	4.4
C ₃	6.7	6.1	7.4
iC4	10.6	7.2	6.5
nC4	10.8	7.3	2.5
C5177*C	58.6	61.2	52.9
177-344°C	11.3	14.3	_25.9
Total	100.0	100.0	100.0

(1)5 cm³ catalyst, 2.86 MPa, 1.0 LHSV, 422 NL H₂/L

(2)Based on 344[•]C⁻ Product

Products from Hydrodewaxing of <u>a Fischer-Tropsch Reactor-Wax</u> (ZSM-5 Class Catalyst, Run CT-256-4 Reactor-Wax)

Run No.		_2	3
Temperature, [•] C	343	330	316
Distillate			
Cetane Index	33	61	68
Pour Point, *C	-130	-30	6
Raw Gasoline			
Paraffin, wt % Olefin Naphthene Aromatic	61.1 7.9 5.5 25.5	55.9 27.0 2.8 14.3	51.8 39.6 2.0 <u>6.6</u>
	100.0	100.0	100.0
Octane No. (R+O)	80.7	82.3	85.9

.

The gas product was analyzed using gas chromatography, the liquid product was distilled into gasoline (to $194^{\circ}C$), distillate ($194-344^{\circ}C$) and residue ($344^{\circ}C^{+}$) fractions. The gasoline and the distillate fractions were also analyzed for their properties as mentioned in the Subsection ARD-II-A.1. The results are summarized in Tables ARD-II-7 and ARD-II-8. Note that the cetane indexes and pour points of the FCC distillate are those before distillate hydrotreating (DHT). With the conversion of the olefins to paraffins in the DHT, small changes in both the cetane indexes and pour points may be expected.

The major findings are:

- Very high (91-93 wt %) conversion and high G+D yields (75-81 wt %).
- High olefin content in light gas (75 wt % in C_4^{-}).
- Insensitivity of product distribution to severity (temperature variation and coked catalyst versus equilibrium catalyst).
- Very low coke yield.
- High octane (90-92 R+0) but highly olefinic (63-73 wt %) gasoline.
- Moderate cetane index (49-53) and good pour point (-23 to -34°C) distillate.

The coke yield is so low that in a commercial FCC unit, other fuels, such as a small quantite of clean synthesis gas, will be needed in the FCC regenerator to provide sufficient heat for the FCC reactor.

The highly olefinic nature of the gasoline and light gas points to a route of further upgrading the FCC product using the Mobil proprietary MOGD process (Tabak and Krambeck, 1985) for converting olefins to G+D. Table ARD-II-9 shows the MOGD can increase the G+D to 91 wt % of $344^{\circ}C^{-}$ product, and that potential liquid product yield (C₃⁺) to 98.2 wt % of the product, which is comparable or better than that reported by Dry (1976) using hydrocracking. The MOGD yield was estimated from a Mobil proprietary mathematical model. The results with Si/Al cracking catalyst were inferior to those with zeolite (Engelhard HEZ-53). Table ARD-II-9 also compares the three upgrading processes: hydrocracking, hydrodewaxing, and FCC + MOGD. The FCC + MOGD gives the highest G+D yield and excellent gasoline octane number.

Fischer-Tropsch Reactor-Wax Upgrading Using FCC(1)

.

.

Run No.	1	2	3
Catalyst	HEZ-53(2)	HEZ-53	Coked HEZ-53
Cat/Oil Ratio, wt.	4.2	4.2	4.4
Oil Res. Time, s	1	1	1
Τ _{παχ} , [•] C	523	478	524
T _{top} , *C	504	465	505
Oil Partial Pressure, MPa	0.11	0.11	0.11
Recovery, wt %	96.9	93.4	93.1
Conversion, wt %(3)	93.0	91.4	91.1
Selectivity, wt % (G+D+C ₄ ⁻)			
Coke	0.9	1.1	-0.6
c ₁	1.1	.6	1.3
C ₂ /C ₂ =	1.2/1.2	.7/.7	1.5/1.5
C ₃ -C ₄ Olef.	17.7	13.0	16.1
C3	1.5	1.1	1.4
iC4	1.9	2.5	1.4
nC4	.6	0.6	0.5
C5 ⁺ -194°C	56.3	56 .5	57.0
194-344°C	17.6	23.2	19.8
Total	100.0	100.0	100.0

(1)Unit CT-180 Riser, Run CT-256-4 Reactor-Wax

(2) Commercial Equilibrium Catalyst

(3)Based on 344⁺C⁻ Product

ARD-II-13

Products from FCC Upgrading of a Fischer-Tropsch Reactor-Wax

ັ

Run No.	1	2	3
Catalyst	HEZ-53	HEZ-53	Coked HEZ-53
T _{max} , *C	523	478	524
<u>Distillate</u>			
Cetare Index	51	53	49
Pcur Point, *C	-23	-23	-34
Raw Gasoline			
Paraffin, wt % Olefin Naphthere Aromatic	20.7 65.7 4.0 9.6	24.9 62.5 4.0 8.6	12.9 73.4 2.9 10.8
	100.0	100.0	100.0
Octane No. (R+O)	91.5	89.8	91.6

ARD-II-14

Comparison of Fischer-Tropsch Reactor-Wax Upgrading Methods

	Hydrocracking	Hydrodewaxing	FCC (+MOGD)
Catalyst	Nobil	ZSM-5 Class	HEZ-53
Temperature, °C	329	330	465-478
Pressure, MPa	4.58	2.86	0.11
LHSV, cm ³ per hr/cm ³ -cat.	0.5	1.0	4.2/1(1)
Conversion, wt %	80	32	91
H ₂ Consumption, NL/L Conv	. 151	0	*
Selectivity, wt %			
Coke C2 ⁻ C3-C4 Olef. LPG iC4 C5-177°C Gasoline 177-344°C Distillate	0.4 0.4 9.0 15.0 65.2 10.0	0.6 3.3 13.4 7.2 61.2 14.3	$\begin{array}{c} 1.1(1.1)\\ 2.0(1.8)\\ 13.0(2.0)\\ 1.7(2.1)\\ 2.5(2.6)\\ 56.5(2) (38.8)\\ 23.2(2) (51.6)\end{array}$
	100.0	100.0	100.0
Gasoline (C5-177°C)			
PONA, wt % Octane No. (R+O)	90/6/4/0 74	58/27/3/14 82	25/63/4/8 90
Distillate (177-344°C)			
Pour Point, °C Cetane Index	-36 65	-30 61	- 23 53

(1)Cat to oil weight ratio/oil residence time(s)

(2)C5⁺-194[•]C Gasoline, 194-344[•]C Distillate

B. Task 5 - <u>Development of</u> Conceptual Process Schemes

B.1. Introduction

Based on the results of F-T reactor-wax upgrading reported in the preceding Section, two reactor-wax upgrading processes are chosen for this task:

Base Case - Low Pressure Hydrocracking

Sensitivity Case - FCC + MOGD + DHT

B.2. Design Base Data for Fischer-Tropsch Reactor-Wax Upgrading - Base Case

In the base case, reactor-wax is upgraded into gasoline and distillate by low pressure hydrocracking using a Ketjen 742 hydrocracking catalyst. The data is based on scoping hydrocracking studies in a microreactor (Run 11, Tables ARD-II-3 and II-4). The process scheme is shown in Figure ARD-II-2 and the operating conditions are given in Table ARD-II-10. The product yields, expressed as mol/100 mol of feed H₂+CO are given in Tables ARD-II-11 to -13, while the overall product yields are given in Table ARD-II-14. Since the hydrocracking gasoline has very low octane, it was assumed that this gasoline can be co-fed with the overhead F-T product from the first-stage reactor into the second-stage ZSM-5 reactor.

The estimated gasoline + distillate selectivity is 87 wt % of total hydrocarbons produced, including 0.6 wt % of imported isobutane, substantially higher than the 80 wt % from the gasoline mode operation of the previous contract (Kuo, 1983); the G/D ratio is 1.2/1. The gasoline has high octane (93 R+0) and the distillate has high cetane index (72).

B.3. Design Base Data for Fischer-Tropsch Reactor-Wax Upgrading - Sensitivity Case

In the sensitivity case, reactor-wax is upgraded to gasoline and distillate by FCC using an Engelhard HEZ-53 catalyst. The data is based on scoping studies in a small riser reactor (Run 2, Tables ARD-II-7 and II-8). The highly olefinic FCC light gas and gasoline can be converted by the MOGD process into high quality gasoline and distillate. The MOGD data are estimated based on pilot plant studies with FCC olefinic feeds. The process scheme is also shown in Figure ARD-II-2 and the operating conditions are given in Table ARD-II-15. The product yields expressed as mol/100 mol feed H₂+CO are given in Tables ARD-II-16 and ARD-II-17, while the overall product yields are given in Table ARD-II-14.

٠.

.

ARD -11-17

Process Conditions - Base Case

	First-Stage (F-T)	Second-Stage (ZSM-5)	Hydrocracker
Catalyst	I-B(Pptd Fe/ Cu/K ₂ CO ₃)	ZSM-5	Ketjen 742
Feed H ₂ /CO, molar	0.5	-	_
Inlet Pres., MPa	2.87	Cascaded	4.58
Inlet Temp., *C	227	371	454(1)
Outlet Temp., *C	258	392	NA.
Space Velocity	3.50 NL(H2+CO)/ gFe-hr	8.0 NL/gCat-hr	0.5 Whsv
H ₂ Consumption, NL/L	-	_	110
Heat of Reaction, kJ/mol Ho+CO in Feed	56.3	0.6	NA

(1)Average temperature

۹.

Table ARD-II-11 HYDROCRACKER FEED AND PRODUCT YIELDS (BASIS: 100 MOL FEED H2-CO)

.

.

	MOL FEED	M	SP. CR	MOL PROD
WATER		18.02	-	0.0994
HYDROCEN	1 1185	2.82	-	6.0000
METHANE		16.04	-	8.2396
FTHANE		30.07	-	8.1445
PROPANE		44.10	£.5077	6.1663
PROPENE		42.68	0.5218	0.0071
N-BLITANE		58.12	0.5844	8.8222
I-BUTANE		58.12	0.5631	0.0058
N-BUTENE		56.11	0.6011	8.0048
N-PENTANE		72.15	0.6312	0.0106
I-PENTANE		72.15	0.6248	0.0110
CYCLOPENTANE		70.14	6.7505	0.0010
N-HEXANE		86.18	0.6640	0.0146
I-HEXANE		86.18	0.6630	6.6617
N-HEXENE		84.16	0.6805	0.0014
METHYLCYCLOPENTANE		84.16	0.75 0 5	0.0054
CYCLOHEXANE		84.16	6.7834	0.0000
BENZENE		78.11	0.8845	6.6611
N-HEPTANE		108.21	0.6882	6.6337
I-HEPTANE		100.21	6.6830	6.6651
N-HEPTENE		98.19	6.7635	0.6637
DIMETHYL-CYCLOPENTANE		98.19	6.7495	0.0046
METHYLCYCLOHEXANE		98.19	0.7740	0.0048
TOLUENE		92.14	0.8719	0.0121
N-OCTANE		114.23	0.7000	
I-OCTANE		114.23	0.7001	0.0112
N-OCTENE		112.21	0.7212	
C8-N6		112.21		
C8-N5		112.21	0./022	
N-XTLENE		100.17		
0-XTLENE		100.1/	0.0040	
EINTLBENZENE.		100.17	0.0/1/ 0 7176	5 6414
		128 28	A 7215	6 6161
		126.20	6 7324	6 6622
		126.24	0 7500	6.8616
C9-N6		126 24	8.7977	8.8517
		128 28		6.6016
NETHYL STUYL BENZENE		128.28	8.8665	
TOTNETING _RENTENE		128.28	8.8696	0.0018
NDECANE		142.28	6.7341	0.0078
T_DECANE		142.28	8.7348	0.0031
N-DECENE		140.27	0.7461	5.0000
(10)5		140.27	0.7954	6.6611
		149.27	0.2931	0.0013
N-CA-RENZENE		134.22	8.8646	6.0002
TETRA-METHYL-BENZENE		134.22	0.0005	Ø.8005
DIETHYLBENZENE		134.22	0.8790	9.0064
C11-PARAFFIN		168.31	6.7443	6.8814
177-344°C		298.85	9.7959	Ø.7262
RX-WAX	0.2414	821.41	6.8788	
	1 9500			1 6500
	1.3033			200.55
W 1	200.00			

.

(BASIS: 100	MOL FEED	H2+C0)	
	MW.	SP. GR	MOL
PROPANE	44.10	$\frac{0.5077}{0.5077}$	$\frac{105}{0.1053}$
PROPENE	42.08	0.5218	0.0071
N-BUTANE	58.12	0.5844	0.0222
I-BUTANE	58.12	0.5631	0.0058
N-BUTENE	56.11	0.6011	0.0048
N-PENTANE	72.15	0.6312	0.0106
I-PENTANE	72.15	0.6248	0.0110
CYCLOPENTANE	70.14	0.7505	0.0010
N-HEXANE	86.18	0.6640	0.0146
I-HEXANE	86.18	0.6630	0.0017
N-HEXENE	84.16	0.6805	0.0014
METHYLCYCLOPENTANE	84.16	0.7505	0.0054
CYCLOHEXANE	84.16	0.7834	0.0008
BENZENE	78.11	0.8845	0.0011
N-HEPTANE	100.21	0.6882	0.0337
I-HEPTANE	100.21	0.6830	0.0061
N-HEPTENE	98.19	0.7035	0.0037
DIMETHYL-CYCLOPENTANE	98.19	0.7496	0.0046
METHYLCYCLOHEXANE	98.19	0.7740	0.0048
TOLUENE	92.14	0.8719	0.0121
N-OCTANE	114.23	0.7068	0.0508
I-OCTANE	114.23	0.7061	0.0112
N-OCTENE	112.21	0.7212	0.0040
C8-N5	112.21	0.7700	0.0058
C8-N6	112.21	0.7922	0.0060
M-XYLENE	106.17	0.8687	0.0068
0-XYLENE	106.17	0.8848	0.0094
ETHYLBENZENE	106.17	0.8717	0.0053
N-NONANE	128.26	0.7176	0.0414
I-NONANE	128.26	0.7215	0.0101
N-NONENE	126.24	0.7334	0.0022
C9~N5	126.24	0.7500	0.0030
C9-N6	126.24	0.7977	0.0037
N-PROPYLBENZENE	120.20	0.8666	0.0016
METHYL-ETHYL-BENZENE	120.20	0.8690	0.0036
TRIMETHYL-BENZENE	120.20	0.8696	0.0018
N-DECANE	142.28	0.7341	0.0078
I-DECANE	142.28	0.7340	0.0031
N-DECENE	140.27	0.7451	0.0008
C10N5	140.27	0.7954	0.0011
C10N6	140.27	0.8031	0.0013
N-C4-BENZENE	134.22	0.8646	0.0002
TETRA-METHYL-BENZENE	134.22	0.8900	0.0006
DIETHYLBENZENE	134. 2 2	0.8700	0.0004
C11-PARAFFIN	156.31	0.7443	0.0014
TOTAL MOL			0.4412

Table ARD-11-12 HYDROCRACKER C11- GASOLINE FEED TO SECOND-STAGE REACTOR

OTAL MOL WT

0.4412 39.08

	MW	SP. GR	MOL
METHANE	16.04	-	Ø ØØ27
ETHANE	30.07	-	0.0019
PROPANE	44.10	Ø.5077	0.2253
PROPENE	42.08	0.5218	0.6047
N-BUTANE	58.12	0.5844	0.0684
I-BUTANE	58.12	0.5631	0.0430
	56.11	0.6011	0.0042
	72.15	0.0312	0.0181
N_PENTENE	76 14	0.0240 8 8481	0.0312
1-PENTENE	70 14	Ø 6325	0.0007
CYCLOPENTANE	70.14	0.7565	6 8667
N-HEXANE	86.18	0.5640	6.8166
I-HEXANE	86.18	0.6579	0.0182
N-HEXENE	84.16	0.6780	0.0002
I-HEXENE	84.16	0.6722	0.0044
METHYLCYCLOPENTANE	84.16	6.758 5	0.0041
CYCLOHEXANE	84.16	0.7834	0.0002
BENZENE	78.11	0.8845	6.6627
THEPIANE	100.21	0.6882	0.0049
	100.21	0.0830	0.0000
	96.19	0,/005	
DINETHYL -CYCLOPENTANE	GR 10	0.0002 0.7498	6 6615
METHYLCYCLOHEXANE	98.19	6.7746	6.0026
TOLUENE	92.14	6.8719	0.0169
N-OCTANE	114.23	6.7668	8.8824
I-OCTANE	114.23	0.7890	6.0040
N-OCTENE	112.21	0.7272	6.0046
I-OCTENE	112.21	6.7180	0.0014
C8-N5	112.21	0.7729	0.0036
CB-N6	112.21	6.7841	0.0020
P-ATLENE	106.17	0.8557	0.0024
	105.17		0.0130
ETHYL DENZENE	100.1/	0.6846	
N-NONANE	128 28	6 7176	
I-NONANE	128.26	6.7256	6.9621
N-NONENE	126.24	0.7369	6.0026
I-NONENE	126.24	0.7385	0.0005
C9-N6	126.24	6.7849	0.0013
C9-N5	126.24	0.7945	0.005 7
N-PROPYLBENZENE	120.20	8.8666	6.6019
I-PROPYLBENZENE	129.29	8.9695	9.0001
METHYL-ETHYL-BENZENE	129.28	8.9696	6.6114
	120.20	0.7340	0.0054
	142.28	U.7451	0.0002
	134.22	t./483 8 7064	0.0019
TETRA METHY MENTENE	124 22	0.0072	
DIETHYLRENZENE	134.22	8.8766	6.0516
C11-ALKYLBENZENE	148.25	0.8808	0.0000
TOTAL MOL WT			0.5000 29.00

Table ARD-II-13 SECOND-STAGE PRODUCT FROM HYDROCRACKER GASDLINE (BASIS: 100 WOL FEED H2+CO)

ł

1

.

.

1

Overall Product Yields (Wt %)

	Base Case F-T/ZSM-5/LPHC	Sensitivity Case F-T/ZSM-5/FCC/MOGD
$C_{1}+C_{2}$ $C_{2}=$ C_{3} nC_{4} $10 \text{ RVP } (C_{4}-177 \cdot \text{C})$ $177-344 \cdot \text{C}$	6.3 1.1 5.7 0.5 -0.6 47.3 39.7	4.8 1.4 3.3 -0.9 -0.8 63.0* 28.6*
Total	100.0	100.0
Gasoline		
P/O/N/A, wt % Octane, R+O	60/14/7/19 93	56/22/6/16 92
<u>Distillate</u>		
Pour Point, °C Cetane Index	-15 72	-25 50

*MOGD gasoline to 166°C, distillate 166-344°C.

.

ARD-11-22

-

Process Conditions - Sensitivity Case

.

.

	Second-Stage (ZSM-5)	FCC	$\underline{MOGD}(1)$
Catalyst	ZSM-5	HEZ-53	ZSN-5
Inlet Pres., MPa	Cascaded	. 11 (2)	5. 62
Inlet Temp., *C	371	478	205
Outlet Temp., *C	393	465	NA
Space Velocity	8.0 GHSV	4.2/1(3)	1 WHSV
H ₂ Circulation, NL/I	, –	-	40
Heat of Reaction, kJ/mol Feed H ₂ +CO	.57	NA	NA

(1)80 NL/L H₂ consumption for hydrotreating MOGD distillate.
(2)0il partial pressure.
(3)Cat-oil ratio/residence time(s).

II,

	- Ta	ble	ARD	-II-1(5
FCC	FEED	AND	PR	DUCT	YIELDS
(BAS	SIS:	100	MOL	FEED	H2+C0)

	MUL FEED	<u> </u>	SP. GR	MOL PROD
COKE		12.01		0.2080
WATER		18.02	-	0.0994
HYDROGEN		2.02	-	0.0196
METHANE		16.04	-	0.0692
ETHANE		30.07	-	0.0429
LINENE BRODANE		28.05		0.0459
		44.10	0.5077	0.0468
TRUPENE		42.08	0.5218	0.2134
		58.12	0.5844	0.0191
1-BUTANE		58.12	0.5631	0.0843
BUTENE		56.11	0.6011	0.2922
N-PENTANE		72.15	0.6312	0.0058
I-PENTANE		72.15	0.6248	0.0314
PENTENS		70.14	Ø.6325	Ø.1374
CYCLOPENTANE		70.14	0.7505	0.0002
N-HEXANE		86.18	0.6640	0.0076
I-HEXANE		86.18	0.6540	0.0577
HEXENE		84.16	0.6843	Ø.1996
METHYLCYCLOPENTANE		84.16	Ø.7505	0.0043
CYCLOHEXANE		84.16	Ø.7834	0.0003
BENZENE		78.11	0.8845	0.0019
N-HEPTANE		100.21	0.6882	0.0060
I-HEPTANE		100.21	0.6772	0.0495
HEPTENE.		98.19	0.7058	Ø.1716
DIMETHYL-CYCLOPENTANE		98.19	0.7495	0.0037
METHYLCYCLOHEXANE		98.19	0.7740	0.0022
TOLUENE		92.14	Ø.8719	0.0187
N-OCTANE	•	114.23	0.7068	0.0046
I-OCTANE		114.23	0.7090	0.0291
DCTENE		112.21	0.7272	0.0991
CB-N5		112.21	0.7789	0.0075
CB-N6		112.21	0.7922	2 9075
-XYLENE		105.17	0.8687	0,0180
-XYLENE		126.17	Ø.8848	0.0065
ETHYLBENZENE		106.17	Ø.8717	8,8916
N-NONANE		128.26	Ø.717A	6.6036
-NONANE		128.28	0.7215	0.0237
NONENE		126.24	5.7334	0.0772
19-N5		126.24	0.7500	2,2432
9-NB	•	126.24	6.7977	0 0033
-PROPYL BENZENE		126 28	A REFE	0.0033
STRY STRY STRY		120 20	A 9804	0.0117
		120.20	5 980-	0.011/
		140 20	0 7341	0.0093
		140 00	0.7341	0.0021
		172.20	0.1340	0.0100
		140.2/	0./401	0.0488
		140.27	0.7954	0.0021
		140.27	0.8031	0.0021
-C4-BENZENE		134.22	0.8846	0.0071
ETHYL-C3-BENZENE		134.22	0.8624	0.0016
ETRA-METHYL-BENZENE		134.22	0.8900	0.0016
DIETHYLBENZENE		134.22	0.8700	0.0017
IAPHTHALENE		128.17	6.9866	0.0002
11-PARAFFIN		156.31	Ø.7443	0.0047
11-OLEFIN		154.30	Ø.7544	0.0165
11-ALKYL-BENZENE		148.25	0.8800	0.0017
94-344°C		200.00	0.8229	Ø.2282
XAW-XX	0.2414	821.41	0.8700	
				·
OTAL MOL	Ø.2414			2.4787
WT	198.26			198.26

	WW	SP. CR	MOL PROD
WATER	18.02		0.0994
HYDROGEN	2.02	-	6.0196
METHANE	16.04	-	6.0692
ETHANE	30.07	-	0.0438
ETHENE	28.05		0.0322
PRUPANE	44.10	0.5077	0.0556
	92.00	0.5216	0.0298
T-RUTANE	58.12	8 5833	A ARAR
BUTENE	56.11	0.6011	8.6426
N-PENTANE	72.15	0.6312	0.0056
I-PENTANE	72.15	0.6248	0.0314
PENTENE	70.14	8.6325	0.0 275
CYCLOPENTANE	78.14	8.758 5	6.6062
N-HEXANE	86.18	0.6640	0.0076
I-HEXANE	86.18	8.5548	6.6577
	84.16	0.6843	0.0599
METHTLCTCLUPENTANE	84.16	0 7505	0.0043
CTULUMEANE DENTENE	70 11	0./834	
N_HEPTANE	106 21		
T-HEPTANE	100.21	8.6772	6.6495
HEPTENE	98.19	6.7868	0.0858
DINETHYL-CYCLOPENTANE	98.19	8.7496	0.0037
METHYLCYCLOHEXANE	98.19	8.7748	0.0022
TOLUENE	92.14	0.8719	6.6187
N-OCTANE	114.23	6.7668	8.6646
I-OCTANE	114.23	6.7666	8.829 1
OCTENE	112.21	0.7272	0.0496
C8-N5	112.21	0.7795	8.8675
CB-NS	112.21	0.7922	0.0075
	185.17		0.0100
U-ATLENE ETWY REV/TENE	100.17	0.0040	
N_NINANE	128.28	a 717a	6 6636
T-NONANE	128.26	6.7215	8.8217
NONENE	126.24	8.7334	8.6386
C9-N5	126.24	0.7500	0.0033
C9-N8	128.24	8.7977	0.0033
N-PROPYLBENZENE	128.29	6.9066	0.0017
METHYL-ETHYL-BENZENE	128.29	6.8005	0.0117
TRIMETHYL-BENZENE	120.20	0.8096	6.0093
N-DECANE	142.28	6.7341	0.0021
1-DECANE	142.20	0.7340	0.0150
	140.27	0.7461	
	146 27		4 6621
N_CA-RENTEME	134.22	6.0646	6.0071
VETIML-C3-BENZENE	134.22	6.8624	8.9916
TETRA-METHYL-BENZENE	134.22	5.9966	9.0016
DIETHYLBENZENE	134.22	0.8700	8.0817
NAPHTHALENE	128.17	0.9000	0.0002
C11-PARAFFIN	156.31	8.7443	0.0047
C11-OLEFIN	154.30	0.7544	9.0062
C11-ALKYL-BENZENE	148.25	0.8000	0.0017
166°C GASOLINE	196.00	0.7310	0.6296
166-344*(0.7906	0.3065
			1 4942
			156.12

Table ARD-II-17 MOGD PRODUCTS FROM FCC GASOLINE AND GAS (BASIS: 100 MOL FEED H2+CO)

ARD-II-25

•

.

•

.

The G+D selectivity is 92 wt %, including 1.7 wt % of imported butanes, and the G/D ratio is 2.2. The gasoline has high octane number (92 R+O) and the distillate has high cetane index (50) before hydrofinishing. This case has the highest G+D selectivity, although the distillate yield is lower than that in the base case.

B.4. <u>Conceptual Process Schemes and</u> <u>Scoping Cost Estimates and Economics</u>

For convenience, the conventional engineering units are used throughout this Subsection.

B.4a. <u>Conceptual Process Design</u>

B.4a-1. Overall Material Balances

In the base case, the plant produces 17,806 BPD of 10 RVP gasoline and 12,925 BPD of diesel fuel. Import of isobutane at less than 1% the rate of finished gasoline produced is needed to maximize utilization of the light olefins. The overall material balance is summarized in Table ARD-II-18.

In the sensitivity case, the finished gasoline production increased to 23,369 BPD and the distillate production is reduced to 8,901 BPD. The total liquid fuel production, however, is about 3% higher than in the base case. The overall material balance is summarized in Table ARD-II-19.

B.4a-2. Products Quality

√ الا

	Base	Sensitivity
10 RVP Gasoline Sp. Gr./API Gr. Octane Number (R+O)	0.688/74.1 93	0.697/71.5 92
Distillate 350-560°F Sp. Gr./API Gr. Cetane Index Pour Point, (°F)	0.785/48.7 72 5	0.795/46.5 50 -13

B.4a-3. Process Flow Scheme

Figures ARD-II-3 and -4 are the process block flow diagrams of the base and the sensitivity cases, respectively. The process schemes for the reactors section and wax clean up for the base case is shown in Figure ARD-II-5. Figure ARD-II-6 is the process flow diagram for the distillation section and Figure ARD-II-7 is the process flow for the wax hydrocracking section.

Overall Material Balances (Base Case)

Feed	Lb/hr	Sp.Gr./(MW)	BPSD/(MMSCFD)
Synthesis Gas	2,111,070	/(19.77)	/(971.0)
(Shift)	33,273	"	/(15.3)
Steam (Slurry F- Steam (Shift)	T) 121,629 17,822	/(18.02) "	/(61.3) /(9.0)
i-Butane n-Butane	1,280 272	0.563/(58.12) .584/(58.12)	156/ 32/
Total	2,285,346		

Products

Fuel Gas(2)	405,827	/(15.25)	/(242)
CO ₂	1,516,043	/(44.01)	/(313)
C ₃ LPG	17,703	/(44.1)	2,393/
10 RVP Gasoline	178,691	0.688/(90.5)	17,806/
Distillate	147,998	0.785/	12,925/
Distillate Waste Water Total	147,998 19,084 2,285,346	0.785/ 1.0/(18.02)	12,925/ 1,309/

2,285,346

(1)LHV = 343.7 Btu/SCF

(2)LHV = 525.0 Btu/SCF (See Table ARD-II-21 for composition)

.

Overall Material Balance (Sensitivity Case)

Feed	Lb/hr	Sp.Gr./(MW)	BPSD/(MMSCFD)
Synthesis Gas (Slurry F-T)	2,111,070	/(19.77)	/(971.0)
Synthesis Gas (Shift)	13,920	M	/(6.4)
Steam (Slurry F- Steam (Shift)	T) 121,629 7,450	/(18.02) "	/(61.5) /(3.7)
i-Butane n-Butane	2,167 6,969	0.563/(58.12) 0.58/ (58.12)	264/ 818/
Total	2,263,205		•
Products			
Fuel $Gas(1)$ O_2	374,179 1,516,043	/(14.5) /(44.01)	/(234) /(313)
10 RVP Gasoline	11,789 236,664	/(44.1) 0.697/(93.2)	1,593/
Distillate Waste Water	105,446 19,084	0.795/ 1.0/(18.02)	9,065/ 1,309/

Total 2,263,205

:

 $(1)_{LHV} = 541.0 \text{ Btu/SCF}$

Figure ARD-II-3 SLURRY FISCHER-TROPSCH/ZSM-5

Figure ARD-11-4 SLURRY FISCHER-TROPSCH/ZSM-5 AND REACTOR-WAX FCC/MOGD

* •

ARD-II-31

۲

Figure ARD-11-6 PRODUCT DISTILLATION SECTION

1

.

ł

.

Figure ARD-II-7

.

Tables ARD-II-20 and -21 give the material balances for reactor section, and distillation section, respectively.

B.4b. Plant Description

The plant consists essentially of three main sections: the reactor section, the reactor-wax upgrading section and the product recovery section. Only the reactor-wax upgrading section is described here. The reactor section is described in the main report.

The reactor-wax upgrading section contains the facilities to clean up the reactor-wax from particulates of F-T catalyst and also the process units necessary to convert the clean wax into distillate and gasoline products. Two process schemes for upgrading are studied: in the base case, wax is upgraded using low pressure hydrocracking; in the sensitivity case, wax is FCC treated to produce G+D and olefins which are then converted to distillate using a proprietary Mobil MDGD process.

B.4b-1. Base Case - Low Pressure Reactor-Wax Hydrocracking

The wax hydrocracking process has the function of selectively cracking the high molecular weight hydrocarbons in the wax into distillate boiling range paraffinic hydrocarbons, in addition to saturating of the olefinic compounds produced in the cracking.

The hydrocracker design capacity is based on the rate of wax produced in the slurry F-T reactors plus recycle of the unconverted wax. Total feed rate is 21,036 BPD or 266,786 lb/br.

The combined wax from storage plus recycle wax is mixed with preheated recycled hydrogen gas and preheated further by exchanging against the hydrocracking effluent. The mixture is then further heated in a fired heater to 800°F and fed at the hydrocracker top. The reactor consists of four fixed bed sections with intermediate quench by recycle hydrogen gas. The quench gas flow is regulated by temperature control of the bed.

The effluent from the reactor is successively cooled down by exchanging against the feed wax, the recycle hydrogen gas, the condensate hydrocarbon from the low temperature separator and finally cooled to 110°F by cooling water. The vapor liquid mixture is disengaged in the low temperature separator vessel. The vapor phase which is mostly hydrogen feeds the suction side of the recycled gas compressor. High purity

Stream	1 Syngas	2	3	4	5	6 Reactor-
No	Feed	<u>Steam</u>	HC Vap.	BC Liq.	Water	Wax
HoO		8,742.2	6.5	169.0	835.7	
Ho	31.853.0	•	9,574.0	1.4		
CÔ	84.346.5		5,758.7	1.7		
COo	2,360.0		34,368.7	79.1		
C.	7.496.1		8,302.8	7.2		
0. *	21.4		170.8	0.8		
C2	341.7		430.5	2.2		
C_=	••••		157.9	2.2		
C ₂			482.4	7.2		
C			137.0	5.9		
			236.5	8.2		
			258.9	9.0		
$C_{E} = C_{1,1}$			839.8	602.4(1)		
			12.5	9.0(2)		
Way				•••		232.2
No	363.1		362.0	1.1		
Total:					0.05 3	939 9
lb-mol/hr	106,781.8	6,742.2	61,099.0	906.4	835.7	100 759 9
1b/hr	2,111,070.0	121,494.4	1,998,573.6	65,799.4	15,058.0	100,702.2 991 A
NW	19.77	18.02	32.7	72.6	18.02	15 040 7
BPD	-	-	-	6,300.0	1,033.0	10,010.1
MISCED	971.3	-	555.7	-	-	-

Slurry Fischer-Tropsch/ZSM-5 Process Material Balance, Reactors Section

1

-

.

٠

(1) WV = 92.4(2) WV = 176.1

4

			Slurry Fisc <u>Material Bal</u>	her-Tropsch ance, Disti	/2SM-5 Proce 11ation Sect	ion			
a .	7 HC Vapor	8	9	10	11	12 Gasoline	13	14 Ca	15
No.	From CO ₂ Removal	C02	Fuel Gas	Alkyl. Product	iC4 Import	to Blend	Distillate	LPG Export	C4 Import
H20 Ho	0.2		0 595 4						
CĎ	5.758.7		8,070.4 5 780 A						
C02	50.0	34.318.7	129.1						
C ₁	8,302.8	,	8.310.0						
C2 − .	170.8		171.6						
C ₂	430.5		432.7						
C3-	157.9		28.8						
	482.4		88.1					401.4	
0 <u>4</u>	137.U Dag E		2.9						
iĈ.	230.0		4.9			239.8			4.7
$C_{5}-C_{11}$	839.8		0.4		22.0				
$C_{12} +$	12.5								
Gasoline						1 449 9			
Distillate	•					1,330.0	21.5		
Alkylate				278.1			21.0		
N2	362.0		363.1			н			
Total:	· · · · ·						······		
lb-mol/hr	26,774.0	34,318.7	24,872.4	279.1	22.0	1,682.0	21.5	401.4	4.7
10/NF	488,094.1	1,510,366.0	353,523.0	29,877.7	1,280.5	148,350.2	3,786.2	17,703.2	272.6
APD.	18.23	44.01	14.20	107.1	58.12	88.2	176.1	44.10	58.12
MMSCFD	- 243.5	- 312.2	-	2,957.	155.0	14,748.8	190.0	2,392.0	32.0

l

hydrogen makeup is required to replace consumption. This is produced by steam shift of synthesis gas followed by PSA purification.

The liquid hydrocarbon phase from the low temperature separator is preheated by exchange against the reactor effluent and the distillate tower bottom before feeding the tower. The distillate tower produces a small quantity of light naphtha as overhead liquid product which is mixed with the ZSM-5 reactors feed stream for the purpose of improving its octane value. The intermediate cut from this tower is the distillate product fraction which is steam stripped before sent to storage. The bottom stream is the unconverted wax which is recycled to the reactor feed.

The hydrocracking process flow diagram is shown in Figure ARD-II-7 and Table ARD-II-22 gives the corresponding material balance.

B.4b-2. Alkylation

The yields assumed for the alkylation unit are typical of Mobil experience using the HF alkylation process for C_3/C_4 olefins. The proportion of these components in the reaction products makes it necessary to import approximately 8 percent of the total iC₄ required in the case of wax hydrocracking and near 11 percent in the case of FCC-MOGD process scheme.

B.4b-3. Sensitivity Case - FCC + MOGD + DHT

The slurry F-T and ZSM-5 reactors, reactor-wax recovery, slurry F-T catalyst preparation and pretreatment and distillation sections are essentially identical for both the base and the sensitivity case.

The clean wax from the slurry F-T reactors is FCC treated, producing a highly olefinic product ranging from the light to the distillate range hydrocarbons. The FCC reactor effluent is then distilled to separate the distillate bottom products while the remaining lighter material (C_3-C_{12}) is used as feed to a MOGD unit to oligomerize the olefins into distillate and gasoline range products.

The feed to the MOGD process consists of a liquid phase light gasoline range product plus the vapor phase hydrocarbon from the FCC distillation tower overhead. The combined feedstreams are preheated and then fed to a series of fixed-bed reactors containing a proprietary Mobil ZSM-5 catalyst. The reactor effluent is cooled and sent to distillation.

~

	Slurry Fischer-Tropsch/ZSM-5 Process Naterial Balance, Wax Hydrocracking							
	16	17	18	19	20 PSA	21	22 Water-	23
Stream No.	Wax Feed	Recycle Wax	Distill. Product	C3-C11 to ZSM-5	Purge Gas	Steam Shift	Gas Shift	Makeup Hydrogen
НоО						987.9		
H2					206.2		502.0	1,289.5
CŪ					20.2		1,014.2	6.5
^{CO} 2					1,014.9		37.2	
C1					118.1		118.1	
^U 2				109 1	5,4		5.7	
03				100.1 31 A				
$C_{5}-C_{11}$				284.7				
Distillate			698.6					
Wax 🖌	232.2	92.8			•			
N2_ /			<u></u>		5.7	<u></u>	5.7	- <u> </u>
Total:	000.0	00.0	000 0		1 075 0	097.0	1 602 0	1 000 0
lD-mol/hr lb/bm	232.2	92.0 78.024.0	098.0 145 797 A	424.4 97 810 8	1,370.0	987.9 17 802 0	1,003.0	2 786 0
TOAIL.	821.4	821.4	208.6	88.6	30,007.0	18.02	19.8	2,700.8
BPD	15.040.6	5.995.0	12.734.7	-	-	-	-	-
MNSCFD				-	12.5	-	15.3	11.8

x

4 •

The distillation section consists of a debutanizer tower that produces an overhead product to feed the alkylation unit. The bottom product feeds the gasoline-distillate splitter. The splitter overhead is gasoline product which is mostly used for blending. The bottoms distillate product is combined with the distillate from the FCC unit and sent to the distillate hydrotreater unit (DHT). Hydrotreating is required to increase the cetane rating of the distillate to be sold as a premium diesel fuel.

B.4c. Operating Requirements

B.4c-1. Utilities for Base Case

	355 psig Steam Lb/hr	Fuel MMBtu/hr	Cooling Water GPN	Demin. Water GPN	Power KW
Slurry F-T/ZSM	[-5				
Reactors +					
Activation	(2, 191, 210)	117	16.853	403	6.433
CO ₂ Removal	1,100,000	_		120	17.075
LPHC + PSA	17,822	236	3,150	-	10.836
Alkylation	69,900	-	5.824	15	192
Distillation	235,000	145	17,500	50	1,300
Total	(768,488)	498	43,327	588	35,836

B.4c-2. Initial Catalyst and Chemicals Requirements (Base Case)

F-T Catalyst (Lbs.)	1.500.000
ZSM-5 (Lbs.)	188,000
Potassium Carbonate Sol., (Gal.)	500,000
Hydrocracker Catalyst (Lbs.)	380,000

B.4c-3. Utilities for Sensitivity Case

	355 psig Stean Lb/hr	Fuel MBtu/hr	Cooling Water GPM	Demin. Water CPN	Power KW
Slurry F-T/ZSM-5					
Reactors +					
Activation	(2, 191, 210)	117	16,853	403	6.433
CO ₂ Removal	1,100,000	-	-	120	17.075
FCČ	36,580	-	451	160	4,900
MOGD	-	50	47	-	614
DHT + PSA	7,252	13	-	-	631
Alkyl.	84,500	-	7,040	20	232
Distillation	235,000	145	17,500	50	1,300
Total	(727,878)	325	41,891	753	31,185

B.4c-4. Operating Overall Manpower

		Base	<u>Sensitivity</u>
Total	Manpower	56	66

B.4d. Scoping Cost Estimates and Economics

The cost basis of the battery limited facilities is instantaneous 1985 and a Wyoming location. Following estimate adjustment factors for different sections of the plant are used to reflect the state of development of the proposed processing technology:

SFT/ZSM-5 Reactor Section	40%
LPHC + PSA	5%
CO2 Removal	20%
Distillation	5%
Alkylation	0%
Blending	10%
Averal 1	30%

These estimates do not include coal gasification, synthesis gas clean up, utilities and offsites, slurry F-T catalyst manufacture and catalyst fill and royalties.

Included in the cost are: equipment bulk materials and labor, field indirects, contractor engineering and fees, owners engineering and project management cost and capitalized spares. Because of Wyoming location, an allowance for a construction workers camp is also included. A 30% estimated cost allowance is also added in the final investments to account for imperfection in costing.

Table ARD-II-23 summarizes the cost estimates and the percent of the total investment contributed by various units for the base and the sensitivity case. The investment cost of the sensitivity case is about 4% higher than that of the base case. It, however, produces about 3 wt % more G+D per unit of synthesis gas consumed.

In order to compare the current low methane + ethane (high wax) mode design with the gasoline-mode design given in the Final Report of our earlier Contract (Kuo, 1983), the investment cost from the gasoline-mode design is also included in Table ARD-II-23. The cost estimate for that case has been revised so that its technical and economic basis are consistent with those

Slurry Fischer-Tropsch/ZSM-5 Conceptual Design Plant Scoping Cost Estimates (Battery Limited Facilities)

	High Wax-Mode			
	Base Case	Sensitivity Case	Gasoline Mode	
Investment Cost (Battery Limited, MMS*)	705	735	680	
Investment Cost Distribution:				
Slurry F-T/ZSM-5	61	60	65	
LPHC	10	-	-	
PSA H ₂ Plant	1	-	-	
FCC, MOGD, DET, PSA	-	13	-	
CO ₂ Removal	18	18	20	
Distillation	5	4	7	
Alkylation	4	4	7	
Blending	1	1	1	
	100	100	100	

*Instantaneous 1985 Basis

of the current study. That plant was designed to produce 27,000 and 2,400 BPD of gasoline and wax, respectively. The investment cost for the current high-wax mode operation is about 4% higher than the gasoline-mode. This difference is small, similar to the conclusion obtained by El Sawy et al. (1984).

Based on our earlier experimental work in achieving low methane + ethane mode operation using the F-T Catalyst I-B, a F-T reactor pressure higher than that of the gasoline mode operation (365 psia versus 215 psia H₂+CO partial pressure) (see Kuo, 1983) was needed. Consequently, a higher pressure reactor section was adopted for the current conceptual process design. However, in the latter experiments, we found that a lower pressure similar to the pressure used in the gasoline-mode operation was sufficient for obtaining the similarly low methane + ethane (and high reactor-wax)yield (see Section IV.L). We, therefore, evaluate the effect of this lower reactor pressure on the process economics. A decrease of the operating pressure in the slurry F-T reactor section results in:

- An elimination of the feed-gas compressor.
- An increase in steam export.
- A decrease in the material cost for the reactor section.
- A decrease in the height of slurry F-T reactors with a corresponding increase in the total number of reactors.

We expect an overall decrease of 2-5% of the investment cost may result from this change.

C. Nomenclature

1_{may} roo maximum remperature, (o	Tmax	FCC	Maximum	Temperature,	(*C
--	------	-----	---------	--------------	-----

 T_{top} FCC Top Temperature, (*C)

Acronyms

- ARD Appendix Restrictive Distribution
- API American Petroleum Institute
- ASTM American Society for Testing and Material
- BFW Boiler Feed Water
- BGC British Gas Corporation

BP(S)D	Barrels Per (Stream) Day
D	Distillate
DHT	Distillate Hydrotreating
DOS	Days-on-Stream
FCC	Fluid Catalytic Cracking
F-T	Fischer-Tropsch
G	Gasoline
GC	Gas Chromatography
HC	Hydro-Carbons
HF	Hydro-Fluoric acid
LHSV	Liquid Hourly Space Velocity, (cm ³ per hr/cm ³ -cat.)
LHV	Low Heating Value, (Btu/SCF)
LPG	Liquified Petroleum Gas
LPHC	Low Pressure Hydrocracking
MOGD	Mobil Olefin to Gasoline and Distillate Frocess
M W	Molecular Weight
PONA	Paraffins-Olefins-Naphthenes-Aromatics
PSA	Pressure Swing Absorber
R+O	Lead-Free Research Octane Number
RVP	Reid Vapor Pressure
SASOL	South African Coal, Oil and Gas Corp., Ltd.
SCF(D)	Standard Cubic Feed (per Day)
SFT	Slurry Fischer-Tropsch
WHSV	Weight Hourly Space Velocity, (g per hr/g-Cat.)

•

.

.

D. References

1

Dry, M. E., Ind. Eng. Chem., Product Res. Dev., 15, 282 v(1976).

ľ

El Sawy, A., Gray, D., Neuworth, M., and Tomlinson, G., "A Techno-Economic Assessment of the Mobil Two-Stage Slurry Fischer-Tropsch/25M-5 Process," MITRE Corp., Final Report (MTR-84W173), DOE Contract No. 58-0336, November 1984.

Kuo, J. C. W., "Slurry Fischer-Tropsch/Mobil Two-Stage Process of Converting Syngas to High Octane Gasoline," Mobil Research and Development Corp., Final Report (DOE/PC/30022-10), DOE Contract No. DE-AC22-80PC30022, June 1983.

Tabak, S. A., and Krambeck, F. J., Hydrocarbon Processing, <u>64</u>(9), 72 (1985).

I

III. Mobil's Proprietary Information

Limited Rights in Proprietary Data

NOTE: This "proprietary data" furnished under Contract No. DE-AC22-83PC60019 with the United States Department of Energy may be duplicated and used by the Government with the express limitations that the "proprietary data" may not be disclosed outside the Government, nor be used for purposes of manufacture, without prior permission of the Contractor: provided, however, that this "proprietary data" may be disclosed to other contractors participating in the Government's program of which this contract is a part, for use in connection with the work performed under their contract.

These restrictions do not limit the Government's rights to use or disclose any data obtained from another source without restriction. This legend shall be marked on any reproduction of this data in whole or in part.

A. Task 2 -<u>Scoping Studies of</u> Fischer-Tropsch Reactor-Wax Upgrading

A.1. <u>Testing of a High Gradient Magnetic</u> Separator (HGMS) for Cleaning Reactor-Wax

To avoid probable problems in further upgrading of F-T reactor-wax containing catalyst fines, a 3.2 kg batch of Run CT-256-4 reactor-wax was cleaned up by passing it through a laboratory HGMS. The solids content was reduced from 0.13 wt % to less than 0.015 wt %.

The setup includes a heated (120°C) glass tube containing packed steel-wool across which a strong magnetic field is applied. In a batch operation the reactor-wax containing catalyst fines is poured over steel-wool in the glass tube and allowed to flow through by gravity. The high-gradient magnetic field traps the ferro-magnetic catalyst particles, and clean reactor-wax flows to the bottom where it is collected. In this laboratory setup no attempt was made to optimize the operating conditions to maximize the reactor-wax throughput. The controlling parameters are the reactor-wax temperature (i.e., liquid viscosity), feed rate, and magnetic field intensity. Continuous HGMS setups are available commercially and are used in cleaning iron-ores and clays (see Oder and Price, 1973; and Oberteuffer, 1974).

The clean reactor-wax was used as a feedstock for other upgrading processes described in the preceding Chapter.

B. Nomenclature

Acronyms

HGMS High-Gradient Magnetic Separator

C. <u>References</u>

Oberteuffer, J. A., IEEE-Trans. Magnetics, <u>Mag-10</u>, 223 (1974). Oder, R. R., and Price, J. R., TAPPI, <u>56</u> (10), 75 (1973).

Reproduced by NTIS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are printed for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available. If you have any questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and business related information — then organizes, maintains, and disseminates that information in a variety of formats — from microfiche to online services. The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia/training products; computer software and electronic databases developed by federal agencies; training tools; and technical reports prepared by research organizations worldwide. Approximately 100,000 *new* titles are added and indexed into the NTIS collection annually.

For more information about NTIS products and services, call NTIS at 1-800-553-NTIS (6847) or (703) 605-6000 and request the free *NTIS Products Catalog*, PR-827LPG, or visit the NTIS Web site http://www.ntis.gov.

NTIS

Your indispensable resource for government-sponsored information—U.S. and worldwide

credit of items for 60 not permit return eme Ŭ 1 0 does Ð 0 IJ

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000

DE86011515

BA

BIN: M37 12-12-01 INVOICE: 1104179 SHIPTO: 1*709035 PAYMENT: NONE