

PROMOTION EFFECTS ON THE SYNTHESIS OF HIGHER ALCOHOLS. 11TH QUARTERLY REPORT, JANUARY-MARCH 1985

PITTSBURGH UNIV., PA. DEPT. OF CHEMICAL AND PETROLEUM ENGINEERING

APR 1985

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

Search the NTIS Database from 1990 forward

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161

RECEIVED BY OSTI MAY 1 O 1985

DOE PC 50810 - - TIO

DOE/PC/50810--T10 DE85 011001

PROMOTION EFFECTS

ON THE

SYNTHESIS OF KIGHER ALCOHOLS

14th Quarterly Report March 198, January 198

James G. Goodwin, Jr. S.-C. Chuang

Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh, PA 15261

April 1984 5

Prepared for the U.S. Department of Energy under Grant No. DE-FG22-82PC50810

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TABLE OF CONTENTS

.

÷.

1.	OBJECTIVE AND SCOPE OF WORK	1
2.	SUMMARY OF PROGRESS	1
3.	DETAILED DESCRIPTION OF TECHNICAL PROGRESS	2
4.	FORECAST OF WORK	14

÷,

i.

1. OBJECTIVE AND SCOPE OF WORK

The importance of the direct synthesis of higher $(C_2 - C_6)$ alcohols from synthesis gas as a promising route for providing clean fuels and petrochemical feedstocks is generally recognized. It is known that the addition of alkali salts to methanol synthesis catalysts shifts the products to higher alcohols. However, little is known about the effect of various alkali species on the catalysts components and the synthesis reaction. A series of research studies is planned which should greatly expand current knowledge in this area. In particular, the effect of various alkalis (Na, K, Rb, and Cs) on CO chemisorption, on the activity and selectivity for higher alcohol synthesis reaction, and on the deactivation characteristics of the catalyst will be determined for both supported metals (such as Pd and Pt) and mixed metal-metal oxide catalysts (such as Cu/ZnO and Cu/ZnO/Co). Direct measurement of electronic interactions between the alkali promoters and the other catalysts components will be attempted by ESCA.

This comprehensive research program involves members of the Departments of Chemical Engineering and of Chemistry. There is a great need for cooperation between researchers in the areas of catalysis and surface science. This research project seeks to accomplish this and utilize the resulting synergism in illuminating the precise function of alkali promotion in the higher alcohol synthesis.

2. SUMMARY OF PROGRESS

During the lith quarter of the project, reaction pathways for the fomration of oxygenated compounds and hydrocarbons from CO and H_2 over group VIII metals has been studied. A better understanding of the reaction pathways for oxygenate formation would not only lead to a better way for the selective synthesis of higher alcohols but also provide an insight into the overall CO hydrogenation mechanism.

3. DETAILED DESCRIPTION OF TECHNICAL PROGRESS

Formation of oxygenated compounds, especially higher alcohols, from synthesis gas is always accompanied by a formation of hydrocarbons. Thus, it is important to study mechanisms of both oxygenate synthesis and hydrocarbon synthesis. The formation of these various products from CO and H_2 appears to involve a number of elementary reaction steps such as C-O bond dissociation, H-H bond scission, C-H bond formation, O-H bond formation, and C-C bond formation (6,7). A number of reaction mechanisms consisting of various sequences of these elementary steps have been proposed to explain product formation during CO hydrogenation (1-9).

These proposed mechanisms may be classified into two groups: chain growth via hydrocarbon intermediates and chain growth via oxygenated intermediates. Due to the complexity of the mechanism of CO hydrogenation, several reaction paths may have common intermediates (5). Due to the difficulty in differentiating one path from another, controversy still exists with regard to the mechanism(s) of CO hydrogenation.

One of the effective ways for studying complex reaction mechanisms is by the addition of probe molecules to the reactant stream during reaction. The probe molecule technique has been widely applied in heterogeneous catalysis. Applications have included (a) determining reactive intermediates (10-15), (b) detecting the active sites for specific reactions (7,16,17), (c) determining secondary reactions of primary products (18,19,42), (d) elucidating reaction networks in an overall reaction (15,18,20-22), (e) determining the catalytic and chemical properties of the surface of a catalyst (23), and (f) determining the abundance of precursors to various products under synthesis conditions (24-29).

In order to gain a better understanding of the mechanism of CO hydrogenation, we have studied Ni/SiO2 (a methanation catalyst), Ru/SiO2 (a higher hydrocarbon synthesis catalyst), Rh/SiO2 (a synthesis catalyst with a high selectivity for C₂ oxygenates), and Pd/SiO₂ (a methanol synthesis catalyst) by the addition of probe molecules to CO/H2 under synthesis Ethylene, ethanol, and acetaldehyde were utilized as probe conditions. molecules in this study. The addition of ethylene can produce hydrocarbon intermediates, and the addition of ethanol and acetaldehyde may lead to oxygen-containing intermediates. These intermediates may be similar to those produced by Fischer-Tropsch (F-T) synthesis. The addition of such probe molecules, however, could have a great effect on the overall product i distribution. The possible reactions due to the addition of these probe : molecules can be summarized in Table I-III. By determining the ability of a catalyst to catalyze these specific reaction steps, the reaction paths for the formation of hydrocarbons and oxygenates on these metal catalysts may be clarified.

EXPERIMENTAL

Catalyst Preparation and Characterization

 Rh/SiO_2 and Pd/SiO_2 were prepared via the incipient wetness method by impregnation of SiO_2 using aqueous solutions of the metal chloride. Ru/SiO_2 was prepared by ion exchange using $Ru(NH_3)_6Cl_3$. Ni/SiO_2 was also prepared by the incipient wetness method using an aqueous solution of $NiCO_3$. Following drying overnight in air at $40^{\circ}C$, the catalyst precursors were reduced in flowing H₂ on heating in $50^{\circ}C$ steps (30 minutes) to $400^{\circ}C$ and holding at that temperature for 16 hours. Prior to reaction, the catalysts were again reduced in flowing H₂ at $400^{\circ}C$ for three hours. Average metal particle sizes for

these catalysts were determined by either x-ray diffraction line broadening using a MoKa radiation source or H_2 chemisorption. Metal loadings and average metal particle sizes for these catalysts are listed in Table IV.

Apparatus and Procedures

The apparatus used for this study is described elsewhere (19). The major parts of this apparatus consists of two saturators for feeding liquid vapor probe molecules (ethanol and acetaldehyde), gas flow controllers (H2, CO and He), a stainless steel microreactor containing 0.2-0.75 g of the catalyst in a furnace, an on-line GC using a 8 ft x 1/8" poropak Q column in series with a 6 ft x 1/8" 80/100 carbopak c/o.2% carbowax 1500 column, and an Apple II computer with an interface for automatic control. The CO hydrogenation and probe molecule studies were carried out at 300° C, 10 atm, $CO/H_{2'} = 1$, and space velocity of 700 to 1,100 hr⁻¹. After more than 3 hours of just CO hydrogenation a small amount (1.1-3.3 mole %) of ethylene was added to the feed. It was continued for two hours then terminated. The reaction was carried out for another three hours to establish the reference data to estimate the rate of product formation that resulted from the ethylene addition. The increases in the rates of formation of certain products were assumed to be due to the reaction of ethylene with adsorbed CO, adsorbed H, and/or CO hydrogenation intermediates corresponding to reactions shown in Table I. By comparing the rates of product formation before, during, and after the addition of ethylene, the rates of hydrogenation, chain incorporation, and hydrocarbonylation of ethylene could be estimated. After the ethylene addition study, ethanol was added to CO/H_2 by passing CO/H_2 through a stainless steel saturator at room temperature. The composition of the mixture was determined by gas chromatography. The procedure and data treatment was similiar to that of ethylene addition study. The addition of acetaldehyde was also studied in a similiar manner except a slightly different

way of adding acetaldehyde to the CO/H_2 was used. Since acetaldehyde has a very high vapor pressure at room temperature, the acetaldehyde was added to CO/H_2 by using a He carrier flow of 2 cc/min to keep the concentration of added acetaldehyde under 2.5 mole % of the reactant mixture.

Due to the fact that the fraction of surface sites actually participating in certain reactions is unknown, and given the innate heterogeneity of surface sites on certain of the catalysts, only relative rates of reaction will be of concern here. Thus, the rates of reaction will be reported in units of moles/kg/hr.

RESULTS

CO Hydrogenation

The product distributions from CO hydrogenation over Ni/SiO2, Ru/SiO2, Rh/SiO2, and Pd/SiO2 are listed in Table V. Ni/SiO2 produced mainly methane with small amounts of C2+ hydrocarbons and oxygenates. Although Ni is a well known methanation catalyst, the formation of small quantities of oxygenated compounds is not surprising. Promoted and supported Ni catalysts are known to produce a certain amount of oxygenated compounds at 150-350°C and 1-30 atm (30). Ru/SiO₂ showed the highest selectivity to C_{2+} hydrocarbons among these catalysts. Ruthenium is known to be one of the most active catalysts for the F-T synthesis (31,32). Numerous studies have reported that supported Ru catalysts, including Ru/SiO2, are able to produce significant amounts of higher hydrocarbons (3,11,31,32). Rh/S10₂ exhibited a good selectivity to C_{2+} oxygenated compounds with the production of only a small amount of methanol. Pd/SiO2 showed a high selectivity for the formation of methanol. These results for Rh and Pd catalysts parallel those reported in the literature (18,33-35).

Addition of Ethylene to CO/H2

The addition of ethylene to CO/H_2 resulted in a significant variation in the rate of the formation of certain products and in the conversion of CO. When ethylene addition was terminated, the rates of product formation and CO conversion were essentially returned to those in existence before ethylene addition. Table VI summarizes the increases in the rates of product formation as a result of ethylene addition.

Ni/SiO₂ appeared to demonstrate a moderate activity for the hydrogenolysis of ethylene to methane under synthesis conditions, while Ru/SiO₂, Rh/SiO₂, Pd/SiO₂ were and essentially not active for hydrogenolysis. The low hydrogenolysis activities of these catalysts are known to be due to the presence of adsorbed CO and competing reactions such as hydrogenation and CO insertion (16,18). CO on metals is known to affect both hydrogenolysis and hydrogenation (16), and it appears to have a stronger effect on hydrogenolysis than hydrogenation. Although Rh has long been known to be one of the most active catalysts for ethylene hydrogenation (37), the selectivity for ethane was somewhat lower over Rh than over any of the other three catalysts. This can be readily understood by the fact that the CO insertion reaction to form C3 oxygenated compounds (propionaldehyde and 1-propanol) competes with hydrogenation to form ethane over Rh/SiO2 catalysts. The selectivity for CO insertion into adsorbed ethylene over these catalysts decreased in the order: Rh >> Ni > Ru > Pd. Although the abilities of these catalysts to catalyze CO insertion are different from one another, it is important to note that CO insertion would appear to be possible on all of these calalysts to a certain extent.

It is interesting to note that the addition of ethylene to CO/H_2 over Pd/SiO_2 resulted in dramatic decreases in the conversion of CO and in the

formation of methanol. In contrast, a slight increase in CO conversion was observed for Ni/SiO_2 and Ru/SiO_2 , and a noticeable increase in CO conversion was found for Rh/SiO_2 during the addition of ethylene to CO/H_2 .

Addition of Ethanol to CO/H2

The product distributions resulting from the added ethanol were estimated by a similar approach as used in the ethylene addition study. The amount of added ethanol for Ru/SiO_2 was somewhat higher compared with the other cases (Table VII). The concentration of ethanol is known to affect its selectivity to diethyl ether, a compound, however, not stable at temperatures above $190^{\circ}C$ (23). As shown in Table VII, Ru showed a strong activity and a high selectivity for the conversion of ethanol to C_1 and C_2 hydrocarbons as well as the apparent incorporation of ethanol into C_{3+} hydrocarbons. Rh exhibited a moderate selectivity for the conversion of ethanol to C_1 and C_2 hydrocarbons but a relatively high selectivity for the incorporation of ethanol into C_3 oxygenated compounds. In contrast to Rh and Ru, both Ni and Fd showed low selectivities for conversion or incorporation of ethanol to other products and exhibited mainly dehydrogenation activity.

Addition of Acetaldehyde to CO/H2

The product distributions and rates of acetaldehyde conversion during the addition of acetaldehyde to CO/H_2 are shown in Table VIII. In the case of Ni/SiO₂, the selectivity for butyraldehyde was higher than that for C₃ oxygenated compounds indicating that the aldol condensation of acetaldehyde occurred on Ni/SiO₂ during the addition of acetaldehyde to CO/H_2 . In addition to the aldol condensation, Ni/SiO₂ also showed a fair selectivity for the decarbonylation of acetaldehyde to CH_4 and a high selectivity for the hydrogenation of acetaldehyde to ethanol. In contrast to Ni/SiO₂, Ru/SiO₂ and Rh/SiO₂ did not show aldol condensation activity. Rh/SiO₂ exhibited a strong

activity for the hydrogenation of acetaldehyde to ethanol. Ru/SiO_2 demonstrated a high activity in the decarbonylation of acetaldehyde to CH_4 and the conversion of acetaldehyde to C_2 hydrocarbons as well as the incorporation of acetaldehyde into C_{3+} hydrocarbons.

DISCUSSION

Addition of Ethylene to CO/H2

The added probe molecules may react with adsorbed CO, H, and/or reactive intermediates produced by CO hydrogenation and they may even block the active sites for specific reaction steps. This could result in variations in the rates of CO conversion and product formation from CO hydrogenation during the addition of probe molecules. The selectivity of probe molecule reactions in this study may be influenced by the surface concentrations of CO hydrogenation intermediates and probe molecule intermediates as well as by the capability of the catalysts to catalyze the specific reaction steps of these intermediates. As shown in Table I, the adsorbed ethylene species may react with adsorbed CO and adsorbed H to form propionaldehyde and 1-propanol, may react with H to form ethane, may incorporate with CH, to form higher hydrocarbons, or may undergo hydrogenolysis to form methane. Among these three reactants (CO, H_2 , and C_2H_4), adsorbed CO and adsorbed H are probably the most abundant species on the surface even in the presence of C_2H_4 . As a consequence, there may be a sufficient amount of adsorbed H and CO for hydrogenation, hydrogenolysis, or incorporation of ethylene as well as for hydrogenation of CO. Since the formation of methane and C_{3+} hydrocarbons over Pd/SiO2 is only slightly affected by the addition of ethylene to CO/H2, the decrease in CO conversion and methanol formation would appear to be due to blockage of methanol formation sites by the added ethylene. In contrast to

 Pd/SiO_2 , an increase in CO conversion during the addition of ethylene to CO/H_2 was observed for Ni/SiO_2 , Ru/SiO_2 and Rh/SiO_2 . This appears to be due to the reaction of ethylene with adsorbed CO (36).

4

÷.

All group VIII metals are known to be active in catalyzing both CO hydrogenation and ethylene hydrogenation (3,37), both involving C-H bond formation. They also involve different reaction steps and active site requirements (3,37), so that the activity for ethylene hydrogenation does not parallel that of CO hydrogenation over these metals.

As shown in Table VI, hydrogenolysis of ethylene only occurred on the Ni/SiO₂ catalyst. A similar observation has been reported by van Barneveld (7).

The capability of group VIII metals to dissociate CO has been well established in the literature (38,39). CO dissociation activity decreases in the order: Ni/SiO₂ > Ru/SiO₂ > Rh/SiO₂ > Pd/SiO₂. Thus, the surface concentration of nondissociatively adsorbed CO during synthesis may increase in the reverse order. Since nondissociatively adsorbed CO is known to be the precursor for insertion into adsorbed ethylene species to form C3 oxygenates (propionaldehyde and propanol) (19,40), the low selectivity of ethylene toward C₃ oxygenates over Pd/SiO₂ must be attributed to a lower activity of Pd to catalyze CO insertion than hydrogenation. In contrast to Pd, Rh has a greater tendency to dissociate CO. It also is the best catalyst for the formation of It is likely that the selectivity for the C₃ oxygenates from ethylene. conversion of ethylene to C3 oxygenates is dependent upon both the activity of insertion and the surface concentration catalyst for CO the of nondissociatively adsorbed CO.

All these metal catalysts showed very low selectivities for the incorporation of ethylene into higher hydrocarbons (Table VI). A similar

observation has also been reported by van Barneveld (7). The low selectivity for incorporation of ethylene into higher hydrocarbons could be due to the high activity of these catalysts for ethylene hydrogenation. Among Group VIII metals, only cobalt has been observed to be very active in the incorporation of ethylene into higher hydrocarbons (10,42).

Addition of Ethanol to CO/H_2

Adsorbed ethanol has been identified in the form of an ethoxy group on Fe (43) and Pt (44), and it can react to produce CH_4 and C_2H_4 . In the presence of CO/H_2 , the adsorbed ethanol and its decompositon products may react with CO hydrogenation intermediates resulting in a variety of products (Table II). As shown in Table VII, both Ni/SiO2 and Pd/SiO2 are active in catalyzing dehydrogenation of ethanol to acetaldehyde but inactive in catalyzing any incorporation of the ethanol into higher hydrocarbons or oxygenated Although these two metals have different CO dissociation compounds. abilities, they have similar selectivities for the incorporation and the This could be due to the fact that different active conversion of ethanol. sites are responsible for the reactions of these two molecules. CO dissociation has been shown to take place on ensemble sites of metals (3), while the breaking of the C-O bond of ethanol has been proposed to require both intrinsic acidic sites and intrinsic basic sites of metals (23).

In the case of Ru, a moderate selectivity for the incorporation of ethanol into higher hydrocarbons and a high selectivity for the conversion of ethanol to C_1 and C_2 hydrocarbons were observed. As with Fe (20,21), Ru also shows a higher selectivity for the incorporation of ethanol into higher hydrocarbons compared with the incorporation of ethylene into higher hydrocarbons. Emmett and coworkers (20,21) suggested that dehydration products of ethanol serve as intermediates for chain growth. However, the

selectivity for the incorporation of ethylene, a dehydration product of ethanol, to C_{3+} hydrocarbons has been observed to be very low for both of these metal catalysts. The formation of a significant amount of C_3 oxygenated compounds (propanol and propionaldehyde) during the addition of ethanol to CO/H_2 over Rh/SiO_2 may be also explained by dehydration of ethanol followed by CO insertion. Reactions 7 and 8 of Table II are also possible on these metal catalysts, but there is no definite evidence for these reactions.

Addition of MeCHO to CO/H2

Adsorbed acetaldehyde has been found to readily form ethoxy intermediates on Fe (45). Since ethanol can dehydrogenate to form ethoxy intermediates and acetaldehyde, and acetaldehyde can hydrogenate to form ethoxy intermediates and ethanol, the differences in product selectivity for ethanol reaction versus acetaldehyde reaction over these catalysts may relate to the relative ease of hydrogenation and dehydrogenation. If this is the case, it would not be expected that such a significant variation in CO conversion would occur during the addition of acetaldehyde to CO/H_2 as happened over Ni/SiO_2 and Ru/SiO_2 . In contrast, the addition of ethanol to CO/H_2 did not produce such a change. It is not clear how adsorbed acetaldehyde modify CO hydrogenation over these two catalysts.

Ru appears to have a greater activity for the decarbonylation of adsorbed acetaldehyde intermediates than for hydrogenation of these intermediates to ethanol. Significant activity for the aldol condensation of acetaldehyde was only observed for Ni/SiO₂. Aldehydes have a great tendency to undergo the aldol condensation but it is not clear why this occurs mostly on the Ni/SiO₂ catalysts.

A small amount of acetone was observed during the addition of acetaldehyde to CO/H_2 over Ni/SiO_2 , Ru/SiO_2 , and Rh/SiO_2 . This could proceed

through dehydrogenation of the acetaldehyde to acyl intermediates followed by their association with CH₃ species to produce acetone (41,48). In fact, by isotopic tracing experiments, this latter step has already been shown, to occur (41).

Reaction Mechanisms

The selectivities for the various probe molecule reactions are summarized in Table IX. Ni/SiO2, Ru/SiO2, Rh/SiO2 and Pd/SiO2 catalysts demonstrated differences not only in product selectivity for CO hydrogenation but also in their catalytic capabilities for hydrogenation, hydrogenolysis, dehydrogenation, CO insertion, and the incorporation of ethylene, ethanol and acetaldehyde during CO hydrogenation. The reaction steps suggested by the results of this study and by those reported in the literature (1-49) are summarized in Figure 1. Ni, a methanation catalyst, showed a strong catalytic activity for ethylene hydrogenation, ethylene hydrogenolysis, ethanol dehydrogenation, and acetaldehyde hydrogenation but poor catalytic activity for CO insertion and incorporation of ethylene, ethanol, or acetaldehyde into higher hydrocarbons and oxygenated compounds. The catalytic activities displayed by Ni/SiO2 appear to be unfavorable for the formation of higher hydrocarbons and oxygenated compounds. Ru/SiO2, a good higher hydrocarbon synthesis catalyst, demonstrated a strong catalytic activity for ethylene hydrogenation, conversion of ethanol to С, and С, hydrocarbons, decarbonylation of acetaldehyde, and incorporation of ethanol and acetaldehyde into higher hydrocarbons but a weak catalytic activity for hydrogenolysis of ethylene and CO insertion. A poor CO insertion capability and a strong decarbonylation activity prevent the formation of C2+ oxygenated compounds, and they exclude oxygenated intermediates as major intermediates for hydrocarbon chain growth over Ru/SiO_2 . Rh/SiO_2 , a good C_2 oxygenate synthesis

catalyst, exhibited strong catalytic activity for the incorporation of ethylene and ethanol to C3 oxygenated compounds but poor catalytic activity for decarbonylation of acetaldehyde and hydrogenolysis of ethylene. A strong tendency for the incorporation of ethylene and ethanol into C₃₊ oxygenated compounds indicates that both oxygenated and hydrocarbon intermediates could be important for chain growth to form oxygenated compounds. Pd/SiO₂, a synthesis catalyst, showed strong catalytic activity for methanol hydrogenation and poor catalytic activity for CO insertion, conversion of ethanol to methane, and the incorporation of ethylene and ethanol into higher hydrocarbons and oxygenated compounds. The activity in catalyzing probe molecule reactions exhibited by Pd/SiO2 is somewhat similar to those displayed by Ni/SiO₂. They do not favor the formation of C_{2+} species.

CONCLUSIONS

The synthesis of oxygenated compounds and hydrocarbons over N1/SiO₂, Ru/SiO₂, Rh/SiO₂, and Pd/SiO₂ would appear to follow different reaction paths resulting in different product distributions at 10 atm. The formation of C_{2+} oxygenated compounds over Rh/SiO₂ is controlled by both the activity of the catalyst to catalyze CO insertion and the surface concentration of nondissociatively adsorbed CO. Both oxygenated and hydrocarbon intermediates may be important for oxygenate chain growth on Rh. The insertion of CH_x into C_yH_x appears to be a major route for the formation of higher hydrocarbons over Ru/SiO₂. The inability of Ni/SiO₂ and Pd/SiO₂ to catalyze the formation of C_{2+} species would seem to be related to their poor abilities in catalyzing the incorporation of hydrocarbon and oxygenated intermediates to form C_{2+} species. Nevertheless, the factors for controlling these specific reaction steps remain as yet unclear. A more thorough study of the relationship

between the surface states and electronic configuration of these metals and their catalytic abilities for specific reaction steps (as shown in Figure 1) should provide a deeper insight into the mechanism of product formation over the Group VIII metals.

ċ

....

÷.

4. FORECAST OF WORK

During the 12th quarter, a final report of this project will be prepared.

References

ت

:

: =

1.	Sheldon, R.A., "Chemicals from Synthesis Gas," D. Reidel Co., Boston (1983).
2.	Henrici-Olive, G., and Olive, S., "The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide," Springer-Verlag, NY (1984).
3.	Biloen, P., and Sachtler, W.M.H., Adv. in Catal. 30, 165 (1981).
4.	Pines, H., "The Chemistry of Catalytic Hydrocarbon Conversions," Academic Press, NY (1981).
۰5 .	Rofer-Depoorter, C.K., Chem. Rev. 81, 447 (1981).
6.	Muetterties, E.L., and Stein, J., Chem. Rev. 79, 479 (1979).
7.	van Barneveld, W.A.A., Ph.D. Thesis, University of Leiden, The Netherlands (1984).
8.	Bell, A.T., in "Heterogeneous Catalysis," (B.L. Shapiro, Ed.) p. 221, Texas A&M University Press, Texas (1984).
9.	Ponec, V., in "Catalysis," (G.C. Bond and G. Webb, Eds.) Vol. 5, The Royal Society of Chemistry, Burlington House, London (1982), pp. 48-80.
10.	Eidus, Y.T., Russ. Chem. Rev. <u>36</u> , 338 (1967).
11.	Bell, A.T., J. Catal. <u>78</u> , 165 (1982).
12.	Ekerdt, J.G., and Bell, A.J., J. Catal. <u>62</u> , 19 (1980).
13.	Wang, C.J., and Ekerdt, J.G., J. Catal. 80, 172 (1983).
14.	Wang, G.J., and Ekerdt, J.G., J. Catal. <u>86</u> , 239 (1984).
15.	Emmett, P.H., Catal. Rev. 7, 1 (1973).
16.	Schulz, H., and Achtsnit, H.D., Revista Portuguesa de Quimica., Lisboa, 19, 317 (1977).
17.	Vozler, G.L., Tiang, X.Z., Dumesic, J.A., and Madon, R.J., J. Catal. <u>89</u> , 116 (1984).
18.	van den Berg, F.G.A., Ph.D. Thesis, University of Leiden, The Netherlands (1983).
19.	Chuang, S.C., Goodwin, J.G., Jr., and Wender, I., J. Catal., in press.
20.	Hall, W.K., and Emmett, P.H., J. Am. Chem. Soc. 79, 2989 (1957).
21.	Kummer, J.T., and Emmett, P.H., J. Am. Chem. Soc. <u>75</u> , 5177 (1953).

- 22. Klier, K., in "Hezerogeneous Catalysis," (B.L. Shapiro Ed.) p. 252, Texas A&M University Press, Texas (1984).
- 23. Pines, H., J. Catal. 78, 1 (1982).
- 24. Biloen, P., Helle, J.N., van den Berg, F.G.A., and Sachtler, W.M.H., J. Catal. <u>81</u>, 450 (1983).
- 25. Happel, J., Suzuki, J., Kokayeff, P., and Fthenakis, V., J. Catal. <u>65</u>, 59 (1980).
- Happel; J., Chen, H.Y., Otarod, M., Ozawa, S., Severdia, A.J., Yoshida, T., and Fthenakis, V., J. Catal. <u>75</u>, 314 (1982).
- 27. Tau, L.M., and Bennett, C.O., J. Catal. 89, 285 (1984).
- Bianchi, D., Tau, L.M., Borcar, S., and Bennett, C.O., J. Catal. <u>84</u>, 358 (1983).
- 29. Blanchi, D., Borcar, S., Teule-Gay, F., and Bennett, C.O., J. Catal. 82, 442 (1982).
- Storch, H.H., Golumbic, N., and Anderson, R.B., "The Fischer-Tropsch and Related Syntheses," John Wiley & Sons, Inc., NY (1951).
- 31. Vannice, M.A., J. Catal. 37, 449 (1975).

2

- 32. Chen, Y.W., Ph.D. Thesis, University of Pittsburgh (1982).
- 33. Wilson, T.P., Kasai, P.H., and Ellgen, P.C., J. Catal. <u>69</u>, 193 (1981).
- 34. Vis, J.C., Ph.D. Thesis, Technological University of Eindhoven, The Netherlands (1984).
- 35. Ryndin, Yu.A., Hicks, R.F., and Bell, A.T., J. Catal. 70, 287 (1981).
- 36. Chuang, S.C., Goodwin, J.G., Jr., and Wender, I., Preprints of Petroleum Chemistry Division, ACS 29(4), 1108 (1984).
- 37. Davis, S.M., and Somorjai, G.A., in "The Chemical Physics of Solid Surface and Heterogeneous Catalysis" (D.A. King and D.P. Woodruff, Eds.,) Vol. 4, p. 217, Elsevier Sci. Pub. Co., Amsterdam (1982).
- 38. Broden, G., Rhodin, C., Bruckner, R., Benbow, R., and Hurych, Z., Surf. Sci. <u>59</u>, 583 (1976).

- 39. Rabo, J.A., Risch, A.P., and Poutsma, M.L., J. Catal. 53, 285 (1978).
- 40. Watson, P.R., and Somorjai, G.A., J. Catal. 72, 347 (1982).
- 41. Ichikawa, M., Fukushima, K.T., Shikakara, K., and Kanagawa, J., Proceedings of 8th International Congress on Catalysis, Berlin, Dechema (1984), Vol. 1, pp. 69-80.

42.	Kibby, C., Kobylinski, T., and Pannell, R., Symposium on the Fischer- Tropsch Mechanism, Division of Petroleum Chemistry, 1984 ACS Annual Meeting, Philadelphia, PA, August 26-31 (1984).
43.	Benziger, J., and Madix, R.J., J. Catal. <u>65</u> , 36 (1980).
44.	Rendulic, K.D., and Sexton, B.A., J. Catal. 78, 126 (1982).
45.	Benziger, J., and Madix, R.J., J. Catal. 74, 55 (1982).
46.	Krylov, O.V., "Catalysis by Nonmetals," Academic Press, NY (1970).
47.	Deluzarche, A., Cressely, J., and Kieffer, R., J. Chem. Res., 136 (1979).
48.	Schulz, H., and Zein Al Deen, A., Fuel Proc. Tech. 1, 45 (1977).
49.	Hackenbrach, J., Keim, W., Roper, M., and Strutz, H., J. of Mol. Catal. 26, 129 (1984).

17

Ŀ

;

Table I: Possible Reactions due to Ethylene Addition during CO Hydrogenation

÷.

Table II: Possible Reactions due to Ethanol Addition During CO Hydrogenation

٧, ٦

۰.

Expression of CH₄ or C₂ Hydrocarbons
1. CH₃CH₂OH
$$\longrightarrow$$
 CH₄, C₂H₄, C₂H₆ Benziger & Madix (43)
2. C_nH_{2n+1}OH(ad) \longrightarrow C_nH_{2n+1}OH(g)
CO(ad) + 2(n+1)H(ad) + nC(ad)
CO(ad) + 2(n+1)H(ad) + nC(ad)
CO(ad) + C_{n-1}H_{2n-3}(ad) + 5H(ad)
3. CH₃CH₂OH \longrightarrow CH₂=CH₂ + H₂O Krylov (46)
[oxide cat.]
4. RCH₂OH \longrightarrow RCH₂CHO + H₂ Pines (23)
RCH₂CHO \longrightarrow RCH₂CHO + H₂ Pines (23)
RCH₂CHO \longrightarrow RCH₃ + CO
[NI]
CO + 3H₂ \longrightarrow CH₄ + H₂O
Chain Growth
5. CH₃CH₂OH $\xrightarrow{CO/H_2}$ C₃₊ Hydrocarbons Kummer & Emmett (21)
Dehydrogenation
6. CH₃CH₂OH $\xrightarrow{CO/H_2}$ CH₃CHO + H₂ Krylov (46)
[oxide cat.]
Formation of C₃ Oxygenates
CH₂
1 + (CH₃CH₂OH)_{ad} \longrightarrow CH₃CH₂CH₂OH
N + (CH₃CH₂OH)_{ad} $\xrightarrow{Rofer-DePoorter (5)}$
8. nCH₂ + CH₂CHO H
N M K

.

÷

Table IV: Metal Particle Size of Ni/SiO₂, Ru/SiO₂ Rh/SiO₂ and Pd/SiO₂

Catalysts	Average Metal Particle Diameter (Å)			
20 wt% Ni/Si02	75 ^a 80 ^b			
1.8 wt% Ru/SiO2	16 ^c - < 30 ^b			
3 wtZ Rh/SiO ₂	< 30 ^b			
2.3 wt% Pd/SiO2	42°			

۰.

<u>1</u>)

.

^ameasured by hydrogen flow chemisorption at 25° C. ^bdetermined by x-ray diffraction. ^cdetermined by static hydrogen chemisorption at 25° C, H_{irr}/M = 1.

2000 N

•

	· · · · · · · · · · · · · · · · · · ·			
	20 wt% N1/S10 ₂	1.8 'wt% Ru/S10 ₂	3 wt% Rh/Si0 ₂	2.3 wt% Pd/S10 ₂
r _{CO} (moles/kg/hr)	0.91	5,06	1.3	2.7
% CO Conv.	0.16	3.4"	0.88	0.5
CH4	82.8	76.5	41.2	0.9
C ₂	12.8	8.5	6.8	1.4
с ₃₊ вс	3.7	12.6	1.8	0.4
MeOH	0	. 1.1	1.4	97.0
elon	0	0.6	18.1	·0
MeCEO	0,51	0.4	13.3	0
C ³ 0X .	0.14	0.3	16.6	0.14
Acetone Butyraldehyde EtOAc	0,03	0	0.6	0

Table V: Activity and Product Selectivity (mol. 2) during CO Hydrogenation ŀ

(300°C, 10 atm, CO/H₂ = 1) OX: Oxygenated Compounds HC: Hydrocarbons

	20 wt% Ni/SiO ₂	1.8 wt% Ru/SiO ₂	3 wt% Rh/S10 ₂	2.3 wt% Pd/S102
Selectivity (no 17)		ч ч	
CH ₄	5	· 0	0	0
с ₂ н ₆	90	97.2	76	99.5
с ₃₊ нс	1	2.0	0.3	0.3
MeOH	Ō	0	0	(b)
c3ox	3.1	0.7	23.4	0.3
r _{CO} ^(a) (w/o) W	(0.91) 1.19	(4.94) 4.98	(1.3) 2.85	(2.70) 1.75
7 C2 ⁼ added	1.1%	2.8%	3.17	3.3 <u>7</u>
r_{C_2} (a)	8.65	8.12	6.49	36.2
Z C2 [±] conv.	75%	99%	71%	997

Table VI:Product Selectivity (mol. 2) from EthyleneReaction During CO Hydrogenation

 $(300^{\circ}C, 10 \text{ atm}, C0/H_2 = 1)$

÷

(a) all rates expressed as moles/kg/hr

(b) 44% decrease in overall MeOH formation

(w/o): rate of CO conversion without the addition of ethylene

w: rate of CO conversion during the addition of ethylene

	20 wt% Ni/Si0 ₂	1.8 wt% Ru/SiO ₂	3 wt% Rh/S10 ₂	2.3 wt% Pd/SiO ₂
electivity (no17)			
CH4	0	74.6	15.1	0,7
c ₂	Ó.	10	2.1	4 .2
C3+HC	1.8	1.3.2	3.0	3.3
MeOH	0	. 0.5	· 6	₀ (Ъ)
MeCH0	91	1.4	20.8	87.6
c30x	. 3.7	0	38.6	2.6
Butyral- dehyde	3.1	- 0 /	0	2
EtOAc	0	0.2	14	0
CO ^(a) (w/o) w	(0.99) 0.81	(4.9) 4.6	(1.10) 1.24	(1.24) 1.67
Z ErOH added	0.75	2.5	0.65	0.85
(a) EtOH	0.16	6.5	0.28	0.54
Z EtOH conv.	2	81.9	16	6

 Table VII:
 Product Selectivity (mol. 7) from Ethanol

 Reaction during CO Hydrogenation

 $(300^{\circ}C, 10 \text{ atm}, CO/H_2 = 1)$

11

÷

ł

ŷ

(a) all rates expressed as moles/kg/hr

(b) no decrease in MeOH formation

(w/o): rate of CO conversion without the addition of ethanol w: rate of CO conversion during the addition of ethanol

	20 wtZ Ni/SiO ₂	1.8 wt% Ru/SiO ₂	3 wtX Rh/S10 ₂
Selectivity (mo1%)	_	
CH4	13	60.7	4.8
c ₂	1.1	10.0	0.3
С ₃₊ нс	4.3	9.6	3.2
MeOH	0	0	0
EtOH	68	19.1	8 6 ·
c30x	1.8	0_2	2.2
Acetone	0,4	0,26	1.1
Butyral- dehyde	10	. 0	0.6
EtOAc	0	0.1	0.6
r _{CO} ^(a) (w/o) w	(0.68) 1.39	(4.9) 3.0	(1.32) 1.32
% HAc added	0.87	2.4	0.73
r _A (a)	4.4	6.7	1.56
7 HAC CORV.	46	95.3	73

Table VIII: Product Selectivity (mol. %) from <u>Acetaldehyde</u> Reaction During CO Hydrogenation

 300° C, 10 atm, CO/H₂ = 1

(a) all rates expressed as moles/kg/hr
(w/o) : rate of CO conversion without the addition of acetaldehyde
w : rate of CO conversion during the addition of acetaldehyde
HAc : Acetaldehyde

Table IX: Selecti	vities of	the Frod	e worecure	
No the second se	NI /SIO2	Ru/S102	Rh/S102	Pd/S10 ₂
CO Dissociation(38,39)	+++	+++	+ +	.0
Hydrogenation of C_2^{-1}	++++	+	+++	+++
Hydrogenolysis of C_2^{-1}	+	0	0	0
Incorporation of C_2^{-1} into $C_{3+}HC$	+ .,	. +	0	0
CO insertion in $C_2^{\frac{3}{2}}$. +	0	. +++	0
Dehydrogenation of EtOH	+++	+	+++	+++
Dehydration of EtOH	. 0	++	÷	+ ',
Conversion of EtOH to to CH_4	0	+++	+++	0
Conversion of EtOH into C ₃₊ OX	+	0	+++	+
Conversion of EtOH into C ₃₊ HC	+	+++	+	+
Conversion of MeCHO into C ₃₊ UX	. +	0	+	NA
Conversion of MeCHO into C ₃₊ HC	+	++	+	NA
Decarbonylation of MeCHO	+++	++++	+	NA
Aldol Condensation	++	0	0	NA

;. ·

(300°C, 10 atm, C0/H₂ = 1)
+++: strong (> 10% of probe reactant incorporated)
++: moderate (> 5%)
+: weak (> 1%)
0: inactive (< 1%)</pre>

5

•7

SATISFACTION GUARANTEED

Please contact us for a replacement within 30 days if the item you receive NTIS strives to provide quality products, reliable service, and fast delivery filling your order. if we have made an error in s defective or

E-mail: info@ntis.gov Phone: 1-888-584-8332 or (703)605-6050

Reproduced by NTIS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at <u>http://www.ntis.gov.</u>

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000