1.0 INTRODUCTION

The analysis which foiiows projects and examines, for alternate Sites 1 and 23 , the socioeconomie impacts of the construction and operation of the Crow synuels fanility and incremental coal mining operations. As a primer to interpreting and evaluating these impact analyses, this introduetory section provides a review and critique of the "state-of-practice" socioeconomic impact assessment methodology. The effectiveness of "state-of-practice" methods are evaluated using a racent comparison of the forecasts prepared by others in different impacted communities to the impacts that were found-retrospectively-to have actually occurred in those communities. The reasons for divergencies between actual and forecasted impacts have been identified and appropriate modifications made to the procedures used to projest the socioeconomic impacts associated with the Crow synfuels facility. The final part of this introductory section describes briefly these changes and the general methodological approach used in this investigation.

1.1 SOCIOECONOMIC IMPACTS AND IMPACT FORECASTING

For purposes of this study, socioeconomic impacts are those alterations in the social, economic, and institutional conditions of a community, area, or region produced by externally imposed growth from major energy or industrial development projects. Such projects have the potential to alter normal growth and growth accommodation patterns by introducing new income and consequent economic activity into their host communities. While normally perceived as beneficial, such changes from externally imposed growth becomes disruptive when the rate and mag'nitude of this growth exceed the capacity of the public and private institutions and infrastructures to accommodate. Thus, adverse impacts from major energy or industrial projects are most likely to be experienced in small, rural aress lacking a diversified economic base.

Socioeconomic impact analysis is the name given to the process of forecasting the rate and magnitude of imposed growth and the effects of this growth on social, economic, and institutional conditions of the host area. This process can best be explained by examining the paradigm most frequently followed in impact analysis. Figure 1.1-1 presents in highly abstracted form the general analytical framework used to project the socioeconomic impacts (both positive and negative) resulting from industrial or energy projects on hosting communities. As the paradigm illustrates, the forecasting process begins with the direct employment requirements of the project. These are the jobs created directly by the construction and operation of the project's facility or facilities. Direct employment is the key independent variable in the forecasting process. Prom these exogenously provided data, all other growth and impact effects are estimated.

Most forecasting methods are grounded in economic base theory. Reduced to its essence, this theory asserts that the growth of an area depends upon the growth of its export sector. The implication is that the expansion of economic activities marketed outside the region is the driving force behind growth within the region. Thus, as Richardson points out, an increase in the economic base of the region (i.e., all exportable goods and services produced therein) sets off a multiplier process of

growth within the local or secondary sectors of the area's economy (Fichardson 1969). (Reference 7) Following this theory, analysts of socieeconomic impacts typically attempt to guantify multipliers expressing the relationship between a measure of increased basic economic activity (e-g, direct employment) and increased local economy antivity (e.g., secondary sector jobs). Using these multipliers and the number of direct (basic) jobs created by the project, the number of retail, commercial, and service sector jobs in the local area are estimated.

Given the number of basic and secondary jobs expected, the next step in the forecasting process is to determine the number of persons within commuting distance of the project who are available and willing to fill these jobs. Although the methods used to estimate the size of this local work force vary considerably, it is generglly assumed that these local workers will be hired first. The number of dirent and secondary positions generated by the project are reduced by the number of lacally available workers. Those jobs not filled locally are assumed to attract in-migrating workers and their families. Thus, the impact of the project on the growth of the area's population is a result of the attraction provided by the unfilled direct and secondary jobs. Using a variety of assumptions, the demographic characteristics of this new population are estimated and these newcomers are "assigned" to the surrounding communities.

Given the estimated growth and change in the populations of these communities over time, the next step in the forecasting process is to evaluate the effects of this growth on the public infrastructures and institutions of their host communities. Most typically, this is done by forecasting the effects this growth will have on the demand for housing and publicly provided services and facilities. In the most rigorous analyses, the costs of providing the needed increased public services and facilities are projected and compared to expected increases in public revenues from the project and the project-related demographic and economic growth. Conveniently, the inirastructure and institutional effects of imposed growth are reduced, in these studies, to a single dollar value expressing the positive or negative difference between the incremental public revenues and expenditures attributable to the project.

1.2 A CRITIQUE OF SOCIOECONOMIC IMPACT FOREGASTS

The general impact forecasting procedures described in Section 1.1 were developed in the early 1970 in in response to the requirements of the National Environmental Poilicy Act (NEPA). NEPA required that the effects of major developments on their human and physical enviconments be assessed. Throughout much of the decade, considerable attention was given to the construction and improvement of lange, computerized models designed to forecast these impact phenomena (Stenenjem and Metzger 1976; Stenehjem 1978). (Reference 9, 11) These models and their algorithms for projecting demographie and economic changes are still relied upon to forecast the socioeconomic effects of site-specific and programmatie Bnvironmental Impact Statements. Uniortunately, while attention continued to be focused on building increased sophistication into these analytical tools, almost no effort was expended in looking retrospectively at how well these procedures had performed in the areas experiencing rapid, imposed growth.

One of the first attempts to examine whether the impacts actually experienced bore any resembiance to those forecasted to occur was the retrospective study conducted by the Denver Research Institute. In this study, 12 communities from Maine to California that had hosted the construction of power plants and for whom projections had been prepared of the likely sociocconomic effects were examined retrospectively. In this study the forecasted impacts were compared to those that actually occurred in an effort to discover whether the forecasting methods were adequate and to suggest changes in the methodologies where weaknesses were obseryed.*

[^0]many forecasts of socioeconomic impacts define too narrowly the positive and negative impacts that accompany energy development; and
many socioeconomic impact forecasts measure too imprecisely those impacts that are addressed (a complete discussion of these points can be found in: Stenehjem 1981). (Reference 10)

Briefly summarized, many of the errors observed in the forecasts of socioeconomic impacts are directly traceable to errors in the estimates of direct manpower requirements. As mentioned in the preceding discussion, estimates of direct manpower are provided by the architectural and engineering irms; they represent the key independent variable user :n socioeconomic impact forecasting. Table 1.2-1 illustrates the estimated and actual peak direct employment requirements for 15 power plants across the country. Although there is wide variation in the accuracy of these estimates, on average they understate the peak employment requirements at these sites by 60 to 70 percent.*

When the key independent variable is underestimated, estimating errors can be expected in all other varlables as well. For example, an understatement of direct employment requirements leads to an underestimation of indirect employment, inmigration and population, and the impacts of growth on community infrastructure and institutions. Fortunately (or unfortunately), errors in direct employment are not the only problems with forecasting methods.

[^1]Even though direct employment tends to be underestimated, estimates of indirect employment opportunities are often ovierstated. Employment multipliers expressing the relationship of local secondary jobs to basic (direct) jobs are often computed by simply dividing the number of secondary jobs in an area by the number of basic jobs in that area at a point in time. In many instances the quotient obtained is 2 or higher. Multipliers of this scale can be in error by an order of magnitude. There is evidence to suggest that the number of secondary jobs resulting from imposed basic employment will be far below that estimated using a simple ratio multiplier. In general, multipliers of 0.1 to 0.5 (indicating that for every 10 new basic jobs created, one to five secondary positions are created) are more realistio-especially during the period when the facility is being constructed.

Another problem has been observed in the estimation of in-migration. In general, forecastems have assumed that a much larger proportion of the jobs directly created by the project will be filled by local workers than actually are. Thus, forecasts of the number of in-migrants and consequent population growth tend to be overstated. Reasons for these errors are discussed in more detail below.

Finally, many of the socioeconomic impact forecasts examined tended to overstate the impacts that actually occurred because it was assumed that the in-migrating workers and their families would choose to live in the communities closest to the site of the project. In fact, many people were found to be willing to commute long distances to wark in exchange for living in larger, outlying communities. It was also observed that a larger proportion of in-migrating construction workers than assumed would live in temporary quarters and return to their families and permanent residences on weekends.

Given the general nature of the problems found in the estimates of the independent and dependent variables in the forecasting process, it is conceivable that estimates of population change and infrastructure impacts may be generally correct but for all the wrong reasons. Given the findings from the retrospective study, greater care and attention must be given to estimates of direct employment, the size of employment

TABLE 1.2-1
ACTUAL VS. PROJRCTED PEAK MANPOWER REQUIREMENTS AT 15 FACILITIES

Facility	Type	State Location	Actual Peak	$\begin{gathered} \text { Projected } \\ \text { Peak } \end{gathered}$	Difference	\%
Coal Creek	Caal	ND	2,113	980	1,133	115
Clay Boswell	Coal	MN	1,560	900	660	73
Boardman	Cosl	OR	1,482	760	722	95
Laramie River	Coal	WY	2,809	2,076	533	26
Fayette	Coal	TX	867	584	283	48
Bellefonte	NUC	AL	4,350	2,300	2,050	89
Wyman	Coal	ME	680	675	5	0.7
San Onofre	NUC	CA	4,000	3,120	880	28
Coronado	Coal	AZ	2,613	1,660	953	57
Cholla	Coal	AZ	1,423	500	973	195
Antelope	Coal	ND	1,370	840	530	63
Coyote	Coal	ND	1,060	1,020	40	4
Jim Bridger $1 \& 2$	Coal	WY	3,200	1,200	2,000	167
Jim Bridger 4	Coal	WY	954	1,700	(746)	(44)
White Bluff	Coal	AR	1,800	1,100	800	73

NOTES:

Error Range:	$\mathbf{4 4 \%}$ overestimation to 195% underestimatioh.
Mean Error:	$\mathbf{7 0 \%}$ underestimation.
Median:	$\mathbf{6 0 \%}$ underestimation.

Source: (Stenehjem, 1981) (Reference 10)

USE Ch Misclasing or herm bita
mulcipliers used, the number of jobs not likeiy to de inilied by local workers, and tine likely settlement patterns and housing requirements of the new population.

In addition to finding errors in the data and methods of "state-of-practice" impact forecasts, it was also observed that the socioeconomic projection process fails to consider a number of important underlying phenomena associated with imposed growth. Figure 1.1-1 shows that the projection process focuses on demand-side problems; the emphasis is clearly on estimating:

```
how many new jobs,
how many new people,
how many new dwellings, and
how many new schools, police cars, firemen, etc.
```

What is being ignored are important supply-side issues relating to how these demands are likely to be met. Perhaps the most important supply-side issue associated with imposed growth concerns the functioning of the labor market. .Two issues are of importance in understanding the functioning of this market. First, labor is a highly differentiated commodity that permits less substitutability than is generally recognized. Second, labor markets are not perfectly functioning mechanisms but require adjustment periods in meeting demands.

Many forecasts of socioeconomic impacts appear to regard labor as a homogeneous commodity with workers differentiated only with respect to whether they construct the facility, operate the facility, or work in secondary retail, commercial, or service-oriented jobs. Manpower, of course, is not homogeneous within these categories. The construction of a major energy facility requires a complex scheduling of bricklayers, pipefitters, boilermakers, carpenters, electricians, and workers with other skills. For example, bricklayers cannot be substituted for or replace electricians, and, on a union job, nonunion electricians cannot be used.

While this requirement may appear simple to many people, it is not well enough understood to have been incorporated in many forecasts of socioeconomic impacts. Too often, differences in skills and union affiliations are ignored in making projections of how many local persons will find employment in the construction or operation of these facilities. As indicated in the explanation of the socioeconomic forecasting process, it has been assumed that these jobs will be taken first by local people who are either unemployed or not currently in the labor force without consideration given to their skills or union affiliations. Such practices, arising from a failure to consider manpower supply-side issues, result in understatements of inmigration and the normal turnover (in- and out-migration of the different crafts or professions) of the work force. It also leads to umrealistic expectations on the part of local workers who are led to believe that they will be employed in these positions.

A second supply-side issue relating to the functioning of labor markets is the assumption that, as soon as a need for workers arises, it will be met automatically and instantaneously. What is overlooked is that the adjustment of supply to demand does not always occur immediately or smootily. In general, the following conditions tend to prolong the adjustment process:
when development occurs in remote, sparsely settled areas;
when the pace of development is rapid;
when the scale of the development is large in relation to the surrounding area and its economic base;
when there is considerable uncertainty surrounding the project; and
when the adverse socioeconomis impacts accompany the project.

A failure to anticipate the occurrence of adjustment rigidities in the labor market can lead to understatements of both the length and severity of growth impacts in an area.

As this brief critique has attempted to demonstrate, state-of-practice socioeconomic impact forecasts suffer from data problems and inappropriate assumptions, many of which arise from a failure of the projection process to evaluate important supplyside issues. To the extent possible, the lessons learned from the retrospective studies of actual and forecasted impacts are incorporated in the assessment of the socioeconomic impacts accompanying the construction and operation of the proposed Crow synfuels facility.

1.3 AN OVERVIEW OF THE PROJECTION PROCESS FOR FORECASTING THE SOCIOECONOMIC IMPACTS OF THE CROW SYNFUELS PROJECT

The general framework described in Figure 1.1-1 is followed in the assessment of the impacts associated with the Crow project. However, in recognition of the special demand and supply-side problems associated with manpower projections, this assessment:
uses alternate scenarios of labor requirements to indicate the effects on growth and growth-related impacts of different levels of direct employment; e
describes the labor requirements in terms of their skill or occupational categories;
assesses the availability (and employability) of local workers with respect to their union affiliations and skills.

With respect to the estimation of the secondary jobs created as a result of the econcmic stimulus provided by the project, this analysis:
avoids the use of simple ratio multipliers;
uses a lag procedure to better replicate the dynamie nature of how such secondary jobs arise over time; and
avoids assuming that the relatively low-paying jobs in the retail trade and service sectors will attract significant numbers of in-migrants.

Other modifications in the data and the methods described in the impact paradigm of Figure 1.1-1 include the use of carefully constructed assumptions concerning the likely settlement patterns of in-migrants and an analysis of the current capacities of the infrastructure in the areas likely to host the increased population. While the
forecasting procedures used here have benefited from observations of errors in "state-of-practicel" methods, they are still a projection of future events and as such are subject to alterations in the underlying assumptions. Thus, for example, if delays are experienced in the scheduled construction of this project (as a result of litigation, materials shortages, work stoppages, or other uncontrollable factors), these forecasts will have to be modified accordingly. The results of the analysis of the impacts from the Crow synfuels project are preseated in the following sections. Each section corresponds to a major element of the impact forecasting process.

Section 3.0 describes the empioyment impasts of the project. In this section, the direct employment requirements by period and skill are described and alternative scenarios are presented. This section also includes an assessment of the avallability of the local and commuting work forces with the appropriate skilis. Finally, a description of multiplier estimation and lag procedure and the estimates of secondary jobs are presented. Section 4.0 presents the population impacts associated with the project. Included here are the estimates of the number and characteristics of the in-migrating population. This section also addresses the issues of the likely settlement patterns of this new population. Section 5.0 describes the levels of currently avaiable infrastructure in the surrounding jurisdictions and an analysis of likely capacity expansion requirements given the project-related inereases in the populations of these jurisdictions. Section 5.3 describes the estimated costs of increasing public faciities and services and estimates of the incremental projectrelated revenues available to meet these expenditure needs. The section concludes with an assessment of the incremental revenues less expencitures associated with project-reiated growth. Section 6.0 contains study conclusions and recommendations.

2.0
 SUMMARY

The sociosconomic impacts of the Crow gasification plant were analyzed by modifying the "state-of-practice" framework presented in Figure 1.1-1 to refleet the most recent improvements in state-of-the-art forecasting methods. The analysis begins with an evaluation of the manpower requirements arising from the construction and operation of the facility. To obviate the problems associated with the use of point estimates of construction manpower demand, the scenarios were developed to provide a range of employment needs.*

Following the estimation of the annual "peak" and "average" scenario construction, plant operation, mine operation, and secondary employment requirements, the availability of local Crow and non-Crow workers with appropriate skills to fill these jobs was analyzed for Site 1 and Site 23. As a part of this analysis, estimates were made of the number of jobs that would be taken, by year, by the Crow work force; the numbers of jobs likely to be fulled by non-Crow workers residing within commuting distance of Site 1 and Site 23; and the numbers of workers that would have to in-migrate to these sites to fili the remaining construction, operating, and secondary positions.

The estimates of the annual in-migrating work force provided the foundation for assessing the population impacts that the gasification plant would have on the communities within commuting distance of Site 1 and Site 23. The number of newcomers (in-migrating workers and their household members) to both sites were estimated for both the peak and average employment requirement scenarios. In addition to the number of dependents in each in-migrating household, estimates were

[^2]made of the rumber of potential secondary workers likely to be provided by each of these inouseholds.

Given trie impact on the populations of communities in the Site 1 and Site 23 areas, estimates were constructed of the impacts these newcomers would place on the demands for increased public and private facilities and services. From these figures, estimates were prepared of the likelihood that project-related growth would "pay its own way" in each of the areas. This involved comparing the estimates of the increased capital and operating costs of expanding publie faciities and services to meet the needs of the new populations to the estimates of incremental public reyenues contributed by the newcomers.

2.1 EMPLOYMENT EFEECTS

The direct and secondary work force requirements associated with the peak scenarios for constructing and operating the Crow synfuels facility and expanding nearby coal production facilities are summarized in Table 2.1-1. Omitted in this summary table are the differences in the skill requirements of these workers. These differences were explicitiy considered in the supporting analyses of labor requirements and availability. As the table illustrates, the total employment requirements associated with the Crow synfuels facility rise rapidly to a peak near the end of the plant construction period. In succeeding years, the employment requirements quickly stabilize at a level roughly one-third of that expected in 1988.

The availability of local workers to fill these positions without having to change their residences was estimated by analyzing the number of Crow and non-Crow workers with the required skills at each site. Table 2.1-2 presents the estimates of the number of jobs filled by local workers under the peak employment scenario.

In constructing these estimates, it was assumed that the Crow workers possessing the necessary skills would be given preference in hiring. It was also assumed that the Crow workers with experience as construction laborers experience would be permitted to qualify for apprenticeship positions if too few "laborer" positions were available to accommodate them. Finally, it was assumed that as many as 174 Crow workers would qualify for plant operating jobs if an intensive 18 -month training program were instituted prior to the completion of plant construction.*

[^3]TABLE 2.1-1
SUMMARY OF EMPLOYMENT REQUIREMENTS

Year	Plant Construction	Plant Operations	Mine Production	Local Secondary	Annual Totals
1985	793			141	934
1986	2260			435	2695
1987	3950			706	4056
1988	3503				816
1989		750	180	567	1497
1990		750	180	511	1441
1991		750	180	480	1410
1992		750	180	464	1394
1993		750	180	464	1394
1994		750	180	464	1394
1995^{a}		750	180	464	1394

arthe employment figures for following years should be the same as for 1995.

NUMBER OF POSTTIONS FLLLED BY LOCAL EMPLOYEES AT EACH SITE

	Site 1					Site 23				
	Construction		Operation		Secondary	ConstructionOperation				Secondary
	Crow	Non	Crown	Non	Total	Crow	Non	Crow	Non	Total
1985	324	321		90	141	324	32			108
1986	385	1193		90	435	385	33			208
1987	385	1192		90	706	385	103			534
1988	384	972		90	816	384	57			734
1989			264	90	567			264	80	567
1990			264	90	511			864	90	256
1991			264	90	480			264	90	320
1992			264	90	464			264	90	307
1993			264	90	464			264	90	307
1994			264	90	464			264	90	307

2.2 POPULATION EFPECTS

Given the estimates of the availability of local workers to fill the jobs created ef Site 1 and Site 23, the number of in-migrating workers needed to fill the remaining positions was determined. Assuming that the average number of dependents per inmigrating construction worker household would be approximately 1.9 and that other in-migrating workers would have household sizes roughly equivalent to those of existing residents, the population effects of the Site 1 and Site 23 in-migrating work forces were estimated. The results-for the peak employment scenario-are summariaed in Table 2.2-1.

Although Billings (Yellowstone County) is approximately 20 highway miles farther than Hardin from Site 1 (Big Horn County), it is assumed-besed on recently acquired evidence from the Denver Research Institute's retrospective study of energy impacted communities-that the vast majority of in-migrating families will choose to live in and around Billings because of its size, amenities, and housing. The table reflects the effects of assuming that 90 percent of the newcomers to the Site 1 facility choose to live in or near Billings in Yellowstone County. As indicated, the relative population effects (the proportion of the total population of both coundies made up of project-related newcomers) in the two counties are quite similar. Applying the generally accepted rule of thumb that additional growth of less than 7 to 10 percent/year usually can be accommodated without precipitating adverse impacts, neither Yellowstone nor Big Horn counties is likely to be significantly affected by the presence of the synfuels faciity. If oll the in-migrants were to settle within the limits of Billings and Hardin, the impact threshoid would only be exceeded in Hardin and only during the period of greatest construction activity.

The same is not true for Sheridan Counly. With the city of Sheridan being the only major population center within reasonable commuting distance of site 23, it is expected to host almost the entire in-migrating project-related population. The effect, as presented in Table 2.2-1, is exceeded in Sheridan County by a factor of two during the major construction period and almost reached in each of the succeeding years. If a majority of these project-related newcomers choose to settle

TABLE 2.2-1
ESTIMATED POPULATION INCREASES AT STTES 1 AND 23

Year	Site 1 Counties				$\frac{\text { Site } 23 \text { Counties }}{\text { Sheridan }}$	
	Big Horn		Yellowstone			
	No.	$\%$	No.	$\%$	No.	\%
'1985	28	0.23	253	0.21	907	3.3
1986	130	1.07	1166	0.96	4103	14.6
1987	337	2.73	3032	2.44	5957	20.6
1988	407	3.25	3665	2.90	6093	20.6
1989	181	1.42	1628	1.26	2242	7.4
1990	181	1.40	1628	1.24	2375	7.7
1991	181	1.38	1628	1.22	2161	6.9
1992	181	1.36	1628	1.20	2162	6.8
1993	181	1.34	1628	1.19	2162	6.7
1994	181	1.32	1628	1.17	2175	6.6
1995	181	1.30	1628	1.16	2187	6.6

in the city of Sheridan, they possibly will represent 10 percent or more of the city's total population throughout the construction and plant operation periods.

2.3 INFRASTRUCTURE AND FISCAL EERECTS

Given the number of newcomers expected in the communities and areas surrounding Sites 1 and 23, estimates were prepared of their demands for public and private sector facilities and sarvices such as housing, health services, water and sewer facilities, police and fire service, educational facilities and services, and others. The additional costs of providing the public services and facilities projected to be required to accommodate this increased growth were estimated using cost factors prepared for the U.S. Department of Energy (see Appendix C-3, Summary of Community and Fiscal Impact Factors). In conducting the analyses of public costs, the capital costs ryore assumed to be met through the issuance of either revenue or general obligation bonds. The annual costs of servicing this debt were added to the estimated annual operating costs of increasing service levels.

In contrast, the increased revenues from property and-in the case of Sheridan and Sheridan County-sales taxes associated with the increased populations and economic activities in these areas were also estimated. The net public fiscal effects were estimated by subtracting the expected costs of accommodating the needs of the new populations from the incremental public revenues directly and indirectly contributed by the newcomers. The results for Billings and Hardin (Site 1) and Sheridan (Site 23) are presented in Table 2.3-1.

These iigures are only rough estimates of the actual net fiscal balances likeiy to be experienced by the hast communities. They do not reflect existing excess capacities in the people-serving infrastructures of these communities nor do they reflect all possible sets of expenditure requirements or revenue sources. However, even though they may not measure precisely the actual dollar effects of growth, they do illustrate, for similar revenue and expenditure items, the relative fiscal effects of growth in each community. Just as importantly, they indicate the relative degree to which each community is likely to be adversely impacted by the synfuels facility.

When rapid growth is imposed on a community, the demands for private and public services are correspondingly increased. If the demands for private-sector goods and

TABLE 2.3-1
NET PUBLIC FISCAL IMPACTS

Location	Annual Revenues	Operating Expenses	Debt Service	Net Fiscal Balance ${ }^{a}$
Site 1				
Billings Hardin	$\mathbf{\$ 1 , 9 5 2 , 2 8 7}$ $\mathbf{6 9 8 , 2 7 3}$	\$2,104,397 233,966	\$2,114,538 $\mathbf{2 3 5 , 0 9 3}$	$\begin{array}{r} -\$ 2,266,648 \\ +229,214 \end{array}$
Site 23				
Sheridan	2,010,530	2,826,976	2,840,600	-3,657,046

${ }^{\text {a }}$ These figures are for the operations period when the project-related populations have stabilized.
services are not met, the consequence is generally localized inflation with the distribution of scarce goods going to those with the greatest ability to pay. The people likely to suffer most under these conditions are those on fixed incomes and/or those who do not directly benefit from the growth-producing process. When the damands for publicly provided goods and services are not met (due to a shortage of public capital and revenues), the consequence is that there is less for everyone. As observed by Gilmore in his seminal study of boom towns, such shortages lead to frustrations on the part of local and in-migrating populations with the effect that the productive members of both groups leave (Gilmore and Duff 1974). (Reference 5) This results in high turnover and lower productivity in bath the basie and secondary sectors. This reduced productivity leads to further declines in the provision of public goods and higher costs in constrincting and operating the growth-producing facility. With an annual wage bill of $\$ 70$ ta 100 million in both the third and fourth years of plant construction (see Table 2.1-1), a reduction in worker productivity of 30 percent due to impact precipitated tumover carries a price tag of $\$ 21$ to 30 million.

The likelihood that such conditions might arise at Site 23 is significantly greater than at Site 1. As illustrated in Table 2.3-1, noneonstruction growth is expected to "pay its own way" in Hardin. With Billings hosting 90 percent of the in-migrating population, a deficit of $\$ 2.3$ million is expected in each year of plant operation. This represents just over 5 percent of the total 1980 revenues collected by Billings. In Sheridan, the net annual contributions to the commmity's deflelt is expected to be just over $\$ 3.6$ million during the operating period. This represents more than 30 percent of the city's 1982 budget of $\$ 11.5$ million. Thus, when viewed as a proxy of impact severity, the iigures in Table 2.3-1 suggest that, unless the Crow synfuels facility underwrites a sizable proportion of the infrastructure requirements, Sheridan may experience significant shortages in the provision of public facilities and services. As determined by generalizing from Gilmore's findings, the effects of these shortages may increase substantially the direct costs of construction and operating the facility at Site 23.

3.0

EMPLOYMENT RERECTS

The employment effects of constructing and operating the Crow synfuels facility are dependent upon the following factors:
(1) the number of direct (project-related) jobs and their skill requirements over time;
(2) the number and timing of secondary jobs created in the retail, commercial, and secondary sectors of the area; and
(3) the availability of Crow and non-Crow employees within commuting distance of the project having the skills required to fill these jobs.*

[^4]
3.1 DERET EMPLOYMENT REQUIREMENTS

Estimates of the construction work force requirements by skill were prepared by Fluor Engineers and Contractors, Inc. Under their assumptions, construction would begin in January, 1886 with completion scheduled for March, 1989. The construction activity over this 39 -month period is expected to require $\mathbf{1 5 . 8}$ to $\mathbf{1 6 . 6}$ million direct field man-hours and approximately 22 million total field man-hours of effort.

Table 3.1-1 preaents the average quarterly employment requirements, by skill, for the construction of the synfuels facility. The last line of this table shows the average annuaitrequirements in contrast to the average quarterly requirements. This comparison is more dramatically illustrated in Figure 3.1-1 which shows that construction employment fluctuates considerably on a quarterly basis-a phenomenon that would not be observed using annual data only. Thus, in year three (1987), the average number of employees required throughout the year is 2,619 . However, the average number of workers required each quarter fluctuates between $\mathbf{3 , 3 5 0}$ and 1,940 workers.

Table 3.1-2 summarizes the sustained average and temporary peak number of construction workers required by year. In the analyses which follow, both sets of figures will be used. As indicated in the Introduction, the estimates of construction employment provided by contractors have been considerably understated, even for well-known technologies such as coal-fired power plants. While these estimates result generally from unanticipated events such as strikes, material shortages, litigation, and other delays, they are nonetheless troublesome. Thus, in the analyses which follow, two scenarios of construction employment requirements are used. The first assumes that the estimated annual average requirements will be met. The second assumes that the peak work forse requirements-the level of employment reached for one short period during the year-will be sustained throughout the year. Scenavio 1 in Table 3.1-2 uses a construction work force estimate of 458 while Scenario 2 assumes an annual construction work force of 793. The effects on secondary employment and population growth are forecasted using both sets of estimates.
TABLE 3.1-1
SEE AND SKILL CHARACTERISTICS OF THE CONSTRUCTION WORK EORCE
BY QUARTER FROM MAY 1985 THROUGH DECEMBER 1988

		198													
DESCRIPION	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Boiler Makers	-	-	-	-	-	84	123	179	190	273	193	133	198	67	-
Bricklayers	-	-	-	-	1	5	7	-	6	10	-	-	-	-	-
Carpenters	7	66.	206	216	224	267	245	216	142	133	90	82	177	150	13
Cement Finishers	1	4	6	8	18	42	35	30	26	21.	7	-	30	10	-
Plectriclans	6	50	138	148	95	77	100	100	149	300	208	170	250	108	\because
Insulators	-	-	-	-	-	-	-	14	93	105	80	160	210	67	-
Ironworkers	2	13	138	40	50	101	153	158	218	265	290	160	210	68	24
Laborers	18	72	169	180	296	389	288	227	231	230	213	143	218	50	48
Millwrights	-	-	-	-	$\overline{7}$	78	125	163	170	235	195	143 73	210	70	-
Operators	59	75	22	28	63	119	87	97	117	163	80 37	13	180	350	12
Painters	-	-	2	2	133	270		265	52 474	83 000	37 533	433	550	217	12
Pipefitters	5	2.9	50	62	133	270	270 95	265 96	474 177	600 227	200	175	200	2.2 50	-
Pipefitters - Welders	-	11	17	22	50	35	95	96 23	178	228	17	17	23	13	-
Oilers	3	11.	17	22	50 111	32 120	22	23	26	38 77	17 47	45	75	75	6
Teanisters	18	38	37	47	111	120	67	35 137	262	347	327	277	343	278	47
ITonmanual	8	37	49	53	70 123	105	150	130	202	200	200	200	200	175	43
Supervision	25	38	50	75	123	200	200	200	200	200	2				
TOTALS	150	434	783	883	1250	1983	1907	1940	2593	.3350	2634	2200	3233	2267	172
AVERAGE ANNUAL TOTALS		456			1521			2619				1968			

The

	$\begin{aligned} & 1985 \\ & \text { Year } 1 \end{aligned}$			$\begin{aligned} & 1986 \\ & \text { Year } 2 \end{aligned}$	1987 Year 3		$\begin{gathered} 1988 \\ \text { Year } 4 \\ \hline \end{gathered}$		$\begin{aligned} & \hline \text { Average } \\ & \text { Hourly } \\ & \text { Wages } \\ & \text { by Skill } \\ & (\mathbf{1 9 8 0})^{a} \\ & \hline \end{aligned}$	PersonalIncomeEffectsin Year $3^{b}$$\left(\$ 10^{3}\right)^{3}$
	Peak	Average	Peak	Average	Peak	Average	Peak	Average		
		-	123	52	273	209	193	98	\$15.25	\$7,803
Boiler Makers	-	-	12	3	10	㖪	-	-	14.00	137
Bricklayers	205	93	267	238	216	145	177	108	11.93	4,285
Carpenters	206	93 3	- 267	26	30	21	30	10	11.71	602
Cement Finishers	88 138	$\begin{array}{r}35 \\ \hline\end{array}$	+4288	105	300	189	250	132	14.40	6,663
Electriciant	138	65	148	105	105	75	367	172	11.71	2,150
Insulators	38	18	153	86	215	210	210	109	14.11	7,254
Ironworkers	38 169	88	153 389	288	231	225	225	172	9.09	5,007
Laborers	169	86	125	51	235	191	210	101	11.71	5,476
Millwrights	75	52	125	74	163	114	100	81	13.52	3,773
Operators	75	1	12	1	83	43	350	139	10.02	1,118
Painters	${ }^{2}$	$\underline{1}$	270	184	600	468	550	300	15.60	17,874
Pipefitters	50	28	270	184	227	175	200	106	15.73	6,739
Pipefitters-welders	17	10	55	48 32	227 38	176	23	13	11.71	745
Oilers	17	10	50	82	77	${ }_{55}$	75	50	11.71	1,577
Teansters	38	35	120	87 95	747	268	343	249	11.71	7,683
Nonmanual	49	31	150	+95	340	200	200	155		-
Supervisors	50	38	200	150	200	201	200	15		
TOTALS	793	456	2260	1521	3350	2610	3503	1568		\$72,173

${ }^{\text {Q }}$ These data were obtained from the U. S. Department of Labor, 1080 . personal income estimates are thus expressed in constant 1982 dollars.

FIGURE 3.1-1
GRAPH OF AVERAGE ANNTAL AND QUABTERLY DIRECT EMPLOYMENT

Table 3.1-2 also presents the average union wages associated with each skill in the Billings, Montana, area in 1980 (see Appendix C-1). When these figures are inflated to 1982 dollars, the final column presents estimates of the wage bill for facility construction (less supervisory personnel) in 1982 dollars for the third year of construction assuming Scenario 1 levels of employment. The total wage bill is estimated to be more than $\$ 72,000,000$ in 1982. These dollars, because they are imported into the region, can be expected to have a significant effect on the local economy of the area through the spending of these employees. It must be pointed out that the increase in personal income will be less than this figure, however. The reasons for this are that (1) a portion of the in-migrants will maintain residences elsewhere and continue their major spending in those areas and (2) some of the local workers will take construction jobs and vacate their previous positions. Thus, the net effect on personal income will be the difference between their previous earnings and their wages at the facility.

Still, some amount of the new (i.e., imported) wages will be available for spending and respending in the local area, increasing the demand for locally supplied retail, commercial, and service sector items. This increase in demand can be expected to increase the need for employment in these secondary sectors. Based on the reductions in the net personal incomes contributed by the facility and the observation from other studies that increased demand from fluctuating temporary basic employment has a relatively small effect on stimulating local secondary employment, a multiplier of 0.25 is used to express the expected relationship between each new basic sector construction job and the new secondary jobs. Thus, one new job in the secondary sector is expected to be created for each four new construction jobs. This relationship is consistent with the finding presented in the Introduction that construction period employment multipliers range generally between 0.1 and 0.5.

Another problem is raised in the manner in which these new secondary positions occur over time. The multiplier expresses the equilibrium relationship between new construction and new secondary jobs. The multiplier does not indicate when these new jobs (i.e., the new equilibrium) will arise. Relying on the Iindings of others, it is
estimated that approximately four years will be required to reach equilibrium with 71 percent of the increased new secondary jobs occurring in the first year of the increase in basic jobs, 17 percent in the second year, 8 percent in the third, and 4 percent in the fourth (Stenehjem and Metrger 1976, p. 185). (Reference 9) Thus, a lag model using these factors has been incorporated into the procedure for estimating the number and timing of the changes in new secondary jobs with each increese or decrease in direct construction jobs. This procedure is illustrated in Table 3.1-3.

In addition to the direct construction jobs created by the facility, a constant number of operating jobs are required beginning in January, 1989. The number and types of the "operations" period jobs are presented in Table 3.1-4.

It is expected that these 750 jobs will remain constant over the life of the gasification facility. Because of their permanent nature, these jobs are expected to be filled by people who will regard them as long-term positions. The individuals having to in-migrate to fill these jobs, therefore, will regard themselves as permanent residents of the area. They can be expected to move their families into the area, purchase permanent dwellings, and add permanently to the economic base of the area. This being the case, this operating work force-as observed in other studies-can be expected to have a greater impact on the local secondary sector. Local merchants and businessmen, regarding the increased demands created by these families as both long-term and stable, are more likely to respond by adding more support jobs for each basic operating job than they did for basic construction jobs. In addition, supermarket, drug, motel, and fast-food chains have been observed to respond more readily to increased demands regarded as stable and permanent than to temporary and transitory changes in construction empioyment and population.

For these reasons, it is expected that the number of secondary jobs created by each permanent operating employee will be twice as high as the number generated by each construction worker. The multiplier for the operating period is assumed to be $\mathbf{0 . 5 0}$ which means that one job in the local secondary sector will be created by the economic stimulus provided by two operating workers.

PEAK	\triangle ABLE 3.1-3 THE EFFECTS OB CHANGES IN BASIC CONSTRUCTION EMPLOYMENT ON SECONDARY JOB CREATTON									
									$\begin{gathered} \text { In } \\ \text { Secondary } \\ \text { Jobs } \end{gathered}$	\qquad
Period	Amnual Basic Jobs	$\begin{gathered} \text { In } \\ \text { Basic } \\ \text { Jobs } \end{gathered}$	Secondary Jobs by Period							
			1	2	3	4	5	6		
									141	141
1985	793	793	141						294	435
1986	2260	1467	34 16	260 62	193				271	706
1987	3350	1090 150	16 8	62 29	193	27	-	-	110	816
1988	3503	150	8	29						
		@ . 25						330	-249	567
1989	$930+$	© 50		15	11	6	-622	$\begin{array}{r}38 \\ \hline 9\end{array}$	-56	511
1990	930	0				2	-70	37	-31	480
1991	. 930	$\therefore 0$				2	-35	19	-16	464
1992	930	0							0	464
1993	930	0							0	464
All OtherYears	930	0							0	
AVERAGE										
1985	456	456	81						81	81
1986	1521	1065	19	189					208	289
1987	2619	1098	9	45	195				249	538
1988	1968	-651	5	21	47	-116			-43	4.5
		a 25						330	-15	480
1989	$930+$	@ 50		11	13	-28 -9	-349 -84	79	-7	4.73
1990	930	0		11	13 7	-5	-39	37	-9	464
1991	930	0			7		-20	19	-1	463
1992	830	0							0	463
1993	930	0							0	463
All Other Years	930	0								

TABLE 3.1-4
OPERATIONS PERIOD JOBS BY TYPE

Job Type	Nurnber
Plant Staff	12
Operating Engineer	314
Maintenance	297
Engineering	30
Administration	$\mathbf{9 7}$
Total	750

The effects of the basic construction and operating jobs (in addition to the 750 plant jobs, 180 mine operating positions are included in the operations period) on the creation of positions in the secondary sector are prosented in Table 3.1-3. The upper portion of this table illustrates the lagged multiplier effect on secondary employment under the Scenario 2 assumption that the peak construction work force is reached and sustained for each of the four years of facility construction. Column 3 lists the annual increments (or decrements) in basic construction and operations employment. In period 1 (1985), 793 new coustruction jobs are created. The mutiplier of 0.25 results in the estimation that 198 new secondary jobs will be created in response. However, the lag procedure described earlier dictates that only 71 percent of these 198 jobs will be created in the first year. Thus, 141 is entered in the 1985 row under Period 1. Following the lag procedure, 17 percent (34) jobs are assumed to be created in the second year, 8 percent (16) in the third year, and 4 percent (8) in the fourth year. This same procedure is followed for the changes in construction jobs in 1986, 1987, and 1988. However, in 1989, all 3,503 construction jobs are assumed to have disappeared. Their multiplier of 0.85 suggests a lagged decline in secondary jobs of 876 . Simultaneously, 930 new operating period jabs carrying a multiplier of 0.50 are created. They will, over a period of four years, result in an equilibrium level of 465 new jobs. This is reflected (with apologies for rounding errors) in the estimates for 1992, 1993, and subsequent periods.

Adding the total basic jobs and the total secondary jobs (Columns 2 and 11) provides the estimate of the total number of new jobs in each period. Thus, for 1985 it is estimated that the total number of new basic and secondary jobs will be 934. The totals for 1986, 1987, 1988, and 1989, are 2,695, 4,056, 4,319, and 1,497, respectively. Given these estimates for both construction employment scenarios, the next step is to determine the quailability of local labor with the eqpropriate qualifications to fill these basic and secondary jobs.

3.2 MANPOWER AVALLABLITTX

The availability of Indians and non-Indians with appropriate skills to fill both basic and secondary jabs is explored in this section. This is complicated by the fact that two separate sites are being considered for the synfuels facility. Estimates of the quailability of workers with appropriate skills within commuting distance of the facility are different for the two sites. Site 1 is located on the northern boundary of the reservation wheie it is relatively easily accessible from both Hardin and Billings, Montana. Site 23 is located in the far southeast corner of the reservation adjacent to the Shell mine. Its nearest population center is Sheridan, Wyoming.

The availablity of local labor (workers with appropriate qualifications located within commuting distance of the facility) is dependent on three factors. The first factor is the number of available Crows with applicable skills. The second factor is the availability of qualifled non-Indians within commuting distance of the two sites. The major population centers of Bilings and Hardin (Site 1) and Sheridan (Site 23) are expected to be the primary sources of these workers. The third factor influencing the availability of local workers is the competition for labor from other projects in the area. These factors are discussed below.

3.2.1 Availability of the Local Construction Work Force

According to records maintained by the Tribal Employment Rights Office (TERO), the following numbers of Crow workers having the following skilis are estimated to be available currently:

Skill	Number
Bricklayers	1
Carpenters	10
Cement-Finishers	1
Electricians	2
Laborers	314
Operators	43
Painters	2
Pipefitters (or welders)	4
Teamsters	8
	385

While these figures may change before construction begins, it is assumed-conservatively-that there will be only 385 Crow workers available. It is also assumed that these workers will have priority in employment.

Table 3.2.1-1 presents the general distribution of Indians in and around the reservation according to the 1980 Census. As indicated by the estimates of driving distances to each site, over 95 percent of the 6,402 estimated Indians in the area live within 65 highway miles of Site 1. Based on this distribution of the population (and the work force), it is assumed that all of the Crow workers registered with the TERO office will be employed at the facility. With respect to Site 23 , only 61 percent live within 65 miles. However, the 1,849 Indians in the Billings area live approximately 100 miles from the site and well over one-half of the commuting distance is a freeway. Given this information and the great need for employment among the Crow work force, it is assumed that, if site 23 is selected, the Crow workers would commute on a daily or every-other-day basis.

TABLE 3.2.1-1
INDIAN POPULATION IN AND AROUND THE CROW RESERVATION AND COMMUTING DISTANCES TO THE TWO SITES

Population		MileageDistance to ${ }^{\text {Sites }}{ }^{\text {a }}$	
		Site 1	Site 23
Harcin	463	0-19	60-65
S \& SE of Herdin	789	20-24	55-59
Crow Agency	363	30-34	45-49
Big Hom Valley between Hardin and St. Xavier	168	35-89	50-54
Billings	1849	35-39	65-100
SE of Crow Agency	117	35-39	40-44
SW of Crow Agency	556	35-39	55-59
Big Horn Valley N of Herdin	25	40-44	65-100
S side of Yellowstone River	87	40~44	ovep 100
SE of Billings (includes Laurel)	52	50-54	over 100
Pryor	363	50-54	over 100
NW of Lodge Grass	132	50-54	30-34
Yellow Tail Dam Area	106	55-59	65-100
Lodge Grass	630	55-59	25-29
E of Lodge Grass	104	60-64	25-29
SE of Lodge Grass	303	60-64	25-29
Wyola	86	65 to 100	0-19
E of Wyola	209	over 100	0-19
Total	6402		
Prop Prop Propo	less than 65 miles less than 100 miles more than 100 miles	$\begin{array}{r} 95.4 \% \\ 96.7 \% \\ 3.3 \% \end{array}$	$\begin{array}{r} 61.3 \% \\ 92.2 \% \\ 7.8 \% \end{array}$

${ }^{\text {a }}$ These are estimates of driving distances on existing roads and the proposed access roads to both Sites 1 and 23.

The effect of the Crow construction work force on the number of positions available during the four-year construction period is presented in Table 3.2.1-2. The figures in this table are based upon three assumptions:
all qualified Crow workers will seek jobs at the facility;
qualified Crow workers will have priority in employment; and
apprenticeship positions in the skilled crafts will be open to Crow laborers not employed directly as laborers.

The table illustrates, for both peak and average employment levels per year, both the number of jobs assumed to be filled by Crow workers and the number of jobs available for others.

3.2.1.1 Non-Indian Local Construction Work Force Estimates: Site 1

In addition to the Crow workers, there are non-Indian local construction workers available to work at the facility. However, estimates of their availability are dependent upon the site. The Billings area, being less than 40 highway miles from Site 1 , is likely to be the major source of a commuting non-Crow construction work force. Table 3.2.1-3 presents the number of union workers by craft from the Billings area. It also lists the number of these workers currently employed in the construction of the Colstrip units 3 and 4 which are expected to be completed in 1985. Finally, the table presents estimates of the number oi workers likely to be available for work on the construction of the Crow synfuels facility.

Likely to affect the availability of this work force are the number and types of competing projects. Based on a list of energy projects provided in the Montana Energy Almanac (Montana Dept. of Community Affairs 1980) (Reference 6), eight projects are proposed that would potentially compete for the available Montana construction work force. These projects, the companies sponsoring them, their

[^5]TABLE 3.2.1-3
NON-CROW CONSTRUCTION WORKERS AVAILABLE FOR
STTE 1 GASIFICATION FACILITY

NON-CROW CONSTRUCTION WORL-3 WERS AVALLABLE POR

$b_{\text {Assumes that }} 80 \%$ of the workers from the Billings area who are not working at Colstrip Units 3 and 4 will be available in 1985. Beyond
1985 (when the Colstrip projects are completed), it is assumed that 80% of all workers from the Billings area will be available to work on
the construetion of the Crow gasification plant.
probable locations, and the distances from the Crow Reservation are presented below (based on the data in the 1980 Montana Energv Almanac) Reference):

Resource 89 Power Plant, 350-MW unit; Montana Power; Great Falls; 220 miles NW;

Basin Electric Power Plants, two 500-MW units; Basin Electric; Circle, Montana; 175 miles NE;

250 MMef/d SNG plant; Tenreco; Wibaux County, Montana; 175 miles NE;

Redwater Synfuel Plant, 250 MMcf/d SNG; Wesco Resources; Circle, Montana; 175 NE;

Intake Synfuel Plant, $250 \mathrm{MMcf} / \mathrm{d}$ SNG plant; Utah International; Broadus, Montana; $\mathbf{1 3 0}$ miles ENE;

19 MMcf/d SNG plant, Northern Resources; Billings, Montana; 30 miles W;

Circle West Synfuel Flant, lignite to methanol; Northern Resource; Circle, Montana; 220 miles NE; and

Crow coal-fired power plant, 500 MW ; same Site as Site 1 gasification facility.

The status of each of these projects was investigated to determine which might compete for the available skilled labor from the Billings area. This investigation led to the finding that several projects have been delayed or dropped altogether. Northem Resources has dishanded and one of its parent companies, Burlington Northern, is taking over its projects. Burlington Northern is awaiting a decision on federal coal leasing in the Circle, Montana, area before proceeding with detailed feasibility studies.

A conversation with officials at the Redwater Synfuel Plant indicated that they anticipate entering the permitting process in 1982. However, they were pessimistic about staying on schedule because of "political problems" which could refer to the increasingly poor prospects for federal loan guarantees from the Synthetic Fuels Corporation.* The Utah International project was reportedly delayed by disputes over water rights (Montana Dept. of Community Affairs 1980). (Reference 6)

The only projects likely to compete for the non-Crow construction work force from the Billings area are Resource 89 (construction scheduled for 1984-1989); Tenneco's synfuel plant (already in the EIS stage); and the Crow power plant. The Resource 89 project is relatively small and located 220 miles northwest of the reservation. Its labor force is expected to be drawn largely from the northern half of the state. The same applies to the Tenneco plant which is 150 miles from Billings. Given a choice, it is expected that the Billings work force would prefer to commute to the site of the Crow gasification facility (35-40 miles) rather than subject themselves to temporary relocation or weekly commuting between Billings and the projects that are farther away.

The final project competing for this work force is the Crow power plant. If the Crow power plant and the Crow synfuels facility were built simultaneously, a significant shortage in local labor would result. Also, the opportunity for employment of the Crow work force would be significantly diminished since these workers would be forced to cheoge between the two projects. Since neither of these outcomes is in the best interests of the Crow Tribe, it is more likely that the construction schedules of the two Crow facilities would be staggered so that as the construction of one is phasing out, the other would be phasing in.

Given the projected likelihood of other projects competing for the Billings area labor force and the assumption that construction of the Crow power plant will complement rather than conflict with the synfuels facility, it is assumed-conservatively-that 80
*Officials at Redwater Synfuel Plant 1981: personal communication to Kathleen Gramp-Smith at CERT.
percent of the available work force in Billings would be available and willing to commute to Site 1. As illustrated in Table 3.2.1-3, a significant proportion of this work force is engaged currently in the construction of Colstrip units 3 and 4. Since this project is expected to be ongoing through 1885, Table 3.2.1-3 lists 80 percent of the construction workers by skill who are not currently employed at Colstrip as the estimate of the locally avallable non-Crow construction workers in 1985.

Table 3.2.1-4 presents the number of jobs by year and craft not expected to be filled locally. These estimates were prepared by subtracting, from the total average and peak requirements, those jobs filled by the Crows and those filled by the available local non-Crow construction work force in the Billings area. The remainder are assumed to attract an in-migrating construetion work force. These figures indicate that the highest number of in-migrating workers needed to meet site 1 peak annual demands is 2,143 in year four. With respect to the average annual requirements, it is estimated that the highest number of in-migrants required $(1,275)$ will occur in the third year.

3.2.1.2 Non-Indian Local Construction Work Foice Estimates: Site 23

The estimates presented in Table 3.2.1-2 of the numbers of Crow construction workers available apply equally to Sites 1 and 23. Estimating the number of locally available non-Crow construction workers is somewhat more difficult for site 23 then for site 1 because Site 23 is too far from Billings to permit assuming that these workers qualify as "locally available " (within a ressonable commuting distance). The non-Crow construction workers from Billings are more likely to have to establish either temporary residences (RV pads, mobile homes) or permanent residences closer to Site 23. Thus, these workers must be considered in-migrants.

The locally available nen-Crow construction work force is more likely to be found in the Sheridan, Wyoming, area which is less than 40 miles from Site 23. However, the union locals having jurisdiction in this area will not have priority in supplying labor to the Crow synfuels facility since Site 23 is located in Montana. Paradoxdcally, the construction workers located closest to the sites are not likely to have priority in

employmint hapause of jurisdictional problems (this point was made by several of the business agents of Sheridan and Casper, Wyoming, union locals contacted by CERT in May 1982). The locally available construction workers will be hired only if there are jobs available after the in-migrating workers from the Billings area have been hired. For conservative computational purposes, it is assumed that 80 percent of all available non-Crow construction workers from the Billings area (see Table 3.2.1-3) swould have first right to the jobs at Site 23. It is also assumed that they would be inmigrants if they elect to take jobs at this site. Thus, only those jobs listed in Table 3.2.1-4 which are assumed-ior Site 1-to be filled by in-migrants would be open to the locally available construction work force from the Sheridan area if site 23 is selected.

Estimates of the availability of the non-Crow construction work force from the Sheriden area were compiled in Table 3.2.1-5 from a series of interviews with the union docals having jurisdiction in the Sheridan area.* Influencing the availability of these workers are the labor demands of competing projects within commuting distance of the Sheridan area. Three construction projects that might compate with the synfuels facility were identified by the Wyoming Industrial Siting Commissions**

Basin Electric Power Plant; Basin Electric; Sheridan, Cambell Ccunty Line; 50 miles ESE;

Hampshire Synfuels Project; south of Gillette, Wyoming; 120 miles SE; and

Wyodak Power Plant Unit 2, 330 MW ; near Gillette, Wyoming; 110 miles SE.

[^6]Other projects include possible expansion of several coal mines in Campbell County, Wyoming. However, these would presumably not require a significant construction labor foree.

The Basin Electric Plant was the subject of a feasibility study in the late 1970s. Since the identification of possible sites recommended by the feasibility study, no more requests for permitting action have been received by the Wyoming Industrial Siting Commission.* Subsequent conversations with the Information Office of Basin Blectric in Bismarck, North Dakota, revealed that the earliest start date for construction of this facility would be 1988 or 1989. Therefore, this project is not expected to absorb the construction workers from the Sheridan area until near or after completion of the Crow project.**

The Hampshire Symfuels Project, located 120 miles ESE of Sheridan, could draw weekly commuters from the Sheridan area. However, this project is currently under consideration by the U.S. Synthetic Fuels Corporation. Its construction may depend on the outcome of the Corporation's decision. In addition, given its distance from Sheridar, it is not unrealistic to believe that, given a choice, the construction workers from the Sheridan area would elect to commute daily to Site 23 rather chan move or commute weekly to the Hampshire project.

Wyodak Unit 2 is a $330-\mathrm{MW}$ addition to the original plant. A permit. hes been received for this project but construction has been delayed-according to the Siting Commission-by bad economic conditions and reduced demand.** Given its location, it too is expected to draw weekly commuters or workers from the Sheridan area who are willing to temporarily relocate in the Gillette area. As in the case of the Hampshire project, it is realistic to assume that the construction workers in the Sheridan area would prefer to work on a project to which they could commute daily. Based upon the current status of these competing projects and the distance each is
*Basin Electric Information Office May, 1982: personal communication.
**Carl Ellis of Wyoming Industrial Siting Commission May, 1982: personal communication.

TABLE 3.2.1-5
NON-CROW LOCAL CONSTRUCTION WORKERS AVAILABLE FOR SFIE 23 GASIFLCATION FACILITY

Craft	Union	No. of Qualified Members ${ }^{\text {a }}$	No. from Sheridan Area	Available for Crow Project ${ }^{\text {C }}$
Bricklayers	Local 2 (Sheridan) $^{\text {d }}$	137	137	110
Electricians	Local 322 (Casper)	450	68	55
Ironworkers	Local 454 (Casper)	473	71	57
Laborers	Local 1271 (Cheyenne)	90%	90	72
Operating Engineers	Local 800 (Casper)	950	143	115
Teamsters	Local 307 (Casper)	850	128	128

Based upon figures provided by the business agents of these unions during telephone interviews conducted May, 1982.
${ }^{6}$ Based on estimates provided by the interviewees, it is assumed that 10 percent of the workers in Cheyenne union locals are from the Sheridan area and that 15 percent of the members from Casper union locals reside near Sheridan.

CIt is assumed, based upon competition from other construction projects, that 80 percent of the workers from the Sheridan area will be available for work on the Crow synfuels facillty.

These estimates were obtained from published data: U.S. Department of Labor, Construction Trade, Region 8, Wyoming, 1980.
from Sheridan, if the Crow synfuels facility were located at Site 23, approximately 80 percent of the construction work force from Sheridan would choose to work at this facility. However, as mentioned above, these workers would likely have to take jobs not filled by the construction workers from the Billings area. Table 3.2.i-6 presents the estimated distribution of construction jobs by craft filled by the locally available Crow workers, the in-migrant workers from the Billings area, the locally available workers from Sheridan, and other in-migrating construction workers.

3.2.2 Availability of the Operating Period Work Force

The synfuels facility is expected to be operational on 1 January 1989. The operation of this facility is expected to require 750 persons per year regardless of the site chosen. A broad breakdown of the positions available during plant operation is presented below:

Job Type	Ermployees Required
Plant Staff	12
Operating Engineers	314
Maintenance	297
Engineering	30
Administration	$\underline{97}$
\because	750

In addition to the employees required by the synfuels facility, permanent positions will also be available at the coal mines supplying the faciity during its operation. The Westmoreland mine is assumed to be the source of coal for the Site 1 synfuels facility while the Shell mine is expected to supply the mine-mouth synfuels facility at Site 23. The incremental requirements for the synfueis facility are approximately 6 million tons/year (6 MMtpy) from either faciliis. Since the production of this tonnage is directly attributable to the demands of the synfuels facility, these jobs and their impacts on the local and in-migrating work force must be considered in

:
evaluating the total manpower requirements and availabilities associated with the operation of the facility. Estimates of the manpower needed to produce 5 MM tpy were obtained from several sources, as summarized in Table 3.2.2-1.

As indicated, there are wide variations in the estimated operating employment requirements that reflect differences in assumptions concerning productivity, seam thicknesses, and environmental considerations. Weighting these figures for the differences in the sizes of the mines and computing from them an average for a 6 MMtpy mine yields an estimate of the average manpower needed of 180 persons per year. Assuming that the occupational distribution of these workers approximates that noted in the Bureau of Mines Circulars, the number of workers by category is estimated to be 125 in production, 34 in maintenance, and 21 in supervisory positions (Bureau of Mines 1976). (Reference 3)

It is expected, based on previous work, that these mine-related positions will be filled locally (CERT 1981, pp. 5-85). (Reference 4) The Westmoreland mine has, in the past, filled more than 50 percent of its positions with Crow workers.* In Shell's draft Environmental Impact Statement, Shell reported that it will implement a training program to teach members of the Crow Tribe the necessary skills to work in the mine. Crow Indirins would be given preference in all phases of employment with the objective of maximizing the ratio of Crow Indians in all employment classifications (BIA 1981, pp. 1-11). (Reference 2) Given the experience at Westmoreland and the indication of Indian preference and training at Shell, 50 percent of the positions at either mine are expected to be filled by Crow tribal members. The remaining positions are assumed to be filled locally by non-Crow workers.

With respect to the positions available during the operation of the synfuels facility, Table 3.2.2-2 presents estimates of the availability of Crow workers based upon different levels of training and preparation provided. These estimates were prepared by examining the educational and skill/experience background of the tribal members
*Bill Kelley, Director of TERO, Crow Agency, 1982: personal communication.

TABLE 3.2.2-1
OPERATING MANPOWER NEEDS FOR STRIP COAL MINES IN THE NORTHERN GREAT PLAINS

Personnel	BOM (5 MMitpy)	 Loy (5 MMtpy)	Bechtel (6 MMtpy)	Estimate (5.5 MMtpy)
Production	66	NA	NA	125
Malntenance	18	NA	NA	34
Supervision	11	NA	NA	21
TOTALS	95	162	276	180

${ }^{\text {a }}$ Bureau of Mines 1976. (Reference 3)
bskeily \& Loy 1975. (Reference 8)
${ }^{\circ}$ Bechtel Corp. 1975. (Reference 1)

TABLB 3.2.2-2
LABOR REQUIREMENTS FOR FACLITTY OPERATION AND ESTMMATES OF AVAILABLE CROW WORKERS

Position Descriptions	Total Positions	No. Qualified Crows Registered with TERO Office	No. Qualified with an Additional 18 Months Training	$\begin{gathered} \text { No. } \\ \text { Qualified } \\ \text { after } 4 \\ \text { Years of } \\ \text { Additiongl } \\ \text { Training } \end{gathered}$
ADMINISTRATION	97	6	8	12
(plant manager, assistents, secretaries, accountants, clerks)				
ENGINEERING	30	0	10	13
(plant engineer, associates, lab technicians)				
MAINTENANCE	$29 ?$	18	83	108
(Maintenance sup't., mechanics, apprentices, electrical supervisors, helpers)				
OPERATING ENGINEERS	314	28	67	87
(Superintendent, shift supervisors, plant operators)				
PLANT STAFE	12	0	6	10
Totals	750	52	174	230

${ }^{\text {a }}$ Based upon an assessment conducted by CERT in 1981 of the individual qualifications of Crow registrants with the TERO office.
based upon an extensive review of individual records of TERO applicants conducted by CERT staff in 1981. The results reflect the judgments of CERT staff members.
registered with the Tribal Employment Rights Office, For the purposes of this analysis, it is assumed that 174 Crow workers will be employed as the result of an aggressive training and promotion program. The remeining 576 openings-because they are both permanent and relatively high-paying professional positions-are assumed to attract in-migrating workers.

3.2.3 A vailability of the Secondary Work Force

Secondary positions are those jobs created in the retail, commercial, and service sectors of the area adjacent to the facility. As deseribed in the preceding sections, the construction jobs are expected to have a multiplier effect of 0.25 . That is, for each four new construction-related jobs, one additional position in the secondary sector is expected to be ereated. The multiplier for the plant and mine operation positions is 0.50 reflecting the fact that a greater economic stimulus is expected from these positions which merchants perceive as less subject to fluctuation. Estimates of the number of secondary positions expected to be created over time as a result of the number of basic construction and operations positions were provided in Table 3.1-3.

Estimates of the avallability of local workers to fill these secondary sector positions are based on the assumption that, without the project, there would be no decline in the empioyment of the local people surrounding each site. Thus, if local workers are expected to fill these positions, they will have to be induced from the ranks of individuals not currently in the labor force. In preparing estimates of the available local labor force, the following procedure is used.
(1) The populations of Big Horn and Yellowstone counties (Site 1) and Big Horn and Sheridan (Wyoming) counties (Site 23) are forecasted by sex and age cohort for each year from 1982 to 2000 using the SEAM Model (Stenehjem 1978). (Reference 11)
(2) The male and female labor force for the Site 1 and Site 23 counties are estimated by applying the age and sex cohort Labor Force Participation

Rates (LFPRs) for each county to the numbers of men and women forecasted for each age and sex cohort by year to 2000.
(3) The potential sizes of the male and female labor forces in each of these counties ore computed by assuming that the LFPRS in each of these counties approach the national average by age and sex cohort.
(4) The difference found by subtracting the results of item $\$$ from those of item 2 represents-if positive-the number of men and women who could be added to the labor forces of these counties in each year if sufficient jobs were available.
(5) It is assumed that this increase in the annual labor forces of these counties will occur in response to the increased need for secondary employees and that these increments in the labor force of each county constitute the supply of locally available workers who are willing to fill the new secondary jobs.

Using this procedure, it is explicitly assumed that the new secondary jobs will not be filled at the expense of vacating positions that exist currently or are expected to exist in the future to meet the needs of the baseline (nonproject-related) populations. Because employment opportunities in these energy resource counties are growing at a rate slightiy greater than the rate of population increase (i.e., LFPRs are increasing over time), it is assumed that only 80 percent of these men and women may be available to fill local secondary jobs. However, even with this assumption, the demands for secondary employees are far exceeded by the number of persons in the incremental labor force. Therefore, no in-migration of secondary workers and households is expected to occur as a result of locating the facility at site 1.

The situation at Site 23 is different. A comparison of the estimated demand for secondary workers in Table 3.1-3 and the availability of local persons listed in Table 3.2.2-3 reveals a shortage of several hunored people. Using the assumption that the
only local people available to fill secondary jobs are those not currently in the labor force, these jobs-if they are to be filled-will have to attract an in-migrating work force.

However, the local residents in the area surrounding Site 23 are not the only source of local labor. Beser on studies done by others, it is expected that in-migrating households will contribute to the available secondary work force. On the average, it has been found that the number of workers per in-migrating household is 1.2. Thus, one secondary worker is assumed to be provided by each five in-migrating households (Stenehjem and Metzger 1976). (Reference 9) The results of applying this assumption can be seen in Table 4.0-1.

TABLE 3.2.2-3
INCREMENTALLY AVAILABLE LOCAL WORKERS TO FILL SECONDARY POSITIONS

Year	Site 1 Big Horn and Yellowstone Counties			Site 23 Big Horn and Sheridan Counties		
	Male	Female	Total	Male	Female	Total
1982	730	3749	4479	15	73	108
1983	712	4031	4752	14	100	114
1984	692	4316	5008	14	108	120
1985	670	4598	5268	14	113	127
1986	650	4884	5534	14	120	134
1987	631	5165	5796	15	126	141
1988	616	5443	6059	16	131	147
1989	602	5718	6320	17	137	154
1990	595	6025	6620	18	143	161
1991	597	6071	6668	18	144	162
1992	603	6113	6716	17	145	162
1993	614	6151	6765	18	145	163
1994	629	6188	6817	20	146	166
1995	647	6222	6869	21	146	167

4.0
 POPULATION EFFECTS

As the introductory remarks indicate, the most important portion of an impact investigation is the specification of employment demand and supply. The demand for basic sector jobs (i.e., those in the construction and operation of the gasification facility and the mining of the required 5.5 MMItpy of coal) were described in Section 3.0. With the exception of the jobs related to coal mining, the number of basic jobs were provided by the project engineers. Recognizing that a host of factors can affert the demand for construction workers (e.g., strikes, material shortages, litigation), two scenarios of construetion worker demand were constructed.

Given the estimates of the annual number of construction, plant operations, and mine workers regulred during the life of the facility, projections of the required secondary work force were prepared. Thus, for both Sites 1 and 23, the demsnd for workers of all types were estimated.

Given these estimates of demand, the numbers of locally available workers at both sites were evaluated. This evaluation was conducted by comparing projections of the local work force to the numbers and-where available-the skill requirements of the projections of labor requirements. Using conservative assumptions concerning the availability of local workers, estimates were constructed of the number (and types) of positions that would have to be filled by in-migrating workers. The results of this analysis are summarized in Table 4.0-1. As, clarified by the table, the number of expected in-migrating workers varies considerably depending upon which scenario and which site is being evaluated. It is these in-migrating workers who give rise to the population impacts.

Given these projections of in-migrants, the Reseryation Social and Economic Assessment Model (RSEAM) was used to project their effects on population growth in the areas around Site 1 and Site 23. The Reservation Social and Economic Assessment Model is based upon the SEAM model's date and algorithms. It is still
being developed and modified by the rechnical staff of the CERT. The model is documented in Appendix C-2.

		Year			Year 2			Year 3			Year 4	
	$\begin{gathered} \text { Total } \\ \text { Jobs } \end{gathered}$	$\begin{gathered} \text { loceal } \\ \text { Jobes } \end{gathered}$		$\begin{gathered} \text { Totar } \\ \text { Jobs } \end{gathered}$	$\begin{aligned} & \text { Local } \\ & \text { Jobs } \end{aligned}$	$\frac{\text { Migrants }}{\text { In }}$	$\begin{gathered} \text { Totai } \\ \text { Jobs } \end{gathered}$	${ }_{\text {lol }}^{\substack{\text { local } \\ \text { Jobs }}}$	Mlerants	${ }_{\text {Tohal }}^{\text {Total }}$	${ }^{\text {Locen }}$ Jobs	$M_{\text {crements }}^{\substack{\text { in- }}}$
gte 1 Pbak												
Construction Workers	793	643	248	22610	1378	A82	3350	1577	1773	${ }^{3503}$	1360	14
Plant Pperations	-	-	-	-	-	-	こ	=		-	-	
				435	435	0	708	706		8	${ }^{818}$	0
OTAL	${ }_{934}$	${ }_{786}$	148	2895	2019	682	4658	${ }^{2288}$	1773			
bite 1 averagb												
				1581	1153	368	2519	1344	1275	1968	1102	${ }^{868}$
$\underset{\text { Plant Operations }}{\text { Corsitu }}$	$\stackrel{\square}{-1}$	\cdots	-	-	\sim	$=$	-	=	-	-	\because	=
Mine Workers												
Sceandary Wrorkers TOTALS	- ${ }_{517}^{817}$	81 843	${ }_{9}^{9}$	$\begin{gathered} 289 \\ 18810 \end{gathered}$	${ }_{1442}^{289}$	${ }_{368}$	$\begin{aligned} & \begin{array}{c} 538 \\ 3158 \end{array} \end{aligned}$	1882	1275	${ }_{2463}^{464}$	1597	868
site 23 piak												
				2268	418	1842	3399	488	2862	3503	441	3062
Plant Operallom		$\underline{-}$				$=$	=		:	-	-	-
											734	${ }^{82}$
Secondery Workers totais	$\begin{aligned} & 1919 \\ & 939 \end{aligned}$	$\begin{gathered} 109 \\ 464 \end{gathered}$	33 470	$\begin{gathered} 438 \\ 2895 \\ 285 \end{gathered}$	$\begin{aligned} & 208 \\ & 628 \end{aligned}$	$\begin{gathered} 2279 \\ 2089 \end{gathered}$	4058	${ }_{1022}$	3034	4319	1175	$3 \mathfrak{3 4}$
Stiti 23 aydract												
	458	213		1521.	385	1136	2819	443	2176	1988	384	1584
- Construction Workers	-				-		-	=	-	こ	-	
Mine Workers	$\bar{\square}$	81	$\overline{-}$				538	372	$\stackrel{\text { Ifing }}{ }$	495	493	0
Secondary Workers TOTALS	${ }_{537}^{81}$	- ${ }_{29}^{81}$	243	1810	${ }_{548}$	1262	3157	815	2342	24 ¢3	87.	1584

	$\mid k \text { 骎 }$	18000	1 止00恕	1 ํㅜํ ํํ	1 옹우ㅇㅠㅠ
			1 \％	1 옹으율	
	50，	1	1		
茴	号管	1 운⿹్ర్ర 꾸			
曷	E	18000	1 \％00\％		
部熍唇				1	
$\stackrel{\rightharpoonup}{0}$	号号				
㖣	15	1000%	18008	19	
：				1 S易宫家	
	莫聂			10095	

4.1 SITE 1 POPULATION EFFECTS

Site 1 is situated on the northern border of the reservation approximately 15 miles from Hardin and 35 miles from Billings. With Billings and, to a lesser extent, Hardin to draw upon, a significant number of the basic and secondary jobs generated by the gasification facility are expected to be filled by workers from these areas. Given the proximity of these communities, the workers from Billings and Hardin are expected to commute to and from the site.

The jobs not filled by Crow workers and others from the surrounding area are expected to attract workers and their households from outside the area. Based upon the evidence being gathered by the retrospective study of impacts referred to in the Introduction, it is assumed that the in-migrating workers will choose to relocate in the largest community within reasoneble commuting distance of the site. For purposes of this analysis, it is being assumed that 90 pareant of the in-migratins households will choose to live in or rear Billinge in Yellowstone County. It is assumed that the remaining 10 percent are assuried to settle in Big Horn County near Hardin.

Many of the in-migrating workers will bring their families; however, others will not. These workers may choose to live alone or with other single members of the labor force. Based upon the findings of the others regarding the household characteristics of in-migrating workers, the average household size of all vorkers ingrried and single) is assumed to be 2.3. It is further assumed that-on the average-each inmigrating household has 1.2 qualified workers. Stated alternatively, from every five new households, one more secondary worker is provided. Thus, the household factor (the number of dependents per in-migrating househoid) is 1.9.*

[^7]Based upon these assumptions, the estimates of annual population impacts associated with the peak and average work force scenarios are presented in Table 4.1-1.* As this table demonstrates, the population impacts on both Big Horn and Yellowstone counties are expeeted to be relatively small. Using the peak employment scenario, the effect on Big Horn County-in the year of highest employment-is to add 407 persons which represents only slightly more than 3 percent of that county's nonproject-related population in 1988. In this same year, the effect on the population of Yellowstone County is projected to be 3,665 persons which, because of its large population base, represents just under 3 percent of che total population.

[^8]$\frac{\text { TABLE } 4.1-1}{\text { ANNUAL POPULATION IMPACTS IN BIG HORN AND YELLOWSTONE COUNTIES }}$

PEAE SCENARIO											
Variables	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Basic Jobs	793	2260	3350	3503	930	930	930	930	930	930	930
In-migrating Basic Labor	148	682	1773	2143	576	576	576	576	576	576	576
In-migrating Secondary Labor	0	0	0	0	0	0	0	0	0	0	0
New Basic Population	281	1296	3369	4072	1809	1809	1809	1809	1809	1809	1809
New Secondary Population	0	0	0	0	0	0	0	-	0	-	吅
New Total Population	281	1296	3369	4072	1809	1809	1809	1809	1809	1809	1809
New Big Horn Population	28	130	337	407	181	181	181	181	181	181	181
As a \% of Baseline	0.23	1.07	2.73	3.25	1.42	1.4	1.38	1.36	${ }_{1628} 1.34$	${ }_{1628}{ }^{1.32}$	$1628{ }^{1.3}$
New Yellowstone Population As a \% of Baseline	${ }_{0} \mathbf{0 . 2 1}$	${ }^{1166}$	3032 2.44	3665	1628	1628	1628	${ }_{1628}^{1.2}$	1628 1.19	1628 1.17	16281.10
AVERAGE SCENARIO											
Variables	1585	1986	1987	1988	1989	1990	1991	1992	1993	1994	1985
Basic jobs	456	1520	2619	1988	930	930	930	930	930	930	930
In-migrating Basic Labor	90	368	1276	868	576	575	576	576	576	576	576
In-migrating Secondary Labor	0	0	0	0	0	0	0	0	0	0	0
New Basic Population	171	699	2424	1645	1809	1809	1809	1809	1809	1809	1809
New Secondary Population	0	0	0	0	0	0	0	0	9	0	0
New Total Population	171	699	2424	1645	1809	1809	1809	1809	1809	1809	1809
New Big Horn Population	17	70	242	165	181	181	181	181	181	181	181
As a \% of Baseline	0.14	0.58	1.96	1.32	1.42	1.4	1.38	1.36	1.34	1.32	1.3
New Yellowstone Population	154	629	2182	1481	1628	1828	1828	1828	1628	1628	1628
As a \% of Baseline	0.13	0.52	1.76	1.17	1.26	1.24	1.22	1,2	1.19	1.17	1.16

4.2 SITE 23 POPULATION IMPACTS

Site 23 is located in the southeast corner of the Crow Reservation approximately 3035 miles north of Sheridan, Wyoming. With the synfuels facility located at Site 23, a major portion of the work force is expected to come from the Billings area. Given the distances involved, these workers are expected to establish either temporary or permanent residences in the Sheridan area. Concomitantly, the positions not filled by in-migrants from Billings, Hardin, and other Montana cities are expected to be taken by residents of Sheriden who will commute daily to the facility. Thus, the city and county of Sheridan is expected to be the focal point for the in-migrating and local work forces and secondary economic activities.

Table 4.2-1 presents the projected popuiation impacts on Sheridan County of constructing the Crow synfuels plant at Site 23. These figures portray the potential for severe socioeconomic impacts to result from locating the synfuels facility at Site 23-especially if the actually experienced levels of employment approach those projected under the peak scenario. It is commonly accepted that adverse impacts accompany increases (or decreases) in the population of a community or impact area that exceed 10 percent annually. The impacts on Sheridan County are forecasted to be twice this threshold in 1987. Worse, this population change is not likely to be distributed evenly throughout the county. Instead, much of this impact is expected to occur in and around the city of Sheridan. The table also indicates a moderate impact on Big Horn County as a result of the commuting Crow work force who will likely spend a fraction of their incomes on the reservation and in Hardin. This spending will result in the creation of additional secondary jobs.
Arine population factor of 1.9 is used for construction workers.
bPopulation factor for secondary workers is 3.14 . likely to be spent-and thereby create jobs-in Hardin.

5.0
 PUBLIC SECTOR EFFECTS

One of the most obvious, if not most serious, manifestations of impact from imposed growth is found in the stress these increases in populations place on the provision of private and public services. Not only does rapid population change reduce the per capita availability of and access to publicly provided services and facilities, it also very seldom "pays its own way" in terms of providing sufficient public revenues to enable host communities to expand such services and facilities in a timely fashion.

The effects of rapid, imposed growth on Hardin in Big Harn County (Site 1) and Sheridan in Sheridan County (Site 23) are estimated in the following subsections. The analysis begins with a description of the current capacities of these entities to accommodate increased populations. Following the assessment of the availability of public and private services and facilities in these areas, the incremental needs associated with the new populations are described. The final section presents the results of a prospective analysis of the public expenditures needed to accommodate the needs of the new population. It also forecasts the contributions to local revenues made by the new population. A comparison of incremental expenditures and revenues (referred to as a net fiscal balance analysis) concludes this chapter and the assessment of socioeconomic impacts.

5.1 GROWTH CAPACTIES

Table 5.1-1 presents, in summary form, the infrastructure profiles of Hardin, Big Horn County, Sheridan, and Sheridan County. It is in these communities and countles that the impacts of increased population on publicly provided services and facilities are expected to be most severely felt. The table indicates the availability of public services and the applicable planning standards (per capita service requirements) in each area. It also provides a description of their revenue sources and bonding capacities.

As the figures indicate, service delivery systems appear to be relatively close to the pianning standards. For example, Hardin exceeds the reguired number of physicians per capita while Sheridan and Sheridan County have a slightly lower than recommended number of physiclans. With respect to education, both cities and counties have more teachers per student than recommended by the planning standards. Thus, there is some excess capacity that could be utilized to accommodate additional population growth. In the area of public safety, only Hardin has more police officers per capita than is recommended while both Big Hom and Sheridan counties have more volunteer firemen than suggested by the planning standards. Finally, using the planning standards, it is alear that both Hardin and Sheridan have considerable excess capacity in thelr water treatment and sewer facilities.

The last section of Table 5.1-1 presents an overview of the financial conditions of the jurisdictions. Of importance to the analysis of impact accommodation is the capacity of each entity to finance needed service and facility expansion. The figures reveal that Big Hom and Sheridan counties can incur $\$ 9.6$ million and $\$ 2.5$ million in debt, respectively, while the cities of Hardin and Sheridan have available $\$ 1.6$ million and $\$ 1.0$ million, respectively, in unused bonding capacity.

TABLE 5.1-1
INFRASTRUCTURE PROFILES OE IMPACT AREAS

	Big Horn County $(11,096)$	Hardina $(3,177)$	Sheridan County $(25,025)$	Sherldanb $(15,146)$	Applicable Planning Standards

HEALTH SERVICES

Physicians	N/A	5.0	35.0	21.0	
Per 1000		1.574	1.399	1.387	1.5
Dentists	N/A	2	18.0	N/A	
Per 1000		0.630	0.719		
Registered Nurses	N/A	4.0	76.0	47.0	
Per 1000		1.259	3.037	3.103	
Hospital Beds	N/A	16.0	97.0	97.0	
Per 1000		5.036	3.876	6.404	4.0
Nursing Home Beds	N/A	38.0	120.0	N/A	

EDUCATION

Students	N/A	1350.0	4936.0	3844.0	
Classrooms	N/A	83.0	291.0	N/A	
Per student	N/A	0.061	0.059	303.0	303.0
Teechers	\ddots	0.063	0.061	285.0	0.045
Per student	\ddots				0.074
PUBLIC SAFETY					

Police Officers	13.0	10.0	39.0	29.0	
Per 1000	1.172	3.148	1.560	1.915	2.0
Police Vehicles	7.0	4.0	16.0	11.0	
Per 1000	0.631	1.259	0.064	0.728	
Crimes	417.0	N/A	1352.0	735.0	
Per 1000	37.581		54.100	49.400	
Firemen (full-time)	N/A	None	22.0	18.0	
Per 1000			0.880	1.188	1.667
Firemen (volunteer)	20.0	Shared with	60.0	10.0	
Per 1000	1.802	county	2.400	0.660	0.667
Fire Vehicles	4.0	2.0	29	4.0	
Per 1000	0.360	0.630	1.160	0.267	

WATER AND SEWER

Delivery Capacity Per 1000	N/A	$\begin{aligned} & 2.0 \mathrm{mgd} \\ & 0 . \mathrm{finn} \end{aligned}$	N/A Well and Septic	$\begin{gathered} 10.0 \mathrm{mgd} \\ 0.660 \end{gathered}$	
Treated Water Storage Per 1000	N/A	$1.0 \mathrm{mgd}$		$10.0 \mathrm{mgd}$	
Water Treat. Cap.	N/A	1.9 mgd		10.0 mgd	$\begin{aligned} & 0.040- \\ & 0.230 \end{aligned}$
Per 1000		0.598		0.660	

TABLE 5.1-1
INFRASTRUCTURE PRORILES OF IMPACT ARBAS (Continued)

Item	$\begin{aligned} & \text { Big Horn } \\ & \text { County } \\ & (11,096) \end{aligned}$	$\begin{gathered} \text { Hardin }{ }^{\mathrm{a}} \\ (3,177) \\ \hline \end{gathered}$	Sheridan County $(25,025)$	$\begin{aligned} & \text { Sheridanb } \\ & (15,146) \\ & \hline \end{aligned}$	Applicable Planning Standards ${ }^{\text {c }}$
WATER AND SEWER - Continued					
Sewer Plant Capacity	N/A	1.0 mgd		15 mgd	$\begin{aligned} & 0.026- \\ & 0.150 \end{aligned}$
		0.315		0.990	
PUBLIC FINANCE					
1980 Expenditures	\$4.9MM	\$2.0MM	\$15.9MM	\$11.5	
Per Capita	\$442	\$630	\$635		
1980 Assessed Valuation	\$106.1MN	\$3.0MM	\$142.6MM	M \$124.7	
Per Capita	\$8636	\$944	\$5698	\$823	
1980 Mill Rate	75.989/000	115.179/000	10.83e/000	0 12¢/0	
1980 Tax Revenues	\$0.8MM	\$3,749MM	N/A	\$1.2N	
Per Capita	\$72.10	\$1		\$79.	
1980 Indebtedness	None	None	\$460,000	\$325,	
Per Capita			\$18.38	\$21.	
1980 Bónding	\$9.6MM	\$1.6MM	\$2.9MM	\$1.3N	
Per Capita	\$865	\$504	\$116	\$86	

${ }^{\text {a }}$ Data obtained from a telephone survey and literature search conducted by the Council of Energy Resource Tribes, 1981.
${ }^{6}$ Data obtained by Jim Richards under eontract to CERT, 1982.
${ }^{\circ} \mathrm{DOE}$ 1978. (Reference 12)

5.2 INCREMENTAL INFRASTRUCTURE NEEDS

The Reservation Social and Economic Assessment Model (RSEAM) was used to compute the estimated additions to selected facilities and services of the population increases associated with the peak employment scenarios at Sites 1 and 23. The model used the peak numbers of in-migrants expected during plant construction and plant oparations at both sites and translated these population figures into service and facility requirements using the conversion factors prepared by Murphy and Williams for the U.S. Department of Energy (DOE 1978; see Appendix C-3). (Reference 12) The resulting estimates reflect the needs of the in-migrating populations, they do not attempt to adjust for capacity excesses or deflelencies. In what follows, the estimated service and facility requirements for Site 1 and Site 23 are presented in sequence.

5.2.1 SITE 1 INCREMENTAL INFRASTRUCTURE NBEDS

Under the peak employment scenario, it is estimated that the population impact on Hardin and Big Horn County will be 337 people in the third year of plant construction and 181 during all years of plant operation. The estimated population impacts on Billings and Yellowstone County during these periods are 3,032 and 1,628 people, respectively. While the number of persons expected to choose Billings as their new residence is considerably higher than those assumed to locate near Hardin, the newcomers in Billings are a smaller proportion of the total population in Billings.

Table 5.2.1-1 presents the incremental service and facility requirements associated with the newcomers to Billings and Hardin. The first portion of the table presents the household and demographic characteristics assumed for these newcomers. These data are used in conjunction with the DOE requirement data to construct estimates of social service and private sector needs. As the results indicate, the impact requirements are expected to be fairly substantial in the Billings area. For example, as many as 29 new teachers are needed to meet the short-term demands of the construction work force. At the end of the fourth year, ten of these teachers will no longer be required to meet the sustained needs of the operating work force. In

TABLE 5.2.1-1
SITE 1 FACIITY AND SERVICE NEEDS

Impacts	Billings		Hardin	
	Construction	Operation	Construction	Operation
POPULATION SUMMARY	3032	1628	337	181
Age distribution (years)				
5	437	168	49	19
5-17	725	467	81	52
18-29	961	456	107	51
30-44	576	317	64	35
45-64	315	164	35	18
65	18	55	2	6
Households	1189	498	132	55
School enrollment	652	421	72	47
REQUIREMENTS				
Teachers	29	19	3	2
Classrooms	29	19	3	2
Physicians	3	2	0	0
Registered nurses	18	13	2	1
Health support personnel	16	4	1	0
Police and firemen	9	6	1	1
Single family homes	588	314	65	35
land (acres)	105		12	
Mobile home units	458	131	51	15
land (acres)	26		3	
Multifamily units	262	78	29	¢
land (acres)	8		1	
\because Parks and open space (acres)	2		14	
Residential/community streets (linear feet)				
arterials	8268	.	919	
collectors	11579		1287	
minor streets	38679		4301	
Retail building space (sq ft)	222843		120036	
Service building space (sq ft)	92498		49825	
Office building space (sq ft)	118723		68023	

addition to publicly provided services, it is expected that a substantial number of new homes and business properties will be required as a result of the impacts from the synfuels facility.

These data also reveal an impact phenomenon common to most major, imposed growth situations. That is, the initial need for public and private faclities and services is higher than that projected to meet the needs of the operations period population. This ereates a dilemma for local businessmen and planners. If they build and expand to meet the expected demands of the peak population, they will be confronted with considerable excess capacity during the operations period. On the other hand, if they ignore the needs of the peak construction population, the risk is run that increased turnover and localized inflation will result in' a general deterioration of the community's quality of life. The general solution to this dilemma is a compromise in which permanent facilities are built to accommodate the operating period population, and temporary facilities (and personnel) are added to meet the short-term needs of the construction-period population, in excess of the operating population. Thus, mobile classrooms are purchased or rented to satisfy the needs of educating the additional construction period students. Similariy, the excess housing demand of the construction-period population may be met by overbuilding mobile home pads that might be converted to camping facilities or single family home slabs once the housing demand stabilizes.

The percentage increase in population associated with the selection of Site 1 is just over 3 percent in Hardin and just under 3 percent in Billings at the height of plant construction. During the operation period, the increase is less than 1.5 percent of the baseline population in both communities. With normal population growth exceeding these levels in each community during the preceding decade, it is unlikely that expansion of the infrastructure will present the communities with significant excess capacity.

5.2.2 Site 23 Incremental Infrastructure Needs

The situation is much more extreme in Sheridan, Wyoming. If Site 23 is selected as

the location of the Grow synfuels Pacility, the problems of in-migration and concomitant infrastructure impacts are likely to be severe. This is so because a significantly larger in-migratinis work force is expected and these newcomers are expected to settle in and around the city of Sheridan in Sheridan County since it is the only major population center within reasonable commuting distance.

Estimates of the increased needs for public and private facilities and services associated with the peak employment scenario are presented in Table 5.2.2-1. As the figures reveal, a substantial number of newcomers are expected in both the construction and operation period. They represent an increase in the baseline population of Sheridan County of 20.6 percent and 6.7 percent respectively. This is a significant impact by any standard. However, if, as expected, this in-migrating population settles in and around the city oi Sheridan, the relative impacts will be substantially larger. For example, if all these newcomers settle within the city limits, Sheridan's population will increase by an estimated 34 percent in the construction period and by 11 percent in the operation period.

The impacts on the personnel and capital infrastructure are substantial. For example, it is expected that 58 new classrooms and teachers will be required to accommodate the school-aged dependents of the in-migrating construetion workers. During the operation period, the demand for teachers and classrooms is reduced by more than one-half.

The housing situation is likely to result in even more dramatic problems. As the figures indicate, the demand for houging is expected to reach $\&, 536$ units during construction and to drop by more thaï 70 percent to 703 units during the operation period. Given the disparity between the housing needs of the construction work force and the stable and sustained demands of the operating work force, it is difficult to imagine how overbuilding will be avoided even if temporary quarters are resorted to during construction. One possible solution to this potential problem would be to provide a construction work camp for in-migrating workers. While this approach has been used in the oil shale regions of Colorado, it is both expensive and unlikely to contribute directly to the tax base of the community to which these
workers will undoubtedily turn for other public and private services.

TABLE 5.2.2-1

SITE 23 FACHITX ANDSERVICE NEEDS: SHERIDAN

Impects	Construction	Operation
POPULATION SUMMARY	5957	2187
Age distribution		
5	858	225
5-17	1424	628
18-29	1888	612
30-44	1132	426
45-64	620	221
65	36	74
Households	2306	669
School enrollment	1281	565
REQUIREMENTS		
Teachers	58	25
Classrooms	58	25
Physicians	6	3
Registered nurses	36	17
Health support personnel	12	5
Police and firemen	18	8
Single family homes	1141	422
land (acres	141	
Mobile homes	888	176
land (acres)	35	
Multifamily homes	507	105
land (acres)	11	
Parks and open space (acres)		19
Residential and community streets (linear feet)		
arterials		11107
collectors		15555
minor streets		51980
Retail building space		249946
Service building space		103748
Office building space		144073

5.3 INCREMENTAL PUBLIC EXPENDITURES AND REVENUES

The public and private sector expansion requirements were estimated for Site 1 and Site 23 communities in Section 5.2. With respect to Site 1, the infrastructure impacts on both Hardin (Big Horn County) and Billings (Yellowstone County) were estimated for two separate levels of in-migrating population growth: the peak construction period population and the peak operating period population. The impacts in terms of absolute requirements were estimated to be considerably larger for Billings because 90 percent of the in-migrating population are assumed to choose to live there. In relative terms, both the population and infrastructure impacts were found to be modestly higher in Hardin owing to its considerably smaller pre-impact size. In neither community, however, was the in-migrating population ever expected to exceed 3.25 percent of the existing or basellne population.

With respect to Site 23 , the situation is markedly different. Due to its size and proximity, the Sheridan, Wyoming, area was projected to receive almost the entire population impact of the in-migrating work force (Sheridan is not expected to be the only recipient of the economic effects associated with the selection of Site 23; it is likely that the Crow construction and operating workers would spend a considerable proportion of their incomes in Hardin and the communities of the Crow reservation). And due to the exigencies of institutionalized work rules, it was estimated that the number of in-migrating workers would be substantial. The result of these conditions was the projection that, during the peak construction period, the population of Sheridan County could expand by more than 20 percent over projected baseline levels. Even during the operating period, the peak employment scenario resulted in contributing an additional 6-7 percent to the population of Sheridan County. The estimated effects of these newcomers on the requirements for public and private sector infrastructure in Sheridan were presented in the previous section.

The costs of providing the additional public sector facilities and services are estimated. In addition, rough estimates are provided of the incremental revenues these newcomers and their induced secondary economic activities will contribute to these commmities. Subtracting anticipated expenditures from revenues yields an
estimate of the net fiscal effects the Crow synfuels facility is likely to have on Hardin, Billings, and Sheridan.*

5.3.1 Site 1 Public Sector Fiscal Effects

Tables 5.3.1-1 and 5.3.1-2 present the public capital facility costs and the operating period revenues and expenditures for Billings and Hardin, respectively. It must be pointed out that the fiscel analysis suffers from two deficiencies. First, the unused capacities of these communities have not been factored into the fiscal analysis. Second, the analysis does not consider all the potential expenditures or revenues likely to confront these communities as a result of growth impacts. With these caveats in mind, the analysis provides a summary of the most important cost and revenue impacts on these communities under the assumption that no excess capacity exists in any of the major infrastructure categorles. Thus, the fiscal analysis reflects, in general terms, whether imposed growth will or will not pay its own way with respect to the demands it places on these entities.

Table 5.3.1-1 summarizes the capital costs of providing many of the important facilities required by the in-migrants. The figures of primary importance here are those for the operation period. As expressed above, it is expected that both the Billings and Hardin areas will adjust to their growth impacts by expanding their permanent infrastructure sufficiently to accommodate the level of growth expected during plant operations. The additional needs of the short-term construction work force are most likely to be met with the addition of temporary services and facilities.

The capital oosts of providing the permanent infrastructure are estimated to be $\$ 15.7$ million in the Billings area and $\$ 1.7$ million in the Hardin area. It is assumed that the construction of these capital facilities will be financed through the sale of revenue bonds (for the utilities) and general obligation bonds for other publicly

[^9]TABLE 5.3.1-1
SITE 1 CAPITAL COSTS EOR PUBLIC FACILITY NEEDS

Item	Billing'		Hardin	
	$\begin{gathered} \text { Construction } \\ (\$ 000) \end{gathered}$	$\begin{gathered} \text { Operation } \\ (\$ 000) \end{gathered}$	$\begin{gathered} \text { Construction } \\ (\$ 000) \end{gathered}$	$\begin{gathered} \text { Operation } \\ (\$ 000) \end{gathered}$
Parres and Open Space Total ${ }^{\text {a }}$ Development costs Land costs	\$ 389,912	$\begin{array}{r} \$ 389,912 \\ 181,484 \\ 208,428 \end{array}$	\$43,350	$\begin{array}{r} \$ 43,350 \\ \frac{\$ 0,177}{23,173} \\ 23 \end{array}$
School Buidings Total	5,876,634	3,789,115	628,052	481,271
Construction	5,645,187	3253,018	560,761	361,668
Other	605,422	390,362	67,291	43,400
Community Street System Total ${ }^{\text {a }}$	3,257,931	3,257,931	362,215	362,215
Construction		3,044,796		338,518
Land		213,136		23,696
Public Facilities Total	1,882,528	1,064,497	220,354	118,350
Police Facillies	214,908	115,393	23,887	12,829
Fire Facilities	171,927	92,314	19,109	10,263
General Government	107,454	57,696	11,943	6,415
Health Care Pacilities	1,267,958	680,817	140,931	75,693
Library Facilities	220,281	118,277	24,484	13,150
Utilities Total	16,678,202	7,292,972	1,853,655	810,828
Sewer System	4,041,324	1,749,216	449,162	194,477
Storm Drainage	3,701,027	1,678,998	411,341	186,670
Water Facilities	7,054,428	3,052,272	784,046	339,350
Gas and Electric	1,881,423	812,486	209,106	90,332
Total Capital Costs	\$ 28,185,207	\$15,794,427	\$3,107,626	\$1,756,014
Annual Debt Service Costs ${ }^{\text {b }}$	\$ 3,773,401	\$ 2,114,538	\$ 416,045	\$ 235,093

aIt is assumed that even with a commitment to meet the needs of the construction work force, the parks and the community street system, because of their "public goods" nature, would not be expanded beyond the levels needed to accommodate the operation-period population.
${ }^{\text {b }}$ The annual costs of servicing 20 -year, 12 percent tax-free bonds.

TABLE 5.3.1-2
ANNUAL INCREMENTAL REVBNUES AND EXPENDITURES

Operating Revenue and	Operations Period Costs	
Expenditure Items	Billings	Hardin
REVENUES		
taxable valuations		
Residential Property	\$16,071,033	\$ 1,786,767
Nonresidential Property	17,177,493	10,105, 207
TOTAL TAXABLE VALUATIONS	33,248,527	11,891,974
Totai Incremental City/County		
TAXES	731,468	261,623
Local Nontax Revenues	416,937	149,125
State and Federal Transfers	803,883	287,524
TOTAL INCREMENTAL REVENUES	1,952,287	698,273
EXPENDITURES		
pUBLIC SCHOOLS TOTAL	820,127	91,181
General Operations	812,211	90,301
Busing	7,016	880
COMMUNTTY STREETS TOTAL	42,357	4,709
PUBLIC SERVICES TOTAL	574,078	63,826
Police	75,005	8,339
Fire	75,005	8,339
Health Care	349,063	38,809
Libraries	11,539	1,283
Recreation	28,848	3,207
UTILITIES	448,589	49,874
Water and Sewer	60,581	6,735
Gas and Eleetric	360, 202	40,032
Solid Waste	27,406	3,047
Other Operating and Maintenance Costs	219,248	24,367
Debt Services	2,114,538	235,098
Total Incremental Expenditures	4,218,935	469,059
Annual Fiscal Balance	\$-2,266,648	\$+229,214

provided facilities. If both debt instruments have a 20 -year life and tax-free yields of 12 percent the annual costs of servicing the debt will be $\$ 2,114,000$ in Eillings and $\$ 235,000$ in Hardin.

Table 5.3.1-2 summarizes the estimates of incremental revenues and expenditures associated with the permanent operation-period population. They indicate an annual short-fall of revenues of $\$ 2$ million in Billings. However, in Hardin it is expected that growth will pay its own way and contribute modestly to an annual surplus in revenues.

5.3.2 Site 23 Public Sector Fiscal Effects

Table 5.3.2-1 summarizes the estimated increases in capital costs needed to accommodate the in-migrating population during plant construction and plant operations. The capital costs exceed the debt limitations of both the city and county. Thus, unless the debt ceilings can be lifted or other mechanisms found to provide these funds, it is doubtful that the required infrastructure will be available for the in-migrating populations. The consequences of shortages in community facilities and services have been reported in numerous studies. Gilmore, in his seminal work on boom towns, indicates that such shortages precipitate the "Problem Triangle." According to this paradigm, the lack of public and private facilities leeds to frustration and disaffection among new (and old) residents causing increased outmigration and high labor turnover which, in turn, contributes to declining productivity in both the basic and secondary sectors of the economy. This decline in productivity results in a further reduction of goods and services, higher prices, more dissatisfaction, incressed turnover, and absolute deterioration in the standards of living and quality of life (Gilmore and Duff 1974). (Reference 5)

Assuming that the funds needed to expand the public facilities in and around Sheridan can be borrowed, the annual debt service requirements, as shown at the bottom of Table 5.3.2-1, would be substantial. Table 5.3.2-2 presents an axsessment of the annual incremental revenues and expenditures-including debt service costs-during the construction and operation periods. As shown, the annual deficits are expected

TABLE 5.3.2-1
SITE 23 CAPITAL COSTS FOR PUBLIC FACLITY NEEDS: SHERIDAN

Item	$\begin{gathered} \text { Construction } \\ (\$ 000) \end{gathered}$	$\begin{gathered} \text { Operations } \\ (\$ 000) \end{gathered}$
Parks and Open Space Total	\$ 523,794	\$ 523,794
Development Costs		243,798
Land Costs		279,995
School Buildings Total	11,545,880	5,090,169
Construction	9,912,328	4,369,994
Other	1,189,479	5224,399
Community Street System Total ${ }^{\text {a }}$	4,376,595	4,376,595
Construction		4,080,275
Land	:	286,319
Public Facilities Total	(1,895,092	1,430,009
Police Facilities	422,252	155,015
Fire Facllities	337,786	124,012
General Government	211,116	77,507
Health Care Facilities	2,491,170	914,586
Library Facilities	432,788	158,890
Utilities Total	32,349,027	9,797,131
Sewer System	7,838,549	2,349,837
Storm Drainage	7,178,509	2,255,509
Water Eacilities	13,682,762	4,100,319
Gas and Electric	3,649,207	1,091,467
Total Capital Costs	\$52,690,388	\$21,217,698
Annual Debt Service Costs ${ }^{\text {b }}$	\$ 7,054,125	\$2,840,600

art is assumed that, even with a commitment to meet the neads of the construction work force, the parks and the communities street system, because of their "public goods" nature, would not be expanded beyond levels needed to accommodate the operation-period population.
${ }^{\text {brye }}$ The costs of servicing 20 -year bonds paying a tax-free 12 percent.

TABLE 5.3.2-2
ANNUAL INCREMENTAL REVENUES AND EXPENDITURES: SHERIDAN

Operating Revenue and Expenditure Item	Construction	Operations Period
REVENUES		
Taxable Ad Valorem Valuations	\$70,705,243	21,589,281
Residential Property	19,931,182	19,931,182
Nonresidential Property	90,636,425	41,520,463
Total Incremental City/County		
Au Valorem Taxes ${ }^{\text {a }}$	498,500	228,363
Total Incremental Sales Revenue	45,593,559	12,880,962
Total City/County Sales Tax Revenues ${ }^{\text {b }}$	911,871	257,619
Local Nontax Revenues	886,643	520,666
State and Federal Transfers	1,709,511	1,003,882
Total Incremental Revenues	4,006,525	2,010,530
EXPENDITURES		
Public Schools Total	2,499,025	1,101,731
General Operations	2,474,903	1,091,097
Busing -	24,121	10,634
Community Streets Total	56,901	56,901
Public Services Tctal	2,100,605	771,197
Police	274,451	100,759
Fire	274,451	100,759
Health Care	1,277,252	468,919
Library	42,223	15,501
Recreation	105,558	38,754
Utilities	1,641,428	602,619
Water and Sewer	221,672	81,383
Gas and Electric	1,319,476	484,421
Solid Waste	100,280	36,816
Other Operating and Maintenance Costs	802,241	29A,528
Debt Service ${ }^{\text {c }}$	7,054,125	2,840,600
Total Incremental Expenditures	\$ 14,154,325	\$ 5,267,576
ANNUAL FISCAL BALANCE	\$-10,147,800	\$-3,657,046

SThe combined city and county ad valorem tax is 22 mills on 25 percent of full value.
bThe eity and county each levy a 1 percent tax on sales within their jurisdictions. Although the entire in-migrant population may not live within the boundaries of the city, it is assumed that all will shop in sheridan.

CThe annual costs of servicing the debt from Table 5.3.2-1.
to be substantial even if the infrastructure is expanded only to the level required by the permanent operating and secondary work forces. To place these figures in perspective, the entire budget for Sheridan County was $\$ 15,987,000$ in 1980; the budget for the city of Sheridan was $\$ 11,515,000$ in the same year. The deficits of $\$ 10.1$ million and $\$ 3.6$ million forecasted for the in-migrating construction and operating period workers represent an extremely high proportion of these totel budgets.

6.0
 CONCLUSIONS

This analysis supports the conclusion that Site 1 is preferred over Site 23, from a socioeconomic standpoint. The projections presented in this analysis rest on a host of data and assumptions concerning manpower needs, the availability of local indian and non-Indian labor, manpower competition from other projects, household sizes, the spatial distribution of households, and the service requirements and costs of new popuiations. Based upon the data available at the time this analysis was prepared and the assumptions constructed from the most recently available evidence of socioeconomic impact phenomena, the study conoludes that the population and public sector impacts will be markedly greater on Sheridan if Site 23 is selected than on Billings and Hardin if Site 1 is selected.

These impacts impose project-related costs of two types. The first type of projectrelated impact costs are the direct costs of mitigating local public sector impacts. Recent mitigation agreements in the Rocky Mountain Region have required the project developer to provide both the incremental capital and the annual operating costs for new or expanded public facilities and services attributable to projectrelated growth. An estimate of these costs associated with the selection of Site 1 is provided in Tables 5.3.1-1 and 5.3.1-2. Cepital facilities costs during the postconstruction period in both Billings and Hardin are estimated to be $\$ 17,550,440$. The annual incremental costs of providing services to the newcomers in these two areas are projected to be $\$ 2,037,430$. Their present value of $\$ 13,377,750$ is estimated by discounting these costs over a projected 30 -year project life at an assumed opportunity cost of capital of 15 percent. Total mitigation costs associatēd with the selection of Site 1 are estimated to be $\$ 30,928,190$ in current dollars.* Similar projections of project-related mitigation costs associated with the selection of Site 23 are prepared using the postconstruction period costs in Tables 5.3.2-1 and

[^10]5.3.2-2. The total costs in current dollars are estimated to be $\$ \mathbf{4 5 , 2 2 9 , 7 9 0 . *}$ Comparing the costs of mitigating growth in Sheridan to the costs in Billings and Hardin provides one measure of the relative project-related impacts associated with the selection of Site 1 over Site 23.**

The second type of project-related impact costs are those associated with the turnover of the project work force ins these two site areas. Quantifying the extent of turnover and its effects on productivity and project costs is extremely difficult. Sufficient empirical evidence of these effects does not exist to permit estimates to be made with precision. However, during the construction of the gasification facility, annual growth rates in Sharidan County are expected to exceed-by a factor of 2-the rates generally considered to be tolerable and at nonimpact-producing levels. If, as a result of the pressures of rapid growth (e.g, housing shortages, local inflation, increased crime and domestic violence, and shortage of needed services), it is assumed that labor productivity is just 20 percent lower at Site 23 than Site 1, the effects on project construction costs can be estimated. Table 3.1-2 presents the estimated construction labor wage bin ($\$ 72,000,000$) for the third year of plant construction. A decline in productivity of 20 percent at site 23 would have the effect of inereasing construction costs there by approximately $\$ 14.5$ million in the third year alone. Again, accepting the relationships among rapid growth, adverse socioeconomic impacts, labor turnover, and reduced productivity, Site 23 is expected to impose greater project-related costs than Site 1.

The estimates of both mitigation and productivity project related impact costs rest on too many assumptions to be accepted umeritically as projections of the actual dollar costs associated with growth impacts at Sites 1 and 23. The figures are presented instead to illustrate the relative severity of the socioeconomic impacts

[^11]likely to occur at both sites. That is, accepting the assumptions used, it is likely that the costs of mitigating the impacts at Site 23 will be approximately 30 to 35 percent higher than the impact mitigation costs at Site 1. Similarly, it is expected that, if the impacts are not mitigated, productivity will be lower at Site 23 than at Site 1 as a result of a higher incidence of labor turnover. The figures on public costs and productivity effects are not sufficiently reliable, however, to permit an evaluation of whether it might be more cost-effective to mitigate impacts and avoid productivity declines or to accept reductions in productivity and resist contributing to impact mitigation.

REFERENCES

1. Bechtel Corporation. 1975. The Energy Supply Planning Model.
2. Bureau of Indian Affairs, U.S. Dept. of Interior. February 1981. Draft Environmental Impact Statement, Crow-Shell Coal Lease. Billings, MT: BIA.
3. Bureau of Mines, U.S. Dept. of Interior. 1976. Information Circulars 8661 and 8703.
4. Councll of Energy Resource Tribes. 1981. Feasibility Study: Crow Electric Power Generation Project.
5. Gilmore, J. S.; Duff, M. K. 1974. The Sweetwater County Boom: A Challenge to Growth Management. Denver: University of Denver, Denver Research Institute.
6. Montana Dept. of Community Affairs. 1980. Montana Energy Almanac.
7. Richardson, H. W. 1969. Regional Economics. New York: Praeger Publishers.
8. Skelly and Loy Consultants. 1975. Economic Engineering Analysis of U.S. Surface Coal Mines.
9. Stenehjem, E.; Metzger, J. 1976. A Framerork for Projecting Employment and Population Changes Accompanying Energy Development. ANL/-14. Chicago, IL: Argonne National Laboratory.
10. Stenehjem, E. 1981. TForecasting Economic and Dernographic Impacts from Energy Development: New Thoughts on Old Methods." Proceedings of Applied Geography Conferences; Yolume 4.
11. Stenehjem, E. 1978. Summary Deseription of SEAM: The Social and Economic Assessment Model. ANL/TAPE/TM-78-9. Chicago, II: Argonne National Laboratory.
12. U.S. Department of Energy. 1978. Social Impact Assessment: A Methodology Applied to Synthetic Fuels. Washington, D. C.: DOE.

SECTHON C

SOCIOECONOMIC DATA

APPENDICES

Appendix Title
C-1 Union Wage Levels in Montana
C-2 Model Documentation
C-3 Summary of Community and FiscalImpact Factors
C-4 Revised Work Force Estimates
C-5 Original Work Force Estimates

APPENDIX C-1

UNION WAGE LEVELS IN MONTANA
 is butuct in me nexracion on fue minci mee at mac smate of thes nivent

APPENDIX C-2

MODEL, DOCUMENTATION

Sess CO3	
[13	jdisitg 6
[23	lyxdth 13\%
[3]	"enter las factor between 0.00 and 1,00 exclusive"
[4]	1arabt 1
[5]	crowdat
[6]	'enter construction period secondary multipliep
[7]	Sempraceit
[8]	"enter operation period secondary multiplier"
[9]	senpxoesl
[10)	center sas. raior fa. availabilitri $0.00-1.00^{\circ}$
E113	selbfel
[12]	'enter houstheid muitipiser"
[13]	hamites]
[14]	cetiabfige ibf
[15]	cididctos
[16]	dehsintt
$[173$	asengtua
caed	hienzud
[193	2294\%u4
[20]	hamanim. 14
[21]	hehivhz
[22]	Jatdht. 5
[20]	conve corivert
$\underline{243}$	formata axedinmimiating secondary labore
[25]	xbrenem basic mamiation -
5263	cxat new secordary popuiation
[273	dxe'naly total momulation
[28]	exthnaw biv horn pop
[29]	fxer as 2 \% of basalinm
[30]	axarnem rellowatone mop
c31.	hxt' as a \% of bacaline
[E2]	2xa'basie Jobs
[353	crepinmigratins basde fabor
C34]	2xersecandary jobs cranted
[35]	
[36]	variableste(1i,27)spuariablea
[37]	dataetotenp, a, b, evirark,kbhrmpkrsup
[303	cropds ff 0.1
5393	criaj \$1ff 4,
[403	aE3] \$1ff 4,
[41]	
[423	hamit \$1ff 4,1
[43]	-[3] liff 4,
[443	kEaj \$lff 4,
[451	Crilid \$1ff 4.1
[48]	
[47]	cill
[483	H[:1] \$1ff A,
[493	totemstza tiff 4,1
[30]	b[3] \$1ff 4,
[5:3	totemp[11] \$1ff s.1
[52]	b[11]\$1ff 4.1
[53]	kbh[3] tiff 4,1.
C54]	
[55]	krsi3s \$1ff A, 1
[56]	krs[113 ${ }^{\text {blff 4.1 }}$
5373	bx[3] 31 ff 4:2
538]	bx[11] \$1ff 4,1
[593	vx[3] Eiff 4,1
[60]	Yxilij Elff $\mathrm{A}_{\text {- }} 1$

fecrowdattiluss [03 croudat	
	sle"onter "peak" fipt annual peak velues for primany empt"ave
[4] totempas 1	
[5] tiabfai35 260688 \%18	
[7]	n 1227432 28181 282892295853023730870314553200332495024 9233345
[83	
¢9]	lacel54 34 103 5790909090909090
[10]	ae(tetemp-lac)-cr.

1370 $d e f n$ $[0]$ 5.3	```error -mgonvertc*lj*g convert *anter fortion of inmigrating basic labor living in smaller eountr: 0.000-1.000```
[2]	shes!
[3]	creat (totemp-lac)-cr)\$der
[4]	bhetshelatocr
[5]	
C6]	bhectheifsempxc
[7]	
[8]	bhet2ebheri 3*-206
593	bhei3ebhcri]*.06
[103	bhe14ebherija. 024
[113	bhc21ebher2J\%. 71
4123	bhe22ebhac2] \%.206
4133	bhez3ebhcc23\%.08
[143	3he24ebher2ju.024
[153	bhemaebhctsju. 71
[16]	bhe32ebhc[3]...206
[173	bhessebhec:3]m. 06
r183	onc34ephcc3]4.024
5193	bhe42ebhe543\%. 71
C203	bhe42abher 43. 206
C21.	the43abhe[43\%.06
[22]	bhe44ebhcr431.024
[23]	bhe1a, hheli, bheizibher3, bhei4,0000000
5243	bhezep, bhc21, bhe22, bhe2sibhe24,000000
[25]	bheaso 0. bheal, the32, bhe 39 , bnc 34,00000
[26]	
C273	bhas4subh mill
[281	hhoebhangempxo
[29]	
[30]	bhal2eshoci 3 . 206
[312	bholaebtro[1].06
[32]	bhol4ebhoci 14,024
5333	bho21ebho 21 半. 71
[34]	bhoz2ebho[2] ${ }^{\text {a }} 206$
[35]	bhozsebhoE23*.06
[363	bho24ebha[2] \%.024
[373	bhosiebhor3jk. 71
C381	bhos2ebhors] . 206
[393	bhossebhaly
[403	bho34ebhoc33 ${ }^{\text {\% }}$. 024
[413	bho4i8bhor43. 71
[42]	bhotzebhor43.1.20s
[43]	bho43ebho [43\#.08
[44]	8ho44ebho [43H. 024
[453	8ho51\%bhorsju. 710
[46]	bho52abhor53m. 206
5473	bhossebhorsja. 0s
[48]	bhosiebho [634.710
[49]	bhoszebho[63*. 206
[50]	tho71abhor73h. 710
[51]	bhotso 00 b, bhail, bhath, bhas, bhal 4, bho51, bhose, bhose
[52]	
$[59]$	
[54]	
[55]	
[56]	bxesdhx+.5
r371	nefolarm-zil

```
[58j locncelocric#we
    ractotemmobi
    rsce"7$uYs
    vsceysensampxc
    Ysctierse[1]%.71
    ysci2evse[1]W.206
    rsc13&%scc[1]%.06
```



```
    yscz1erscc[23#.71
    rsez2ersc[214.206
    rsc23arsct2ju.006
    rscR4ersc[2].0%.024
    rs=31ersc[3]H.71
    r=c32ersc[3]w.zos
    rse3`arec[3]w.0&
```



```
    rac410vsc[434.72
    rac43errcr474.0
    rac43prscr4j*.08
    rscie,rseidirsel2,rsels,rse14,0 0 0 0000
    Yse2e0. rsc21,YsC2R,rsc23,YBC24,0 000000
    Ysc3e0 0,Ysc31,Ysc32,Yse33,Ysc34,0 000 0 0
    rsc4e0 o 0,Yac4i i rec4iz rsc43,ysc44,0 000
    rsoe4surs
    Ysoeyso|#smmy,
    rsoi1Ersa[1]#.71
    Yso12erso[1]#,20s
    rso13Erso[1]W.06
    vsol4erso[1]H.024
    rso21erso[2]%.71
    rso22erso[2j%.200
    rso23Erso[2]M.06
    80248Y毎23.406
    YE0314Y&0[23每.024
    YEa31erso[3],.71
    rso32erso[3]:.206
    rso3sersoc3j3.06
    r&034ersoC3)*
    Y&041eYs00[43#.724
    Yro41gYMo543%,71
    rso433Yvao[4.74.06
    Ys043{rao[4]%.06
    Y3044erso[43%.024
    lo03 rsoslerso[5],.710
    102] Yso5a[rso[5]4.06
    1033 Ysoblerso[6]4.710
[104J]
losj rsa7iergac7j#.710
```



```
107J Yso2e0 o o o 0,Yso21,YmoZ2,Yso2s, r5024,Ysa61,Ys062
108, rsosed 0 0 0 0 0,v5031,re032,rso33,r5034,yso71
109] rso400 0 0 0 0 0 0,Y6041,Y5042,Y5043.rs044
```



```
111% Yx@$drxt.5
1121 barx+bx
[1133
[115J
116J
C117] 
[1183
c1193
[120]
r17R1
barx+b
geb-c
######,
FC*N3. 14 (byyy
3Fopbhep/(bxyb)
smoprskf#(rxZb)
gpoprsesdsmoprs+. 5
sporbhemdsmambh+.5
pemPOMYS+EPORDh
```


 wence puct ar the frawt of thit report

[118]	01
	datsecomstr
[119]	datioet otype, totind, O,mpfamp, indspertatind
$[120]$	datsedat1, datz, dat3, dat 4 dat5, datordat7, data, date.dat
[121]	datsel 123,1) ${ }^{\text {ardatz }}$
[122]	'datas' 214 ff 0,4
[123]	datsiedatio dat2, dats
[124]	datsiel 39,1)2rdats
[125]	dats2edat4.dat5, dato
[126]	dats20(39,1) ©rdats2
[1271	dats3edat7, dats, dat9,datio
[128]	dats3e(45,1) ${ }^{\text {drdats }}$
[129]	dats 2 sadats $2+.5$
11302	datm2asddat52+.5
[131]	datme3andata3t.5
${ }_{\text {[132] }}$	
[1343	datza 81 ¢f 4.4
[135]	$316 f 3.4$
*ecntrporisizes	
cos	
[1]	
[2]	mpoppes (prempetprpore
[33	sepopce (pcrsentymonul)
[43	pcrpopeprpopetsepope
[5]	
[6]	nserocentrope-narpor
[7]	nporcenprroctnsepos
Sgoprpop	
[8]	[\$1399
cos	
[1]	
[2]	mrporocremmpoterpopo
[3]	yeporogitopriamisnomul
[4]	oprpomet prpoporserapa ${ }^{\text {a }}$,
csj	
[6]	nsemodentpoponnprion nмmpanprpootnsepoo
sehshids[\$13*s	
$d e f n$	
	hehlderels *ansideltiles
503	nelds
[1]	prfameetprporch. 79
$[2]$	sefametrepopch 89
[3]	ttfancerpfametsefams
[4]	ot fanc@rcypap-(s4fanctprfanc)
[5]	-prfangourpaph 92
563	otfamoéoppropll 08
[7]	ttfamolapr famm famperettanc\% 3.61
$\underline{95}$	othsleEotfancki.25
[10]	hsipertefanpertothsie
[11]	Famperettramoz3.8
[12]	oths lefotfanizi. 25 o
[133	hsloprefamorrothsio
6151	n¢etmeenseracil. es
[143	nfampenprimetnsefme

use on octcenure of nerin onik
 Wotice proce at iuc rmatios this merant

173	notfracenforc－（ngel
［18］	noprtimenfornu． 92
［19］	notfimocneopall． 0 as
［20］	nimperenfumpetis．os
［21］	nothscenotfinc\％1．25
［22］	ahsperanfmpertnathse
［23］	nfmoperenoprfin\％\％． 8
［24］	nothsognat fmoki． 2 s
［25］	heopren fmoprtriothso
［26］	chlparenfampe\＃． 71
［27］	chloprenoprfmit． 71
［2日］	ctinfampe－shipar
［29］	nochlafnoprtamehlupr

O）	housiny
［1］	hosperenhaperilt． 10
［2］	homoprenhsoprtli， 03
［93	yrupcrehospcrin． 45
［43	mhvwerehoprevil． 35
［5］	mivperehosperf． 20
［63	sfvaprehosoprl． 60
575	mhvoprthosaprin． 25
［83	mfYoprahosopre． 15
［9］	sfulnderfyoprzs
［10］	mhvindemhvaprzs
［11］	mfvindemfvorryio
［12］	resindesfeindtmhvindt
［13］	pget．8\％（nmoraz1000）
［14］	npe3．Onf（npopo\％1000）
［15］	0se3．7w（npomax1000）
［16］	pkosepg＋nmotos
¢173	resantes fivprrns）
［183	rescoje（sfvomrw7）＋
［19］	resstretsfvompw47）＋
［20］	comarteresartili． 76
¢21］	concolmrancolul． 1
［22］	commtrerasstr＊\％．1
＊pedu	ct\％13＊＊
c03	－dusor
113	cotosernmopcrionse14．4
［2］	cstol7e（nmopexiol）
［3］	c1日te29\％1npopcx1001431．7
［4］	c30to44einpapezioulinp． 0
［5］	
［6］	c65plse（npope\％100）\＃n．6
［7］	－0tosel nparoz100）${ }^{\text {a }} 10.3$
［8］	05to17e（npopoziog）\＃28．7
［9］	018to2pa（nporo\％iou）解s．0
［20］	
［IIJ	
C12］	－65pl se fnpopo\％iciojns． 4
［13］	eschenec5tal7＊．90
［14］	oscheneo5to17\＃，90
［15］	ctechrecschen\＃．045
［16］	otechreaschanly．04s
C173	mehindeos chanil． 013
$[183$	merdocexin（nmopeziodos）
［19］	
［20］	Pcrhamezt（ n popek1000）
［21］	Pcrpsme3in＜npopexi000）
［22］	oprdocel．5w（nmopo\％1000
［23］	oprrnsegm（ n （apox 1000）

[01	bussta
[13	1rspeyetiypcy*.48
[2]	insopretivaprib. 48
[3]	ispreyetirpark. 10
[4]	ispopretirap. W. 10
[5]	hdurel.082M)rsomr)\%50
[6.]	genadse(.077 \| 1 rsopr) ${ }^{\text {a }} 50$
C3	fdstef.277wirsopri\%120
C8J	audlel.199\%1rsorrs\%40
[9]	
[10]	amaplet.03alirsopr) 250
[12]	furne(.0zzin)rsoprsz30
C323	eadrked.080 irsopr)2660
$[133$	
[143	
[153	scret
c 63	auperel:092*1sropr 3×40
[27]	notmotec-242 lis romel745
[283	nserapel.192*lspopriz30
[19]	ansrece(-12tillisropriz15
[20]	
[21]	mscsvce(-zasilsrapr) 220
[22]	svesrethotmot+aureptrasereptamerectiegsvetasscsve
[23)	
[243	tcpuliso4. 1moprsem
[25]	whsitrelson. 1Hoprsem
[28.]	enlretel $73 \cdots$, 3uprsem
[27]	busreptisoh. Supprsem
[28]	praisversont 5inorrsem
[29]	prafsveitini. Ohoprsem
[90]	
[913	totspgirtturctsveapctofespe
$532]$	pksspetotspen1.075
[58]	otrinde. 2suttotspetpkssme)
[34]	totindetotsmetpkgspctotrind
[353	totindetotindz43560
[36]	mofempercoemplo. 11
[37]	indspermg famplis
[38]	indpksempferapiz60 -\%
[39]	otrinde, zulindpks+indspe)
[40]	totindindpketindspetotrind
5413	totindetotind743360
[423	'runninso
[43]	'services'

16.14.39 05/20/02
spenvicederlizs
services
"running services"
gee total primerr construction meriad population
seertotal pecandary constructiot period population
sdernew primary construction period population
yef now secondary canstruetion period parulation
sferneu peak construction meriod population
spartotal primary operation period porulation
she'total secandary operation period population
siaetakal aperation poriod porulation
sie'new primarr opepation period porulation ske'ntu secondary operation Period population signagu operation period population \sin
peak construction period soer peak construction
3मe'new houreholds
sre ned nousenik eanstruction period ssed operation reriod
sse
suertotal employaent emenings (doliars) sve peak construction period suFe exertotal local inconefdollers) sye peak consruction ferior saaderencipation period
5aseffercapita income\{dollars\}
c293 sbad peak construction period
scae orper housthation meriad
32j sexpr per housthotd income (dollaps)
sfae, operation reriod
534λ
$[351$
shaefropulation age distribution
slaer porulation age distribution
sjaé
less than 5
slae
smae,
smae
spoes
spae"
srae
srae
spaser
sase
staé
suae
18 to 2
$\begin{array}{ll}18 & \text { to } 29 \\ 30 & \text { to } 44 \\ 45\end{array}$
65 pius
suaé
suae
operation meriod
lose than
5 to 17
5 to 17
$\begin{array}{ll}18 & t 0 \\ 30 & \text { to } \\ 44\end{array}$
$\begin{array}{ll}\text { svae } & 45 \text { to } 64 \\ \text { seafe } & 65 \text { plus }\end{array}$
$[51]$
$[531$
svaersehool enrollment
sazar palik construct sabar opark construction sbberschool teachers
scbe. poak construction meriod adber aparation periad anherarhnol lant rowlifrement (arroas

$\begin{aligned} & {[593} \\ & \text { c\$0j } \\ & \text { c } b 1 \mathrm{j} \end{aligned}$	Bfbe sabe'exmected social service permonnel shber peak construction periad
C62]	sibu physteiank
C63]	sjbe* mesistered nurses
5643	skber heajth mupaint personnel
[65]	slber police and firemen
[68]	stabe"
[67]	snber: oparation period
C693	Eober Phrsicians
[69]	Spber resistered nursus
[70]	maber health survart fersonnel
[71]	srbe' mollee and firmmen
[72]	ssbe
[73]	sthétotal housinm needs
[74]	subet prak construction meriod
[75]	sybé operation period
[76]	sube'housins needs br trpe
[773	sxbe- pajk construction meriod
[78]	srber sineldefamily units
[79]	azha mobila home units
[80]	sancar multi-fumily units
[81]	sbes
c82]	scee amoration meriod
[83]	sdec sinsle-pamily units
[94]	secer mabile home undts
[85]	sfea multi-family units
[86]	ssca
[87]	whea'residential land remuirements (aeras)
$[893$	sices sinviewamily
[893	sice' mobite homey
[90]	skees multimfandir
4913	sice
c923	smedefarks and open space land requirements (acres
[93]	sncer playoraunds
c94]	soster neighborhood rarks
c953	spee communier open space
[96]	sqce' total marks and open space
c97]	srce
[98]	asce'residential-related strett srstemilinear ft.
¢991	stcer arterials
[100]	sucer eollecters
c1011	gvas minor streets
[102]	swce-
[103]	axce'community straet systen\{linear ft.)
61043	sreet arterials
[1051	szeas collectors
c1083	sade minor strepts
C1073	stda-
c1093	scdetiocal retadl sales(dollars)
C1093	sdder peak construction period
[110]	sede- omeration persod
[121]	sfder
[112]	side'focal services recelpts (dollians)
C1133	shder peak construction meriod
[143	sidg oreration period
[115]	5Jde
[116]	skdecretali building apace reguirementiso.ft.)
[1173	side'saryice building space requirementisq.ft.)
[118J	smderoffice building space requirnertism, ft.)
[119]	sider totel building space requipement*
[120]	sode' total acres requirement'
[1213	srde'
[122]	sqde'manufacturins employment
[123]	sprerindustrial buildins space reguiramentisa.ft.)
[1247	sanperatal indilstrial land realijimmantiarmer).

Usk of orselorune of Renctit Dita ts sumact in tur mistaction on mis

[^12]| 50] | sepvices |
| :---: | :---: |
| [3] | "variats' \$1ff 1,5 |
| [2] | varias lestif 5,5 |
| [3] | variaszetlif 5.5 |
| [4] | variastetiff S\% |
| C53 | \$1ff 3.5 |
| [6] | -datal ${ }^{\text {* }}$ (ff 1.4 |
| [7] | datsiestff 9,4 |
| [8] | datszesiff 5,4 |
| [9] | dataje 1 ff 5,4 |
| [20] | -1ff 3.4 |
| [113 | -' |
| [12J | - |
| [13] | 'community facilitr and service requirements' |
| [14] | , 6 , |
| [15] | variasifdatsi |
| 6161 | \cdots |
| [17] | varias2idats2 |
| [18] | - |
| [19] | varias3t datss |
| [20] | , |

jcupr costrev
savad 09.20.35 01/111/82
cosests
$\begin{array}{ll}213 & \text { cosi } \\ 523 & 080\end{array}$
[2] $\quad 080$
If this cost egtimate is for the construction period enter "ce" if for the operations period ienter "ome
treert
trtrramolpute
concatdat \$1fy 1,3
retspeatiff 5.3
Bucspediff 5,3
81
$[93$
E10]
ofrespesplif 5,3
indaraetiff 5,3
[11]
1 rpsesiff 5,3
1 risentiff 5,3
lroseliff 5,3
5143 totsegtlff 5,3
$[153$ totporepiff 5,3
5153
5165
totpopetiff 5.3
cllatiff 5,
csiesiff g_{0}

[ig] sfvesiff 5,3
Linoj mhve iff 5,3
$\begin{array}{ll}\text { [20] mhve } \\ {[22]} & \text { mfvisiff } 5,3 \\ 5,3\end{array}$
[22J miff 3,3
casj 'enter totel land costs for public facilities'
$\begin{array}{ll}{[243} & 1 \\ c 253 & 6 \\ 2263 & \end{array}$
lcpfeg
capcst
onest
grecst
revs
ga kend
C39] meter oopestdate elff l.2
[30] Netsmeatiff 5,2
[31] svespequlif 5,2
[32] ofcspectsiff 5,

c343 irpsetiff 5.2
$[3531$
$[363$
$[373$
Posexff 5.2
[38] LotFe日tiff 5.2
[39] asjen 1485,2
$\begin{array}{ll}\text { c40J } & \text { gsientiff } 5,2 \\ \text { c41J } & \text { msinsiff } 5,2 \\ {[423} & \text { sfveniff } 5,2 \\ \text { c432 } & \text { mhveriff } 5.2 \\ \text { c44J } & \text { afveriff } 5.2\end{array}$
$\begin{array}{ll}\mathrm{c} 44 \mathrm{~J} \\ \mathrm{c} 453 & \text { nif }\end{array}$
[a6j Penter total land costs for public facilities"
c48j lapfet
c493
camest
6483
54503
[503 rev
[52] endi fend of costs
ito merum, enter "easta".

[92]	datagedatasin. 772
cesj	data48*sdate4t.5
[89]	data5edatasht. 772
[83.	data5citdata5+.5
[36]	databedatabili. 772
[97]	datesasddetabt. 5
[88]	varildatal
c893	- ${ }^{\text {- }}$
c903	var2idataz
[91]	- ${ }^{\text {c }}$
[92]	var3idatas
[93]	- ${ }^{\text {c }}$
$\underline{941}$	var4idata4
[95]	-
[96]	var5ı data5
[973	* *
[98]	- ${ }^{+}$
$[99]$	varsidatas
[100]	-

use bin olselvank or matimi bapa
 morte fuct ar ine frowr er twis Repart

APPENDIX C-3
SUMMARY OF COMMUNITY AND FISCAL IMPACT FACTORS

1
 to sumucer wo tut lestaverom on The manct papt it pue femt of this midiar

A Methodology
Applied to
Synthetic Fuels
HCP 12516-01 UC.13

April 1978

Prepared by Murphy/Williams Urioan Flanning and Housing Consultants

For the

U.S. DEPARTMENT OF ENERGY ASSISTANT SECRETARY FOF RESOURCR APPUCATIONS WASHINGTON, D.C. 20545

Under Conucafino. EF-77-x-01-2516

FIGURE 4- COMMUNITY DEVELOPMENT MODEL, ECONOMIC IMPACTS

1 armant emolavemens. nank sonstruction these Deand on undubtry sources
 2 Primary Emolovment. obarition IOI antes Gutai on mbusin howres

Gesed on incormersales ampiavmant relahonsmon in State of Wromung. Aasumas

 wopkes gmoracis na dacanonal mingley cin al 67 local camun caute in ar an

Lecral Seconderv Exolavment (O) mintive employnant ionx 142

Basad on megne-saletemaleymum ratatierigmas in Seate of Whamang Ansumes TOK loanal capture arse and four local ecanofuc evclet lis. meceme of seroncury workere ginerates ectinional amploymemt a 86% lecea czpiure rate ronuta n a catio of 1.20 . and a 78% local eappare retiv reautre in a rutio of 1.61
3. Latel Secondiny Emolownent. by incugaty
 10

114	1.0881	combinctat
18\%	1.0481	trangoortation
083	1.0331	cammendiout. unt
gat	1.2381	wholaraier trade
048	1.0889	FI.A.E
038	4.0391:	pram bus., rep, aves
13*	6.2009	prol. and rell aves
118	1.065	sovernment

binvenant colationurion in Stera of Who ming, Jatw toces capruse the mur hate
 US ceuntr fin parmitresest mactit embracronsthen of ercected local meemomen aecnomia mix
a Pamury Emotownent. agat aconatruczion
Enannga tave No. 7 is in anoud ficura wit the pame construction phase mor no last a fall year. Conversion fastar beace on outrmatiat of PC and PCY workfere: far aevernd hugriatu covalopmart erope-
sala. sala.

7 Total Emelownmer Ementia:
 miroloy
b) promery amblay. 101×374.300 po molov
 per winlov.
ameloy.

foctors bated on amage hourty sumunga n 1575 for a eomarset condtrwation workere. b) edoc moming workera. and at tofill panate workers. Ahumbu of Lator
 Yol 21. No 6
a Toted lacel ineom
Toral Tocat nicome $(P C Y)=$ tolal employ arnunge x 1:
 carrange $\times 1.2$
inceme ineiwast ancamm from wesial eecur.

shase the thetap it the maen income alarikgas rauo in protive countias tSEP asumas lass nisomp durng the non gnast will come hrm iouretel other

9 Per Canita ancerme:
 asern no 17 14
Per Holusenala ineoma a
roth locsi income -rotat numour ot meuteralda ine no is)

10 Locin Aatan Selas y
tロial lecil inceme - 48
Hased on imestricome gatio in muning domunanf cauntres (5EPI The imio 3s haved to par coaith income wen hower on enorta sheome o harger there of cota iocat matome moula be recm saies

Geind on meavis -wcome zutho in munung cominam countise ISEPI the racie is heved to atm csorza ineown wrin
 of toren focal meams would be sernes eamatit
Nores
 mume arturages n 1975 S
PCt 2 Pala Consmuction Parrat. 101 Oomiting Perved, $\mathrm{fPG} \mid \mathrm{I}$ Peam Construe. non Your
Major Source:
RDA Bacrseconoms Drolwe. unoub Ianod ISEP
Old SVent Regranal Commuman Can. titructran waruer profile. Iats icivm

FIGURE 4-b COMMUNITY DEVELOPMENT MODEL. DEMOGRAPHIC AND SOCIAL IMPACTS

12 fampue Emotoument 1PC: m
 Manerwwas. E\% ol minng analoweas ere twanes, but the spotivete fuwim morntores
 Contitruction wrovownemt is oven mpre
 maning embiovmem. Comempration at meses in primiory anotrownax torce uswits in olorper aropocton of fommen A) ameandicy mipravisen
 working me tomales $=$ working got matime $\times 4$
Other bocolition a working age tembura $\times 161$
tempers. umw population.
Consitruituon popularion. 28 K unmen workiote metudes aboul memes waine workers anc moovt 35d sont fortur populatien if the emidere af moviang mpy fernalese (CWP). 1 working ege maval a maib seconcany amptay. $\times 1,05$
wellining ays tomatas a wothung ego moves 565
 $\times 167$

Mase rocenazon incruast sorne mor workung. Tine oronornen of memied worners

 to working met memen wauld be corte.
 Tatel Poplation iPGi $=$ promacy doputo. tran min atconainy porwation
 $\times 11$
 $\times 89$
 $\times 1.965$
 hemakat. ainmer populanon
an mptumate for ine abiv vaire- of ine
 wal nat now joos the numpeer of wavining
 at working apa moven A Larger orgoortson

 othet dompuation $=$ warking age ferneves 154

1
atm aapulation 101 a warking age mater. maish, other depuisten

An summita for the latter vams dot ine agenation prase Mari morning agm make
dan nup tuve coes. Tha raxmoer of morting ope sipasias cumbert capas ons number of
 BEP. misen-aratile counnen)
15. Poguhation Ays Diambution

Durang the comatruetion phase, a lorger mabaron of the uncre 18 sill grosi will be whate 5 rama. and a angor pro. (CWP). asep) in mygams. by sop 10 whection ithete etonamic eran.
15. Sexpol Encoltumet invinaveary and migh
 masen for minnig dommern minger perten, or cotteas swolmere

7 School reuenjes pormentary and hig
 the 3.5 th evermgt U.S, countri: of 2

4ing Bitypion (PEY
promary diciliation in tumites $=$ ormery pousinion $\times 7$ itw

posulation in othor housmelds wita pooviotion tol - populaban wo ferchese
Luong sirumeon 101

oix 32 isipl

 반) zesant.

19 Mouranodita (PC)
renutiea E coselustian on trintion - 3.61 parsens par farmiv IGWMI
otrier novemaids ac dopularian in atrep nousumated - 125 owsoms der ncusenota
 holts
Motitenade (0)
 arruan por finitise
Thy nowterotis $=$ Docuruion in otrben nimaide - 1.25 owions per nousameld. alds. .
averngen taomip tize is somawimat larger in
 hanvalual noustrnotas. in satuan and in Whes wis 1.25 in 1970.

20 Fernux everenunpos;
71 ISEP1 tambies wait enucrin
Tot an win chispom Nat at tanulice would nave cmaren Trase wars enviar
are twiviv 15EP:

 hesten gupoort aerzonket $=2.0$ ome 1.000 copurution
proiezave semice cerroment,
ponce tha Aremen a 3.0 per \boldsymbol{i} 000 populaton

orywicuma $=1,5$ oer 1,000 nobusman regatived inutues $=8.0$ der 1 gad nesour requat
ticn
nemumh
nimuth avodort purionmel $=2.5$ oar 1.000 porvalivion

 tran
 0 mivung-aominame countum ISEP) Con wat lower rave.
 aw anvies cerrors. climits, quality of hita
21 Soenas Sonnte Personnet Dhthency Mone Tumo
21 hasitit aric masause workers oer 1.000 popusiation
5 protectue semes morkers oer 1.000 population
5.3 teschers par 100 aumis

The sbove rates for averaga U.S ceuntv art und as anceeted standura to whue

-

geamuso at mign sumover ane zramaimer
 cometion amas.
24 Howaing Nemas bu Tyon:

Oistmownon ter coniturifan anase outer
 gory of ingweamimit CWipi Ousnousion lor operathan pmase oased on mouaing cemente the tree woush would be pur.
 chatats wore " avmiablat mimong naw-

 Onfributian of nousing nowos on Tvoo would vant tor diterent sapmunty af xne
 commumiv
Norasa
 athmates in 19795 , PC: E Penm Cor. stuctian Ponon. : SCVI a Pasi Konst
Major 3aurens
Sosioveonomic arollu ses
Conatruction Wermen D-arter AvP
Corth of Sarmen .eas.

FIGURE 4-C COMMUNITY DEVELOPMENT MODEL. LAND USE IMPACTS

25. Plant Luns Requiraments (0): Blaned on stratreteristles of the aym thente fual piatit and stru; from is dustry mourcils.
26. Gamii Salas by Type (0)
27. Retail Euilding Space (o) tount wall satos . propartion of sales by type - sates por square 1001

Patell salot-aintribution bagad on shancted miningremariant coumins (5EP). Comparad to nation as a whole, larger proportions of total retad alore ate in mating and trinks. ing, auto deuters, and gua stationa: widtaly verying proportions are in building materials and hardware stores. general merchundies storea. applienes and apparal storiat, and lumiturt ssoran. Ratio of salies par scuare foon grosa faramble floor arua derived from "Dollats and Cents of Shesping Cunters." Urant Land luathute 1975.
28.

Service Rections by Type (0)
Commerciai Services Building Speas (0) = total service racespls - pro canpte per suo loce

sance recoipts diatribution based on satocted minise-geminant cour thes (5EP). Compared to the nation an a whela, hagger proporions are some for hotwiti, motolen and irailer parks and for miscmilaneors sarnex: a calagory mhich ineludes persorta and buiznoss senvimal. Widaly vary ing propertions are apart for mus gellanagus regeir and ior mustor meit and rernation serviens.
30. Othee Emptoymant (0)
31. Oftien Building Soate (0) a
amployment $=$ oupicyment ty type geatioy x square feotage pe employes

SEND EMPL CATES:
 31. oftiea employ. " isalisoliso

Dities emoloymant comprisar vary ing proportions of teat employment In vartous mecondary ecenomic casi gomar affice spuce ger office em playea varuas by ecanomic function
32. Relail. Strvice and Offer Land Requirament (0):
tetal bulteling zasew $=$ ratail $(27)=$ serves (29) - aftien (31)
pirking space = toial bitg. apace other isn
orme land req. $=$ (bidg. spact -
 pkg apace $=$ other kand

Aamumat all Bullding apact at ground Imah Parkiag tieter so sumes 5 saticas por 1000 squere lope of buliding mpactu and 375 square faed par pasting space. "Other land" inclugas sarrice roede utilties, Is itiesping.
37. Expected Manulacturtoy Emplofo anat (0)
arimary employment (d) $\times .11$ (sep)
Aatio of munufectution to miaing atrployees is $1: 5$ in raining-dominant covalita (EEF) Spacial programa areare the rillo an uoper limit for miniagodomiant counties (SEP?
34. Induatria! Eujlaingu Space $\langle 0\rangle=$ ruanulacuring employment 5550 ca, the ter employ.
sonce por emplayne depends on characteriatica of munutacturing litwe
15. Rocuatriat band Requiractanta (0 : parting apact $=$ migi mptoy. 20 84 th. par mentioy.
ofter land req. $=$ (Bidg. spme pheg. space) : 2 2 pkg. suace - other land

Asautues all industrial space at ground ivel. Parming lactor as sumat . 75 spaces ofe empioyes 350 34. the per spets. "Other land" ineludes sarmes roeds utilitias. tancteapiag.
33. Revidential Lans Requiramemt (O) atngithranty $=$ singician. units 3 units put atro
meclle nomas moble hane unds - 5 units per zero
multhfamily $=$ multhenam. units 10 untits per acre
total land reg. x singlminm. motile home - multhitiz.

Demaities could be sommertal higher or tomer, depending on local condx: thans. These ere earatatent with thoye tor "angtolamily converthon"towntincuse ciustornd" houring patterns in "Cons of Sprawl" meightore hood cort anatysis.
37. Semoel Land Recuiremant (0) senod anroltment -. 013 acras per pupa

Agsumes : 10 acte site for an elementary sehool with 750 puals. a 20 ser sute tor a hign semod with 1500 pupis (COST
12. Parka and Open Space 10:
playgrounday $=$ total pop. , $1 . A$ acras por 1000 pocs.
nornd. parts $=$ faval par. . 2.0 aerme per 1000300
community open apoce = total pap.
purs zerat par 1000 good

Fatorm tran C.Oni. aniurni corm munits parks net justlited for pran bation of siza nosmatly ganerated by synthatic fertis developiments.
39. Publle Facillty Land Cosis (0):
20. Public Facilly Land Requiramenta (01):
and cests (pelise and lira) = lecil tovelo coats , 08
and ceats lether gubuc facilis $=$ lack. daval. rotal land conts sasoo per aeto

More sowern lecatimal constrint on polies and lin tacillites may wait in higher lind conts, as proportion of facility carroicpmant the bugget for publis facillty land the loudgit for pubise facility land Land caas as proportion of tasility dovileamtent coms based on vinit coat impaets under sprawi mix at velepment earnithans (COSK Land cuat per mert is a gonaral axpmets thon under low dantity sprawi de volopantmi eondipens lCOSL
41. Realdaatiabaciated Streat Syatem (아)
artionala (300 tt R.O.W.) $=$ singime fam. units " oft. pit unit - mo - mutionarm unite 5 ft . poe unit callectors (60 fi. R.O.W.) a singla lam. untis. 7 ft per unt - mobit homes , 17.25 tt par unit - multi lam. usita = 13.5 the ger unit munor surctis 60 th R.O.W.) $=$ singlatam uniti : ay it. Der un - mpulthlem unte. 10 et per unu

Pactors bused an naighborthoor ecs ansipsis for rataidentai devalcomen ot surmilar denaity (cosi
42. Community Streat Syatem (0):
 - 1.78
eallectors = ealleciors Ifenad. relatid) 4.1
 -ralateal - i.1

Fectors for nompasidental parnon of total communtivy streat syatem miz devalecomant pattern icosi.
43. Mujor Rosds Land Requiramients
(0) :
exmmunty stroet syatorn lerterials - eghlectera

FIGURE 4-d COMMUNITY DEVELOPMENT MODEL. LOCAL GOVERNMENT IMPACTS: CAPITAL COSTS

4R. Purkz \& Open Susce Owretopmamt casrato:
taverounds $=$ unad req. 38.700
par mera (COS)
nalghoomoce parke $=$ in
Eematunity opan space - Isad req. - 31300 pae acre (cost
total cavel, cesis ${ }^{*}$ playgrounda nalquborncod parks - eppan spaci
45. Fake z Open Spaci. Total Eapith Cosky (07:
land coras = Innd requirment fice
 retal expital casis w cavalepment conts - land cuats
Land coat par acre is a ganeral axpmetanon undw "low dinnily sprawi devalapmant coarthions'

School Enioliment. by Grate Level
lot domantary = total sencol entoll. . .72 (5Ex)
high steroal m tetst sencal antoll. - 20 (SEP)
37. Sehool Buildity Sprea (0):
tivmentary $=$ ndem. antoll. 120 69. it per pupll (CDS)
high setroet $=$ high zen. amroll. 153 ses th per puail (COSI crint didg space $=$ elomentery hign sehaol
48. Sebocet Facility Demetooment Fasta (0) 2 cuat schoof tuikaing space a sad cor square toot (50s)
49. Oinaf Schaol Deworapment Cont

Incilly dovelogmant ewis . 12 (cos)
athur aevilopmant cests ineluce senool furnteningh garkirge pernay landseaping are.
50, Senocis. Tows Capital couta (D)
 triets - othes dwol cest
land cents = lorat savel. sests otal ear coats - land ceste

Aksumpat that land ceats, in a pros
 see lower tow schoots than tor othar purtig lacillite tsen fatio.
31. Cummunity Streat Sysaen Daveiove mont costs toti
 3117 per foak 160 CO
collezatorn "coloctor streat length ince per rocit (COSI

- \$37 per loot (cos)
total dival. emsits a sternin. extucters - munor atrats

52. Gomnunity Sireat Systam, Taral caunst catis (dis land costs - lutad oiswitegment

Esars - . 07 feDs
 ment castr - lind costs
Land casts, as oraportion of stuent systam dwoumpment casis berea on hux. development cenailions.
53. Public Facility Devolopment Conts (a) polie lacilitios (structure. mapiomem, valicles) - tomi posuration - 540 pir parsan (CDS)
fire incillias istryctura. anuipment. vatieleal a tois population a sisz per persen (COSA
gor perasiant admunisumation tofilemat
 tion - 520 per persum (COS)
hanith aspo latilition (atruellurt. of
 ulstion is S216 per pursion (cob) hlarary lacllties (atructurt. suip
 popist avel. conts police - Het - ©ovil zurina - metith - Marary
3. Mublic Furillieen Total Capital Coats (d) a
coend davelopmant costs - letno cotis lexe 819
 mant Cosis lot

 aneghabrthood toek ansiy sis for ralt tantial davetopment ot simitia ammity (COSS.
SE. Nopmanidential Ulility Davelapamen Coats lor
merage $=$ rescrateco cewah carts - 44
siom drankef a merrainad dovel.
castre
$=$ res-retatat terti.
 gisher cotis - 2is

Facters ior non-residential portas of total utiliby symisms basert on pulatianstion in "sprasel mix" dip whearime pativn (COS)
 mallity develapment cemts (sanitary
 selation avel. sestis - nemary anvol. crata
 treatinent plantsi a Iemity Esteh costi : . 4
watir facil. tatorege taell. metlst = lacilo deve., comte . DS gas solen lasil, trantion trenam. linest - freil. diviat ceats - At toral capital cosis $=$ Iacility dew

Factor: tor saacial iyatam-mide cosss veatac. an rolationships in -spraver mix" apwicomart partien [c05.

5a. Salid Waste Colldetion, Teral Capita Combi COL
devolopminit casts catrestura. vani
 per person (COS)
landill (dispotall comta $=$ anwere
mens conts - Js lcasi
total eaprial coats a development
costil - lgatill costs
59. Tous Capital Gats (0):

Hrand totiol $=9 u m$ of 45, 50, 52, 54.
57. 58
 minor strecta (sen risy) lest gise 8 thet ull tse $\mathbf{5 5 7}$

Adjutave rotal staymes inst inc expla si minor susatu and gas ant efoctris facilling are ratlectad in the pree at protis devoroment. zad are hiompore not reltaties in togl cacital budgrater sagract innt nos pitals nat nealth cilmea sue county acilliter and are ratheted ln bogal capinal budgets.
60. Abnuad Capilat Corts. Dabt Service 이 $=$
lotal earitad costa . arse
Anmual eapital conts are the cantial paymeni on a 75 year loan at 7% 10% higher $\{, 00904$ in a 20 yes 10\% highior 7% lentureth 9% lownar lonpazi on a 25 yemp lonn st bith moternit Agames that cabital casts ato all In a single sond ussub. rither mat in pancuic band tssux ferrew the developmint pance.
Total adilusted eantal eents ots saral per capits germparea with 5623 gan Hit the sworga cound 1025.000 po0 in eupni Annual capital soala of $\$ 405$ per eatis exmpures with sios an nued exaital outioy per raspits in the wame emeny srin. sine 962 in coump mese of 10.25 .000 populs Han.

In the awsinge tersty, only a dortion of the cupital eant of the pubice tacitity and intrathuetury syation in relleetod in curnat datt gervuta: the reveri asaumen now pualic laeisity and intrastrecturs tevelop mam, with total gasts smiteotace in curtent dant semwe.
Nater:
(gat a puan conatruction pericos: (ecy) = palk censtruction your

An caraings inesma, salos, coster rumanas etilrates in 1973
Maitor veurean:
Sceracemonomie proflis ISEFt: Eor struction We-ym Dpashe (CWP): cost of Sprawi (cosi; trber bano Insthuse and oikve solsreat

39. Tolal Opersting a

Maintanance Costs
(64, 65, 68, 67, 88)
i) Grana Total
ii) Adjuered Total

- Oper. Phasa

61. Schoois. Gataral Daer. a Maint
 atheal
62. Bussing (0):
etem. senoot a otem enredmunt -
25 (COS)
hign mengol $=$ high scnool niral.

- .33 (COS)
Percentige of senced pupits buszad. by prace levil. based on estimatea patters (COS mix drelopinm matiers (CDS).

67. Annual Bussing Cama (0) =

Senools. Tatal Oper, A Maint, Corst (0) $=$ gomeral orac. 4 maint conts. bulaing gesta

Total armual earating ana mantenance costa are zocut 32B4 pee eapith, versis: 5308 in the avarago county aren. and 5287 in EOunty armas al 10-25,009008t labon. Per cratiaratus do nol ratioel the seroet age portion of total population.
65. Commalunity Siratif Syatemh Oper. 8 Mant. Caste laz
arteriats a ariorial atrent lengith a 51.25 per loat
 - 203 par toci
total oper lind artarials - Eolitemors coats a stremsa

Factors derived tron COS, aduatiod to rafloct the ehatracmeriaties of rona rigniodmay mambinal. Tota annund soout 575 pap eapits, versuis 540 in gyerst emity aras and s52 in emanty seats of 1025 .exa popults. tions altierences as attributible to tions ailitermates afe attributabio to the costr of rura rases in most street syem (CHP cos AND U.5. Consum
6. Pualle Smmes. Opmp. \& Maint. Counts (0): pelice m tatal prop. - S28 per preten (EO\% salariea)
fite = tetind pape - 525 par perset (sou salarisa)
gov' L. Edinh. - lotal pep. , 392 per perion
heath eare lotal cenc. 5121 per persom (56\% salaries)

mernition a toral pop. . 510 par gerson t80\% saluriesi
The above factors. darived frem cos. ean an camparad with par tapith axpandiurtan in inv avaraga U.S. county arda. and with shmiliar county ateas ef $10-25.0$ ded poppula. thon:
podican 526 gar garsen vu 598 (U5). 512 (5m)
Fires $\$ 26$ par patace vs $\$ 16$ (US). 58.4 (em)
port acmur, $=: 12$ per person ve 531 UUS, 222 Ismi
ftor thamactal acminn gari. controc, gntt. pualle bldgs.
hatilh cartif $\$ 121$ per perasen ve Salumi 538 (3 m)
tave. county aras arpenc. reflect pubile eotis axclusivety
hery 34 par perage va 55 (us). recravition: 810 por parson ve 815 (USh 87 (sm)

Factora ate derived Iron Costa of Sprawl tetviea worker to population asmuptions but can to compared ta allorastiva assumptione.
3.6 potico and firs enpotoyert per 1.00 D pola (COS) vs 3.5 prouctive sarvice morkers expectiot (SEF) 5 in average US counfy (U.S. Gana)
 and registered mures pinpaletanis (SEPH. IS it average countr. (U.S. Cend)
(disparity witributabla to private mediend practicas)
0.8 secreation employses ane 7.000 poputation
67. Uutuen Oxar. A Malnt Conta (m) sanil. sowarace $=$ total pop. $\cdot \mathrm{sta}$ per perzon
stom dralrages fincluded in strest syatern maint!
water cupply a total pop. 399 per parson
 astid wate coll

The above taczort, based on "rporawd inin" atwoumment patterns (CQS). can ber compariad with per eapita axpendituras in the awerage U.S. county aras and wilt smather county rease of 10-25.000 pog tums
cantiany anwor.: \$70 per capits ve 32) (L.3), 38 (sml

Nater sueply: 519 pse eapita va
For populaten in singte lamily reak
atertiol stang, per eaphe sower surv Ice miognaliuran ace agaut $6 \% /$ highor: sceul 25i lower in multilamily realonntial areas. For poob lation is sungietamity and mozule home araas. per capita gas and
 15? manar, apout 18% lower
muith-tarnily reticentai areas.
6B. Other Oparation and Mautonanea Cants (0) $=$
toral population . 576 par person
"Other" eatagory incluces aperv. tor ant maintenance exunticituras for publie wallart, intoreat on anbl.
 fescurept ant corruction. Factor hased on smpendituras in theas in counry areas of $10-25.000$ pogus lation.
69. Total Operation and Maintemance Cents tol:
grand tetty - 34 m of 84, 85, 86, 67, 68
asjurtad toial = grand imai - gax and otec util, (zen s87)
$\rightarrow 70 \%$ health care tien as6i.
Adivatod tetal asaumes all gas and stectric opm. and mainh comondi
 ane publt atern pryile Per publt cas.
or capita aoer, and maint. axponar cormpures wiln sis7i in average county area and gatd in countiex of 10.23 .000 peoutation.

Water

All garninge, satea, ceats tevanues entimatas in 19755.
(pe) = perk censtruetian period:
(pcy) = payk canatruction yoar:
(G) $=$ operaturg perioc
smin smaker counmas- $10.000-$ 25,000 paguatten

Mitjor Saurcas:
Construetion Warker Proflis icwpl
in basis for appliczota demaities
 whis cosis palade on "spravi max" GOSI
Costs of Sormul ICOS
Socnanconomin Fratile (SEP)
U.S. Consura of Governmanta, 1970
intlatad to 1575 dollars lar combiri gens to average U.S. Eovily ant smalier U.S. Countris.

APPENDIX C-4

Fievised work force estimates

DAFE 05/2G/A2 RUN ITHE 13.0G. 11 . PAGE 2 OF?
rat hadaf 5 manniag by craft-subidyal
aEPORT BOS6020

\qquad
\qquad

USE GM DISELCSUNI BF MECCIS OATI 4 sulacer wh rul hetrmetran oss sut

ORERATIONS PERSONREL - BASE CASE

Staff 20
Operating Personnel - 416
Maintenance Personnel - 413
Total 849
 is sugicer win ecmactiag on the
Morlce pree ar the fiont es thith meral

APPENDIX C-5

ORIGINAL WORK FORCE ESTIMATES
$\begin{array}{r}\text { To Data } \\ \text { Prolectet } \\ \hline\end{array}$
HANPONER Ph. - ECFLON
By Crafto-In Man Montha)
Year 02

N
.

125 MMSCFD PLANT

No.

Plant Staff 12
Operations 314
Maintenance 297
Engineering 30
Administrative $\quad \mathbf{9 7}$
Total 750

[^0]: FA second retrospective study was undertaken by Mountain West Research, Inc., at about the same time the DRI study begen. Results from this study-sponsored by the Nuclear Regulatory Commission-are not yet available publicly. These two studies represent the oniy formal and comprehensive retrospective analyses that the authors of this assessment are aware of.

[^1]: *These 15 power plants do not constitute a representative or probability sample of Impact sites across the country. Thus, these data do not support the conclusion that manpower estimates are aither always or even typically understated by these magnitudes. It must also be pointed out that the original forecasts of impacts at these sites were prepared by different lioms and individuals using different methods, data, and assumptions.

[^2]: Wina use of the scenarios to describe the range of manpower needs was proven to be well-founded. In late May 1982, after the sociocconomic analysis was virtually completed, a set of revised employment estimates were received which exceeded-in some periods-the levels of construction demand used in the "peak" scenario. These estimates are presented in Appendix C-4. They can be compared to the original estimates of manpower needs presented in Appendix C-5.

[^3]: FThe first two assumptions are based on the strict application of the "Indian Preference ${ }^{\text {n }}$ rule relating to employment. The expectation that 174 Crow workers would qualify for operating positions is based upon an analysis of the qualifications of actual Crow applicants to the Tribal Rights Employment Office.

[^4]: In the presentation of the estimates which follow the number of direct and secondary jobs created and the availability of Crow and non-Crow workers to fill them, the data imply considerable precision since the figures are not rounded. It should be recognized that these figures are only eatimates and should not be interpreted as being precise to the individual unit (or person) levei.."

[^5]:

[^6]: *Union representatives 1982: personal coumunication.
 **Carl Ells of Wyoming Industrial Siting Commission May, 1982: pexsonal communication.

[^7]: FThese assumptions are based upon the findings by Stenehjem and others in studies of worker characteristics. Frm an expanded description of the data and reasons behind these figures, see Stenehjem, 1976.

[^8]: *In the tables relating to population estimates, precise figures implying accuracy to the first digit are used. It must be recognized that these data are only reasonable estimates based on computer models and population statistics around which a reasonable error bound should be inferred.

[^9]: Wor computational purposes, costs, and revenues are rounded to the nearest dollar. Rounding to the nearest thousand dollars may better represent their accuracy-

[^10]: Fobtained by adding the capital cost estimates for Billings and Hardin during the operations period $(\$ 17,550,440)$ and the present value of operating and maintenance expenditurés in excess of revenues in both communities over the projected 30 year life of the facility $\$ 13,377,750$).

[^11]: *Obtained from Tables 5.3.2-1 and 5.3.2-2 by adding the present value of excess operating and maintenance expenditures to the total estimated capital costs.
 *These figures reflect relative impact severity in the two sites. Whether they accurately represent actual project-related costs depends on a number of factors including the willingness and legal standing of both parties to negotiate mitigation agreements.

[^12]: 71255

 [12aj varia4esna,soa,sma,sqa,spa,sfa,ssa,sha,sia,sja,ska,sia.sma
 5i30 Varieseazb,sbb,sch,sdb,seb,sfb,spb,5hb, sib,sub,ska, sya,sza
 [131] variabesnb, sob, spt.sabisrb, ssb,stb, sub, svb, swb, skb, sibismb
 [132] Yariapesacisbgisccisdc,secisfissge,shcisicisje,skc,sybicisb

 135] varialoksndisodispdisqdisrdissd
 [135] "variabs" blff 0,5
 1371 variesievarialivaria2, varias
 [137] variasie(39,46) trvarias
 [138j varias $2 e v a n i s 4)$
 [139] varias2e(39;46isarvarias2
 [140] varias
 ci411 varias3evaria7, variag.variag, varialo
 [142] variasGe(45,48) visuariass
 [143j variasi siff 4,5
 [1443 varias3 $514 f 4,5$
 [145] 11ff3.5

