
Appendix II

Kvaerner Process Flow, Hydrogen Purification, Amine and CO-Water Gas Shift Studies

A II Page

2

July 9, 2003

Email: mike.friedrich@akerkvaerner.com

Mr. Mike Friedrich

Aker Kvaerner

1200 Penn Avenue

Pittsburgh, PA 15222

SUBJECT: UOP Polybed PSA Unit Envires, Kentucky UOP Proposal P3H038 Rev. 4

Dear Mike,

In reply to your request, two budgetary designs and price estimates are provided for a UOP Polybed PSA Unit that produces a hydrogen product for the Hymelt Process.

A II Page 4 Case 1 produces 15.31 MMSCFD of product hydrogen and Case 2 produces 28.39 MMSCFD of product hydrogen.

If there are any questions, please contact me at 713-744-2863 or email: Eugene.kuchta@uop.com.

Sincerely,

Eugene Kuchta Process Technology & Equipment

EAK:rk

UOP POLYBEDTMPSA UNIT

A II Page 5

for

Kvaerner

Envires / Hymelt Process

Project No: P3H038

July 9, 2003

Case 1:15.31 MM SCFD Product

		Feed	Produ	uct <u>Tail Gas</u>	
Flowrate,	MM SCFD	19.08	15.31	3.76	
	lb-mol/hr	2,095	1,681	413	
Pressure,	psig	500	490	5	(Ex ST)
Temperature,	°F	120	130	110	
	°C	49	54	43	
Composition, mo	ol%				
Hydrogen		93.24	99.9	66.15	
Nitrogen		1.13	Balance	5.32	
Carbon Mono	oxide	3.69	10	ppmv 18.70	
Carbon Dioxi	de	0.01		0.05	
Methane		0.86	Balance	4.36	
Acetylene		0.01		0.05	
Water		0.01		0.05	

July

Hydrogen Sul	lfide		1.00		A II Page 6 5.07
Hydrogen Cy	anide		0.05		0.25
Design Hydroger	n Recovery:		86%		
PSA Price (± 209	% FCA USA. Sł	nop):	\$1,700,000 USD		
PSA Approxima	te Plot Size:		50 ft. x 30 ft.		
PSA Utilities:					
Instrument .	Air	1,400	SCFH @ 85 psig		
Electric Pov	wer	5.0 kV	W @ 120 VAC, 1 ph, 6	60 Hz	
Nitrogen (S	tartup only)				
	Leak Test	120,00	00 SCF @ 500 psig		
	Purge	60,000	OSCF @ 85 psig		

UOP POLYBEDTMPSA UNIT

for

Kvaerner

Envires / Hymelt Process

Project No: P3H038

July 9, 2003

Case 2:28.39 MM SCFD Product

		Feed	<u>Prod</u>	<u>uct Tail Gas</u>	<u>i</u>
Flowrate,	MM SCFD	46.19	28.39	17.80	
	lb-mol/hr	5,072	3,118	1,954	
Pressure,	psig	491	481	5	(Ex ST)
Temperature,	°F	120	130	110	
	°C	49	54	43	
Composition,	mol%				
Hydrogen		71.40	99.9	25.94	
Nitrogen		0.60	Balance	1.40	
Carbon Mo	onoxide	5.20	10	ppmv 13.49	
Carbon Dic	oxide	21.70		56.31	
Methane		0.40	Balance	1.04	
Water		0.20		0.52	

	0.40			A I 1.04	I Page	8
	0.10			0.26		
	86%					
Shop):	\$2,500,000 USD					
	70 ft. x 40 ft.					
3,400 SCF	FH @ 85 psig					
5.0 kW @	120 VAC, 1 ph, 60	Hz				
360,000 SC	CF @ 491 psig					
180,000 SC	CF @ 85 psig					
	3,400 SCF 5.0 kW @ 360,000 SC	0.10 86% Shop): \$2,500,000 USD 70 ft. x 40 ft. 3,400 SCFH @ 85 psig	0.10 86% Shop): \$2,500,000 USD 70 ft. x 40 ft. 3,400 SCFH @ 85 psig 5.0 kW @ 120 VAC, 1 ph, 60 Hz	0.10 86% Shop): \$2,500,000 USD 70 ft. x 40 ft. 3,400 SCFH @ 85 psig 5.0 kW @ 120 VAC, 1 ph, 60 Hz	0.40 1.04 0.10 0.26 86% Shop): \$2,500,000 USD 70 ft. x 40 ft. 3,400 SCFH @ 85 psig 5.0 kW @ 120 VAC, 1 ph, 60 Hz 360,000 SCF @ 491 psig	0.10 0.26 86% Shop): \$2,500,000 USD 70 ft. x 40 ft. 3,400 SCFH @ 85 psig 5.0 kW @ 120 VAC, 1 ph, 60 Hz 360,000 SCF @ 491 psig

UOP POLYBEDTMPSA UNIT

for

Kvaerner

Envires / Hymelt Process

Project No: P3H038

July 9, 2003

UOP Scope of Supply includes	Adsorber Vessels
	Off-Gas Drum(s)
	Valve and Piping Skid
	Initial Adsorbent Charge
	Engineering
	Control Panel with CRT
	Relief Valves for Adsorber Vessels and Off-Gas Drum
	Block Valves
	Interconnecting Piping from Adsorber Vessels to Skid

Customer Scope of Supply includes

but is not limited to	Foundation including Anchor Bolts
	Installation of All UOP Supplied Equipment
	Piping from Valve and Piping Skid to Off-Gas Drum
	Adsorbent Loading Under UOP Supervision

Performance Test

Piping To/From PSA Battery Limits

Wiring between Skid and Control Cabinet/CRT

Supply of Utilities

Leak and Pressure Test of the PSA Unit

Design and Supply of Peripheral Controls

- Product Back Pressure Control Valve
- Feed KO Drum
- Feed Flow Control
- Block Valves on All Piping To/From Unit
- Feed and Tail Gas Vent
- Tail Gas Flow/Pressure Control

Analyzer

Finish Paint

Notes:

- 1. The price is quoted exclusive of taxes, crating, insurance, or freight costs, and is based upon UOP standard fabrication and third quarter, 2003, costs.
- 2. The typical U.S. installation cost for Polybed[™] PSA Units similar to the proposed system has been approximately 15% of UOP's quoted purchase price.

Gas Treating Products Products, Technology and Service from Dow

AkerKvaerner PSA TGU

1	
2	
3	
4	
	2

AkerKvaerner PSA TGU

Absorber Feed Gas Conditions

Composition

H2S CO2 H2 CO N2 CH4 C2H6 C3H8 H2O UCARSOL TOTAL

Gas Flow Rate:	
Pressure:	
Temperature:	

	MM SCFD Psig Deg F		
<u>Feed</u> <u>Mol %</u>	LB MOL/HR	Product Mol%	LB MOL/HR
0.86%	20.98	0.00%	0.02
65.29%	1,583.19	60.56%	1,424.87
20.10%	487.47	20.72%	487.44
11.40%	276.52	11.75%	276.50
1.02%	24.69	1.05%	24.69
0.75%	18.09	0.77%	18.09
0.02%	0.58	0.02%	0.58
0.05%	1.16	0.05%	1.16
0.51%	12.32	5.08%	119.47
0.00%	0.00	0.00%	0.00
100.00%	2,425.00	100.00%	2,352.82
21.43	MM SCFD		

Simulation Summary

Treated Gas Conditions

GAS FLOW RATE: H2S CO2 CO2 Slippage Solvent	10	MM SCFD PPMV %(V/V) DRY %
Name Lean Solvent Flow Amine Strength Internals - Number of Contact Trays		
Solution Conditions		
Lean Solvent Temperature Lean Loading Rich Loading	0.005	Deg F Mol/Mol Mol/Mol
Regenerator Conditions:		
Tower Internals - Number of Trays Rich Amine Feed Temp Reboiler Press Reflux Flow	213.3 13.0	TRAYS Deg F Psig GPM
Exchanger Data:		
Lean Cooler Duty Lean - Rich Exch'r Reflux Cond'r Duty Reboiler Duty	27.269 17.221	MM BTU/HR MM BTU/HR MM BTU/HR MMBTU/HR

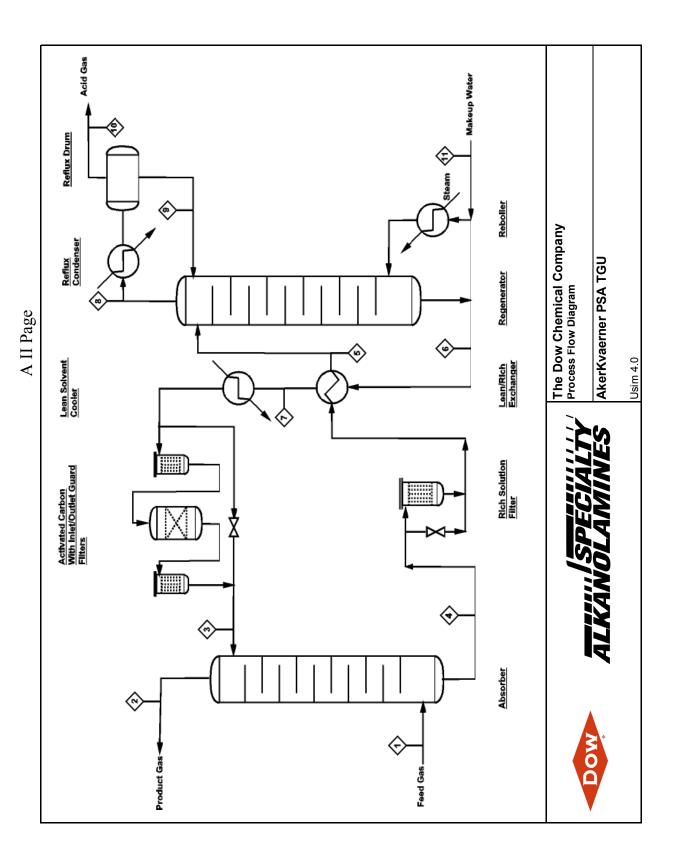
The Dow Chemical Company assumes no obligation or liability resulting from the use of this information. No warranty, expressed or implied, is given nor is freedom from any patent owned by Dow or others to be inferred. Equipment sizes are estimated and should be confirmed by normal rigorous engineering methods.

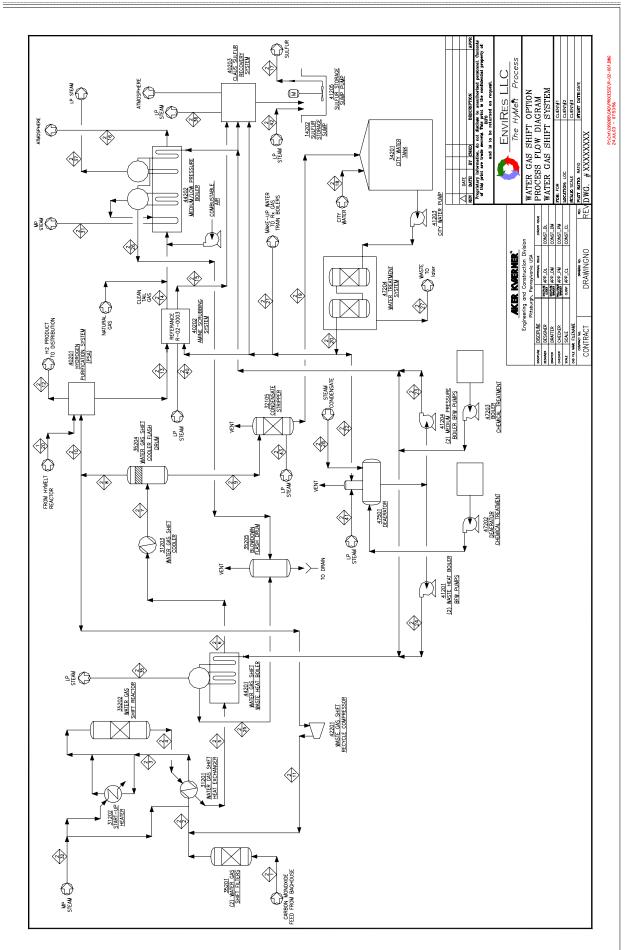
AkerKvaerner PSA TGU

Major Equipment Summary

<u>Absorber</u>					
Absorber Internals	10	TRAYS			
Absorber Diameter	7.6	FT			
Lean Loading	0.005	Mol/Mol			
Rich CO2 Loading	0.141	Mol/Mol			
Rich H2S Loading	0.019	Mol/Mol			
Atmospheric Pressure	14.7	Psia			
Treated Gas H2S	10.0	PPMV			
Treated Gas CO2	63.8	%(V/V) DRY			
Regenerator					
Regenerator Internals	20	TRAYS			
Regenerator Diameter	6.3				
O/H Reflux Ratio		Mol H2O/Mo			
Regenerator Heat to Acid Gas Ratio		M BTU/Mol A	Acid Gas		
Steam to Feed Ratio	1.077	LB/GAL			
<u>Reboiler</u>					
Heat Duty		MMBTU/HR			BTU/HR-FT2-DEGF
Steam Rate		M LB/HR			Deg F
Reboiler Temperature		Deg F	Fn	1.00	
Reboiler Steam Pressure	50.0	Psig	Area	5,384	SQFT
Lean/Rich Exchanger					
			U		BTU/HR-FT2-DEGF
Heat Duty		MM BTU/HR			Deg F
Rich Inlet Temp		Deg F	Fn	0.80	
Rich Outlet Temp		Deg F	Area	6,836	SQFT
Lean Inlet Temp		Deg F			
Lean Outlet Temp	153.1	Deg F			
Lean Solvent Cooler					
			U	90	BTU/HR-FT2-DEGF
Туре	AIR		LMTD	15.4	Deg F
Heat Duty	13.681	MM BTU/HR	Fn	0.80	
Lean Inlet Temp	153.1	Deg F	Area	12,309	SQFT
Lean Outlet Temp	100.0	Deg F			
Reflux Condenser					
Turne			U		BTU/HR-FT2-DEGF
Type	AIR		LMTD		Deg F
Heat Duty		MM BTU/HR	Fn Area	0.80	POLT
Inlet Temp Outlet Temp		Deg F	Area	0,759	SQFT
Reflux Flow Rate		Deg F GPM			
NEHUA FIUW NALE	31.8	GEIWI			

The Dow Chemical Company assumes no obligation or liability resulting from the use of this information. No warranty, expressed or implied, is given nor is freedom from any patent owned by Dow or others to be inferred. Equipment sizes are estimated and should be confirmed by normal rigorous engineering methods.





<u>AkerKvaerner PSA TGU</u>

Stream Summary		Feed	Product	Lean	Cool Rich	Hot Rich	Hot Lean	Warm Lean	Stripper	Reflux
		Gas	Gas	UCARSOL	UCARSOL	UCARSOL	UCARSOL	UCARSOL	Overhead	Liquid
		1	2	3	4	5	9	7	8	6
Temperature	Deg F	110.0	100.0	100.0	110.0	213.3	253.3	153.1	231.6	120.0
Pressure	Psig	5.0	4.0	4.0	5.0	0.	13.0		11.0	10.0
Gas Flow	MM SCFD	22.1	21.4						08.6	
Liquid Flow	GPM			560.0	573.2		594.4	570.4		31.8
Lean Solution Density	LB/GAL			8.8	8.7	8.4	8.3	8.6		8.7
Lean Solution Viscosity	сP			5.35			96.0	2.25		
Lean Solution Specific Heat	BTU/LB-F			0.858			0.956	0.889		
Lean Solution Surface Tension	DYNE/CM			38.8			30.3	35.9		
Lean Solution Thermal Conductivity	BTU/HR-FT-F			0.27			0.328	0.298		
										Ī
H3S	AH/ ION AI	20.08	0.02	0.68	2163	2163	0.68	0.68	20.05	
070		1 502 10	1 1010	0.00	34 0.012	76245	0.00	0.00	150.00	
CU2		1,203.18	1,424.07	0.10	07:001	02:001	0.10	0.10	70.001	
H2	LB MOL/HR		487.44		0.03	0.03			0.03	
CO	LB MOL/HR		276.50		0.02	0.02			0.02	
N2	LB MOL/HR	24.69	24.69		00.00	00.0			00'0	
CH4	LB MOL/HR	18.09	18.09		00.0	00.0			00.0	
C2H6	TB MOL/HR	0.58	0.58		00.0	00.0			00'0	
C3H8	LB MOL/HR	1.16	1.16		00.00	00.0			00'0	
H2O	LB MOL/HR	12.32	119.47	8,184.82	8,077.67	8,077.67	8,184.82	8,184.82	896.36	883.17
UCARSOL HS	LB MOL/HR		0.003	1,161.02	1,161.02	1,161.02	1,161.02	1,161.02	0.379	0.379
TOTAL	I B MOL/HR	2 425 00	2 352 82	9 351 64	9 423 82	9 423 82	9 351 64	9 351 64	1 076 07	883 55
TOT AI		BU 301 /	74 640 1	205 117 8	300 800 1	300 800 1	205 117 B	205 117 B	5 028 26	1 E OEB E
		00,391.4	/4,040.1	230,141.0	300,039.I	300,099.1 12-22	293, 141.0	233,141.0	C.UCO,C2	10,800.0
M/H A.G.	LB MOL/HR	1,604.16	1,424.89	5.81	185.08	185.08	5.81	5.81	179.27	

The Dow Chemical Company assumes no obligation or liability resulting from the use of this information. No warranty, expressed or implied, is given nor is freedom from any patent owned by Dow or others to be inferred. Equipment sizes are estimated and should be confirmed by normal rigorous engineering methods.

A II Page

16

A II Page	

Balance14Jul03.xls

C99168			PRELIMINARY MATERI	RY MATEF	RIAL BALAN	ICE - Water	IAL BALANCE - Water Gas Shift Option	ption							
Stream Number	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13		
Description	COFEED	HTRIN1	COFEE D2	WGOUT	WHBIN	WGWHB OUT	FLASHIN	FLASHOUT	FLCOND	WGSOUT	REC	PSAPROD	TAILGAS	Convey. H2	H2 PRODUCT
Temperature F	350	192.4	600	842.5	694.9	390.3	120	120	120	119.9	126.1	130	110	130	130
Pressure psia	500	500	497	496	493	490	487	486	486	485	500	475	19.7	 475	475
Vapor Frac	1010.010	1 5507 200	10010 66	10012 55	10010 55	10012 55	0.646	1	0	1	100 0020	1	1 000 1010	1400	1 1 1 1 1 1 1
Mass Flow Ib/hr	51524 224	139485 15	236323.5	236323.5	236323 5		236323 49		5000.301 69767 546	78595.05	87960 9	6038.129	2424.003 80368 87	2823 019	
Volume Flow cuft/hr	32111.641	77404.455	245686	307933	273443.6		89632.643		1503.461	41755.83	45844.97	40665.93	750683.8	19012.626	21653.31
Enthalpy MMBtu/hr	-91.849	-402.652	-921.167	-921.125	-936.191	-966.694	-1065.708	-588.848	-476.859	-277.868	-310.803	1.136	-282.267	0.531	0.605
Mole Flow Ibmol/hr	1702 668	1025 713	1005 713	815 CCV	815 CCV	815 CC1	A77 248	775 CCV	0.001	100 200	222.048	0.028	276 50P	 0.013	0.015
E C	75.256	1726 241	1726 241	2720 606	2220 606	2720 606	2220 606	2020 50A	0.00	1520 710	1710 000	020.0 2004 275	AP7 466	1200 066	150
H2O	3.051	16.546	5391.891	3888.525	3888.525	3888.525	3888.525	25.552	3862.973	12.058	13.495	0	12.326	 0	0
CH4	0.163	0.346	0.346	0.346	0.346	0.346	0.346	0.346	0	0.163	0.183	0.018	18.098	0.008	0.01
C2H2	0.272	0.577	0.577	0.577	0.577	0.577	0.577	0.577	0	0.272	0.305	0	0.584	 0	
N2	1.108	2.348	2.348	2.348	2.348	2.348	2.348	2.348	0	1.108	1.24	0.025	24.673	 0.012	0.013
CO2	83.55	1855.13	1855.13	3358.495	3358.495	3358.495	3358.495	3354.521	3.974	1582.944	1771.577	0	1583.099	 0	0
H2S	0.031	0.065	0.065	0.065	0.065	0.065	0.065	0.064	0.001	0.03	0.034	0.002	20.974	 0.001	0.001
COS	0.114	0.242	0.242	0.242	0.242	0.242	0.242	0.242	0	0.114	0.128	0	0.12	 0	0
HCN	0	0	0	0	0	0	0	0	0	0	0	0	1.043	0	0
HG	0	0	0	0	0	0	0	0	0	0	0	0	0.001	0	0
Ľ.															
	-1782.636			-3897.728		-4090.553	_	-3535.439			-3533.423		-3512.138	188.158	188.158
Heat Cap Btu/lb-R	0.261	0.327	0.415	0.436	0.429	0.421	0.36	0.36		0.36	0.361	3.448	0.254	 3.448	3.448
	0.022	0.035	0.041	0.065	0.058	0.042	0.039	0.039		0.039	0.04	0.112	0.021	0.112	0.112
Viscont Divert	1.605	1.802	0.962	0.16/	0.864	1.198	1.89	1.886		1.882	1.919	0.148	0.10/	 0.148	0.148
VISCOSILY CF	10.024	0.019	0.024	0.029	120.0	20.02	110.0	110.0		10.0	110.0	10.0	010.0	0.0	10.0
VVSTDMX @ 60 F MMcutt/day	10.543	50.432	99.389	99.389	99.389	99.389	99.389	64.1/U		30.281	33.889	21.213	C80.77	12/71	14.522
							500 1 00E		6024 074						
Entralpy Bturlo Heat Can Bturlb-R							-0834.935 1 146		-0834.9/1 1 146						
							0.335		0.335						
Density Ib/cuft							46.404		46.405						
Viscosity cP							0.564		0.564						
e							68.034		68.036						
FIOWRAIE GPIT															

A II Fage

-	x)	
000	3)	
1	2	5	
1.1.1	1		
-			
-			

C99168			PRELIMINA	. RY MATER	RIAL BALANCE	PRELIMINARY MATERIAL BALANCE - Water Gas Shift Option	Option									
Stream Number	2-14	2-15	2-16	2-17 *	1-20	2-18	2-19	2-20	2-21	2-22	2-23	2-24	2-25	2-26	2-27	2-28
Description	CLEAN TAIL GAS	CLAUS FEED	BOILER FLUE	SULFUR PRODUCT	H2FEED	CITY WATER	STRIPPED	DEMIN MAKE-UP	DEMIN TO Rx GAS TRAIN BOILERS	DEMIN TO WGS BOILERS	MED PRES BFW	WATER GAS SHIFT WHB BFW	WATER GAS SHIFT WHB BDOWN	MED PRES BDOWN	DEMIN PLANT WASTE	STEAM COND RETURN
Temperature F Pressure psia	100 18.7	120 24.7	465 14.7		120 500	06 09	0 212 15	100 65	100 65	100 65	250 715	250 215	308 75	474 535	100 65	298 65
Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Volume Flow cuft/hr Enthalby MMBtu/hr	1 2352.714 74618	1 192.502 7919	1 6520 204170	670	1 2094.63 7811.948 26584.86 -3.749	0 2006.97 36155	0 7 4219.37 5 76012	0 6164.08 111046	0 856.73 15434	0 5187.01 93444	0 6097.81 109852	0 1772.97 31940	0 17.76 320	0 120.34 2168	0 62.26 1122	0 1985.57 35770
Mole Flów Ibmol/hr CO H2 120	276.489 487.427 119.470	0.019 0.029 13.190	928.77		77.237 1953.119 0.268	2006.97	7 4219.37	6164.08	856.73	5187.01	6097.81	1772.97	17.76	120.34	62.26	1985.57
CH4 C2H2 N2 CO2	18.098 0.584 24.673 1424.789	0.000 0.000 0.000 158.310	3505.48 1872.48		17.953 0.312 23.59 0.155											
HCN HCN HG	0.021 0.120 1.043 0.001		so2		20.946 0.006 1.043 0.001											
*** VAPOR PHASE *** Enthalpy Btu/lb Heat Cap Btu/lb-R Conductivity Btu-ft/hr-sqf Density Ib/cuft Viscosity cP Viscosity cP	21.428	1.753	59.383 59.383		-479.868 1.877 0.099 0.294 0.011											
*** LIQUID PHASE *** Enthalpy Btu/lb Heat Cap Btu/lb-R Conductivity Btu-ft/hr-sqf Density Ib/cutt						62.37	59.81	62	62	62	58.8	58.8	50.2	55	62	55.6
viscosity or Surface Ten dyne/cm Flowrate gpm						72.3	158.6	223.5	31.1	188.1	233.2	67.8	0.8	4.9	2.3	80.3

A II Page	
	Balance14Jul03.xls

PRELIMINARY MATERIAL BALANCE - Water Gas Shift Option

C99168

142.63 2580 20 50 1.299 NG to BOILER 22.20 400 22.20 298 65 LPSTM to Rx gas train deaerator LPSTM to Condensate Stripper 360.81 298 65 360.81 6500 83.26 1500 83.26 LPSTM to Sulfur Pit 298 65 720.40 12978 720.40 LPSTM to Deaerator 298 65 LPSTM to Amine Plant 1985.57 35770 1985.57 298 65 LPSTM from Med Pres Boiler 407.77 7346 308 75 407.77 814.99 LPSTM from Rx gas trains 308 75 814.99 14682 PSTM from LPSTM from WHB Claus 308 75 194.28 3500 194.28 1755.20 1755.20 31620 308 75 5375.43 96838.34 121088 -533.581 -5510.013 0.566 0.032 0.8 0.8 5375.43 0 0 0 0 0 0 0 0 0 MPSTM TO PROCESS 700 520 0 5375.41 5375.41 96838 700 520 SUPHT MPSTM Enthalpy Btu/lb Heat Cap Btu/lb-R Conductivity Btu-ft/hr-sqf Density lb/cuft Viscosity cP VVSTDMX @ 60 F MMcuft/day *** LIQUID PHASE *** Enthalpy Btu/lb Heat Cap Btu/lb-R Conductivity Btu-ft/hr-sqf Density lb/cuft Pressure psia Vapor Frac Mole Flow Ibmol/hr Mass Flow Ib/hr Surface Ten dyne/cm Flowrate gpm emperature F /iscosity cP Description

19

Water Gas Shift Equipment List C99268 EnviRes LLC HyMelt Process

Motor Hp

					Motor Hp
Equipment		Operating/S			operating/
Number	Quantity	tandby	Description	Capacity/Size	connected
14202	1	1/0	Sulfur Storage Pit	10,000 gallon	
31201	1	1/0	WGS Heat Exchanger	15.1 MM Btu/h; Shell: 0.5 Mo; Tube: 316 SS	
31202	1	1/0	Start-up Heater	5 MM Btu/h; Shell: CS; Tube: CS	
31203	1	1/0	WGS Cooler	99.0 MM Btu/h; Shell&Tube: 316 SS	
32105	1	1/0	Condensate Stripper	3 ft dia. X 20' T/T; 10' packed section; Shell SS	
34201	1	1/0	City Water Storage Tank	400,000 gallons, CS	
35201	2	1/1	WGS Filter	2 ft dia. X 10 ft high, 500 psig, 120 F	
35202	1	1/0	Water Gas Shift Reactor	10 ft dia x 20 ft high, 1.0 Cr, 0.5 Mo	
35204	1	1/0	WGS Cooler Flash Drum	9 ft.x 18 ft high	
35205	1	1/0	Blowdown Flash Drum	1.5 ft.dia X 3 ft. high	
35212	1	1/0	WGS Reactor Catalyst	1050 ft3 each reactor bed	
40201	1	1/0	H2 Purification System	28 million SCFD H2 Product	
40202	1	1/0	Amine Scrubbing System	22 MM SCFD feed	
40202.01	1	1/0	Absorber	7.6 ft dia. X 35' T/T; 10 SS trays; Shell CS	
40202.02	1	1/0	Regenerator	6.5 ft dia. X 55' T/T; 20 SS trays; Shell CS	
40202.03	1	1/0	Lean/ Rich Exchanger	27.3 MM Btu/hr; Plate&Frame: 316 SS	
40202.04	1	1/0	Lean Solvent Cooler	13.7 MM Btu/h; Plate&Frame: 316 SS	
40202.05	1	1/0	Reflux Condenser	17.2 MM Btu/h; Tubes: 316SS; Shell: CS	
40202.06	1	1/0	Reboiler	32.6 MM Btu/h; Tubes: SS; Shell: CS	
40202.07	1	1/0	Reflux Drum	3 ft dia. X 6' T/T; SS	
40202.08	1	1/0	Activated Carbon Bed	8 ft dia. X 14' T/T; CS; 530 cu ft activated carbon	
40202.09	1	1/0	Rich Solution Filter	650 gpm; 50 micron; 8" line	
40202.10	1	1/0	Activated Carbon Inlet Guard Bed	200 gpm; 10 micron; 4" line	
40202.11	1	1/0	Activated Carbon Outlet Guard Bed	200 gpm; 10 micron; 4" line	
40202.12	2	1/1	Lean Solvent Pump	700 gpm @ 50 psi; Shaft: SS	40 / 80
40202.13	2	1/1	Rich Solvent Pump	650 gpm @ 50 psi; Shaft: SS	30 / 60
40202.14	2	1/1	Reflux Pump	40 gpm @ 100 ft TDH ; SS	2/4
40202.15	2	1/1	Make-up Pump	150 gpm @ 100 ft TDH	7.5 / 15
40202.16	1	1/0	Amine Storage Tank	20,000 gal; underground	
40203	1	1/0	Claus Sulfur Recovery Plant	8 tons/day skid mounted	
40203.01	1	1/0	Claus Plant Incinerator	Operation at 1000 F w/ recuperator;	
				0.83 MM Btu/h fuel	
40205	1	1/0	CO Power Generation Plant	Not included in this option as produce 14.5 MM	
				SCFD Hydrogen (9.5 MM SCFD more than base	
				case)	
41201	2	1/1	WH Boiler Feedwater Pump	80 gpm x 200 psi TDH	20 / 40
41203	2	1/1	City Water Pump	300 gpm x 100 ft. TDH	15 / 30
41204	2	1/1	MP BFW Pump	250 gpm x 700 psi TDH	150 / 300
41205	2	1/1	Sulfur Storage Pump	100 gpm x 30 psi TDH	5 / 10
41501	2	1/1	Cooling Tower Pump	13,000 gpm x 50 psi TDH	500 / 1000
42201	1	1/0	Water Gas Shift Recycle Compressor	800 acfm x 25 psi pressure rise, 500 psig discharge	150 / 150
44201	1	1/0	WGS Waste Heat Boiler	31,600 lbs/hr (60 psig)	
44202	1	1/0	Medium/ Low Pressure Boiler	97,000 lbs/hr (505 psig/700 F) & 7,300 lbs/hr (60	75 / 75
				psig)	
				Est. one 75 Hp comb air fan	
44301	1	1/0	Cooling Tower	130 MM Btu/hr; 13,000 gpm circulation	375 / 375
				Est. three fans @ 125 Hp ea.	
47202	1	1/0	Deaerator Chemical Treatment System	Est. two 1/2 Hp metering pumps	0.5 / 1
47203	1	1/0	Boiler Chemical Treatment System	Est. two 1/2 Hp metering pumps	0.5 / 1
47204	1	1/0	Water Treatment System	250 gpm demin plant w/ inlet filter, regeneration	35 / 100
				Est. two 15 Hp demin pumps, two 20 Hp blowers;	
47504		410	Descenter	two 15 Hp pumps for regen, etc.	
47501	1	1/0	Deaerator	350 gpm; Storage Section - 6.5 ft dia. X 21 ft T/T	

Water Gas Shift Equipment List C99268 EnviRes LLC HyMelt Process

Project Direct Cost Comparison to Base Case

	Equipment, Material Costs	& Field labor	
Areas	Base Case	WGS Cost	WGS Delta
Feed Prep Reactor Area WGS Area Hydrogen Purification Amine Scrubbing Claus Plant Steam Generation Power Generation Utilities	 1998200 1593000 2888500	3113700 2961400 2371500 3247000 	\$963,200 \$778,500

Results:

- 1.) WGS option ---> \$22,083,050 Project Total Produce 9.5 MM SCFD more of hydrogen than base.
- 2.) Base Power Options (from CO)

Simple Cycle:	Generate 17.8 MW for	\$15,200,000
Combined Cyc:	Generate 27 MW for	\$30,600,000

Preliminary Economics of Water Gas Shift Option (Differential to Base Case)

Capital Cost Multiplier	1	Labor Rates	(all-up):		
Basis:		Engineering	(1)	0 \$/hr	
Avg. On-stream Factor	90%	Field Labor		0 \$/hr	
Amortization Parameters		Constr. Mgt		5 \$/hr	
Annual Interest Rate	10%		-		
Payoff Period	20 years				
Estimated Differential Capital Costs:					
Major Equipment Cost	6,206,00	00			
Installed Equipment Cost	5,319,80	00	Field Hrs	49300	
Direct Totals	11,525,80	00			
Constr Equip & Indirects	\$2,305,16	60	% Directs	20%	
Constr. Mgt. Staff Supv	\$794,10	00	% Field Hrs	18.95%	9342
Freight	\$366,52	20	% Directs	3.18%	
Taxes & Permits	\$504,83		% Directs	4.38%	
Engineering	\$2,545,60		Manhours	31820	
Other Project Costs (Ovhd & GA)	\$1,342,33	39	% Above Indirects	20.60%	
Contingency	\$3,420,76		% Total	15.00%	
Indirect Totals	\$11,279,31				
Total Capital Cost	\$22,805,11	7			

Differential Operating & Maintenance Costs, \$ per year:

Natural Gas @ \$ / MM Btu Electricity @ cents / kwh Cooling Water Chem @ cents/kgal BFW Chem @ cents/kgal LP Stm (from Reactor) @ \$ / k lb Operation/ Maint @ \$ / manhr Insur & Taxes @ 1% Capital/yr O & M Mgt Fees Spare Parts @ 5% Major Equip/yr Total O & M Cost Amortization Cost @ % capital/ yr	5 0.04 0.02 0.08 0 50000	\$12,488 \$0 \$150,000 \$228,051 \$400,000 \$310,300 \$3,802,161 \$2,678,680
T - (- 1) (1 - 0 (-		
Total Yearly Costs		6,480,841
Differential Sales, \$ per year:		6,480,841
-	2.5 1.5	-\$4,142,960
Differential Sales, \$ per year: CO Fuel Lost @ \$ / MM Btu PSA TailGas Fuel Lost @ \$ / MM Btu		-\$4,142,960 -\$648,459

MM SCFD	1.3	Btu/SCF	1000
kwh	1405		
gpm	13000		
gpm	330		
lb/hr consumed	14300		
No. of addnl	3		

MM SCFD -3.76 Btu/SCF 35	MM SCFD	-16.54	Btu/SCF	305
	MM SCFD	-3.76	Btu/SCF	350

MM SCFD 12

Appencix III Siemens Westinghouse Power Corporation

A III Page 2 Selection issues for the DF-42 and catalytic burners are compared in Table AIII 1.

Table A III 1 **Candidate Burner Comparison**

	inaliaato Barrier Compario	•
	DF-42	Catalytic
Technical Areas		
Commercial fleet	(+) Many running units	(-) None running
Proven on CO/H ₂ fuel?	(-) No	(-) No
NOx control	(-) Burner designed for 42 ppm with diesel fuel (DF). May get 25 ppm with syngas. Needs steam or water injection, plus SCR	(+) Lowest NOx emission. Catalytic burner has tested capability to achieve around 2 ppm NOx without SCR (but not with this fuel). SCR may not be needed.
Dual-fuel capability (natural gas and high-CO syngas)	(+) Dual-fuel capable	(-) Dual-fuel capability may be complicated.

Programmatic Areas

	-	-
Technology advancement	(-) Mainly adaptation of	(+) Development of new
	an existing design	type of burner
Scalability	(-)~1/250 scale testing	(+) ~full-scale testing
Burner geometry model	(-) Model needed	(+)STC has model
Transition geometry	(-) Model needed	(-)Model needed
model		
Kinetics model	All by CS&E	Catalytic partial reactions by STC, downstream combustion by CS&E
Test burner design	(-) Design needed	(+) Design complete
Test burner fabrication	(-) Hardware needed	(?) Hardware may be
		needed

Commercial Areas

GT (w/burner) capital cost	(+) Slightly less?	(-) Slightly more?
SCR capital cost	(-) SCR needed	(?) SCR may not be
		needed
SCR operating cost	(-) SCR needed	(+) less than for DF-42,
		maybe zero.
Development needed	(+) Basic burner is	(-) Burner development
	developed, may need	needed
	modification	
Commercial Availability	(+) Sooner	(-)Later

A III Page 3

EnviRes High-CO Gas Turbine Study Specification

This document describes the key parameters that form the boundary conditions, for the conceptual design of a gas turbine operating with HyMelt off-gas. This is intended to be a working document that can be updated throughout the project by Siemens Westinghouse.

Contents

7 Revisions	
EMISSION LIMITS	5
USE OF NATURAL GAS	5
GAS TURBINE SIZE	5
SYNGAS COMPOSITIONS	4
REVISIONS	3

Rev.DateDescription of ChangeA22 Oct 03Original Issue

8 Syngas Composition

The composition, temperature, and pressure of HyMelt syngas from Illinois #6 Coal are shown in Table 2. The syngas from petroleum coke will be virtually identical to that from coal. The contaminants listed in Table 2 are all expected to be less than 1 ppmv.

Illinoi		ole A III 2 Syngas Con	nposition	
Composition		, ,	•	
CH ₄	0.07	%(vol)		
CO	75.72	%(vol)		
CO_2	3.92	%(vol)		
COS [1]	-	%(vol)		
H ₂	19.96	%(vol)		
H ₂ O	0.30	%(vol)		
H ₂ S [1]	-	%(vol)		
N_2	0.03	%(vol)		
Total	100.00	%(vol)		
Properties				
Temperature	160 or lowe	er °F	71 or lowe	r °C
Pressure	365 to 41	5 psia	25 to 29	bar
HHV	309	Btu/scf	12.16	MJ/Nm ³
HHV	4,995	Btu/lb	11.61	MJ/kg
LHV	298	Btu/scf	11.76	MJ/Nm ³
LHV	4,832	Btu/lb	11.23	MJ/kg
<u>Contaminants</u>				
Barium (Ba)		ppm(w)		
Calcium (Ca)		ppm(w)		
Chlorides (Cl)		ppm(w)		
Copper (Cu)		ppm(w)		
Iron (Fe)		ppm(w)		
Lead (Pb)		ppm(w)		
Magnesium (Mg)		ppm(w)		
Manganese (Mn)		ppm(w)		
Nickel (Ni) [1]		ppm(w)		
Phosphorus (P) [1]		ppm(w)		
Potassium (K)		ppm(w)		
Silica (SiO2)		ppm(w)		
Silicon (Si)		ppm(w)		
Sodium (Na)		ppm(w)		
Vanadium (V)		ppm(w)		
Zinc (Zn)		ppm(w)		
Other trace metals		ppm(w)		
[1] These	constituents	may be harm	ful to catalysts.	

[1] These constituents may be harmful to catalysts.

9 Gas Turbine Size

The original proposal assumed that the HyMelt® process module would produce about 1157 million Btu/hr of CO-rich gas, which was slightly less than the fuel requirements of a W501D5A gas turbine. The actual gasification module may produce more gas, which would match the fuel requirements of a larger turbine or turbines.

Table 3 lists the approximate syngas consumption of the three W-class gas turbines in 1x1 and 2x1 combined cycle arrangements. More detailed calculations performed during the project will determine the actual syngas requirements.

Table A III 3 Estimated Gas Turbine Syngas Consumption					
Combined Cycle Plant Designation	Gas fuel, Million Btu/h	Syngas, Million scf/h[1]	Gas Turbine Power, MW	Combined Cycle Power, MW	
1x1.W501D5A	1,169	3.9	121	173	
1x1.W501FD	1,726	5.8	190	283	
1x1.W501G	2,146	7.2	253	365	
2x1.W501D5A	2,338	7.8	241	346	
2x1.W501FD	3,452	11.6	379	567	
2x1.W501G	4,292	14.4	506	730	

[1] Estimated consumption of syngas with an LHV of 298 Btu/scf.

10 Use of Natural Gas

Natural gas is the preferred fuel for start-up and, if necessary during shutdown.

11 Emission Limits

The two tentative plant sites are

- A. East St. Louis, Illinois
- B. Decatur, Illinois

In the absence of specific information about emission limits at these sites, the values of 2 ppmv for both CO and NOx seem to be the best choice. In the near future, stack emissions are projected to be as low as 2 ppmv NOx and 2 ppmv CO when corrected to 0% moisture and 15% oxygen. These projections are based on (1) current limits in California, Massachusetts, New York, and New Hampshire of 2.5 to 3.5 ppmv NOx, and (2) the current best available emission control technology (BACT) can achieve 2-3 ppmv for both NOx and CO. These limits are not expected to be relaxed during the next 15 years.

If the gas turbine exhaust contains NOx and CO emissions higher than the target levels, some exhaust gas treatment, such as selective catalytic reduction, will have to be added.