Mössbauer and XAFS Investigation of C1 Catalysts

F. E. Huggins, S. Pattanaik, N. Shah, and G. P. Huffman CFFLS, 533 S. Limestone St., 111 Whalen Bldg., University of Kentucky, Lexington, KY 40506

Mössbauer spectroscopy: As described elsewhere in this report, various C1 catalyst formulations are being prepared, treated, and reacted. In addition, considerable catalyst characterization is being undertaken to determine the chemistry and properties of these catalysts. Although such work is incomplete at this time, significant Mössbauer and x-ray absorption fine structure (XAFS) spectroscopic examination of various catalysts have been undertaken. In this section, we report a preliminary account of the iron Mössbauer spectroscopy of various C1 catalysts prepared and treated in the C1 laboratory at the University of Kentucky (UK).

As described elsewhere, the catalysts are prepared as either binary ferrihydrites or as impregnated alumina (Al_2O_3). Table 1 summarizes Mössbauer results for the two types of catalyst. As can be seen from this table, the as prepared catalysts are found exclusively as ferrihydrite or similar species. Selective spectra are shown in Figures 1-3.

The most interesting result is the formation of iron carbide in the 5%Fe/Al₂O₃ catalysts after reaction under a methane atmosphere, regardless of how the catalyst was prepared (Figure 1). There is no evidence for iron carbide formation under any other conditions. There appear to be some remnant phases left over that clearly reflect the initial treatments of the catalyst. For example, the 5%Fe/Al₂O₃ catalyst heated to 1000°C in air before methane reaction (not shown) exhibits a ferric doublet in its spectrum, whereas the same catalyst reduced at 1000°C exhibits Fe²⁺ phases and metallic iron, in addition to the carbide spectrum (Figure 1). These ferrous and ferric phases are thought to have formed by reaction of the iron oxide with the alumina support and prevent complete reduction of the iron to the metallic state. The temperature of reduction makes a significant difference as the Mössbauer spectrum of the 0.5%Mo/4.5%/Al₂O₃ catalyst reduced at 700 (Figure 3) is clearly much different from that obtained from the catalyst reduced at 700 (Figure 2) or 500°C (not shown). Further work is needed to identify the very narrow doublet in Figure 3 that has an unusually low value for the isomer shift of –0.23 mm/sec.

Sample ID	Treatment	Fe metal	Fe ₃ C	Austenite	Fe ²⁺	Fe ³⁺
10%Mo!0%Si/FHYD MK2608	As rec'd					100 (fhyd)
5%Mo/5%Si/FHYD MK2607	As rec'd		-		-	100 (fhyd)
#12 5%Fe/Al ₂ O ₃ MK2598	R @ 1000 C CH ₄ rxn	13	43	10	34	
#13 5%Fe/Al ₂ O ₃ Mk2606	C @ 1000 C CH ₄ rxn	33	19	11	37	
#14 5%Fe/Al ₂ O ₃ MK2597	O @ 1000 C CH ₄ rxn	Trace	65	15	-	20
#23 Mo/Fe/Al ₂ O ₃ MK2599	R @ 1000 C C @ 725 C	18		25		57
#27 Mo/Fe/Al ₂ O ₃ MK2603	O @ 1000 C					100 (spinel?)
#28 Mo/Fe/Al ₂ O ₃ MK2600	R @ 1000	22				29*
#29 Mo/Fe/Al ₂ O ₃ MK2601	R @ 500 C	5	-		61	34
#30 Mo/Fe/Al ₂ O ₃ MK2602	R @ 700 C	4	-	30	-	66
#31 Mo/Fe/Al ₂ O ₃ MK2604	R @ 500C C @ 500C	11			39	50
#32 Mo/Fe/Al ₂ O ₃ MK2605	R @ 700C C @ 700C	13			40	47
0.5%Mo/4.5%Fe/Al ₂ O ₃ MK2596	As prep'd					100 (fhyd)

 Table 1: Summary of Mössbauer Results on Prepared and Treated Catalysts

*Includes 49% unknown doublet (-0.23,0.37) Mo-Fe alloy?

Figure 1: Mössbauer spectrum of 5%Fe/Al₂O₃ catalyst. Sample 12 after reduction in hydrogen at 1000°C followed by reaction in a methane atmosphere.

Figure 2: Mössbauer spectrum of 0.5% Mo/4.5% Fe/Al₂O₃ catalyst. Sample #29 after reduction at 500°C in hydrogen.

Figure 3: Mössbauer spectrum of 0.5%Mo/4.5%Fe/Al₂O₃ catalyst. Sample 29 after reduction in hydrogen at 1000°C.

XAFS spectroscopy: X-ray absorption fine structure (XAFS) spectra have been obtained from a number of the catalysts synthesized and reacted in the C1 laboratory at UK. Although detailed analysis and interpretation of these spectra is incomplete, some preliminary conclusions can be Qualitative interpretations of the XAFS spectra obtained from 5%Fe/Al₂O₃, reported. 4.5%Fe/0.5%Mo/Al₂O₃, and 0.5%Mo/Al₂O₃ catalysts at both the Fe and the Mo K-edges are given in Table 2. The Mössbauer results for several samples are also indicated in the table. Briefly, it is found that the catalysts subjected to reduction treatments at 700 and 1000 °C or to reduction treatments followed by carburization at 700 °C exhibit ~20-50% Fe metal in their Fe K-edge XAFS spectra, and some evidence of metallic forms of Mo in their Mo K-edge XAFS spectra. However, there is little indication of carbide formation for either metal. For the four samples reacted in methane subsequent to reduction or reduction plus carburization, the Fe XAFS data indicate that Fe metal is the dominant component. The as-prepared 4.5%Fe/0.5%Mo/Al₂O₃ catalyst exhibits spectra consistent with the Mo being present in the form of a molybdate anion, MoO_4^{-2} . Subsequent reduction appears to produce lower oxides and a metallic form of Mo. For the 4.5%Fe/0.5%Mo/Al₂O₃ catalysts, the Mo generally appears to be less reduced than the Fe after reducing treatments. More detailed analysis of these spectra is in progress.

Unfortunately, the analysis of catalyst samples after reaction may be deceptive, since exposure of small metallic catalyst particles to air when they are removed from the reactor may convert them to oxide. Therefore, much of the current effort in XAFS analysis is focused on the development of an in situ XAFS cell that will allow structural data to be obtained from catalysts during C1 reactions. An in situ cell has been designed and built that should allow investigation of C1 catalysts at temperatures up to 700 °C. It will be tested at the National Synchrotron Light Source at Brookhaven National Laboratory in mid-July of this year.

Table 2.	Mössbauer	& XAFS	Data	Summary	for	C1	Catalysts
----------	-----------	--------	------	----------------	-----	-----------	-----------

Sample no. and	MK	XAFS	Mössbauer results	XAFS results
description	no.	elem		(qualitative analysis)
47 – AP 4.5Fe/0.5Mo/Al2O3	2596	Мо	100% Fe ⁺³ (ferrihydrite)	XANES edge at ~ same location as MoO_3 with similar shoulder. FT - large peak at 1.3 A (O), small at 2.9 A. Very similar to Mo0.05/FHYD data ($MoO_4^{2^-}$).
27 - O-1000 4.5Fe/0.5Mo/Al2O3		Мо		Nearly identical to as prepared sample (47).
48 - AP 0.5Mo/Al2O3 & 40 - O-700 0.5Mo/Al2O3		Мо		Both show an O FT peak at 1.5-1.55 A and an XANES and an XANES shoulder at \sim 7 eV, similar to MoO ₃ .
41 - R-700 0.5Mo/Al2O3		Мо		Both XANES and FT look like mixture of MoO ₃ and Mo metal.
42 - R & C - 700 0.5Mo/Al2O3		Мо		FT peaks at 1.37, (~1.7), & 2.4 A, slightly different from 41. XANES very similar to 41. FT suggests some Mo carbide.
28 - R-1000 4.5Fe/0.5Mo/Al2O3	2600	Мо	28% Fe metal, 29% Fe^{3+} , 49% Fe-Mo alloy.	Mixture of oxide and metallic forms of Mo. Mo appears to be mainly molybdate (MoO_4^{2-}) .
30 - 0 R-700 4.5Fe/0.5Mo/Al2O3	2602	Мо	4% Fe metal, 66% Fe ³⁺ , 30% austenite.	XANES and FT indicate Mo is still predominantly molybdate $(MoO_4^{2^-})$.
32 - R-700, C-700 4.5Fe/0.5Mo/Al2O3	2605	Мо	13% Fe metal, 40% Fe^{2+} , 47% Fe^{3+} .	FT – strong peak at 1.57 A (MoO ₃ or MoO ₂ nn O shell) and weaker peak at ~2.5 (Mo ₂ C nn metal shell). XANES more metallic but still show an oxide shoulder like MoO ₃ .
28 - R-1000 4.5Fe/0.5Mo/Al2O3	2600	Fe	28% Fe metal, 29% Fe ³⁺ , 49% Fe-Mo alloy.	Both FT and XANES indicate partial conversion (~50%) to metallic form.
30 - R-700 4.5Fe/0.5Mo/Al2O3	2602	Fe	4% Fe metal, 66% Fe ³⁺ , 30% austenite.	FT indicates ~20-30% conversion to Fe metal, balance hematite. XANES is consistent with this estimate.
32 - R-700, C-700 4.5Fe/0.5Mo/A12O3	2605	Fe	13% Fe metal, 40% Fe^{2+} , 47% Fe^{3+} .	FT and XANES about the same as 30.
33 - R-700, CH4 rxn 4.5Fe/0.5Mo/Al2O3		Fe		FT – strong peak at 2.12 A (Fe metal) and broad weak peak at ~4.0. XANES close to Fe metal, missing edge shoulder. Appears to be mostly Fe metal.
34 - R-700, C-700, CH4 rxn, 4.5Fe/0.5Mo/Al2O3		Fe		Virtually identical to 33.
17 - R-1000, CH4 rxn 5%Fe/Al2O3		Fe		Both FT and XANES indicate Fe metal with minor secondary component.
18 - R-1000, C-725, CH4 rxn 5%Fe/Al2O3		Fe		Both FT and XANES indicate Fe metal with minor secondary component.
39 - R-700, C-700, 5%Fe/Al2O3		Fe		FT – strong O peak 1.5 A, weaker Fe metal peak, 2.17 A, oxide Fe peak – 2.85 A. XANES - mixture of oxide and metal.
37 - R-700, 5%Fe/Al2O3		Fe		Nearly identical to 39.

AP - as prepared.O - oxidized in air.

 $\begin{array}{l} R - \text{reduced in } H_2. \\ C - \text{carburized in } 20\% \text{ CH}_4, 80\% \text{ H}_2. \\ \text{CH}_4 \text{ rxn} - \text{reacted in } \text{CH}_4. \end{array}$

FT – Fourier transform.

XANES – x-ray absorption near edge structure. 700, 1000 – 700 °C, 1000 °C.