ρ

# DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy. completeness, or usefulness of any information, apparatus, product, or mendation, or favoring by the United States Government or any agency thereof. The views process disclosed, or represents that its use would not infringe privately owned rights. Refer-ence hitcin to any specific commercial product, process, or service by trade name, trademark, manufačiurer, or otherwise does not necessarily constitute or imply its endorsement, recomopinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. and

DE84015958 DOE/PC/40077--7

DOE/PC/40077--T3

DE84 015958

TECHNICAL PROGRESS REPORT DE-AC22-81PC40077

2

ė

Seventh Quarterly Report

September - November 1982

# LIQUID HYDROCARBON FUELS FROM SYNGAS

Molecular Sieve Department - Engineering Products Division

Union Carbide Corporation

Tarrytown Technical Center

Tarrytown, New York

NOTICE SUSTICAS US THE REPORT ARE ILLEGIBLE

k,

thas been reproduced from the best svoilable copy to permit the broadest possible availability.

MASTER

S

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

|      | Title                                 | • | Page |
|------|---------------------------------------|---|------|
| Ι.   | CONTRACT OBJECTIVE                    | • | 1    |
| II.  | SCHEDULE                              | • | 1    |
| III. | ORGANIZATION                          |   | 1    |
| IV.  | PROGRESS SUMMARY                      |   | 2    |
| v.   | CHANGES                               |   | * 5  |
| VI.  | FUTURE WORK                           |   | 5    |
|      | · · · · · · · · · · · · · · · · · · · | • | •    |

# APPENDIX

Ρ

2

2

| Α. | Synthesis and Characterization                                                                   | 7   |
|----|--------------------------------------------------------------------------------------------------|-----|
| в. | Analytical Techniques                                                                            | 12  |
| c. | Catalyst Testing Operations                                                                      | 13  |
| D. | Study of Structure and Chemistry<br>of Relevant Catalyst Surfaces<br>during the Nydrogenation of | 204 |

CO

#### I. CONTRACT OBJECTIVE

The objective of the contract is to develop a catalyst and to select operating conditions for the direct conversion of syngas to liquid hydrocarbon fuels, using microporous crystals -"molecular sieves" - in combination with transition metals.

#### II. SCHEDULE

ρ

The contract work is planned for a thirty-six month period, which started March 6, 1981. The work on the program is divided into four tasks. In Task 1, shape-selective catalysts (SSC's) are being evaluated for converting low molecular weight liquids such as methanol and propylene to desired products like gasoline, turbine and diesel fuel. In Task 2, the feed is syngas (CO +  $H_2$ ), and the catalyst is a combination of transition metal component (MC) and SSC. Task 3 is a study of surface effects and reaction intermediates during the hydrogenation of carbon monoxide, carried out as a subcontract under the direction of Dr. Gabor A. Somorjai, of U.C. Berkeley. Task 4 is a series of management and technical reports.

# III. ORGANIZATION

"Liquid Hydrocarbon Fuels from Syngas" is the goal of a research and development program on catalysts carried out by the Molecular Sieve Technology Department of the Engineering Products Division, Union Carbide Corporation at their Tarrytown Laboratories. Principal investigator is Dr. Jule A. Rabo. Program manager is Dr. Richard C. Eschenbach.

-1-

IV. PROGRESS SUMMARY

TASK 1

 $\mathfrak{O}$ 

ρ

The SSC candidate testing program is centered on the evaluation of new UCC molecular sieves and modified forms of known zeolites, using propylene feed. In this study, we are monitoring the catalytic activity in the conversion of propylene. The product selectivity to liquid hydrocarbons, and the ratio of olefins to saturates is also established. The observed catalytic performance is then used to grade SSC candidates for application in Task 2 catalyst formulation.

We reported in the last quarter on the outstanding performance of UCC-104 with propylene feed. This catalyst had high activity, and it converted the propylene with near quantitative yield to  $C_5^+$  liquid hydrocarbon product. Significantly, the liquid product boiled mainly in the gasoline range. The conversion of the propylene feed to propane, a usually prominent, undesirable reaction with all strong acid zeolites, was nearly absent. Thus, we clearly established that UCC-104 is an outstanding SSC catalyst candidate for Task 2 service.

In order to complete the test of relevant reference materials in the conversion of propylene, we have prepared, and began the evaluation of, several known zeolites in appropriately activated or modified form. Catalyst preparations were based on three new UCC molecular sieves. One was tested this guarter and two will be tested next quarter. In addition, modified forms of zeolites omega and L were also prepared representing varying degrees of acidity. The catalyst synthesis work for Tasks 1 and 2 is reported in Appendix A.

FIA analyses of product molecule types (paraffin, olefin, aromatic) were not reported in the last quarterly report because of analytical problems encountered with the products. We have now found that the cause of the problem is fluorescence of the products from the Berty reactors (see Appendix B). A substitute

-2-

for the FIA technique is being sought, thus far without success.

Test results for six Berty reactor tests and one microreactor test, all with propylene in the feed, are reported in Appendix C.

### Test Results

ρ

The LZ-105-6, a medium pore molecular sieve, similar in structure to ZSM-5, is the most active catalyst we have tested so far for the conversion of propylene. At optimal conditions, it converted 90% of the feed versus 63% found with UCC-104. However, the test carried out in the Berty reactor showed that this catalyst has inferior selectivity to  $C_5^+$  (89%) relative to UCC-104 (96%). The lower  $C_5^+$  yield with LZ-105 follows from the increased conversion of the propylene to saturated  $C_3-C_4$  hydrocarbons.

The large pore molecular sieves tested this quarter all deactivated more rapidly than the medium pore materials. Among these catalysts, the multivalent-cation-exchanged Y zeolites deactivated very rapidly. UCC-103, a lower acidity modification of UCC-101, had slightly improved catalyst life and selectivity to  $C_5^+$  products without significant loss of activity compared to UCC-101. In contrast to the medium pore molecular sieves, the large pore molecular sieves tested in this quarter had the advantage of (at least initially) producing some of their liquid products in the diesel range.

#### TASK 2

Task 2 catalysts consist of the shape selective component (SSC) and the syngas active metal component (MC). In the last quarter we ran a test to firmly establish the performance of an industrial stands is catalyst for reference purposes. In addition, the evaluation of the efficiency of various mixing techniques petween SSC and MC was sought in terms of syngas conversion activity and selectivity. This information is necessary to the successful formulation of Task 2 catalysts using best SSC catalyst candidates.

-3-

Catalysts were synthesized using three different techniques: physical mixtures of the metal component (MC) and the shape selective (SSC) molecular sieve, precipitation of MC from solution onto SSC and occlusion of MC into SSC by calcination after loading the SSC with gaseous metal carbonyls. The iron-containing catalysts were usually promoted with potassium. Work has started on cobalt-based catalysts, most of which will be promoted with thoria.

""""Surface analysis has indicated a probable cause for the low activity of one Task 2 catalyst tested last quarter: interaction of the iron (MC) with the alumina binder used in formulating the catalyst pellets. Details are in Appendix A.

## Test Results

ρ

An extensive test is reported using a commercial, state of-the-art, promoted iron catalyst. The catalyst was very active even at 250°C. It produced mostly olefinic hydrocarbons. The selectivity to  $C_5^+$  products was excellent, over 80 wt.% under favorable reaction conditions. The catalyst produced more  $C_{20}^+$ hydrocarbons than would be expected by the Schultz-Flory carbon distribution rule. As a result, the  $C_5^+$  product collected was mostly solid, reflecting the high boiling range and the high n-paraffin content of the hydrocarbons produced. As the reactor temperature was increased, the product selectivity tended more towards lighter products and more methane. It was not until the reaction temperature was increased to 340°C, with almost 40 wt.% of the product being methane, that the liquid hydrocarbons produced were such that the pour point was below room temperature, i.e., the condensed product was all liquid instead of partly solid.

A Task 2 catalyst was prepared by the physical mixture of the reference Fischer-Tropsch catalyst used above and the large pore UCC-101. This catalyst, in contrast to the reference catalyst, did not produce the excess  $C_{20}^+$  products. Here, the hydrocarbons were isomerized and the pour points of all condensed samples ( were below room temperature. Conditions were adjusted to obtain excellent selectivity to gasoline, 50 wt.%, and total motor fuel,

-4-

Ð

70 wt.3. The high selectivity was achieved with this catalyst, however, at a relatively low activity level. Importantly, the . product distribution of two runs showed signs of a carbon number cut off (shape selective effect). Thus, this experiment demonstrated the efficiency of UCC-101 as SSC component in that it isomerized the hydrocarbons formed on the MC resulting in substantial improvement of the motor fuel products, and it also seemed to show a cut-off at the end of the motor fuel boiling range  $(C_{20})$ . Both of these properties are essential for an efficient catalyst applied for the direct conversion of syngas.

Two additional molecular-sieve-containing, unpromoted iron catalysts had excellent selectivity to gasoline, 50 wt.8, and produced little material that boiled above that range.

# TASK 3

In work carried out in California under the direction of Professor G. A. Somorjai (U.C. Berkeley), catalysts were synthesized of rhodium, rhodium compounds and thoria. Data are presented in Appendix D on reaction rates and product distributions in their micro-reactor, used, in the flow mode. Rhodium metal is shown to be an effective methanation catalyst.

#### V. CHANGES

Mod A007 was executed, increasing obligation to the fully funded level of \$2,384,850.

#### VI. FUTURE WORK

Effort in the next quarter will be concentrated very strongly on Task 2 testing, using both bay's for such tests. The work will have three foci: evaluating new molecular sieves, testing different metal-loading techniques, initiating tests with cobalt as the metal component in the catalyst.

schenbach

RCE/eh

# Page Intentionally Left Blank

-6-

# Appendix A: Catalyst Synthesis

#### P. K. Coughlin F. P. Gortsema

Task 1 catalyst syntheses this guarter have proceeded along two distinct lines. The first was to, complete a series of modifications of well known zeolites. These materials have been used to define the important parameters in Task 1 testing. The results also establish standards against which the new molecular sieves will be compared. Many of these materials have been tested already. Others will be included later in the project if more comparison data are thought to be needed. The sodium-exchanged omega zeolite (synthesized last quarter) was used as a starting material for a partially acid form of the zeolite. An acidity series was also synthesized using potassium L zeolite. The previously known zeolite catalysts synthesized this quarter also included a ZSM-5 and LZ-Y82.

The second type of Task 1 catalyst synthesized this quarter used new molecular sieves. AlPO<sub>4</sub>-11 which was synthesized last quarter was chemically modified to try to introduce catalytic activity into the otherwise inactive molecular sieve. This material will be tested for Task 1 catalytic activity next quarter. Two other new molecular sieves, UCC-107 and UCC-108, were introduced into the program this quarter. One of them, UCC-107, was tested and the results of the testing are reported in Appendix C. The UCC-108 will be tested and the results reported next quarter.

The synthesis of Task 2 catalysts has proceeded along a number of lines. Most of this work has centered around the investigation of the effects of various modes of metal loading to determine the advantages of each method and determine which is optimal. Previously, most of the catalysts had used precipitation of the iron onto the molecular sieve. A new batch of iron precipitated on UCC-101

-7-

was prepared. This time it was potassium-promoted by the impregnation of potassium carbonate solution to give  $\1\$  K<sub>2</sub>O. This catalyst was tested at the end of this quarter and the results will be reported next quarter.

Another mode of metal loading strongly pursued this quarter is a simple physical mixture of the metal component and the molecular sieve which is then pressed into a tablet with no binder. Some potassium-promoted reference iron catalyst, from the same lot that was tested last quarter in Run 10011-6, was ground into powder, physically mixed with UCC-101 powder, and pressed into tablets. A similar catalyst was prepared from a precipitated iron powder source. The Fe<sub>2</sub>03•XH<sub>2</sub>0 was synthesized by the fast addition of aqueous ammonia to a boiling solution of the nitrate. The washed and dried precipitate was impregnated with 1%  $K_2O$  from  $K_2CO_3$  solution and dried again. The iron powder was ground slightly, intimately mixed with UCC-101 powder, pressed into pellets and air calcined at 250°C. The results of testing these last two catalysts are reported in Appendix C. This second iron component was also physically mixed with UCC-104 and formed into a catalyst using the same procedure as before. This catalyst was tested this quarter but the results of the testing will be reported next quarter. A reference catalyst of this type will be synthesized (and tested next quarter): the same metal component will be mixed with  $l\mu$  particle size  $\alpha$  alumina and formed as before. This material should have the properties of the last two catalysts except for the catalytic activity of the molecular sieves.

-8-

The other method of metal incorporation which has been pursued is occlusion. This method uses volatile metal compounds which are adsorbed into the molecular sieve and then decomposed inside the molecular sieve. So far the metal carbonyls  $Fe(CO)_5$ ,  $Fe_2(CO)_9$  and  $Mn_2(CO)_{10}$  have been used as the volatile metal compounds.

One of these catalysts, 10% (4Mn:1Fe) in UCC-103, was tested for Fischer-Tropsch synthesis activity. The results of that test, reported last quarter, showed the extruded product to be almost completely inactive. It had been suggested lask quarter that the metal component may have been damaged during the extrusion process. The basis for this suggestion was that the metal-loaded molecular sieve powder was tested in Professor Somorjai's lab and found to be an active catalyst, while the alumina bonded extrudate made from that powder was completely inactive. TEM/XPS analysis showed differences in the metal components before and after the alumina bonding. The 480°C calcination used to set the alumina binder was not the cause for the change in the metal components. The surface of the metalloaded powder had a manganese to iron ratio of 7.0. When this powder was calcined in air, the manganese to iron (Mn:Fe) ratio dropped slightly to 6.2. This was caused by a slight loss of manganese from the surface. The Mn:Fe ratio on the surface of the calcined extrudate was very low, 3.7. The pulverized pellet had a Mn:Fe ratio of 2.0. When the metal components were indexed to an element in the molecular sieve, it is seen that the manganese concentration was the same as in the calcined powder. (The surface iron concentration was 2 to 3 <sup>1</sup> times higher than that on the calcined powder. The alumina bonding process removed iron from the inside of the molecular sleve and brought it to the exterior of the molecular sieve particle.

-8a -

Not only had the concentration of the iron changed, so had its chemical state. This change was shown by analysis of the binding energies of the XPS photoelectrons which are reflections of the chemical environments in the systems. The binding energies of the manganese photoelectrons changed very little from the powder to the calcined extrudate. While this indicated that the chemical environment of the manganese changed little, it did not reveal the oxidation state of the iron. The binding energy of the Mn2p<sup>3</sup>/2 photoelectron does not correlate well with the oxidation state of the manganese between Mn<sup>2+</sup>-Mn<sup>4+</sup>. The energy separation (splitting) of the two Mn3s photoelectrons does correlate well with oxidation state. While this splitting was observed in samples synthesized by precipitation of a manganese salt, it was not observed in any of the samples dervied from manganese carbonyl. The normal causes for this kind of behavior (lack of two observable Ma3s lines) were ruled out: possible CO ligands by the IR spectrum, metallic state by the high Mn2p3/2 photoelectron binding energy. The cause of this lack of two Mn3s photoelectron binding energies and the exact Mn oxidation state are still unknown.

The Fe2p<sup>3</sup>/<sub>2</sub> photoelectron binding energy correlates much better with changes from Fe<sup>2+</sup> to Fe<sup>3+</sup>. The calcined powder had an Fe2p<sup>3</sup>/<sub>2</sub> binding energy of 711.4 e.v. This value is fairly typical of Fe<sup>3+</sup> compounds. The Fe2p<sup>3</sup>/<sub>2</sub> binding energy of the extrudate was 712.4 e.v. This value was outside the range normally seen for Fe<sup>3+</sup> and indicated a significant change in the iron's chemical state. This high binding energy may be due to interaction with the alumina support.

-8b-

From this surface analysis, it is evident that the alumina bonding process had little effect on the manganese but a large effect on both the concentration and the chemical state of the iron. The bonding process seems to have brought the iron out of the molecular sieve and possibly out onto the binder. The lack of activity of this extruded catalyst is tentatively attributed to these changes in the iron. While these results do not rule out the use of metal carbonyls as a source of metallic components, they do suggest that such materials should not be alumina-bonded.

Synthesis of Task 2 catalysts has also proceeded along another line. All previous Task 2 catalysts were based on iron as the metal component. Catalysts have now been prepared using cobalt as the metal component. The modified porefilling technique used an aqueous/acetone solution of the nitrate to deliver the cobalt to the alumina-bonded extrudate. The excess liquid was removed on a rotary evaporator. The molecular sieves used so far in this type of catalyst were silicalite and UCC-101. A silica-alumina extrudate was also used to act as a reference for this type of catalyst. In the future the cobalt catalysts will be promoted with thoria.

The catalyst synthesis is still in an exploratory phase, investigating several avenues. The results reported in this quarter and next quarter should start to show which options are most viable so that synthesis can be concentrated on those materials and methods which gave the best results in the exploratory phase.

A description of the catalysts tested and/or reported this quarter is given in Table 1.

-9-

# TABLE 1

# CATALYSTS TESTED AND OR REPORTED THIS QUARTER

# TASK 1

| NaY-62<br>10% H-Y62<br>40% H-Y62 | These are a series of large pore zeolites with a three-<br>dimensional pore structure, which were first cation ex-<br>changed with sodium and then partially cation exchanged<br>with ammonium. The proton form of the zeolite is pro-<br>duced by calcination. |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 97% H-¥62                        | Similar to the above materials except produced by more complete ammonium exchange.                                                                                                                                                                              |
| Ca-Y62<br>and<br>RE-Y62          | The sodium cation exchanged form of Y was<br>subsequently cation exchanged with a poly-<br>valent ion.                                                                                                                                                          |
| LZ-Y82                           | The steam-stabilized acid form of Y zeolite.                                                                                                                                                                                                                    |
| LZ-105-6                         | A Union Carbide medium pore molecular sieve<br>with a pore structure similar to ZSM-5 and<br>SiO2/Al2O3 ratio of about 35.                                                                                                                                      |
| 2SM-5                            | A medium pore molecular sieve synthesized at<br>Tarrytown based on procedures described by<br>Mobil Oil, with SiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> ratios of 35 and 85.                                                                             |
| UCC-103                          | The acid extracted form of UCC-101.                                                                                                                                                                                                                             |
| UCC-106                          | A new large pore molecular sieve having moderate acidity.                                                                                                                                                                                                       |
| UCC-107                          | A new Union Carbide proprietary molecular sieve.                                                                                                                                                                                                                |

-10-

# TASK 2

*...* 

ference Fe An unsupported potassium-promoted iron catalyst.

:-¥52

20% iron as Fe<sub>2</sub>O<sub>3</sub>·XH<sub>2</sub>O precipitated on sodium LZ-Y52.

:C-201

A catalyst with ~40% iron as  $Fe_2O_3$  XH<sub>2</sub>O precipitated from a nitrate slurry with UCC-101.

ppt-UCC-101+K Similar to UCC-201 but the metal loaded molecular sieve was impregnated with K<sub>2</sub>CO<sub>3</sub>.

M.-Ref. Fe-UCC-101 The potassium promoted reference iron catalyst ground up, physically mixed with UCC-101 powder and pressed into tablets.

M.-Fe-UCC-101

Similar to the previous catalyst except the source of iron was potassium promoted precipitated  $Fe_2O_3 \cdot XH_2O_4$ .

M.-Fe-UCC-104

Same as the previous catalyst except the molecular sieve used was UCC-104.

-11-

APPENDIX B - DEVELOPMENT OF ANALYTICAL PROCEDURES

J.M. Basile

A reliable analytical method for quantitatively determining hydrocarbon group-types in LHF samples is still pending.

As reported last quarter, result discrepancies of duplicate samples submitted for analysis made the FIA method suspect. To determine whether this was an "in house" analytical problem, twelve LHF samples (6 pairs of duplicates) were sent to E.W. Saybolt Testing Company for FIA analyses. The reproducibility and "probable " accuracy of Saybolt's results were just as suspect as results obtained by our analytical laboratory. Although reasons for these discrepancies cannot be fully explained, we have found that most of our LHF samples have a natural fluorescence under U.V. light. This may be contributing to, or masking the color bands of the FIA test.

:•

Liquid chromatography as an alternate to FIA analysis has not materialized. Perkin-Elmer has advised us, after many attempts, that present column technology is not suitable to the wide boiling range of our samples. At present, the best that can be done is separation into two fractions - a combination saturates plus olefins fraction and an aromatics fraction.

à,

# APPENDIX C

÷

· . !

# CATALYST TESTING

-

| C. | L.  | Yang     |
|----|-----|----------|
| Ρ. | к.  | Coughlin |
| L. | F.  | Elek     |
| G. | N - | Long     |

| CONTENTS                       | PAGE |
|--------------------------------|------|
| Introduction                   | 14   |
| Introduction to Task 1 Testing | 15   |
| Run 9972-8: UCC-103            | 17   |
| Run 9972-9: UCC-106            | 25   |
| Run 9972-10: CaY-62            | 34   |
| Run 9972-13: LZ-105-6          | 42   |
| Run 9972-14: UCC-107           | 58   |
| Run 9972-15: RE-Y62            | 68   |
| Micro-reactor Run LZ-105       | 76   |
| Summary of Task 1 Testing      | 79   |
| Introduction to Task 2 Testing | 80   |
| Run 10011-6: Ref. Iron Cat.    | 83   |
| Run 10011-7: UCC-201           | 118  |
| Run 10011-8: Fe+UCC-101 P.M.   | 142  |
| Run 10011-9: Fe+UCC-101 P.M.   | 172  |
| Run 9972-11: UCC-201           | 184  |
| Run 9972-12: Fe on Y-52        | 188  |
| Summary of Task 2 Testing      | 202  |

-13-

# INTRODUCTION

Both Berty reactors were in operation for this quarter. Each of the bays is equally capable of either Task 1 or Task 2 operation. During the quarter, Bay 2 was used exclusively for Task 1 operation. The Task 1 tests performed in Bay 2 this quarter used the standard test conditions which were defined from the previous quarters tests. A 1:1:2,  $H_2:C_3H_6:H_2O$ , molar ratio feed was introduced into the reactor at 0.5 WHSV. Tempera ture was the only process condition altered during the testing.

Bay 1 was used exclusively for Task 2 operation. Six such tests were conducted this quarter. Some of these tests were quite extensive. The effects of many different process condition changes were studied. These effects were investigated in the early tests to better define the appropriate conditions for the standard task 2 tests. These standard conditions along with standard activation conditions were defined for iron based catalysts. Use of a different metal component is likely to necessitate at least slight changes in these standard conditions.

٤.,

# INTRODUCTION TO TASK 1 TESTING

The results from seven Task 1 tests are reported this quarter. One micro-reactor test from last quarter, three Berty reactor runs begun last quarter, 9972-8 to -10, and three Berty reactor runs from this quarter, 9972-13 to -15, are all presented in this report. In addition four other tests were conducted in the Berty reactor this quarter but their results will be discussed in the next report because not all the analytical data are available yet.

A standard catalyst test has been developed. The propylene is introduced at 0.5 WHSV in a 1:1:2  $H_2:C_3H_6:H_2O$  molar ratio feed. The reactor is maintained at 150 psig. At least two reaction temperatures, 280°C and 340°C, are used. Temperatures of 250°C and 370°C are also frequently included depending upon the activity of the catalyst. Generally the catalyst is tested for two days at each temperature. The time before the next temperature increase is shortened if the catalyst has low activity or rapid deactivation.

The calculations used are the same as described previously. Analysis of the liquid samples has remained a problem as described in the analytical section. The liquid samples fluoresce so strongly that FIA analysis is meaningless. For the present the density and refractive index are used to estimate the percentage of aromatics. The densities and refractive indices of paraffins and olefins with the same carbon number are similar. An aromatic with the same boiling point has a very different density and refractive index. First the simulated distillation is used to obtain an average boiling point of the liquid. An average density and refractive index is calculated from the normal paraffin and olefin with that boiling point. The density and refractive index of the methylated aromatic with the same boiling point is also found. Two equations are set up assuming that the densities and refractive indices are additive. Each one is solved separately for the percentage of aromatics. These two percentages are often close in value; when

-15-

this is so, the fraction of aromatics is considered to be measured accurately. When the numbers differ, the percentage based on refractive index follows other trends in the samples better than on the one based on density. In these cases the number based on refractive index is used; it is not considered as reliable as when the two numbers almost coincide.

n

÷

#### Run 9972-8: UCC-103

UCC-103 is the product of acid extraction of UCC-101. The acid extraction was intended to give UCC-103 even milder acidity than UCC-101. The results of this run are probably best compared to those of 9972-4, which was reported last quarter. The differences in these two runs should show the effect of the acid extraction. There is only a slight difference in the reaction conditions between these two runs. Run 9972-4 had a 1:1:3  $H_2:C_3H_6:H_2O$  mole ratio feed. Run 9972-8 had a 1:1:2 feed. The effect of this difference in water levels should be minor. The direction of the change can be seen for the results of earlier runs with feed ratio of 1:1:0. Some of the comparisons of these early runs with Run 9972-4 were discussed last quarter and will not be repeated here.

The detailed results of the testing are reported in Table 1. Plots of the conversion and product selectivity versus time on stream are presented in Figures 1 and 2. Simulated distillation plots for samples 1,2,3 are given in Figures 3 to 5. This catalyst was tested at the standard conditions previously described. The time at each temperature was shorter than the usual two days because of the low activity of the catalyst. There were no gas chromatographic analyses for samples 3 and 5. Therefore sample 4 is the only completely independent analysis of the activity of the catalyst at 340°C.

The catalytic activity of UCC-103 was very low, as expected. The level of conversion was similar to that seen with UCC-101. Deactivation of the catalyst was observed in spite of the short duration of this test. The deactivation rate for UCC-103 may be slightly less than that of UCC-101 but with samples 3 and 5 being estimates, this is not certain.

The product selectivity was very different from that of UCC-101. While neither catalyst showed significant cracking to  $C_1$  or  $C_2$  products, UCC-103 produced even less than UCC-101. The largest difference in the selectivity was in the  $C_3$  and  $C_4$  saturates formation. Selectivity to butane was up slightly but propane was down drastically. The selectivity to combined  $C_3$  and  $C_4$  saturates was less than half of

-17-

what it was with the UCC-101 catalyst. These saturates, in particular propane, are formed by hydride transfer to the corresponding olefin. The hydride transfer activity was much lower in UCC-103 than it had been in UCC-101. This lowering of the propane production was the major reason for the increase in  $C_5^+$  yield with UCC-103 the C5<sup>+</sup> yield increased 35% at 280°C and 50% at 340°C relative to UCC-101. Very little of the  $C_5^+$  product was actually condensed. Most of it was analysed in the gas phase; much of that in the backflush peak in the G.C. which probably contained  $C_6$  to  $C_{12}$  hydrocarbons. It appeared from the conversion and product selectivity data that the production of each hydrocarbon remained fairly constant throughout the test with only slight differences between samples taken at The simulated distillation of the condensed 280°C and those at 340°C. liquid products revealed that this was not the case. Sample 1 had a broad smooth distillation curve with no distinguishable amounts of C<sub>9</sub> or C<sub>12</sub> hydrocarbons. The other samples did show large amounts of  $C_0$  and  $C_{12}$  hydrocarbons in the distillation. These samples also showed a significantly narrower boiling range and much lighter product. The refractive index of the condensed product of sample #2 suggested the product contained 30% aromatics. Since these condensed liquid samples were at most 7% of the total hydrocarbons and 10% of the  $C_5^+$  product, the differences between the samples were not quite as large as the analysis of the condensed products may have suggested.

The UCC-101 and UCC-103 were similar in their catalytic activity. There were however, major differences in their product selectivity. UCC-103 produced less light saturates because of reduced hydride transfer activity. The lower light saturates production led to a high selectivity to  $C_5^+$  with UCC-103.

-18-

|     |                             |            |             | · · · · ·    |              |              |
|-----|-----------------------------|------------|-------------|--------------|--------------|--------------|
|     | RUN NO. 9972-8              |            |             |              | NTES THE R   | UN0.28GM     |
|     | CATALYST UCC LO3 #9         | 1939-46 76 | CC 35.00G   | 1 (34.7808 A | USV CONFIN   | OUS OVERNITI |
|     | FRED H2:C3H6:H2             | 20 @ L:1:2 | MOLE RATIO  | 1,0.5 C380 W | 1073 F)      |              |
|     | C3H6 MW= /                  | 12.0813    | JENSITY - O | SIGAL GEVEC  | עניייט בי    | 15 CC/HR     |
|     | TARGET FLOW: C3H6 34        | 4.30CC/HR  | H2 150 CCI  | 4N, 9.0 L/   |              |              |
|     | ACTUAL FLOW: 34             | 4.4 CCHR   | FFFLUENT    | 15.23 17     | HR AQ LAT    | R 14 (G/HA   |
|     |                             | •          |             | <u>-</u>     | م م المتحد م |              |
|     | RUN & SAMPLE NO.            | 9972-08-1  | 9972-08-2   | 9972-08-3 9  | 972~08-4.5   | 1972-08-5    |
|     |                             | angenante  |             | assance b    |              |              |
|     | C3H6 WHSV                   | 0.5        | 0.5         | 0.5          | 0.5          | 0.5          |
| . ( | HIRS ON STREAM              | 6.8        | . 23.0      | 30:6         | 18.9         | 140          |
|     | <sup>#</sup> PRESSURE, PSIG | 150        | 1.43        | 241          | 730          | 138          |
|     | TEMP. C                     | 283        | 281         | 541          | 220          | 554          |
|     |                             | 211 43     | 570.74      | 249.82       | 646.25       | 203.25       |
|     | FEED C3H6 CC                | 611.4J     | 16 1        | 7.6          | 18.3         | 6.0          |
|     | HOURS FEEDING               |            | 242 6       | 112 8        | 292.5        | 95.4         |
|     | EFFLNT GAS LITER            | 98.0       | 243.0       | 101 17       | 254 83       | 82.36        |
|     | GM AQUEOUS LAYER            | 97.22      | 224.51      | 7.04.1.7     | 1 66         | 0 54         |
|     | GM LIQ HYDROCARBON          | 0.78       | L.40        | 4,90         | 1.00         | 0052         |
|     | WT FR. LIQ HC/FEED          | .0072      | .0050       | .0230        | -0050        | .005%        |
|     |                             | \$ 101.43  | 89.64       | 91.47E       | 88.51        | 93.73E       |
|     | CARE CONTERSION &           | 10.56      | 7.56        | 13.21E       | 11.45        | 1].44E       |
|     | PROT SELECTIVITY WT         |            |             | NO GC        |              | NO GC        |
|     | CITA                        | 0.04       | 0.07        | 0.09E        | 0.11         | 0.11E        |
|     | C2 HC'S                     | 0.05       | 0.06        | 0.136        | 0.15         | 0.17E        |
|     | C3H8                        | 13.04      | 15.53       | 16.67E       | 19.63        | 19.63E       |
|     | CAHIO                       | 5.29       | 3.39        | 3.68E        | 4.33         | 4.33E        |
|     |                             | 7 66       | 7.89        | G.75E        | 7.95         | 7.95K        |
|     |                             | 1 51       | 0.53        | 0.45E        | 0.53         | 0.53E        |
|     | CSH12                       | 0 15       | 0.16        | 0.15E        | 0.18         | 0.185        |
|     |                             | 12.51      | 9.50        | 7.14E        | 8.41         | 8.41E        |
|     | CON13 CYCLO'S               | 15.09      | 22.07       | 24.51E       | 28.87        | 28.87E       |
|     | C7+ IN GAS                  | 37.74      | 33.49       | 21.13E       | 24.88        | 24.88E       |
|     | LIQ HC'S                    | 6.91       | 7.31        | 19.30E       | 4.96         | 4.95E        |
|     |                             |            |             |              | 100.00       | 100.00       |
|     | TOTAL.                      | 100.00     | 100.00      | 100.00       | 100.00       | .00.00       |
|     | SUBGROUP ING                |            |             |              |              | 00.175       |
|     | C1 -C4                      | 26.09      | 26.94       | 27.31E       | 37.17        | 3%.1/E       |
|     | C5 -420 F                   | 68.24      | 71.23       | 65.25E       | 66.24        | 65.60E       |
|     | 420-700 E                   | 4.08       | 1.83        | 7.18E        | 1.49         | 2.08E        |
|     | 700-END PT                  | 1.59       | 0.00        | 0.25E        | 0.09         | 0.15E        |
|     | C5 -END PT                  | 73.91      | 73.06       | 72.69E       | 67.83        | 67.83E       |

TABLE 1 RESULT OF PROPYLENE OPERATION

-19-

| ISO/NORMAL MOLE R  | ΛΤΙΟ    | •            |      |            |            |
|--------------------|---------|--------------|------|------------|------------|
| 04                 | 0.4781  | 0.2797       | . –  | 0.1035     | <b>-</b> . |
| C 5                | 7.5735  | •            | -    | 1.0928     | - ()       |
| CG                 | 13.9593 | 7.6118       | -    | 3.7230     | -4         |
| C4-                | 0.5747  | 0.5287       |      | 0.5354     | - 7 -      |
| PARAPF IN/OLEFTN M | RATIO   | •            | •    |            |            |
| C3                 | 0.6765  | 0.4074       | -    | 0.8205     |            |
| C3                 | 0.0149  | 0.0124       |      | 0.0245     |            |
| C4                 | 0.6668  | 0.4149       | -    | 0.5253     | -          |
| C5                 | 10.0517 | 3.1.957      | -    | 2.8194     | -          |
| LTO HC COLLECTION  | •       |              |      |            | ÷ .        |
| DUVS ADDRABANCE    | OTT.    | OTL          | 011. | OIL        | TRACE OIL  |
| DENCITY            |         | 0.802        |      | د .        |            |
| N REFRACTIVE INDE  | x       | 1.4537       |      | <i>c</i> 1 |            |
| SIMULATED DISTILL  | ATION   |              |      | 5          |            |
| 10 WT % @ DEG F    | . 356   | 273          | 283  | 263        | NOT        |
| 16                 | 410     | .281         | 302  | 277        |            |
| 50                 | 597     | 374          | 396  | 378        | ENO -      |
| 84                 | 732     | 450          | 492  | 491        |            |
| 90                 | 765     | 478          | 532  | 544        | UGII       |
| RANGE (16-84%)     | 322     | 169 <u>.</u> | 190  | 214        |            |
| አጠ % በለጋር ፑ        | 18.0    | 75.0         | 61.5 | 68.0       | 1          |
| WT % (0700 F       | 77.0    | 100          | 98.7 | 98.1       |            |
|                    |         |              |      |            |            |

۰.

-20-



RUN NO. 9972-08

.:

:.



-22-



-23-

BUILING POINT (F)

٦.



ų

...

-24-

# Run 9972-9: UCC-106

UCC-106 is a new, large pore molecular sieve of moderate acidity. In this respect, it should be similar to UCC-101 and UCC-103. Therefore, comparisons to those catalysts have been made in our study. The catalyst was tested for 1 day at 280°C. The temperature was then raised to 330°C overnight and to 340°C in the morning. It was tested at 340°C for 1 day before the test was terminated. The detailed results of the test are presented in Tables 2A and 2B. The conversion and product selectivity are plotted versus time on stream in Fugures 6 and 7. The simulated distillation of samples 1, 9 and 4 are presented in Figures 8 and 9. The experimental data was of high quality except for sample 2 which had a material balance of only 85%. Since the results of that sample are in line with those of adjacent samples, the calculated numbers are probably right.

With UCC-106 the initial conversion of 17% was much higher than that of UCC-101 or UCC-103 but the deactivation rate was also higher. The product selectivity seemed to be intermediate between those of UCC-101 and UCC-103. The propane formation was lower than that observed with UCC-101. This lower propane formation was also reflected in the higher  $C_5^+$  yield with UCC-106. In contrast UCC-101 and UCC-103, the  $C_5^+$  yield with UCC-106 did not decrease upon raising the reactor temperature to 340°C. The refractive index of sample 1 suggests that it contained 15% aromatics. The simulated distillation curve for sample 1 revealed large amounts of  $C_9$  and some  $C_{12}$  hydrocarbons. However, the products dropped off rapidly beyond  $C_{12}$ , indicating molecular sieve effect. Sample 4 had a much smoother distillation curve. The liquid also contained much heavier hydrocarbons.

Because of the low activity and rapid deactivation, UCC-106 is not considered to be an efficient catalyst for propylene oligomerization.

-25-

The UCC-106 has some catalytic properties similar to UCC-101. The conversion and deactivation data suggests that UCC-106 is more acidic than UCC-101. The product selectivity data suggests that UCC-106 is intermediate in properties between UCC-101 and UCC-103. TABLE 2A RESULT OF PROPYLENE OPERATION

2

RUN NO. 9972-9 (LZ 20) CATALYST UCC-106 #9939-35 56 CC 35.0 GM(35.77CM AFTER THE RUN, +0.77GM) H2:C3H6:H20 @1:1:2 MOLE RATIO, 0.5 C3H6 WHSV, CONTINOUS OVERNITE FEED

C3H6 MW- 42.0813 DENSITY= 0.51041 GM/CC (G 73 F) TARGET FLOW: C3H6 34.33CC/HR H2 150 CCMN, 9.0 L/HR H20 15. CC/HR ACTUAL FLOW: 34.83 CCHR EFFLUENT- 16.43 L/HR AQ LAYR 13.9 CC/HR

| RUN & SAMPLE NO.    | 9972-09-L | 9972-09-2 | 997209-3 | 9972-09-4     | 9972 09-5 |
|---------------------|-----------|-----------|----------|---------------|-----------|
|                     |           |           |          |               |           |
| C3116 WHSV          | 0.5       | 0.5       | 0.5      | 0.5           | 0.5       |
| HRS ON STREAM       | 5.6       | 21.7      | 27.4     | 45.9          | 53.Z      |
| PRESSURE, PSIG      | 164       | 141       | 143      | 143           | 147       |
| TEMP. C             | 282       | 283       | 282      | 329           | 342       |
| FEED C3H6 CC        | 201.99    | 558.78    | 201.36   | 655.06        | 251.07    |
| HOURS FEEDING       | 5.6       | 16.3      | 5.75     | 18.5          | 7.33      |
| EFFLNT GAS LITER    | 84.6      | 263.5     | 96.4     | 303.4         | 117.8     |
| GM AQUEOUS LAYER    | 72.7      | 227.56    | 79.53    | 257.46        | 101.41    |
| GM LIO HYDROCARBON  | 2.58      | 0.25      | 0.70     | 1.24          | 1.19      |
| WT FR. T.IO HC/FEED | .0260     | .0009     | -0068    | .0037         | .0093     |
| MATERIAL BALANCE WT | \$ 90.36  | 85.70     | 100.20   | 89.11         | 92.55     |
| C3H6 CONVERSION %   | 17.23     | 7.37      | 6.20     | 8.59          | 11.41     |
| PRDT SELECTIVITY WT | a         |           |          |               |           |
| CHA                 | 0.07      | 0.05      | 0.21     | 0.14          | 0.17      |
| C2 HC'S             | 0.13      | 0.14      | 0.14     | 0.23          | 0.25      |
| СЗНВ                | 20.52     | 32.65     | 26.88    | 26.37         | 23.29     |
| C41110              | 4.51      | 7.42      | 8.88     | 6.42          | 5.52      |
| C4H8=               | 6.48      | 10.53     | 11.73    | 8.42          | 11.78     |
| C5H12               | 1.60      | 0.62      | 1.21     | 0.38          | 2.81      |
| C51110=             | 0.14      | 0.13      | 0.14     | 0.19          | 1.12      |
| CGULA               | 9.80      | 5.71      | 1.42     | 4.57          | 5.62      |
| C(M) = & CYCLO'S    | 13.21     | 21.82     | 19.24    | 28.75         | 24.75     |
| C7 L IN GAG         | 26.39     | 19.55     | 15.99    | 19.61         | 15.81     |
| LIQ HC'S            | 17.15     | 1.38      | 11.16    | 4.82          | 8.89      |
| moma f              |           | 100.00    | 100.00   | 100.00        | 100.00    |
|                     | 100.00    | 100.00    | 200100   | 200.00        |           |
|                     | 31.71     | 50.80     | 47.84    | 41.59         | 43.01     |
| C5 -420 F           | 64.40     | 48.89     | 49.62    | 55.76         | 54.10     |
| 420-700 F           | 3.77      | 0.30E     | 2.46E    | 2.47          | 4.55E     |
| 700-END PT          | 0.12      | 0,01E     | 0.08F    | <b>0.</b> I.B | 0.34E     |
| C5 -END PT          | 68.29     | 49.20     | 52.16    | 58.4]         | 58.99     |

-27-

| ISO/NORMAL MOLE RA  | TIO     |        |         |        | •      |
|---------------------|---------|--------|---------|--------|--------|
| C4                  | 0.5793  | 0.0538 | 0.0527  | 0.0610 | 0.0634 |
| <b>C</b> 5          | 21.1778 | 4.9583 | 16.6667 | 2.0857 | 1.6364 |
| C6                  | 16.7875 | 5.7500 | 1.5179  | 2.5316 | 3.1073 |
| C1 =                | 0.3896  | 0.3768 | 0.3337  | 0.4550 | 0.3566 |
| PARAFF IN/OLEF IN M | RATIO   |        | •       |        |        |
| C2                  | 0.1444  | 0.6800 | 0.7273  | 0.7423 | 0.3175 |
| C3                  | 0.0415  | 0.0253 | 0.0173  | 0.0241 | 0.0291 |
| C4                  | 0.6723  | 0.6806 | 0.7310  | 0.7367 | 0.4525 |
| C5                  | 10.9670 | 4.7667 | 8.2812  | 1.9286 | 2.4442 |
| •                   |         |        |         |        |        |
| LTO HC COLLECTION   |         |        |         |        |        |
| PHYS. APPEARANCE    | OIL     |        |         |        |        |
| DENSITY             | 0.769   |        |         |        |        |
| N, REFRACTIVE INDEX | 1.4353  |        |         |        | •      |
| SIMULATED DISTILLA  | NOITION |        |         |        | •      |
| IO WT & Q DEG F.    | 267     |        |         | 326    |        |
| 16                  | 275     |        |         | 363    |        |
| 50                  | 344     |        |         | 429    |        |
| 84                  | 451     |        |         | 555    |        |
| 90                  | 490     |        |         | 610    |        |
|                     |         |        |         |        |        |
| RANGE(16-84%)       | 1.76    |        |         | 192    | •      |
| WT % @420 F         | 77.3    |        |         | 45.0   |        |
| WT 3 @700 F         | 99.3    |        |         | 96.2   | •      |
|                     |         |        |         |        |        |

\$ ;

-28-

| TABLE 2B | RESULT | OF | PROPYLENE | OPERATI | ON |
|----------|--------|----|-----------|---------|----|
|----------|--------|----|-----------|---------|----|

| RUN NO. 9972-9 (LZ-       | 20)        |             | · · · · · · · · · · · · · · · · · · · |       |          |        |         |
|---------------------------|------------|-------------|---------------------------------------|-------|----------|--------|---------|
| CATALYST UCC LOG 1993     | 19-35 56 0 | C 35.0 GM   | (35.77GM                              | AFTER | CONTRACT |        | . 77GM) |
| FEED H2:C3H6:H2O          | @ 1:1:2 M  | NOLE RATIO. | 0.5 C3110                             | WHSV, | Z3 E)    | 12 001 | SKNTTE  |
| 124 - WIN 3116 CLUB - 42. | JACC/HR    | H2 150 CCM  | $N_{1}$ 9.0                           | LZHR  | H20      | 14.    | CC/HR   |
| ACTUAL FLOW: 34           | 83 CCHR    | EFFLUENT    | 16.43                                 | L/HR  | AQ LAYR  | 1.3.9  | CC/HR   |
|                           |            |             |                                       |       |          |        |         |
| RUN & SAMPLE NO.          | 972-09-6   | 9972-09-7   |                                       |       |          |        |         |
|                           | 123772287  | ********    |                                       |       |          |        |         |
| C3H6 WHSV                 | 0.5        | 0.5         |                                       |       |          |        |         |
| HRS ON STREAM             | 70.7       | 77.1        |                                       |       |          |        |         |
| PRESSURE, PSIG            | 148        | 145         |                                       |       |          |        |         |
| TEMP. C                   | 337        | 338         |                                       |       |          |        |         |
|                           | ()         | 200.10      |                                       |       |          |        |         |
| FRED C3H5 CC              | 37 4       | 200.10      |                                       |       |          |        |         |
| TOURS FRADING             | 290 1      | 100.9       |                                       |       |          |        |         |
| GM AQUEQUS LAVER          | 244.89     | 88.56       |                                       |       |          |        |         |
| GM LIO HYDROCARBON        | 0.0        | 0.0         |                                       |       |          |        |         |
| WT FR I TO HC/FFED        | 0000       | 0000        |                                       |       |          |        |         |
| wi the may never here     |            |             |                                       |       |          |        |         |
| MATERIAL BALANCE WT       | 92.50      | 96.96       |                                       |       |          |        |         |
| CANE CONVERSION S         | 6 26       | 6 93        |                                       |       |          |        |         |
| PROT SELECTIVITY WT       | 1.20<br>1  |             |                                       |       |          |        |         |
| CHA                       | 0.14       | 0.19        |                                       |       |          |        |         |
| C2 HC'S                   | 0.24       | 0.23        |                                       |       |          |        |         |
| C3H8                      | 26.91      | 26.55       |                                       |       |          |        |         |
| C41110                    | 5.39       | 7.40        |                                       |       |          |        |         |
| C4H8=                     | 8.75       | 9.85        |                                       |       |          |        |         |
| C5HL2                     | 0.30       | 0.31        |                                       | •     |          |        |         |
| C51110=                   | 0.17       | 0.16        |                                       |       |          |        |         |
| C6H14                     | 4.86       | 4.85        |                                       |       |          |        |         |
| C6H12- & CYCLO'S          | 33.01      | 32.34       |                                       |       |          |        |         |
| C7+ IN GAS                | 20.23      | 18.11       |                                       |       |          |        |         |
| LIO HC'S                  | 0.00       | 0.00        |                                       |       |          |        |         |
|                           |            |             |                                       |       |          |        |         |
| TOTAL                     | 1.00.00    | 100.00      |                                       |       |          |        |         |
| SUBGROUPING               | 41 47      | 44 77       |                                       |       |          |        |         |
| CL -C4                    | 41.42      | 44.23       |                                       |       |          |        |         |
| 100 -420 F                | 20.20      | 11.66       |                                       |       |          |        |         |
| 120-700 F                 | 0.00       | 0.00        |                                       |       |          |        |         |
| 700-END PT                | 0.00       | 0.00        |                                       |       |          |        |         |
| C5 - END PT               | 58.58      | 55.77       |                                       |       |          |        |         |

-29-

| ISO/NORMAL MOLE | RATIO   |         |
|-----------------|---------|---------|
| C4              | 0.0589  | 0.0418  |
| Ch              | 2.7059  | 1.8000  |
| C.6             | 2.1301  | 2.2332  |
| C4 -            | 0.4663  | 0.4328  |
| PARAFFIN/OLEFIN | M RATIO |         |
| C2              | 0,6000  | 0.71.79 |
| 0.3             | 0.0174  | 0.0192  |
| C1              | 0.5948  | 0.7251  |
| C5              | 1.6579  | 1.8421  |

LIO HC COLLECTION

P

PHYS. APPEARANCE: DENSITY N.REFRACTIVE INDEX SIMULATED DISTILLATION 10 WT % 00 DEG F. 16 50 84 90

۰.

RANGE(16-84%)

WT % @420 F WT % @700 F

. .



RUN NO. 9972-09

. .

. 4

.. Figure 8




ŧ,

-33-

### Run 9972-10: \* CaY-62

The catalyst was prepared by calcium exchange of sodium exchanged Y zeolite. Y zeolite is a large pore molecular sieve with a three dimensional pore structure. The acid forms of this zeolite were tested in a micro-reactor. Rare earth exchanged Y zeolite was tested in Run 9972-15. The results from both of these catalysts will be discussed later in this report. The subject catalyst, CaY62, was tested for 31 hours at 280°C. The temperature was then raised to 357°C overnight and adjusted to 340°C in the morning. The test was terminated after 30 hours at 340°C. The material balance, conversion and product selectivity data are presented in Tables 3A and 3B. Plots of the conversion and pr duct selectivity are given in Figures 10 and 11. The simulated distillations of the condensed products from Samples 1 and 2 are shown in Figures 12 and 13. Samples 2 and 6 are suspect because of low material balances. The elimination of those samples does not affect the evaluation of the catalyst.

The propylene conversion was quite low, similar to UCC-101. The rate of deactivation was even worse. Raising the temperature resulted in lower conversions because of rapid deactivation. The product selectivity to  $C_5^+$  was poor due to the formation of large amounts of propane, up to 45% at 340°C. The  $C_5^+$  yield decreased with the increased propane formation. The distillation of the condensed products from Samples 1 and 2 indicated that much of those materials boiled above the gasoline range. Unfortunately, this was an insignificant portion of the total hydrocarbon product.

The low activity and rapid deactivation with this catalyst make it of no further interest for LHF production. The generally bad performance of this catalyst is ascribed to its strong-acid nature.

-34-

| •                               |            |                            |             |             |             |
|---------------------------------|------------|----------------------------|-------------|-------------|-------------|
| RUN NÖ. 9972-10                 | 1          | рэс - <mark>-</mark> С. А. | •           |             |             |
| CATALYS'T CA -Y-52 #99          | 39 37 55 0 | C 35.00GM(                 | 32.59GM AF  | TER THE RUI | N, -2.41GM) |
| PEED H7:C3H6:H2O<br>C3H6 MW= 42 | .0813 DF   | NSITY = 0.5                | SIGAL GM/CC | (0 73 F)    | 13 OVERNITE |
| TARGET FLOW: C3H6 34            | .3 CC/HR   | H2 150 CC/                 | MN, 9.0 L/  | HR 1120     | 15 CC/HR    |
| ACTUAL FLOW: 34                 | .4 CGIR    | REFLUENT                   | 15.3 1./    | IIR AQ LAYI | R 13.9CC/HR |
| RUN & SAMPLE NO.                | 9972-10-1  | 9972-10-2                  | 9972-10-3   | 9973-10 4   | 9972-10-5   |
|                                 | *********  |                            |             |             |             |
| C3H6 WHSV                       | 0.5        | 0.5                        | 0.5         | 0.5         | 0.5         |
| URS ON STREAM                   | 7.42       | 23.7                       | 30.7        | 48.0        | 53.6 .      |
| PRESSURE PSIG                   | 145        | 146                        | 146         | 1,40        | 145         |
| כואיזיי                         | 280        | 280                        | 279         | 357         | 340         |
|                                 |            |                            |             |             |             |
| FEED C3H6 CC                    | 245.41     | 569.48                     | 237.23      | 608.93      | 184.37      |
| HOURS FEEDING                   | 7.417      | 16.333                     | 7.00        | 17.25       | 5.5         |
| EFFLNT CAS LITER                | 113.4      | 253.4                      | 110.50      | 281.10      | 88.1        |
| GM AQUEOUS LAYER                | 1.00.31    | 228.11                     | 97.81       | 239.19      | 76.0        |
| , GM LIQ HYDROCARBON            | 1.58       | 0.94                       | 0,00        | 0.00        | 0.0         |
| WT FR. LIQ HC/FEED              | .0134      | 0032                       | .0000       | 10000       | -0000       |
|                                 | <b>:</b>   |                            |             |             |             |
| MATERIAL BALANCE WT             | \$ 94.31   | 84.85                      | 97.56       | 93.22       | 100.42      |
| C3H6 CONVERSION %               | 10.17      | 9.14                       | 5.99        | 2.45        | 2.38        |
| PRDT SELECTIVITY WT             | 10.<br>11  |                            |             |             |             |
| CII4                            | 0.04       | 0.04                       | 0.12        | 0.74        | 0.21        |
| C2 HC'S                         | 0.16       | 0.14                       | 0.05        | 0.61        | 0.29        |
| СЗНВ                            | 20.32      | 25.71                      | 30.44       | 37.97       | 34.21       |
| C4H10                           | 2.40       | 8.22                       | 7.57        | 1.65        | 15.80       |
| C4HB =                          | 7.33       | 11,56                      | 13.43       | 13.89       | 13.35       |
| C5H12                           | 1.79       | 1.74                       | 3.85        | 0.33        | 2.18        |
| Chilo-                          | 0.18       | 0.22                       | 1.58        | 0.00        | 1.07        |
| C6H14                           | 11.16      | 8.37                       | 8.63        | 1.48        | 5.13        |
| C6H12= & CYCLO'S                | 16.66      | 1.7.71                     | 12.52       | 21.12       | 15.52       |
| C74 IN GAS                      | 26.10      | 22.12                      | 21.82       | 18.92       | 12.24       |
| LID HC'S                        | 13.86      | 1.15                       | 0.00        | 0.00        | 0.00        |
|                                 |            |                            |             |             |             |
| TOTAL.                          | 100.00     | 100.00                     | 100.00      | 100.00      | 100.00      |
| SUB-GROUPING                    |            |                            |             |             |             |
| C1 -C4                          | 30.25      | 45.68                      | 51.60       | 54.86       | 63.85       |
| C5 -420 F                       | 64.69      | 52.14                      | 48.40       | 45.14       | 36.15       |
| 420-700 F                       | 4.85       | 2.02                       | 0.00        | 0.00        | 0.00        |
| 700-END PT                      | 0.21       | 0.17                       | 0.00        | 0.00        | 0.00        |
| C5 -END PT                      | 69.75      | * 54.32                    | 48.40       | 15.14       | 36.15       |

# TABLE 3A, RESULT OF PROPYLENE OPERATION

ρ

-35-

| 130/NORMAL MOLE RAT | 10      |         | 1           |         |         |
|---------------------|---------|---------|-------------|---------|---------|
| C4 .                | 3.2118  | 0.2095  | 0.4038      | 0.0732  | 0.0116  |
| C.7                 | 29.6667 | 51.4000 | 25.4194     | 1.3333  | 1.6667  |
| CS                  | 16.0000 | 11.5238 | 9.2533      | 8.6364  | 32.0000 |
| C1 -                | 0.4181  | 0.3406  | 0.3934      | 0.0339  | 0.1338  |
| PARAFFIN/OLEFIN M H | RATIO   |         |             |         |         |
| C2                  | 0.3119  | 0.6923  | 0.5294      | 0.1176  | 11429   |
| C3                  | 0.0229  | 0.0251  | 0.0189      | 0.0093  | 0.0081  |
| CA                  | 0.3163  | 0.6867  | 0.5438      | 0.1148  | 1.1428  |
| C5                  | 9.9077  | 7.8209  | 2.3671      | -       | 1.9785  |
| LIG HC COLLECTION   |         |         |             |         |         |
| PHYS. APPEARANCE    | OII.    | OIL     | TRACE OIL   | -       |         |
| DENSITY             | •       | •       |             |         |         |
| N, REFRACTIVE INDEX |         | •       |             |         |         |
| SIMULATED DISTILLA  | rton .  |         |             |         |         |
| lo WT % @ DEG F.    | 281     | 333     |             | •••     | · ·     |
| 16                  | 298     | 364     |             |         |         |
| 50                  | 393     | 425     | · · · · · · | <b></b> |         |
| 84                  | 19 L    | 538     |             |         |         |
| 90                  | 535     | 606     |             | • ••    |         |
| RANGE(16-84%)       | 193     | 174     |             |         | ••      |
| •                   |         |         |             |         |         |
| WT 5 @420 F         | 63.5    | 47.5    |             |         |         |
| WT % @700 F         | 98.5    | 96.0    | <b>-</b>    |         |         |
|                     |         |         |             |         |         |

-, :

| TABLE 3B          | RESULT OF PRO  | OPTIENE OPT | RATION      | · · ·          |             |
|-------------------|----------------|-------------|-------------|----------------|-------------|
|                   |                |             |             | •              | •           |
| KUN NO. 2972-10   | 10020 77 KE    | 00-35 000M  | נסס בטואה א | ווס עעיי מעייק | N -2 410M1  |
|                   | H2D (A 1.1.7 ) | MOLE BATIO  | 0 5 C3H6 W  | HSV CONTINO    | US OVERNITE |
| C3H6 MW-          | A2 0813 D      | ENSITY- O   | SLOAL GM/CC | (0 73 F)       |             |
| TARGET FLOW: C3H6 | 34.3 CC/IIR    | 112 -150 CC | MN. 9.0 L/  | UR H20         | 15 CC/IIR   |
| ACTUAL FLOW:      | 34.43 CCHR     | EFFLUENT    | 15.3 L/     | HR AO LAYR     | 13.9 CC/UR  |
|                   |                |             |             | · · · · · · ·  |             |
| RUN & SAMPLE NO.  | 9972-10-6      | 9972 10-7   |             | <b>1</b> 1     |             |
|                   |                |             |             |                |             |
| C3H6 WHSV         | 0.5            | 0.5         |             |                |             |
| HRS ON STREAM     | 71.6           | 77.6        |             |                |             |
| PRESSURE . PSIG   | 144            | 146         |             |                |             |
| TEMP. C           | 340            | 340         |             |                |             |
| FRED C3H6 CC      | 618 56         | 207 66      |             |                |             |
| HOURS FEEDING     | 18.08          | 6.0         |             |                |             |
| EFFLAT GAS LITER  | 239.2          | 97.4        |             |                |             |
| GM AQUEOUS LAYER  | 249.68         | 84.48       |             |                |             |
| GM LIO HYDROCAREO | N 0.00         | 0.00        |             |                |             |
| WT FR. LIQ HC/FEE | D .0000        | .0000       |             |                | 1           |
|                   |                |             |             |                |             |
| MATERIAL BALANCE  | WT 🖏 79.99     | 94.53       |             |                |             |
| C3H6 CONVERSION % | 1.78           | 2.15        |             |                |             |
| PRDT SFLECTIVITY  | WT S           |             |             |                |             |
| CH4               | 0.38           | 0.15        |             |                |             |
|                   | 45 77          | 0.30        |             |                |             |
| C483.0            | 45.51          | 10 13       |             |                |             |
| CAUS -            | 5.75           | 6 68        |             |                |             |
| 25812             | 0.00           | 3.10        |             |                |             |
| C5H10=            | 0.00           | 0.51        |             |                |             |
| C6H14             | 3.30           | 1.44        |             |                |             |
| C6HL2 = & CYCLO'  | S 30.32        | 29.10       |             |                |             |
| C7+ IN GAS        | 11.56          | 8.53        |             |                | •           |
| LIQ HC'S          | 0.00           | 0.00        |             |                | •           |
|                   |                |             |             |                |             |
| TOTAI.            | 100.00         | 100.00      |             |                |             |
| SUBGROUPING       | · · · ·        | <b>.</b>    |             |                |             |
| C1 -C4            | 54.83          | 57.31       |             |                |             |
| C5 -420 F         | 45.17          | 42.69       |             |                |             |
| 470-700 F         | 0.00           | 0.00        |             |                |             |
| 700-END PT        | 0.00           | 0.00        |             |                |             |
| (.5 -KND PT       | 45.17          | 42.69       |             |                |             |

ABLE 3B RESULT OF PROPYLENE OPERATION

-37-

| ISO/NORMAL MOLE RA | 'TIO   |        |
|--------------------|--------|--------|
| C4                 | 0.0493 | 0.0856 |
| CS                 | -      | 0.5000 |
| C6                 | 0.7700 | 3.9444 |
| C4 -               | 0.2190 | 0.4550 |
| DARAFFIN/OLEFIN M  | RATIO  |        |
| C2                 | 0.7143 | 1.2759 |
| C3                 | 0.0080 | 0.0086 |
| C4                 | 0.7095 | 1.4629 |
| ÷ 7.7              | -      | 5.8462 |
| LIQ HC COLLECTION  |        | •      |
| PHYS. APPEARANCE   |        |        |
| DENSITY            |        | •      |
| N.REFRACTIVE INDEX | τ.     | •      |
| SIMULATED DISTILL  | VIION  |        |
| 10 WT % @ DEG F.   | *      | - • -  |
| 16                 |        |        |
| 50                 |        |        |
| 81                 |        |        |
| 90                 |        |        |
| RANGE(16-84%)      |        |        |
|                    |        |        |
| WT % @420 F        |        |        |
| WT % @700 F        |        |        |

a)

ρ

٤

•

:



RUN NO. 9972-10







-41-

### RUN 9972-13: LZ-105-6

L2-105-6 is a medium pore molecular sieve with a structure similar to that of ZSM-5 with a  $SiO_2/Al_2O_3$  ratio of 35. This zeolite has been tested extensively in this program for both methanol and propylene conversions. The purpose of the present test was to extend the knowledge of this catalyst into the range of process conditions which have become the standard test. L2-105 was tested last quarter under the same temperature and pressure conditions but without water in the feed in run 9972-1. Tests of ZSM-5 of two different  $SiO_2/Al_2O_3$  ratios will be reported next quarter. Extensive comparisons among these materials will be delayed until the next report when all the data will be available.

१ । -1

The material balances, conversions and product selectivity for the samples taken during this Run are presented in Tables 4A to 4D. The conversion and product selectivity data is plotted versus time on stream in Figures 14 and 15. Simulated distillation plots of samples representative of the process conditions studies are presented in Figures 16 to 21. The catalyst was tested for three days at 280°C and 150 psig, with a 1:1:2  $H_2:C_3H_6:H_2O$  molar ratio feed. The temperature was then raised to 340°C after 2 more days, then to 370°C where it was kept until the run was terminated 2 days later. Except for Sample #2, all the material balances show the experimental data to be of high quality.

The initial conversion at 280°C was quite high. Almost 97% of the propylene was converted. This was very similar to the initial conversion in 9972-1, 96%. This catalyst showed slow deactiviation with the conversion dropping to 90% at 48 hours on stream. In 9972-1 after 40 hours on feed, the conversation at 280°C was only 84%. Even though 9972-1 was run to retard deactivation , the catalyst was deactivating faster than it did in the run with water in the feed. During this run when the temperature was raised to 340°C, much of the catalyst's activity returned but the catalyst still deactivated at the same rate. The temperature increase to 370°C again did not

-42-

significantly alter the deactivation rate. During run 9972-1 the conversion rates at 340°C and 370°C were 95% and 97% respectively. These higher conversions were probably due to lower catalyst deactivation which resulted from the shorter sampling times between temperature changes. That is, they were measured after fewer hours on steam. In run 9972-2 at 410°C with water added to the feed, this same lot of LZ-105-6 was found not to deactivate. The stabilizing influence of the added water had only a partial effect at 290 to 370°C but had a large effect at 410°C.

In the prior test at 410°C the product selectivity also showed only minor changes over the course of the test. This test showed much greater changes. Most changes occurred at 280°C and the changes decreased as the temperature was increased. In no catalyst tested thus far was the production of  $C_1$  and  $C_2$  hydrocarbons from  $C_3H_6$  feed significant. The selectivity to butenes was constantly increasing throughout the run to a point where their concentration in the effluent was close to that of propylene. The selectivity to propane and particularly butane were both very high initially but dropped quickly. They increased again with temperature change. As the temperature increased the rate of change of the selectivity to these two components decreased. These two paraffins are the products of hydride transfer to the corresponding olefin. A change in these concentrations is related to changes in the rate of hydride-transfer. These changes in propane and butane concentrations in the gas phase are reflected in changes in the concentration of aromatics in the liquid.

The high selectivity to  $C_5^+$  resulted from the low quantities of propane and butane produced. The fraction of  $C_5^+$  decreased as these two products plus butene increased. In this run, the  $C_5^+$  was as high as 89% of the total hydrocarbons at 280°C, decreasing to 69% at 370°C. A similar change in selectivity was seen in run 9972-1. At 280°C 91% of the hydrocarbons were in the  $C_5^+$  range, while at 370%C only 63% of them were. This decrease coincided with an increase in light saturates production. The differences in the composition among these liquid samples is obvious from the refractive indices. The initial sample in this run contained 50% aromatics. The corre-

-43-

sponding sample in 9972-1 contained less than 20% aromatics. The final sample from this run taken at 280°C was less than 20% aromatic while the corresponding sample from 9972-1 was still 15% aromatics. At 280°C, water added to the feed increased the percentage of aromatics in the condensed product but it did not stop the deactivation of this aromatization activity. At 340°C the first sample was again about half aromatics but dropped to 30% by the last sample. At 370°C the first sample was 40% aromatics but the aromatics were still above 30% by the last sample. From 9972-1 there is data only from initial samples. At 340°C the sample was half aromatics; at 370°C the condensed liquid was 70% aromatics. The water in the feed was better at reducing deactivation at 340°C than at 280°C. At 370°C the water almost completely stopped deactivation of aromatization. The price paid for this slower deactivation was lower activity.

These trends in aromatic concentrations calculated from refractive indices were verified by the simulated distillations. The distillation of Sample 1 revealed the presence of xylenes and  $C_9$ aromatics in the liquid. Sample 5 had a much smother distillation curve and did not show signs of xylenes in the sample. Sample 6 again contained xylenes and trimethylbenzenes. Sample 10 still had observable amounts of xylenes but no detectable  $C_9$  aromatics. This sample also probably contained toluene. Sample 12 contained both xylenes and  $C_9$  aromatics. The last sample still contained these aromatics but also had appreciable quantities of toluene. This liquid product contained mostly secondary products of the propylene oligomerization reaction. The distillations did not contain the large amounts of  $C_6$ ,  $C_9$  and  $C_{12}$  olefins that were easily observable in previous samples.

LZ-105 is an excellent catalyst for propylene oligomerization even at 280°C. The catalyst has high activity and good selectivity to liquid products. At these lower temperatures, the catalytic activity, particularly the aromatization activity, deactivates in spite of the presence of water in the feed. While the selectivity to  $C_5^+$  products was not quite as good as that of UCC-104, reported last quarter, the activity was higher.

-44-

| RUN NO. 9972-13<br>CATALYST L2-L05-6 M9<br>FEED H2:C3H6:H2C<br>C3H6 MW- 42 | 0939-01 670<br>0 0 1:1:2 M<br>2.08]3 DF | C 35.06GM<br>IOLE RATIO,<br>INSITY= 0.5 | (37.10GM /<br>,0.5 C3116 V<br>51041 GM/CC | LETER THE E<br>NHSV.CONTIN<br>C (@ 73 F) | RUN, +7.01GM)<br>NOUS OVERNITE |
|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------|
| TARGET FLOW: CIH6 34<br>ACTUAL FLOW: 28                                    | .3 CC/IIR<br>.45 CCIIR                  | H2 168 CCM<br>EFFIJENT                  | IN. 10.1 L./I<br>13.8 L./I                | IR II20                                  | 15 CC/HR<br>R 10.5 CC/HR       |
| RUN & SAMPLE NO.                                                           | 9972-13-1                               | 9972 -13-2                              | 9972-13-3                                 | 9972-13-4                                | 9972-13-5                      |
|                                                                            |                                         |                                         |                                           |                                          |                                |
| C3H6 WIISV                                                                 | 0.42                                    | 0.42                                    | 0.12                                      | 0.42                                     | 0.42                           |
| HRS ON STREAM                                                              | 5.03                                    | 23.9                                    | 30.9                                      | 48.0                                     | 55.0                           |
| PRESSURE, PSIG                                                             | 1.61                                    | 157                                     | 1.54                                      | 195                                      | 1.56                           |
| TEMP. C                                                                    | 280                                     | 280                                     | 280                                       | 280                                      | 280                            |
| FEED C3H6 CC                                                               | 138.44                                  | 534.87                                  | 176.19                                    | 492.08                                   | 193.81                         |
| HOURS FEEDING                                                              | 5.033                                   | 18.90                                   | 7.00                                      | 17.10                                    | 7.00                           |
| EFFLNT GAS LITER                                                           | 65.35                                   | 235.75                                  | 88.90                                     | 222.30                                   | 88.50                          |
| GM AQUEOUS LAYER                                                           | 49.01                                   | 197.72                                  | 73.99                                     | 180.05                                   | 71.50                          |
| GM LIQ HYDROCARBON                                                         | 24.89                                   | 138.89                                  | 48.98                                     | 133.18                                   | 55.29                          |
| WT FR. LIQ HC/FEED                                                         | .3522                                   | .5087                                   | .5447                                     | .5303                                    | .5589                          |
| MATERIAL BALANCE WT                                                        | \$ 88.72                                | 81.58                                   | 93.30                                     | 91.23                                    | 98.42                          |
| C'H6 CONVERSION 3                                                          | 96.66                                   | 94.11                                   | 92.61                                     | 90.29                                    | 90.41                          |
| PRDT SELECTIVITY WT                                                        | 45                                      |                                         |                                           |                                          |                                |
| CH4                                                                        | . 0 . 02                                | 0.01                                    | 0.02                                      | 0.01                                     | 0.01                           |
| C2 HC'S                                                                    | 0.12                                    | 0.10                                    | 0.11                                      | 0.07                                     | 0.07                           |
| СЗНВ                                                                       | 9.78                                    | 2.67                                    | 2.66                                      | 2.03                                     | 1.78                           |
| CAHIO                                                                      | 16.20                                   | 4.07                                    | 3.99                                      | 2.50                                     | 2.36                           |
| C4H8-                                                                      | 2.24                                    | 4.57                                    | 5.68                                      | 6.27                                     | 6.36                           |
| C5H12                                                                      | L2.L4                                   | 3.93                                    | 3.79                                      | 2.83                                     | 2.49                           |
| C5H10-                                                                     | 0.07                                    | 0.16                                    | 0.24                                      | • 0.23                                   | 0.22                           |
| C6H14                                                                      | 7.68                                    | 6.40                                    | 6.39                                      | 7.24                                     | 6.90                           |
| C6H12 = & CYCLO'S                                                          | 0.77                                    | 1.68                                    | 1.97                                      | 1.79                                     | 2.55                           |
| C7 . IN GAS                                                                | 7.79                                    | 9.28                                    | 9.80                                      | 11.75                                    | L2.17                          |
| LIQ HC'S                                                                   | 43.19                                   | 67.12                                   | 65.35                                     | 65.29                                    | 65.07                          |
| TOTAL.<br>SUBGROUP ING                                                     | 100.00                                  | 1.00.00                                 | 100.00                                    | 1.00.00                                  | 100.00                         |
| Cl -C4                                                                     | 28.36                                   | 11.42                                   | 12.46                                     | 1.0.88                                   | LO.59                          |
| C5 -420 F                                                                  | 67.80                                   | 82.60                                   | 78.52                                     | 83.44                                    | 80.56                          |
| 420.700 F                                                                  | 3.84                                    | 5.97                                    | 9.02                                      | 5.68                                     | 8.85                           |
| 700-END PT                                                                 | 0.00                                    | 0.00                                    | 0.00                                      | 0.00                                     | 0.00                           |
| CS -END PT                                                                 | 71.64                                   | 88.58                                   | 87.54                                     | 89.12                                    | 89.41                          |

TABLE 4A RESULT OF PROPYLENE OPERATION

-45-

| ISO/NORMAL MOLE RA  | ΤΙΟ      |                     |         |         |         |
|---------------------|----------|---------------------|---------|---------|---------|
| C4                  | 1.7003   | 2.4154              | 2.3051  | 2.6302  | 2.3587  |
| 05                  | 2.0616   | 2.1181              | 1.9322  | 2.0860  | 2.0297  |
| CG                  | 6.0933   | 10.5051             | 9.5125  | 12.1574 | 12.8041 |
| C4 =                | 0.4935   | 0.4681              | 0.4411  | 0.4371  | 0.4152  |
| PARAFEIN/OLEFIN M   | RATIO    |                     |         |         |         |
| CZ .                | 1.1074   | 0.2107              | 0.3782  | •       | •       |
| C3                  | 2.7274   | 0.4059              | 0.31BO  | 0.1794  | 0.1598  |
| C4                  | 6.9926   | 0.8609              | 0.6771  | 0.3849  | 0.3585  |
| C5                  | 174.2464 | 23.5243             | 15.0714 | L1.9156 | 10.7620 |
| LIQ HC COLLECTION   |          |                     |         |         |         |
| PHYS. APPEARANCE    | OII.     | OII.                | OTL     | 0 51.   | OIL     |
| DENSITY             | 0.792    | 0.759               | 0.747   | 0.745   | 0.719   |
| N. REFRACTIVE INDEX | 1.4540   | <sup>4</sup> 1.4323 | 1.4296  | 1.4266  | 1.4257  |
| SIMULATED DISTULA   | TION     |                     |         |         |         |
| IO WT & G DEG F.    | 180      | 172                 | 182     | 173     | 1.73    |
| 16                  | 201      | 2.00                | 209     | 202     | 207     |
| 50                  | 294      | 292                 | 307     | 202     | 304     |
| 81                  | 389      | 391                 | 409     | 391     | 409     |
| 90                  | 411      | 111                 | 444     | 413     | 443     |
| RANGE ( 1.6 - 84% ) | 185      | 1.91                | 200     | 180     | 202     |
| WT % @420 F         | 91.1     | 91.2                | 86.2    | 91.3    | 86.4    |
| WT % @700 F         | 100      | 100                 | 100     | 100     | 100     |

| •                                      |             |                             |                            |                             |               |
|----------------------------------------|-------------|-----------------------------|----------------------------|-----------------------------|---------------|
| RUN NO. 9972-13<br>CATALYST LZ 105-6 # | 9939-01 670 | C 35.06GM                   | (37.10GM /                 | FTER THE R                  | UN, -2.04GM)  |
| FEED H2:C3H6:H2<br>C3H6 MW- 4          | 2,0813 DI   | MOLE RATIO.<br>ENSITY - 0.9 | ,0.5 C3H6 0<br>51041 GM/C0 | NIISV, CONTIN<br>C (M 73 F) | IOUS OVERNITE |
| TARGET FLOW: C3H6 3                    | 4.3 CCAHR   | H2 168 CCI                  | N. 10.1 1./1               | IR HOO                      | 15 CC/HR      |
| ACTIVITAL PLONT                        | 8.45 CCHR   | RPPLUENT                    | 13.8 L/I                   | IR AD LAYR                  | 10.5 CC/HR    |
|                                        | arts deni   |                             | 1.010 1.71                 |                             |               |
| RUN & SAMPLE NO.                       | 9972-13-6   | 9972 -13-7                  | 9972-13-8                  | 9972-13-9                   | 9972-13-10    |
|                                        |             |                             | 52 <u>7</u> 2 2 4 2 8 5    | asts: 122.                  |               |
| C3H6 WHSV                              | 0.42        | 0.42                        | 0.42                       | 0.12                        | 0.42          |
| HRS ON STREAM                          | 71.5        | 78.7                        | 95.4                       | 102.7                       | 119.1         |
| PRESSURE, PSIG                         | 1.57        | 149                         | 1,50                       | 152                         | 158           |
| теми. с                                | 340         | 3.3.4                       | הבר                        | 220                         | 538           |
| FEED C3H6 CC                           | 481.38      | 195.52                      | 484.53                     | 190.67                      | 485.79        |
| HOURS FEEDING                          | 16.50       | 7.25                        | 16.75                      | 7.25                        | 16.10         |
| EFFLNT GAS LITER                       | 231.10      | 102.00                      | 234.40                     | 100.40                      | 230.60        |
| GM AQUEOUS LAYER                       | 173.41      | 77.41                       | 175.42                     | 75.78                       | 171.51        |
| GM LIQ HYDROCARBON                     | 88.99       | 38.19                       | 93.39                      | 38.59                       | 95.19         |
| WT FR. LIO HC/FEED                     | .3622       | . 3963                      | .3776                      | .3965                       | 3839 -        |
|                                        |             |                             |                            |                             |               |
| MATERIAL BALANCE WT                    | \$ 92.38    | 103.08                      | 95.76                      | 102.38                      | 91.1.1        |
| C3H6 CONVERSION %                      | 93.75       | 92.49                       | 91.23                      | 90.80                       | 89.38         |
| PRDT SELECTIVITY WT                    | а.<br>С     |                             |                            |                             |               |
| CH4                                    | 0.06        | 0.05                        | 0.04                       | 0.04                        | 0.01          |
| CS NC'S                                | 0.42        | 0.42                        | 0.39                       | - 0.41                      | 0.40          |
| C3HB                                   | 1.63        | 10.07                       | 0.02                       | 0.00                        | 7 60          |
| C4H10                                  | 13.72       | 12.07                       | 9.96                       | 9,20                        | 1.00          |
| C4H8-                                  | 5.91        | 1.27                        | 8.5%                       | 8.92                        | 9.50          |
| C5H12                                  | 10.50       | 10.05                       | 8.75                       | 8.09                        | 6.73          |
| C5II10=                                | 0.17        | 0.42                        | 0.38                       | 0.39                        | 0.30          |
| C61114                                 | 7.76        | 8.63                        | 8.34                       | 8.99                        | 9.00          |
| C6H12= & CYCLO'S                       | 1.19        | 1.51                        | 1.60                       | 1.71                        | 1.77          |
| C7+ IN GAS                             | 10.68       | 12.22                       | 12.64                      | 13.58                       | 12.62         |
| LIQ HC'S                               | 42.35       | 41.30                       | 13.75                      | 13.91                       | 47.75         |
| TOTAL                                  | 100.00      | 1.00.00                     | 100.00                     | 100.00                      | 100.00        |
| SURGROUPING                            |             |                             |                            |                             |               |
| C1 -C4                                 | 27.37       | 25.86                       | 23.95                      | 23.26                       | 21.83         |
| C5 -420 F                              | 68.61       | 70.50                       | 72.12                      | 72.35                       | 74.1]         |
| 420-700 F                              | 4.02        | 3.64                        | 3.63                       | 4.39                        | 3.76          |
| 700-END PT                             | 0.00        | 0.00                        | 0.00                       | 0.00                        | 0.00          |
| C5 -END PT                             | 72.63       | 74.14                       | 76.05                      | 76.74                       | 78.17         |

TANKE 4B RESULT OF PROPYLENE OPERATION

-47-

| ISO/NORMAL MOLE RA | NTIO     |         |                |         | •       |
|--------------------|----------|---------|----------------|---------|---------|
| C4                 | 2.5130   | 2.3893  | 2.4320         | 2.47OB  | 2.6692  |
| C5                 | 3.0550   | 2.4097  | 2.4092         | 2.3612  | 2.6237  |
| CG                 | 8.1918   | 7.8099  | 8.6750         | B.8595  | 10.0178 |
| C1 =               | 0.4577   | 0.4327  | 0.1315         | 0.4343  | 0.4544  |
| PARAFFIN/OLEFIN M  | RATIO    |         |                |         |         |
| C2                 | 0.5772   | 0.3732  | 0.3282         | 0.3597  | 0.3044  |
| C3                 | L.0466   | 0.7199  | 0.5009         | 0.4444  | 0.3399  |
| C1                 | 2.2397   | 1.6013  | <b>1.130</b> B | 0.9955  | 0.7659  |
| CS                 | 60.2097  | 23.5307 | 22.2957        | 20.2755 | 21.7099 |
| LIQ HC COLLECTION  |          |         |                |         |         |
| PHYS. APPEARANCE   | OII.     | OIL     | ort.           | OIL     | .110    |
| DENSITY            | 0.770    | 0.785   | 0.775          | 0.738   | 0.746   |
| N.REFRACTIVE INDE  | x 1.4494 | 1.4451  | 1.4398         | 1.4396  | 1.4349  |
| SIMULATED DISTILL  | ATION    |         |                |         |         |
| lo WT % @ DEG F    | . 166    | .168    | 162            | 166     | 162     |
| 16                 | 200      | 200     | 196            | 198     | 194     |
| 50                 | 295      | 298     | 294            | 289     | 285     |
| 84                 | 390      | 387     | 384            | 384     | 379     |
| 90                 | 416 .    | 111     | 108            | 410     | 406     |
| RANGE (16-84%)     | 190      | 187     | 188            | 186     | 185     |
| WT % @420 F        | 90.5     | 91.2    | 91.7           | 91.5    | 92.13   |
| WT % ด700 F        | 100      | 100     | 100            | 100     | 100     |
|                    |          |         |                |         |         |

ı:

-48-

## TABLE 4C RESULT OF PROPYLENE OPERATION RUN NO. 9972-13

| CATALYST 1.2-105-6 #* | 1939-01 670<br>0 11:1:2 N | C 35.06GM<br>10LE RATIO | (37.10GM A<br>0.5 C3116 W | PTER THE R<br>HSV.CONTIN | UN, 12.04GM)<br>OUS OVERNITE |
|-----------------------|---------------------------|-------------------------|---------------------------|--------------------------|------------------------------|
| C3ILG MW= 4:          | 2.0873 DI                 | INSITY- 0.              | 51041 GM/CC               | (A 73 F)                 |                              |
| TARGET FLOW: C3116 34 | 1.3 CC/HR                 | H2 168 CC               | MN, 10.1 L/H              | R H20                    | L5. CC/HR                    |
| ACTIVIAL FLOW: -'21   | B. 45 CCHR                | EFFLUENT                | 13.8 L/H                  | R AQ LAYR                | 10.5 CC/HR                   |
| Actori z nonti        |                           |                         |                           | -                        |                              |
| DIN & SAMPLE NO       | 9972-13-11                | 972-13-12               | 972-13-13                 | 972-13-14                | 9972-13-15                   |
| KON G SKHEND NO.      |                           |                         |                           |                          |                              |
| 7                     | 0 47                      | 0 42                    | 0.42                      | 0.12                     | 0.42                         |
| UDP ON CODRAM         | 176 8                     | 143 1                   | 150.7                     | 166.9                    | 172.7                        |
| DEPENDE DELC          | 13.1                      | 150                     | 157                       | 153                      | 148                          |
| TEMP C                | 338                       | 370                     | 370                       | 370                      | 370                          |
|                       |                           |                         |                           |                          |                              |
| FRED C3H6 CC          | 210.8                     | 484.53                  | 213.43                    | 473.83                   | 156.69                       |
| HOURS FEEDING         | 7.7                       | 16.3                    | 7.58                      | 16.25                    | 5.75                         |
| EFFLNT CAS LITER      | 106.9                     | 238.9                   | . 110.6                   | 237.0                    | 83.5                         |
| CM AOUFOUS LAVER      | 1-80.74                   | 169.10                  | 78.81                     | 168.16                   | 59.56                        |
| CW I TO HYDROCARRON   | 41 30                     | 80.04                   | 37 28                     | 75.14                    | 26.25                        |
|                       | 2019                      | 7276                    | 3510                      | 3107                     | 3282                         |
| WI FR. LIQ HOVENED    |                           |                         |                           |                          |                              |
| MATERIAL BALANCE MT   | 96.71                     | 100.42                  | 106.26                    | 95.88                    | 109:56                       |
| C3H6 CONVERSION &     | 89.22                     | 88.41                   | 87.83                     | 85.46                    | 84.55                        |
| PROT SELECTIVITY WT   | · •                       |                         | .=                        |                          |                              |
| СНА                   | 0.04                      | 0.13                    | 0.12                      | 0.12                     | 0.12                         |
| C2 HC'S               | 0.38                      | 0.78                    | 0.76                      | 0.80                     | 0.86                         |
| CAUR                  | " 3.95                    | 7.46                    | 6.55                      | 6.10                     | 5.82                         |
| CAHLO                 | 7.41                      | 12.14                   | 10.63                     | 9.56                     | 9.02                         |
| CANN .                | 0 00                      | 10.82                   | 11.07                     | 13.26                    | 13.82                        |
| C4HO<br>CEN12         | 5 44                      | 9 06                    | 8.13                      | 7.04                     | 6.73                         |
| C51172                | 0.30                      | 0.51                    | 0.47                      | 0.38                     | 0.11                         |
| CSH10-                | 9.02                      | 8 53                    | 8.68                      | 8.86                     | 9.33                         |
|                       | 1 89                      | 1 79                    | 1.93                      | 1.93                     | 2.18                         |
| C7+ IN GAS            | 14.82                     | 11.92                   | 14.02                     | 13.59                    | 15.07                        |
|                       | 45.76                     | 36.85                   | 37.64                     | 38.35                    | 36.66                        |
| Into ne b             |                           |                         |                           |                          |                              |
| ምርሞአር                 | 100.00                    | .100.00                 | 100.00                    | 100.00                   | 100.00                       |
|                       | 100.00                    | 200.00                  | 100100                    | 100100                   | 100100                       |
| - 3000000F1MG         | 21 77                     | אר רו                   | כו מכ                     | 20 85                    | 20 63                        |
|                       | 74 57                     | 6T D4                   | 69.24                     | 67 69                    | 68 09                        |
| 100 -420 F            | 74.04                     | 3 70                    | 50.20                     | 5 47                     | 20.05                        |
|                       | 3.9%                      | A.70                    | 0.00                      | 0.00                     | 0.00                         |
| CS -END PT            | 78.23                     | 68.66                   | 70.88                     | 70.15                    | 70.37                        |

1

2

-49-

| ISO/NORMAL MOLE R/ | VTIO .   |         |         |         |             |
|--------------------|----------|---------|---------|---------|-------------|
| C4                 | 2.5057   | 2.2601  | 2.2867  | 2.2908  | 2.3034      |
| C5                 | 2.5651   | 2.2856  | 2.2850  | 2.4551  | 2.4084      |
| 0.5                | 10.1939  | 8.7282  | 9.0431  | 10.7955 | 10.7362     |
| C4 =               | 0.4403   | 0.1291  | 0.4341  | 0.4414  | 0.1416      |
| PARAFFIN/OLEFIN M  | RATIO    | · · ·   | •       |         |             |
| C2                 | 0.2506   | 0.5230  | 0.4913  | 0.4576  | 0.1499      |
| C3                 | 0.3129   | 0.5474  | 0.4560  | 0.3445  | 0.3060      |
| C4                 | 0.7166   | 1,0827  | 0.9277  | 0.6961  | 0.6300      |
| C5 ()              | 20.7721  | 17.2261 | 16.7365 | 18.0000 | 16.0911     |
| LIG HC COLLECTION  |          |         |         |         |             |
| PHYS APPEARANCE    | JIO      | OIL     | OIL     | OIL     | OIL .       |
| DENSITY            | 0.762    | 0.740   | 0.759   | 0.771   | 0.770       |
| N. REFRACTIVE INDE | x 1.4337 | 1.4458  | 1.4434  | 1.4411  | 1.4381      |
| SIMULATED DISTIL   | AT FON   |         |         |         |             |
| IO WT S @ DEG F    | . 164    | 1.64    | 164     | 162     | 163         |
| 16                 | 196      | 197     | 196     | 194     | 194         |
| 50                 | 288      | 290     | 289     | 286     | 285         |
| 84                 | 381      | 376     | 375     | 372     | 371         |
| 90                 | 407      | 403     | 402     | 398     | 397         |
| RANGE(16-84%)      | 185      | 179     | 179     | L78     | 1 <b>77</b> |
| WГ % 0420 F        | 92.1     | 92.67   | 92.89   | 93.55   | 93.78       |
| WI & 0700 F        | 100      | 100     | 100     | 100     | 100         |
|                    |          |         |         |         |             |

:.. `



RUN NO. 9972-13



ML & DIZLIFFED

-52-



MI & DISTIFLED

-53-



AT & DISTIFLED

-54-



-55-



חו ג שוצווררבם

-56-

15



BOILING POINT (F)

-57-

#### Run 9972-14: UCC-107

UCC-107 is a new Union Carbide proprietary large pore molecular sieve. It was tested for 4 days at 280°C. The temperature was then increased to 340°C for 1 day and 370°C for 1 day, after which the test was terminated. The detailed data analysis is presented in Tables 5A to 5C. The conversion and product selectivities are also presented in Figures 22 and 23. The simulated distillation of the condensed product from Samples 1 and 2 are plotted in Figures 24 and 25. All the material balances are satisfactory except for Sample 5. Since the calculated numbers are not out of line with the other samples, the results are probably reliable.

The conversion was low initially, and it did not change significantly during the test. The catalyst showed fast deactivation with the conversion dropping by a factor of 3 in the first two days on stream. Increasing the temperature to 340°C partially restored activity but it dropped quickly. The temperature increase to 370°C again restored activity but only for a short period of time.

It seems to be common for fast deactivating catalysts with ultimate low activity that propane is a major product of propylene. The selectivity to propane was fairly constant over the test and did not seem to be a function of temperature or deactivation. Butenes were also major products. The selectivity to butenes was also independent of temperature or time. The selectivity to  $C_5^+$  products varied only from 69% at the beginning of the run to 61% at the end. The distribution of hydrocarbons among the  $C_5^+$  product was not as constant as the previous numbers may have indicated. The amount of condensed product dropped from 12% to 0% in 1 day. The simulated distillation curves had signs of  $C_6$ 's and  $C_{12}$ 's present but the condensed product was only a small percentage of the total product.

The UCC-107 is a poor catalyst for propylene oligomerization. It deactivated too quickly. It seemed to deactivate by a different mechanism than previous catalysts since the propane and butenes selectivities were fairly constant over the entire run.

-58-

TABLE 5A RESULT OF PROPYLENE OPERATION

.

| RUN NO. 9972-14      |            |              |              |                 |                |
|----------------------|------------|--------------|--------------|-----------------|----------------|
| CATALYST UCC-107 #10 | 042.21 56  | C.35.00GM    | (33.83GM A   | FTER THE R      | UN, -1. L'7GM) |
| FEED 112:C3H6:112C   | ) (a 1:1:2 | MOLE RATTO   | 0.5 C3116 W  | HSV, CONTIN     | OUS OVERNTICE  |
| C316 MW = 42         | .0813 D    | ENSITY - 0.5 | 1041 GM/CC   | (a'73 F)        | •              |
| TARGET FLOW- C3H6 34 | 3 CC/HR    | H2 170 CC    | IN. 10.2 L/H | R 1120          | 15 CC/HR       |
| acoutat whom and 35  | 15 COUR    | EFFLUENT     | 20.4 L/H     | R AO LAYR       | 13.9 CC/HR     |
|                      |            |              |              |                 |                |
| RUN & SAMPLE NO.     | 9972-14-1  | 9972-14-2    | 9972-14-3    | 9972-14-4       | 9972-14-5      |
|                      |            |              |              | ********        | 205722272      |
| C3H6 WHSV            | 0.5        | 0.5          | 0.5          | 0.5             | 0.5            |
| HRS ON STREAM        | 6.3        | . 25.9       | 30.3         | 49.3            | 52.7           |
| PRESSURE, PSIG       | 157        | 150          | 149          | 147             | 149            |
| TEMP. C              | 280        | 279          | 280          | 279             | 280            |
|                      |            |              |              |                 |                |
| FFFD C3H6 CC         | 208.28     | 690.3        | 144.73       | 682.13          | 113.27         |
| HOURS FEEDING        | 6.33       | 19.6         | 4.4          | 19.0            | 3.3            |
| REFERE CAS LITER     | 9.11       | 395.3        | 88.5         | 391.5           | 67.6           |
| CM AOUPOUS LAYER     | 82.48      | 269.11       | 60.56        | 260.74          | 46.07          |
| GM LIO HYDROCARBON   | 1.59       | 1.17         | 0.00         | 0.00            | 0.00           |
| WT FR. LIO HC/FEED   | .0173      | .0033        | .0000        | .0000           | .0000          |
|                      |            |              |              |                 |                |
| MATERIAL BALANCE WT  | \$ 95.27   | 91.29        | 100.60       | 92.23           | 80.15          |
| C3H6 CONVERSION &    | 13.18      | 5.95         | 4.53         | 3.34            | 4.14           |
| DOINT SELFCTIVITY NT | <u>a</u>   |              |              |                 |                |
|                      | 0.00       | 0.00         | 0.00         | 0.00            | 0.00           |
|                      | 0.00       | 0.00         | 0.00         | 0.00            | 0.00           |
|                      | 21.00      | 24 28        | 29.93        | 33.18           | 26.58          |
| Carla                | 2 1 2      | 2 67         | 2,00         | 0.54            | 3.00           |
|                      | 5.55       | 9.01         | 3.53         | 2.73            | 7.75           |
| CTROS<br>CEU12       | 1.50       | 1 67         | 0.58         | 0.00            | 0.13           |
| C5H10-               | 0.13       | 0.08         | 0.16         | 0.00            | 0.15           |
| C6H14                | 9.35       | 6.07         | 7.12         | 6.34            | 5.44           |
| COHIZE & CYCLO'S     | 7.04       | 12.21        | 15.35        | 17.69           | 15.50          |
| $C7 \perp IN GAS$    | 19.08      | 37.90        | 41.33        | 39.53           | 41.45          |
|                      | 12 20      | 6 10         | 0.00         | 0.00            | 0.00           |
|                      | 12.44      | 0,10         | 0.00         |                 |                |
| mount t              | 100.00     | 100.00       | 100.00       | 100.00          | 100.00         |
| TUTAL                | 100.00     | 100.00       | 100.00       | 100.00          |                |
| SURGROUPING          | 74 70      | -<br>        | 75 45        | 76 AF           | 27 23          |
|                      | 30.70      | 50.91        | - JJ.45      | .10.47<br>67 66 | 51.33          |
| C5 -420 F            | 62.T2      | 00.00        | 0 00         | 03.37           | 0,00           |
| 120-700 f            | 3.18       | 0.20         | 0.00         | 0.00            | 0.00           |
| 700-KND PT           | 60 70      | 64 02        | 64 55        | 63 55           | 67 67          |
| C5 -END PT           | 03.30      | 04.03        | 04.33        | 03.33           | 02.07          |

-59-

| ISO/NORMAL MOLE RA | TIO     |         |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|---------|---------|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1                 | 1.3338  | 0.3317  | 0.6330                | -                       | 0.1901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cb                 | 8.5424  | 4.8085  | 5.5455                | ••                      | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cu                 | 13.0000 | 5.1481  | 1.7731                | 3.5138                  | 3.6404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C4                 | 0.4014  | 0.1007  | 0.6234                | 0.6923                  | 0.4336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PARAFFIN/OLEFIN M  | RATIO   |         |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2                 | -       | · • •   | -                     | -                       | - ''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C3                 | 0.0316  | 0.0149  | 0.0138                | . 0.0111                | 0.01.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C4                 | 0.5465  | 0.2862  | 0.5453                | 0.1908                  | 0.3739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C5                 | 11.0392 | 19.5000 | 3.6000                | •                       | 0.8571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |         |         |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PHYS. APPEARANCE   |         |         | and the second second | $e_{i} = e_{i} + e_{i}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DENSITY            |         | •       |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N, REFRACTIVE INDE | κ.      | •       |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIMULATED DISTIL   | ATION   |         |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 WT % @ DEC E    | . 277   | 341     | •                     | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16                 | 288     | 36B     |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                 | 387     | 439     |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 84                 | 491     | 568     | - • • • •             |                         | and and the set of the |
| 30                 | 550     | 642     |                       |                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BANGE (1684%)      | 203     | 200     |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |         |         |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WT & 0420 F        | 66.0    | 43.0    | <u> </u>              |                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WT 3 0700 F        | 97.0    | 91.1    |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |         |         |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

-60-

TABLE 5B RESULT OF PROPYLENE OPERATION

| RUN NO. 9972-14                   |            |              |                 |             |               |
|-----------------------------------|------------|--------------|-----------------|-------------|---------------|
| CATALYST UCC-107 #10              | 042-21 550 | C 35.00GM    | (33.83GM AE     | TER THE R   | UN, -1.17GM)  |
| MEND H2:C3H6:H20                  | (a 1:1:2 M | OLE RATIO    | O.5 C3H6 WH     | ISV, CONTIN | IOUS OVERNITE |
| C3H6 MW- 42                       | .0813 DE   | INSITY - 0.5 | 51041 GM/CC     | (@ 73 F)    |               |
| TARGET FLOW: C3H6 34              | .3 CC/HR   | H2 170 CC    | MN, 10.2 1./11E | R H2O       | 15 CC/HR      |
| ACTUAL FLOW: 35                   | .15 CCHR   | EFFLUENT     | 20.4 L/H        | AQ I.AYB    | 13.9 CC/HR    |
|                                   |            |              | •               |             | ·             |
| RUN & SAMPLE NO.                  | 9972-14-6  | 9972-14-7    | 9972 14-8       | 1972-14-9   | 9972-14-10    |
|                                   |            |              | Addayabe .      |             | =====;===     |
| C3H6 WHSV                         | 0.5        | 0.5          | 0.5             | 0.5         | 0.5           |
| HRS ON STREAM                     | 73.8       | 77.25        | 97.8            | 103.8       | 123.8         |
| PRESSURE, PSIG                    | 147        | 149          | 147             | 150         | 152           |
| TEMP. C                           | 280        | 280          | 279             | 339         | 337           |
|                                   |            |              |                 |             |               |
| FEED C3H6 CC                      | 754.48     | 1.15.78      | 721.76          | 205.52      | 713.58        |
| HOURS FEEDING                     | 21.2       | 3.4          | 20.6            | 6.0         | 20.0          |
| EFFLNT GAS LITER                  | 435.0      | 71.3         | 424.8           | 123.3       | 411.9         |
| CM AQUEOUS LAYER                  | 291.46     | 48.09        | 282.76          | 82.85       | 275.77        |
| GM LIQ HYDROCARBON                | 0.00       | 0.00         | 0.00            | 0.15        | 0.6           |
| WT FR. LIQ HC/FEED                | .0000      | .0000        | .0000           | .0015       | .0016         |
| 21                                |            |              |                 |             |               |
| MATERIAL BALANCE WT               | \$ 93.22   | 88.35        | 93.51           | 100.99      | 92.42         |
| CANE CONVERSION &                 | 2.67       | 3.19         | 3.02            | 8.70        | 4.98          |
| THE CONVERSION OF THE PROPERTY OF | e          |              |                 |             |               |
| CUA                               | ° 0 00     | 0.00         | 0.00            | 0.7         | 0.28          |
| 02 NC18                           | 0.00       | 0.00         | 0.00            | 0.21        | 0.00          |
|                                   | 38.46      | 32.04        | 33.15           | 29.02       | 28.13         |
| CAHIO                             | 0.48       | 3.85         | 3.01            | 1.33        | 146           |
| C4H8-                             | 2.35       | 6.85         | 7.37            | 5.97        | 4.75          |
| C51112                            | 0.00       | 0.20         | 0.24            | 0.72        | 0.39          |
| C5H10=                            | 0.00       | 0.00         | 0.00            | 0.22        | 0.25          |
| сбија                             | 5.67       | 5.10         | 4.88            | 7.25        | 6.49          |
|                                   | 0.00       | 16 93        | 17.75           | 15.25       | 19.48         |
|                                   | E7 01      | 75 02        | 33 61           | 38.07       | 35.21         |
| C7+ IN GAS                        | 33.03      | 33.0%        | 0.00            | 1 66        | 3.57          |
| LIQ HC.2                          | 0.00       | 0.00         | 0.00            |             |               |
|                                   | 100.00     |              | 100.00          | 100.00      | 100.00        |
| TOTAL                             | 100.00     | 100.00       | 100.00          | 100.00      | 100100        |
| SUBGROUPING                       | 41 30      | 12 75        | 43 52           | 36.82       | 34.61         |
|                                   | 41.30      | 57 75        | 56.48           | 62.43       | 63.79         |
|                                   | 0.00       | 0 00         | 0.00            | 0.68        | 1.57          |
| 700- FND BT                       | 0.00       | 0.00         | 0.00            | 0.08        | 0.03          |
|                                   | 50.00      | E7 35        | 56 49           | 63.18       | 65.39         |
| C5 - UND PT                       | 20.10      | רא. ור       | 20.10           | 0.0 0       |               |

-61-

| ISO/NORMAL MOLE R                                 | ΔΤΙΟ        |            |          |             |         |
|---------------------------------------------------|-------------|------------|----------|-------------|---------|
| C4                                                | -           | 0.1254     | . 0.1567 | 1.2363      | 0.1068  |
| C5                                                | •           |            | . •      | L.3553      | 1.0759  |
| C.0                                               | 3.2892      | 2.6477     | 2.3564   | 4.1263      | 2.4791  |
| C4-                                               | 0.7533      | 0.4940     | 0.4587   | 0.5796      | 0.6238  |
| PARAFF IN/OLEF IN M                               | RATIO       |            |          |             |         |
| C3                                                | -           | -          |          | -           |         |
| C3                                                | 0,0103      | 0.0103     | 0.0100   | 0.0258      | 0.0143  |
| C1                                                | 0.1982      | 0.5423     | 0.3939   | 0.2144      | 0.2964  |
| C5                                                |             | <b>-</b> . | _        | 3.1404      | 1.5000  |
| DENSITY<br>N,REFRACTIVE INDE<br>SIMULATED DISTILL | X.<br>Atton | •          | ×        |             |         |
| 10 WT % @ DEG F                                   |             |            |          | • • •       |         |
| 16                                                |             |            |          | · · · · · · |         |
| 50                                                |             | ·          |          | :.          |         |
| 84                                                |             | ·          |          |             |         |
| 90                                                |             |            |          |             | · _• _  |
| 0                                                 |             |            |          |             |         |
| RANGE (16-84%)                                    |             |            |          |             | <b></b> |
| WT % @420 F                                       |             |            |          | - •         |         |
| WT % (1700 F                                      |             |            |          | •=          |         |
|                                                   |             |            |          |             |         |

-62-

TABLE SC RESULT OF PROPYLENE OPERATION

RUN NO. 9972-14 CATALYST UCC-107 #10042-21 56CC 35.000M (33.83GM AFTER THE RUN. -1.17GM) FRED H2:C3H6:H20 @ 1:1:2 MOLE RATIO,0.5 C3H6 WHSV, CONTINOUS OVERNITE C3H6 MW= 42.0813 DENSITY= 0.51041 GM/CC (0 73 F) TARGET FLOW: C3H6 34.3 CC/HR H2 170 CCMN, LO.2 L/HR H20 15 CC/HR ACTUAL FLOW: 35.15 CCHR EFFLUENT 20.4 L/HR AQ LAYR 13.9 CC/HR 9972-14-11 9972-14-12 RUN & SAMPLE NO. -----0.5 0.5 C3H6 WHSV HRS ON STREAM 127.5 115.0 153 149 PRESSURE.PSIG " TEMP. C 370 371 HOURS FREDING 629.89 116.41 3.7 17.5 EFFLNT GAS LITER74.1GM AQUEOUS LAYER50.28GM LIQ HYDROCARBON0.00 71.1 358.5 240.66 : 1 0.00 WT FR. LIQ HC/FEED .0000 .0000 MATERIAL BALANCE WT 3 108.41 90.66 8.05 5.68 C3H6 CONVERSION % PRDT SELECTIVITY WT & 0.75 0.56 CH4 C2 HC'S 0.92 0.52 29.89 33.56 C3118 C4113 0 1..45 1.98 6.37 6.81 C4118-0.70 0.38 C5H12 0.28 0.12 C5H10-7.56 21.72 C61114 C6H15= & CACTO,2 15.79 16.81 C7+ IN GAS 31.37 22.67 0.00 LIQ HC'S 0.00 TOTAL 1.00.00 100.00 SUBGROUP ING 43.28 39.32 Cl -C4 C5 -420 F 60.68 56.72 420-700 F 0.00 0.00 700-END PT ( 0.00 0.00 C5 -END PT 56.72 60.68

-63-

"it

| ISO/NORMAL MOLE | RATTO   |        |
|-----------------|---------|--------|
| C-1             | 0.8378  | 0.2025 |
| <b>C</b> 5      | 1.0385  | 0.5000 |
| Ch              | 2.9103  | 0.1749 |
| C1 -            | 0.5503  | 0.4490 |
| PARAFFINIOLEFIN | M RATTO |        |

•

ĺ:

i

:

| VEVEL NAME TO VOL | SEIN M | RATIO  |        |
|-------------------|--------|--------|--------|
| C2                |        | 0.6774 | -      |
| C3                |        | 0.0284 | 0.0175 |
| C4                |        | 0.2050 | 0.3004 |
| C5                |        | 2.4091 | 3.1579 |
|                   |        |        |        |

| LIQ HC COLLECTION     |   |  |
|-----------------------|---|--|
| PHYS. APPEARANCE      |   |  |
| DENSITY               | • |  |
| N.PEFRACTIVE INDEX    |   |  |
| SIMULATED DISTILATION |   |  |
| LO WY S & DEG F.      |   |  |
| 1.6                   |   |  |
| 50                    |   |  |
| 84                    |   |  |
| 90                    |   |  |
|                       |   |  |
| RANGE(16 845)         |   |  |
| WT % 0120 F           |   |  |
| WT % 0700 F           |   |  |
|                       |   |  |

••

-64-

\_





07

MI & DIZLIFFED

-66-



-67-

### Run 9972-15: REY-62

Sodium Y-62 was cation exchanged with rare earth to produce this catalyst. The tri-valent rare earth should introduce acidity into the molecular sieve. The catalyst was tested at 280°C, 340°C and 370°C. The results are reported in Tables 6A and 6B. The conversion and product selectivity are shown in Figures 26 and 27. Simulated distillation curves of two samples are presented in Figures 28° and 29. The catalyst performance was poor, displaying low activity and rapid deactivation. Propane was a major product which increased with deactivation at 280°C. This selectivity to propane decreased with increasing temperature. The selectivity to butenes increased with increased temperature. The distillation curve of Sample 1 had some unusual features. 70% of the material (3%-73%) distilled in a 200°F range. The next 25% distilled in a 600°F range. The other sample, #8, was more normal. It showed a narrow distribution and had only a small high temperature trail.

The ReY-62 catalyst performed even worse than the CaY-62 catalyst. The catalyst showed similar initial conversion but deactivated much more rapidly. The ReY-62 has higher acidity than the CaY-62 and this higher acidity was probably the cause of the faster deactivation rate.

-68-
| CALIFIC OF                                                               |                                    |                                           |                                           |                                        |                               |
|--------------------------------------------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------|
| RUN NO. 9972-15<br>CATALYST RE-Y62 #99<br>FKED II2:C3H6:H2<br>C3H6 MW= 4 | 39-97 63 (<br>0 @1:1:2 M<br>2.0813 | TC 35.000M<br>101.E RATIO,<br>DENSITY= 0. | (40.876M A)<br>0.5 C3H6 W)<br>51041 GM/C0 | TTMR THE G<br>ISV.CONTIN<br>C (@ 73 F) | RUN,+5.87GM)<br>Ious overnite |
| MADONE PLOUS COME 34                                                     | 3 CC/HR                            | N2 170 CCM                                | N. 10.21/HR                               | 1120                                   | 15 CC/UR                      |
| TARGET FLOW: COHO ST                                                     |                                    |                                           | 20 01 /41                                 | AC LAVE                                | 13 700/0                      |
| ACTUAL FLOW: 35                                                          | .3 CUTUR                           | EFFLOGN I                                 | 201.017 HK                                |                                        |                               |
| RUN & SAMPLE NO.                                                         | 9972-15-1                          | 9972-15.2                                 | 9972-15-3                                 | 972 15 4                               | 9972-15-5                     |
| CANE WIEN                                                                | 0 5                                | 0.5                                       | 0.5                                       | 0.5                                    | 0.5                           |
| LONG WHOV                                                                | 7.3                                | 25.4                                      | 32.7                                      | 50,9                                   | 54.3                          |
| DRESSURE PSIC                                                            | 158                                | 152                                       | 149                                       | 151                                    | 1.51                          |
| TEMP. C                                                                  | 280                                | 280                                       | 280                                       | 279                                    | 279                           |
|                                                                          |                                    |                                           |                                           |                                        |                               |
| FEED C3H6 CC                                                             | 230.31                             | 644.99                                    | 251.70                                    | 663.87                                 | 113.27                        |
| HOURS FEEDING                                                            | 7.25                               | 18.083                                    | 7.25                                      | 18.167                                 | 3.417                         |
| EFFLNT GAS LITER                                                         | 120.8                              | 367.8                                     | 147.8                                     | 373.8                                  | 70.0                          |
| GM AQUEOUS LAYER                                                         | 95.76                              | 250.05                                    | 100.02                                    | 250.08                                 | 47.36                         |
| GM LTO HYDROCARBON                                                       | 1.40                               | 0.00                                      | 0.00                                      | 0.00                                   | 0.00                          |
| WT FR LIG HC/FEED                                                        | .0119                              | .0000                                     | .0000                                     | .0000                                  | .0000                         |
| WI TR. BLO DOTIND                                                        |                                    |                                           |                                           |                                        |                               |
| MATERIAL BALANCE WT                                                      | 3 89.21                            | 93.08                                     | 94.42                                     | 91.76                                  | NORMAL SZED                   |
| C3H6 CONVERSION A                                                        | 10.46                              | 2.13                                      | • 1.65                                    | 1.31                                   | 0.99                          |
| PRDT SELECTIVITY WT                                                      | C <sub>i</sub>                     |                                           |                                           |                                        |                               |
| CH4                                                                      | 0.00                               | 0.00                                      | 0.37                                      | 0.00                                   | 0.00                          |
| C2 HC'S                                                                  | 0.46                               | 0.00                                      | 0.00                                      | 0.00                                   | - 0,00                        |
| CJHB                                                                     | 27.55                              | 55.66                                     | 64.09                                     | 71.11                                  | 70.11                         |
| C41110                                                                   | 3.1.0                              | 4.51                                      | 2.52                                      | 1,93                                   | 0.96                          |
| C1II8-                                                                   | 4.97                               | 8.16                                      | 4.05                                      | 2.20                                   | 2.04                          |
| C51112                                                                   | 2.34                               | 1.35                                      | 1.36                                      | 0.32                                   | 0.00                          |
| C51110=                                                                  | 0.25                               | 0.00                                      | 0.00                                      | 0.00                                   | 0.00                          |
| C6H14                                                                    | 8.80                               | 1.76                                      | 3.97                                      | 2.61                                   | 0.85                          |
| C6H12 = & CYCLO'S                                                        | 3.95                               | 4.99                                      | 5.10                                      | 0.00                                   | 0.00                          |
| C7+ IN GAS                                                               | 35.62                              | 20.54                                     | 18.54                                     | 21.83                                  | 26.0%                         |
| LIO HC'S                                                                 | 12.97                              | 0.00                                      | 0.00                                      | 0.00                                   | 0.00                          |
| TOTAL.                                                                   | 100.00                             | 100.00                                    | 100.00                                    | 1.00.00                                | 100.00                        |
| SURGROUP ING                                                             |                                    |                                           | 71 00                                     | 76 74                                  | 11 27                         |
| CL -C4                                                                   | 36.08                              | 68.35                                     | /1.03                                     | 17.24                                  | (9.3T)                        |
| C5 -420 F                                                                | 58.60                              | 31.65                                     | 28.97                                     | 24.76                                  | 20.89                         |
| 420-700 F V                                                              | 3.75                               | 0.00                                      | 0.00                                      | 0.00                                   | 0.00                          |
| 700-END PT                                                               | 1.57                               | 0.00                                      | 0.00                                      | 0.00                                   | 0.00                          |
| C5 -END PT                                                               | 63.92                              | 31.65                                     | 28.97                                     | 24.76                                  | 26.87                         |

TABLE 6A RESULT OF PROPYLENE OPERATION

-69-

| ISO/NOBMAL MOLE RAT | TTO DIT  |             |                                       |            |         |
|---------------------|----------|-------------|---------------------------------------|------------|---------|
| C4                  | 1.2.4651 | 0.7906      | 3.6129                                | 2.2143     |         |
| C'h                 | 11.5893  | 2.5652      | 1.9524                                | 0.0000     |         |
| C6                  | 21,8454  | 4.3778      | 1.0667                                | 1.8276     |         |
| C1=                 | 0.3342   | 0.3077      | 0.3235                                | 0.3019     | 0.3939  |
| PARAFFIN/OLEFIN M   | RA'EIO   | •           |                                       |            |         |
| C2                  | 0.1605   |             | •                                     | · •        | ••      |
| C3 .                | 0.0313   | 0.0139      | 0.0106                                | 0.0093     | 0.0069  |
| C4                  | 0.6019   | 0.5369      | 0.6008                                | 0.8491     | 0.4545  |
| C5                  | 9.2763   | •           |                                       |            | •       |
| LIO HC COLLECTION   |          |             |                                       |            |         |
| PHYS. APPHARANCE    | .110     | -           | •                                     | -          | •       |
| DENSLTY             | •        | •           |                                       |            |         |
| N.REFRACTIVE INDEX  | •        | •           |                                       |            |         |
| SIMULATED DISTILLA  | TION     |             |                                       |            | •       |
| lo WT % @ DEG F.    | 285      |             |                                       |            | · •     |
| 16                  | 308      |             |                                       |            | • -     |
| 50                  | 395      | · · · · · · |                                       | - • •      |         |
| 84                  | 589      |             |                                       |            | <b></b> |
| 90                  | 861      |             |                                       | <b>-</b> · |         |
| RANGE(16-84%)       | 281      | ,           | · · · · · · · · · · · · · · · · · · · | <b></b>    |         |
|                     |          |             |                                       |            |         |
| WT % 0420 £         | 27.0     |             | <b>—</b> •• ••                        |            |         |
| WT % (4700 )        | 87.9     |             |                                       | - • -      | - 5     |

Reproduced from best available copy

-70-

: :

| RUN NO.                                   | 9972-15   |             |             |             |              |             |
|-------------------------------------------|-----------|-------------|-------------|-------------|--------------|-------------|
| CAPALYST                                  | RE - Y52  | #9939-97 63 | 00.35.000   | 4(40.87GM / | FTER THE RU  | N. 15.87GM) |
| FEED                                      | H2:C3H6:  | HSO @1:1:5  | MOLE RATTO  | 0.5 C3H6 V  | HSV, CONTENO | US OVERNITE |
|                                           | C3H6 MW-  | 42.0813     | DENSTTY = 0 | 51041 GM/0  | 2C (0 73 F)  |             |
| TARGET FLO                                | W: C3116  | 34.3 CC/HR  | 92 170 CC   | MN,10.2 L.  | AIR HEO      | 15 CC/HR    |
| ACTUAL FLC                                | W:        | 35.3 CC/HR  | rffluent    | 20.0 1.     | HR AO LAYR   | 13.700/1    |
|                                           |           | · · · ·     |             |             |              |             |
| RUN & SAMI                                | LE NO.    | 9972-1.5-6  | 9972-15-7   | 9972-15-8   | 9972-15 9    |             |
|                                           |           |             |             | 272-22-74   |              |             |
| C3H6 WIIS                                 | 1         | 0.5         | 0.5         | 0.5         | 0.5          |             |
| TIRS ON STR                               | REAM      | 75.1        | 80.4        | 98.5        | 101.9        |             |
| PRESSURE,                                 | PSIG      | 152         | 159         | 155         | 159          |             |
| TEMP. C                                   |           | 343         | 343         | 373         | 373          |             |
| 1. A. |           |             |             |             |              |             |
| FEED C3H6                                 | 2C        | 748.54      | 188.78      | 643-14      | 112.64       | •••         |
| HOURS FRE                                 | DING      | 20.75       | 5.333       | 18.167      | 3.417        | -           |
| EFFLNT GAS                                | S LITER   | 124.1       | 105.9       | 364.3       | 66.7         |             |
| OW AQUEOUS                                | 5 LAYER   | 287.16      | 72.39       | 249.52      | 46.7         |             |
| GM LIQ IIYI                               | DROCARBON | 0.66        | 0.00        | 0.92        | 0.00         |             |
| WT FR. LIC                                | Q HC/FERI | 0.0017      | .0000       | .0028       | .0000        |             |
|                                           |           |             |             |             |              |             |
| MATERIAL I                                | BALANCE V | VT % 91.39  | 93.96       | 90.97       | 94.18        |             |
| C3H6 CONVI                                | ERSION 3  | 1.23        | 4.17        | 7.99        | 8.01         |             |
| PRDT SELE                                 | CTIVITY 6 | J'F 😘       | · · · · · · |             | ·            |             |
| CH4                                       |           | 0.40        | 0.38        | 0.52        | 0.62         |             |
| C2 HC'S                                   |           | 0.00        | 0.34        | 0.50        | 0.31         |             |
| СЗНВ                                      | •         | 35.62       | 35.27       | 22.46       | 23.13        |             |
| C4H10                                     |           | 0.78        | 0.85        | 0.78        | 0.75         |             |
| C4H8 -                                    |           | 5.66        | 5.69        | 11.04       | 11.78        |             |
| C51112                                    |           | 0.36        | 0.48        | 0.75        | 0.74         |             |
| C5H10=                                    |           | 0.44        | 0.53        | 0.76        | 0.85         |             |
| C6H14                                     |           | 5.76        | 6.31        | 7.50        | 7.86         |             |
| C6H12-                                    | e cacio,; | 5 12.88     | 13.39       | 11.90       | 12.79        |             |
| C7+ IN                                    | GAS       | 33.68       | 36.74       | 39.96       | 41.18        |             |
| I'LÖ HG.                                  | S         | 4.43        | 0.00        | 3.85        | 0.00         |             |
|                                           |           |             |             |             |              |             |
| TOTAL.                                    |           | 100.00      | 100.00      | 100.00      | 100.00       |             |
| SUBGROU                                   | PING      |             | ·           |             |              |             |
| C] -C                                     | 4         | 42.46       | 42.54       | 35.29       | 36.54        |             |
| C5 -4                                     | 20 F      | 55.68       | 57.46       | 63.05       | 63.41        |             |
| 420-7                                     | 00 F      | 1.55        | 0.00        | 1.58        | 0.00         |             |
| 700-E                                     | ND PT     | 0.31        | 0.00        | 0.07        | 0.00         |             |
| C5 -E                                     | ND PT     | 57.54       | 57.46       | 64.71       | 63.41        |             |

·.`

TASLE 6B RESULT OF PROPYLENE OPERATION

-71-

| ISO/NORMAL MOLE RA | TTO                                                                                                             |            |        |          |
|--------------------|-----------------------------------------------------------------------------------------------------------------|------------|--------|----------|
| C1                 | 0.7273                                                                                                          | 0.6364     | 0.9369 | 1.1236   |
| 05                 | 0.2353                                                                                                          | 0.8667     | 0.6019 | 0.5714   |
| C.6                | 3.0426                                                                                                          | 3.1467     | 4.4822 | · 4.3789 |
| CA.,               | 0.3907                                                                                                          | 0.3926     | 0.2827 | 0.2775   |
| C1+                | 01020                                                                                                           |            |        |          |
| PARAFFIN/OLFFIN M  | RATIO                                                                                                           | 54<br>1. j |        |          |
| C2                 |                                                                                                                 |            | 0.5138 | ••       |
| C3                 | 0.0153                                                                                                          | 0.0149     | 0.0189 | 0.0195   |
| C1                 | 0.1326                                                                                                          | 0.1463     | 0.0685 | 0.0596   |
| С5                 | 0.7925                                                                                                          | 0.8750     | 0.9593 | 0.8462   |
|                    | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |            |        |          |
| LIQ HC COLLECTION  |                                                                                                                 |            |        |          |
| PHÝS. APPEARANCE   |                                                                                                                 |            | OIL    | · · ·    |
| DENSITY            | •                                                                                                               | •          |        |          |
| N.REFRACTIVE INDEX | K                                                                                                               | •          |        |          |
| SAVELATED DISTILL  | TION                                                                                                            |            |        |          |
| 10 WT % @ DEG F.   |                                                                                                                 |            | 297    |          |
| 16                 |                                                                                                                 |            | 325    |          |
| 50                 |                                                                                                                 |            | 408    |          |
| 84                 |                                                                                                                 |            | 518    | ·        |
| 90                 |                                                                                                                 |            | 569    | ** ***   |
| RANGE(16-84%)      |                                                                                                                 |            | 193    |          |
|                    |                                                                                                                 | ····       |        |          |
| WT % (8420 F       |                                                                                                                 |            | 57.0   |          |
| WT % 0700 F        |                                                                                                                 |            | 98.1   |          |
|                    | ,                                                                                                               |            |        |          |

١

-72-



ō.



-74-



:-

-75-

## Micro-reactor Run LZ-105

An L2-105 micro-reactor run from last quarter is reported here. The exact conditions used were discussed last quarter. Briefly, a 2:1  $H_2:C_3H_6$  molar ratio was fed during the day and  $H_2^{2}$ was fed overnight. The reactor was held at 150 psig, 340°C. The detailed results of the run are presented in Table 7. The catalyst tested was LZ-105-6. It was used to evaluate the differences between the Berty and micro-reactors. The conversion of propylene was almost quantitative in the micro-reactor. (It was 95% in the Berty reactor.) This small difference may reflect material which can bypass the catalyst in the Berty. The selectivity to propane was higher in the micro-reactor. The butane was also higher, suggesting an accompanying highly aromatic liquid product. The amounts of C5 and C6 saturates obtained are lower in the microreactor. In a Berty reactor, the catalyst would see the recycled product mixture, and therefore never a high propylene concentration. In a plug flow micro-reactor, only the front of the active catalyst bed would see a high propylene concentration. Since large amounts of propane were produced, the aromatic precursors must have been formed before all the propylene as converted. We assume that the aromatics found were formed right at the reaction zone and not from secondary reactions further in the bed. The high propane and butane formation were the cause of the low  $C_{z}^{+}$  selectivity, being only 41% in the micro-reactor and 68% in the Berty reactor.

LZ-105 gave slightly different results in the micro-reactor than in the Berty reactor. The conversion was comparable in both cases. The product selectivity was different due to the differences between (continuous stirred tank feactor) plug flow and CSTR reactors.

-76-

TABLE 7 PROFYLENE OPERATION IN MICRO-REACTOR

NTBK NG. 10027 MICRO-REACTOR RUN WITH CATALYST WT 7.00 GMS FEED H2:C3H6 @ 2:1 MOLE RATIO, 1.0 C3H6 WHSV, DAY-TIME FEED ONLY C3H6 MW= 42.0813 DENSITY= 0.51041 GM/CC (@ 73 F) TARGET FLOW: C3H6 13.7 CC/HR H2 135 CCMN, 8.1 L/HR ACTUAL FLOW: 15.3 CC/HR EFFLUENT 12.5 L/HR

•••

| RUN NO.             | 10027-02 |
|---------------------|----------|
|                     |          |
| CATALYST            | LZ-105-6 |
| C3H6 WHSV           | 1.1      |
| HRS ON STREAM       | 7.25     |
| PRESSURE.PSIG       | 150      |
| TEMP. C V           | 340      |
| FFFD C386 CC        | אר ברר   |
| LOIDE BEEDING       |          |
| NOOKS ILLDING       | (.43     |
| EFFLNT GAS LITER    | 62.//    |
| GM LIQ HYDROCARBON  | 11.34    |
| WT FR. LIQ HC/FEED  | .1999    |
| MATERIAL BALANCE WT | \$ 82.56 |
| C3H6 CONVERSION %   | 99.69    |
| PRDT SELECTIVITY WT | 8        |
| CH4                 | 0.63     |
| C2 HC'S             | 1.62     |
| Сзня                | 30.32    |
| C4H10               | 23.12    |
| C4H8=               | 0.57     |
| C5H12               | 8,96     |
| C5H10=              | 0.26     |
| C6H14               | 3 30     |
| C6H12- E CVCLO'S    | 0.42     |
|                     | 5 45     |
| CTT IN GAS          | 3.45     |
| LTO HC.2            | 25.34    |
| TOTAL               | 100.00   |
| SUB-GROUPING        |          |
| Cl -C4              | 56.27    |
| C5 -420 F           | 32.33    |
| 420-700 F           | 11.15 E  |
| 700-END PT          | 0.25 E   |
| C5 _END PT          |          |
|                     |          |

-77-

| ISO/   | NORMAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MOLE   | RATIO  |       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|
| C4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1      | .2838 |
| C5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | . 3    | .2381 |
| CG     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 7      | .2715 |
| C4     | ∎ s in transitioner de la companya | •      | 0      | .5459 |
| PARA   | FF IN/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LEFIN  | M RAT  | 10    |
| C2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 37     | .6116 |
| C3     | La la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 95     | .7476 |
| C4     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 38     | .8192 |
| CS     | <b>i</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 33     | .571  |
| LIQ HO | COLLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CTION  |        |       |
| PHYS   | . APPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARANCI | E      |       |
| DENS   | ITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        | •     |
| N.RF   | FRACTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VE IN  | DEX    | •• '  |
| SIMU   | ILATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DISTI  | LLATIO | N     |
| 10     | WT %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | @ DEG  | F.     |       |
| 16     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |       |
| 50     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |       |
| 84     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |       |
| 90     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |       |
| RA     | NGE ( ) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -84%)  |        |       |
| WI     | * * @42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OF     |        | •     |
| WI     | \$ 8 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OF     |        |       |

.

.

----

- /\*

-78-

÷,

.

, - - - - -, - - -

, -<u>-</u>:,

Based on tests from the previous quarter, standard test conditions were established. This test was flexible enough to allow temperature changes during the run, and comparable enough to allow comparisons between catalysts. Generally, the medium pore molecular sieves tested were excellent catalysts for propylene oligomerization. Several of the other catalysts tested were disappointing, whowing either low activity or very rapid deactivation.

LZ105-6 was already known to be a good catalyst for propylene oligomerization. The test this quarter was only to extend our knowledge of its reactivity to the range of the standard test conditions. This medium pore molecular sieves showed only modest deactivation and good selectivity to liquid products. The percentage of aromatics in the condensed product was low because of the low reaction temperature. At the lowest temperatures, the aromatization process showed greater deactivation than the oligomerization process.

with its higher activity but slightly inferior selectivity to  $C_5^+$  products, this catalyst, LZ-105, is comparable to UCC-104, which is the best catalyst for this reaction reported thus far.

The multivalent ion, (calcium or rare earth) exchanged Y zeolites were very poor catalysts for propylene oligomerization. They both showed low initial conversion and rapid deactivation. The more acidic REY-62 showed much more rapid deactivation than CaY-62.

The new materials reported this guarter, UCC-103, 106 and 107, were also disappointing catalysts. The UCC-103 (acid extracted UCC-101) was superior to UCC-101. The activity was comparable and deactivation was slightly less. The selectivity to liquid was better because of the lower selectivity to propane. Even with being better than UCC-101, the UCC-103 suffered from low activity and only fair stability. UCC-106 had higher initial conversion than UCC-101 or 103, but deactivated more rapidly. UCC-107 had low initial conversion and very rapid deactivation.

-79-

## INTRODUCTION TO TASK 2 TESTING

Six syngas tests are reported this quarter, 10011-6 to -9 and 9972-11 and -12. Some of these tests were quite extensive, investigating many different process conditions. Three of the runs, 10011-6, 9972-11 and 9972-12 were begun last quarter but are reported here. Additionally three runs 10011-10 to -12 were begun this quarter but will be reported next quarter. This one month offset between testing and reporting periods is necessary to obtain all the analytical information for the test.

Unlike last quarter, the tests run this quarter were not shakedown runs. The catalysts tested were very active and had good product distributions. The various activation procedures investigated last quarter allowed the adoption of a reliable activation procedure this quarter. The many process conditions examined in the tests early in the quarter also allowed for the establishment of standard initial test conditions.

The standard activation procedure used for iron based catalysts is as follows. The catalyst is heated to 270°C under nitrogen at 50 psig. At temperature CO is introduced slowly into the nitrogen feed. This slow introduction is to control initial exotherms. The CO concentration is increased to 25% of the total feed, 400 cc/min. CO, 1200 cc/min N<sub>2</sub>. The CO is fed over the catalyst for 24 hours. The feed is then switched to hydrogen at 2000 cc/min. and this is fed over the catalyst for 18 to 24 hours.

For the standard initial test condition, the reactor is kept at 300 psig and 250°C. 1:1  $H_2$ :CO syngas is fed into the reactor at 400 cc/min. Depending upon the information desired about the catalyst, the test conditions may be altered after an initial period which is usually 4 days. Many tests are terminated directly after this initial period. For those tests that continue, the change in process conditions usually involves changing the temperature or the  $H_2$ :CO ratio of the feed.

-80-

Most of the calculations involved in the data analysis were discussed last quarter and will not be reiterated here. The new analysis which has been included this guarter is the product distribution presented in a Schultz-Flory format. This will be an important tool for catalyst evaluation from now on. The concentrations of the  $C_1$  to  $C_5$  hydrocarbons are taken from the G.C. analysis. The concentrations of the components in the condensed phase are calculated from simulated distillations. For this calculation: it is assumed that the product boiling between the boiling points of normal  $C_n - 1 H_2 n$  and normal  $C_n H_{2n} + 2$  has the carbon number n. This is a good assumption if the product is not highly aromatic because isoparaffins and olefins usually boil at temperatures lower than that of the normal paraffin but above that of the next lower paraffin. The exceptions to this occur in the lower carbon number products which are mostly analyzed in the gas phase. The liquids produced this quarter fit this low aromatic assumption. By refractive index analysis, described in the introduction to Task 1 testing, the liquids produced thi guarter contained less than 5% aromatics.

The difference in aromatics can be accounted for. Aromatics of carbon number n generally boil in the range of  $C_n$ +1 olefins and paraffins. This carbon number product distribution can take aromatics into consideration if the percentage of aromatics is known and the assumption is made that the aromatics are fairly equally distributed amont the carbon numbers. That is the aromatics have the same boiling point distribution as the product as a whole. For highly aromatic produces, this has to be true. For low percentages of aromatics, it is unimportant. A problem might occur for very heavy products with 20 to 30% aromatics. The heavier oils may dealkylate giving a low r average molecular weight to the aromatics than the paraffins and olefins.

In our present analysis, the hydrocarbons are not welldefined. The total weight percent of this material is known but the distribution among carbon numbers is unknown. Presently certain

-81-

11

gas samples are bubbled into methanol. This methanol is analyzed on a capillary column G.C. to see the distribution of hydrocarbon among the various carbon numbers. Until better correlations can be established to define this distribution, the  $C_6$  to  $C_{10}$  products will be ignored in this analysis. The data is plotted in a Schultz-Flory format,  $\ln(W_n/n)$  versus n where  $W_n$  is the weight fraction of the product with carbon number n.

-82-

÷ :

## Run 10011-6: Reference Iron Catalyst

Run 10011-6 was very extensive with the catalyst being on stream for over 450 hours. The catalyst was potassiumpromoted iron oxide containing no shape selective component. This catalyst represents the state-of-the-art of iron catalysts, a standard against which the molecular sieve containing catalysts will be compared. For a sieve containing catalyst to be superior, it should have either a higher selectivity to desired products, gasoline or diesel oil, or it should have superior product characteristics, such as higher octane gasoline, and lower pour point, for the heavier distillate fuels, while maintaining high activity.

The catalyst was kept on stream for a long time to investigate the catalyst's characteristics under many process conditions. These conditions were studied for two purposes. Firstly, the conditions were chosen to maximize the  $C_5^+$  product and then altered in an attempt to convert the solid condensed product to oil. The data was to be used to choose the best conditions to test the molecular sieve containing catalysts. The second reason for testing at so many process conditions was to have a reference material result to compare to that with a molecular sieve containing catalyst at a variety of test conditions.

The material balances, activities, and product selectivities for all the samples in the run are reported in Tables 8A to 8H. A summary of the conversions and product selectivities are represented in Figures 30 and 31. The boiling point distributions of condensed products representative of the various process conditions are shown in Figures 32 to 36. The Schultz-Flory hydrocarbon product distributions of those representative samples are shown in Figures 37 to 41. The first seven samples were taken with the reactor at 100 psig and 250°C. The on-line-blended 1.06:1  $H_2$ :CO syngas was fed at 400 cc/min. After ~70 hours on stream the feed gas was changed to a preblended 1:1  $H_2$ :CO syngas which contained a 10% argon tracer. At ~120 hours on stream, the feed gas was

-83-

again changed this time to a preblended 60:30:10 H<sub>2</sub>:CO:Ar syngas. The higher hydrogen ratio syngas should produce lighter, more hydrogen-rich hydrocarbons and possibly change the solid mondensed product to an oil. After ~175 hours on stream, the temperature was raised to 280°C. It was raised further to 310°C at ~250 hours on stream. These temperature increases were further attempts to reduce the amounts of heavy products. At ~315 hours on stream, the reactor pressure was lowered from 100 psig to 30 psig. This lower reactant concentration lowered the probability of chain growth and gave lighter products. At ~435 hours on stream, the temperature was finally raised to 340°C and the run terminated at 455 hours on stream. This range of process conditions gives a wide spectrum from which to choose conditions which will be optimal for the molecular sieve containing catalysts.

The addition of potassium to an iron catalyst has a number of effects on its catalytic activity. The alkali introduces water gas shift activity into the catalyst. This allows for the efficient use of low H<sub>2</sub> to CO ratio syngas, the kind produced by modern coal gasifiers. With these CO rich compositions less of the hydrogen, the more valuable component of the syngas, is lost to byproduct water formation. The price paid is that more of the CO is diverted to the production of CO2. From stoichiometry, the molar ratio  $CH_{v}/(H_{2}O+CO_{2})$  must be 1.0. This ratio, reported for every sample, was often less than 1.0 at the early stages of the run. This was probably caused by further reduction of the iron oxide to iron metal producing  $CO_2$  or  $H_2O$  but no hydrocarbons  $CH_r/(H_2O+CO_2)$ values far different from 1.0, particularly well into a run suggests that the data is suspect. This catalyst showed good water gas shift activity. With the 1:1 syngas at 250°C approximately 1/2 the CO became CO, with little water being produced. The switch to 2:1 syngas obviously lowered the amount of 30, produced but kept the water gas shift constant at the same value. With increased temperature, the water gas shift increased while the actual % of the CO becoming CO, decreased. This was due to the absolute amounts of CO and H, in the effluent. The drop in pressure initially increased the percentage of CO becoming CO2. During this

-84-

run, the shift activity showed faster deactivation rates than the F-T synthesis itself.

The addition of potassium to iron Fischer-Tropsch catalysts is also known to increase the amount of oxygenates produced, particularly  $C_2^+$  alcohol. Many of the aqueous layer samples were analyzed for alcohols. Ethanol generally predominated over the other alcohols being up to 5% of the aqueous layer. Methanol, iso and n-propanol were also detected. Some of the later samples, 31, 32 and 34, actually had isopropanol as the predominate alcohol (at 0.2%). The aqueous samples not analyzed for specific alcohols were analyzed for total organic carbon, TOC. The results gave 10-50 mg/ml TOC. This corresponded to less than 1.5% of the carbon in the hydrocarbon product. With approximately half the carbon going to CO<sub>2</sub>, the exclusion of alcohols from the product analysis does not significantly affect the product distribution or the material balance.

The conversion of syngas, the combined CO+H, conversion, showed significant deactivation over the first two days of operation. It dropped from the initial 74% to approximately 45%. After this, the conversion remained relatively constant even though the reaction conditions were altered significantly. Some of this was due to the deactivation being overcome by the more rigorous test conditions The syngas conversion decreased with the introduction employed. of the 2:1 feed at 250°C. This was not due to a deactivation of the catalyst. We envision that the high concentration of hydrogen was not effectively used. The H2/CO usage ratio clearly showed this. "In the 1:1 syngas the usage ratio was approximately 0.6. The reaction was using more CO than hydrogen. The introduction of extra hydrogen to such a system would not be efficient. The usage ratio did increase to  $\sim 0.75$  for the 2:1 syngas at 250°C. While the combined conversion of CO+H, decreased with the introduction of the 2:1 syngas, due to this inefficient usage of the hydrogen, the percent conversion of the CO actually increased. With lower CO<sub>2</sub> production and higher CO conversion, the percent conversion of CO to hydrocarbons was actually 42% higher in sample 14, from 2:1 syngas at 250°C, than in sample 5, from 1:06:1

-85-

syngas at 250°C, even though the combined syngas conversion is 7% lower. The Fischer-Tropsch reaction is very sensitive and changes in product distribution and feed usage ratios result from changes in test conditions. This makes careful analysis of all the data necessary to evaluate the effect of any test condition change. Simply looking at combined syngas conversion can imply trends going in the wrong direction. Comparisons of the activities of different catalysts must be made with great care to see what the real differences in the two catalysts are and what losses or gains in activities were the cause of these differences. The increase in combined syngas conversion with increased temperature was not as great as expected. The conversion was ~41% at 250°C and increased to only 59% at 310°C. Rather than this being due to the activation energy for the reaction, the small change is probably a sign of deactivation and changes in the catalyst with the increased temperature.

i.,

The changes in the reaction conditions had large effects on the hydrocarbon product distribution. The heaviest hydrocarbons were produced at the lowest reaction temperatures. The selectivity to methane was initially very.low, 4%, then increased to 7.0% with the introduction of the 2:1 syngas feed. While this was a 75% increase, the absolute amount of methane was still quite low. The selectivity to methane remained at or below 10% until the pressure was reduced to 30 PSIG at 310°C. With that change, the methane selectivity increased 150% to 27 wt.%. When the temperature was increased to 340°C, the methane selectivity increased another 40% to 37 wt.%.

The light gases, other than methane, showed much less dramatic changes with the various test conditions. The  $C_3$ 's and  $C_4$ 's did not increase with the drop in pressure or the temperature increase to 340°C. The paraffin to olefin ratio of the  $C_3$ - $C_5$  hydrocarbons indicated the entire hydrocarbon product was probably highly olefinic. The percentage of paraffins increased with decreased pressure and increased temperature. The iso/normal ratio of the light paraffins,  $C_4$ - $C_5$ , was low as expected. This ratio

-86-

12<sup>1</sup>-

showed no clear trend with changes in test conditions until the pressure was decreased, when it increased. The iso/normal ratio increased further with the temperature increase at the low pressure. Analysis of these light gases has not helped to identify optimal test conditions. The choice must be left to the analysis of the  $C_5^+$  product.

At the start, the  $C_5^+$  yield was 83% at 250°C and decreased steadily to 33% at 340°C. The amount of material which was condensed showed an even more dramatic decrease, changing from 68% of the total hydrocarbons at 250°C to only 13% at 340°C. Since  $C_5^+$  is the desired product, this would seem to give a clear advantage to 250°C with 1:1 syngas feed as the optimal test conditions. The choice is not as simple, however, since the nature of the  $C_5^+$  product also changed with process conditions. Different conditions would be chosen as best depending upon how the product would be further upgraded.

At 250°C, the condensed hydrocarbon product was a solid wax at rcom temperature. The condensed product from all the conditions tested was solid except for the final condition, 340°C when a liquid condensed product was collected. At 250°C with 1:1 syngas feed, very heavy hydrocarbons were produced. 23% of the hydrocarbons produced boiled in the gasoline range, the hydrocarbons starting with  $C_5$  which boil below 420°F. 29% boiled between the gasoline range and the upper limit of the diesel range, 700°F. 32% of all the hydrocarbons produced (47% of the condensed product) boiled above the diesel range. While this final material, wax, may be a good cracking feed, it has little value in a once-through operation. This maximum selectivity to  $C_5^+$  was not the maximum selectivity to motor fuel range materials.

With so much of the condensed product being wax, it is not surprising that the condensed product from the reaction at 250°C was solid. The condensed product remained solid while the percentage of material boiling above the diesel range decreased from 47% to 20%. The lower pressure which decreased the  $C_5^+$  selectivity from 60% to 40% actually increased the percentage of the condensed 700°F<sup>+</sup> product

-87-

from less than 20% to 23%. The final condensed product which was the first totally liquid sample actually contained a higher percentage of 700°F<sup>+</sup> material, 25%, than the previous solid samples. It may seem contradictory that the liquid product was heavier than the solid product but the reason for this can easily be seen in the data. Analysis of the light paraffins showed that the hydrocarbons produced under most conditions were straight chains. These hydrocarbons pack well together and solidify at relatively high temperatures, i.e., they have high pour points. At 340°C, these light paraffins showed more branching. It is reasonable to assume that the heavier hydrocarbons were also highly branched. Branched hydrocarbons have much lower pour points than the corresponding normal hydrocarbons. The reaction conditions at 340°C produced liquid condensed products instead of solids not because it produced a lighter product but because it produced a more isomerized one.

The maximum amount of material in the motor fuel range,  $C_5$  to 700°F, was produced at 280°C with 2:1 syngas at 100 psig. The other conditions at 100 psig were all close producing about 90% as much material in that boiling range.

The plots of the simulated distillations of the condensed samples were all smooth and broad showing no high concentration of individual compounds as had been previously seen in many of the Task 1 tests. The condensed products had little material boiling below  $300^{\circ}$ F and many of the samples contained material which boiled above  $1000^{\circ}$ F. This boiling point distribution data was combined with the gas product analysis to give the product distribution for the catalyst. As described in the introduction,  $C_5-C_{10}$  are not well characterized at this time and were not included in the graphs.

The reference F.T catalyst was expected to give a Schultz-Flory distribution. A Schultz-Flory distribution is obtained when the probability of chain growth is independent of carbon number. This distribution gives a straight line when plotted as ln(Wn/n)vs. n where Wn is the weight fraction of the product with carbon number n. Sample 10011-6-4 had some scatter in the data but it did follow the expected straight line SF distribution. A straight

-88-

line through the data gives an  $\alpha$  of 0.83. A later sample, 10011-6-9, which was taken under the same reaction conditions did not give a single straight line product distribution. Up to  $C_{20}$ , it gave a straight line with an  $\alpha = 0.84$ . At  $C_{20}$  there was a sharp change and  $\alpha$  increased to 0.91. This double  $\alpha$  product distribution was seen in the rest of the samples taken during this run. Sample 10011-13 which was taken at 250°C but with 2:1. syngas showed similar  $\alpha$ 's of 0.84 and 0.91 with the change at  $^{\circ}C_{20}$ . The other samples taken at higher temperatures all had lower  $\alpha$ 's out there were still two  $\alpha$ 's with the change occurring at about  $C_{20}$ .

A simple explanation of this double  $\alpha$  is that the probability of chain growth may actually increase with increased molecular weight. The probability of chain termination should increase with the increased ability of intermediates to desorb from the surface of the catalyst. Because of their low vapor pressure, the heavier hydrocarbons should have trouble desorbing from the catalyst even at the reaction temperature. Th<sup>2</sup>, increase in  $\alpha$  would be gradual and not a sharp break at  $C_{20}$ . It would reflect the gradual changes in the hydrocarbon properties with increased carbon number.

r<sup>è</sup>

£

There is another explanation which could explain this double type product distribution. These two «'s may indicate there are two distinct active sites each with its own distinct «. The site with the lower ~ may have dominated the product distribution at carbon numbers below  $C_{20}$ , while the other site may have dominated the distribution of the heavier hydrocarbons. If the "'s were different enough a fairly sharp break would occur. It is possible that one of the sites corresponded to a potassium-promoted one while the other was unpromoted. The fact that the double ~ was not seen in the first sample would indicate that the high ~ site took longer to become activated. The two sites appeared to be deactivating at similar rates. If this is the correct explanation for the sim s's it is unlikely that the mature of the sites will be easily defined since only a small percentage of the possible iron sites are actually used.

-89-

A double a product distribution (when the second a is higher than the first) has a greater percentage of wax formation , than a single a distribution with the same first a. It would be better if the high carbon number  $\propto$  were less than the low carbon  $\cdot$ number . This situation would give more product in the desired motor fuel range with less than expected 700°F+ formation. This kind of product distribution cannot be the result of two active sites, but it can be accomplished with shape selective control From the results of this catalyst it would seem that the molecular sieve containing catalysts should be tested at 250°C with a 1:1 syngas feed. These are the most difficult conditions for the molecular sieve containing catalyst to halt the formation of heavy waxes. If the sieve cannot accomplish this, the conditions can be made progressively less stringent until the formation of wax product is stopped.

-90-

| TABLE 8A RESUL                                               | T OF SY             | NGAS OPERA                | TION                      |                         |                           |
|--------------------------------------------------------------|---------------------|---------------------------|---------------------------|-------------------------|---------------------------|
| RUN NO. 10011 5<br>CATALYST FE203.15 K2<br>FEED. H2:CO:AR OF | 0, #9673<br>50/50/0 | -118.REFERI<br>. 45/45/10 | ENCE CATALY<br>& 60/30/10 | ST. 8000 8<br>0 40000/1 | 16.85 GM<br>IN OR BOOGHSV |
| RUN & SAMPLE NO. 10                                          | 0011-6-1            | 10011-6-2                 | 10011-6-3                 | 10011 5-4               | 10011-6-5                 |
|                                                              | - 24 21.2           |                           |                           | *******                 |                           |
| FEED H2:CO:AR                                                | 51:48:0             | 51:48:0                   | 51:48:0                   | 51:48:0                 | 51:48:0                   |
| TIRS ON STREAM                                               | 5.167               | 21.9                      | 24.4                      | 28.9                    | 45.6                      |
| PRESSURE PSIG                                                | 102                 | 99                        | 101                       | 101                     | 101                       |
| TEMP. C                                                      | 254                 | 253                       | 256                       | 253                     | 253                       |
|                                                              |                     |                           |                           |                         |                           |
| FEED CC/MIN                                                  | 400                 | 400                       | 100                       | 400 .                   | 100                       |
| HOURS FEEDING                                                | 5.167               | 16.58                     | 2.5                       | 7.0                     | 16.7                      |
| EFFINT GAS LITER                                             | 61.4                | 227.0                     | 35.4                      | 28.6                    | 326.7                     |
| GM AQUEOUS LAYER                                             | 3.21                | 10,99                     | 0.943                     | 2.64                    | 1.08                      |
| GM OLL & WAX                                                 | 3.82                | 19.38                     | 2.650                     | 7.13                    | 20.61                     |
|                                                              |                     |                           |                           |                         |                           |
| MATERIAL BALANCE                                             |                     |                           |                           | •                       |                           |
| GM ATOM CARBON %                                             | 83.44               | 89.67                     | 88.13                     | 79.99                   | 98.74                     |
| UM ATOM HYDROGEN 3                                           | 86.38               | 93.88                     | 89.73                     | 82.78                   | 99.51                     |
| GM ATOM OXYGEN %                                             | 93.05               | 1.00.03                   | 93.97                     | 82.28                   | 106.39                    |
| RATIO CHX/(H20+CO2)                                          | C.8013              | 0.7882                    | 0.8589                    | 0.9221                  | 0.7762                    |
| RATIO X IN CHX                                               | 21684               | 2.1585                    | 2.1473                    | 2,1351                  | 2.1388                    |
| USAGE H2/CO PRODT                                            | 0.6053              | 0.6089                    | 0.6023                    | G.6823                  | 0.5762                    |
| K REFLAT SHIFT REACTAN                                       | 39.22               | 18.29                     | 1.6.48                    | 6.63                    | 8.32                      |
| CONVERSION                                                   |                     |                           |                           |                         |                           |
| ON CO                                                        | 04 16               | 97 30                     | 80 34                     | 63 02                   | 55 79                     |
|                                                              | 94.LU               | 67.50                     | 46 00                     | 40 27                   | 27 22                     |
|                                                              | 55.57               | 51.30                     | 40.90                     | - 401.27<br>F1 74       | 12.33                     |
|                                                              | 14.24               | 68.8%                     | 63.17                     | 51.34                   | 43.45                     |
| PRDT SELECTIVITY, WT 3                                       |                     |                           |                           |                         |                           |
|                                                              | 6.22                | 5.59                      | 5.17                      | 4.44                    | 4.50                      |
| CZ HC'S                                                      | 8.37                | 7.08                      | 0.57                      | 5.5/                    | 5.90 4                    |
| C3N6-                                                        | 12 28               | 0.90                      | 0.83                      | 6 39                    | 0.00                      |
| CAHIO                                                        | 12.20               | () R]                     | 0.77                      | 9.30                    | 0.00                      |
| CAHB                                                         | 9 30                | 6 92                      | 5 41                      | 4.92                    | 4 59                      |
| C5H12                                                        | 2 00                | 1 55                      | 1 43                      | 1 15                    | 1 08                      |
| C5H10-                                                       | 7 10                | 5 20                      | 4 00                      | 3 06                    | 0.00                      |
| C5H7A                                                        | 2 10                | 1 67                      | 1 576                     |                         |                           |
| CAULDE & OVOLOLO                                             | 0.T3                | 2.0.2                     | 1.33                      | L.4/<br>7 F/            | 0.13                      |
| CURTY = G CICIO 2                                            | 4.18                | 3.23                      | 3.00                      | 4.75                    | 0.00                      |
| LIO HOLO                                                     | 20.32               | 1.6.40                    | Lb.L3                     | T2.03                   | 17.78                     |
| INV RC 5                                                     | 29.06               | 41.39                     | 44.79                     | 53.48                   | 63.65                     |
| TOTAL                                                        | 1.00                | 100                       | 100                       | LOO                     | 100                       |

-91-

| SUN-GROUPING           |              |         |        | ·      |          |
|------------------------|--------------|---------|--------|--------|----------|
| C1 - C4                | 38.16        | 30.52 \ | 28.14  | 22.55  | 22.38    |
| C5 -:420 F             | 52.40        | 47.13   | 46.74  | 11.45  | 29.25    |
| 420-700 F              | 8.73         | 18.38   | 20.44  | 26.05  | 27.62    |
| 700-END PT             | 0.72         | 3.97    | 4.68   | 5.15   | 20.75    |
| CS -END PT             | 61.84        | 69.48   | 71.86  | 77.45  | 77.624   |
| 190/NORMAL MOLE RATIC  | )            |         |        |        |          |
| C4                     | . 1323       | . 1364  | .1393  | .1210  | .1455    |
| Ch                     | ,1740        | .1726   | .1695  | .1750  | .1392    |
| C6                     | .2321        | .1843   | .2368  | .2019  |          |
| CA-                    | 0827         | .0884   | .0913  | .0858  | .0794    |
| DADARRINICOLERIN M BAT | TO TO        |         |        |        | •        |
|                        | 2486         | . 2921  | .2721  | .2707  | .2479    |
| . ua<br>C3             | 0858         | 0927    | .0946  | .0969  | . 1047   |
|                        | 1068         | .1132   | .1154  | .1173  | .1279    |
|                        | 2736         | 2859    | .2820  | .2811  |          |
| LO HE COLLECTION       |              |         |        |        | , u      |
| DUVE ADDEADANCE        | 0.0          | 011     | 0.110  | . 011. | WAX      |
| PRIS. REPARANCE        | 0 778        | 0 789   |        | 0 794  |          |
| DENSITY                | · U. / / O   | 1 4356  |        | 1 4975 |          |
| N, REFRACTIVE UNDER    | K [.429/     | T.4230  | •      | 1.49/2 |          |
| SIMULATED DISTILLA     | FION         |         |        | 205    |          |
| LO WT % @ DEG F        | 257          | . 281   | L IQ.  | 307    | .540     |
| 16                     | 291          | 303     | 010    | 342    | 384      |
| 50                     | . 385        | 141.    | NOT    | 480    | 576      |
| 84                     | <u>.</u> 518 | 650     | Col    | 670    | · 8 2 2· |
| ခုဂ                    | 564          | 697     | LECT-  | 714    | 884      |
|                        |              |         | ED     |        |          |
| RANGE (16-84 %)        | 227          | 347     | LUMPED | 328    | 438      |
|                        |              |         | INTO   |        |          |
| WT % @420 F            | 63.7         | 46.Ö    | SAMPLE | 38.3   | 24.0     |
| WT & @700 F            | 97.2         | 90.4    | 4      | 88.5   | 67.4     |
|                        | •••••        | •       |        |        |          |

ю.

-92-

| RUN NO.       10011-6         CATALYST       F2203.15       K20. 89673-11E.REFFRENCE CATALYST. RO CC 86.86 GM         FERD       H2:CO:AR OF 50/50/10.45/45/10 & 60/30/10 @ 400CC/MN OR 300GHBV         RUN & SAMPLE NO.       10011-6-6 10011-6-7 10011-6-8 10011-6-9 10011-6.10         FREE H2:CO:AR       51:48:0       45:45:10 • 45:45:10 • 45:45:10         FREE H2:CO:AR       51:48:0       71.4       93.9         PRESSURPER PSIG       101       93       97       94         TEMP. C       ,253       253       253       253       253         PEED CC/MIN       400       400       400       400       400       400         HOURS FREDING       5.4       20.4       22.5       8.0       16.3         FFELM CAS LITER       103.3       391.6       395.0       139.0       280.5         GM AQUEOUS LAYER       0.3       0.65       0.0       0.0       0.0       0.0         GM ATOM MARDROREN & 106.51       6106.91       94.55       90.03       21.34         MATERIAL BALANCE                                                                                                                                                                                                                                                                           |      | TABLE 8B R                                           | ESULT OF SY            | NGAS OPERA          | TION       |            |              |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------|------------------------|---------------------|------------|------------|--------------|---|
| PERMEXECUTAR OF SUPSIDE SUPSIDE SUPSIDE SUPER PRESENT STATESPRUM & SAMPLE NO. $10011-6-6$ $10011-6-7$ $10011-6-7$ $10011-6-7$ $10011-6-7$ $10011-6-7$ PRUESSURE, PSIG $101$ $95$ $97$ $99$ $94$ PRESSURE, PSIG $101$ $95$ $97$ $99$ $94$ PRESSURE, PSIG $101$ $95$ $97$ $99$ $94$ TEMP. C.253.253.253.253.253PEED CC/MIN $400$ $400$ $400$ $400$ $400$ $400$ MOURS FREDING.5.4.20.4.22.5 $8.0$ $16.3$ WATERIAL BALANCE.3.91.6 $395.0$ $139.0$ .280.5CM AQUÉDÚS LAYER $0.3$ $0.65$ $0.0$ $0.0$ $0.0$ GM ATOM CARBON \$ $106.51$ $(106.61)$ $94.55$ $90.05$ $92.48$ GM ATOM CARBON \$ $106.51$ $(107.22)$ $92.66$ $89.67$ $90.96$ GM ATOM CARBON \$ $106.51$ $(107.22)$ $92.66$ $89.67$ $90.96$ RATIO CHX (HO4-CO2) $1.192$ $1.023.0$ $893.70$ $91.31$ $91.80$ RATIO CHX (HO4-CO2) $1.192$ $1.023.0$ $89.67$ $90.96$ RATIO CHX (HO4-CO2) $1.192$ $1.023.0$ $89.14$ $1.022.9$ RATIO X IN CHX $2.1193$ $2.125.91$ $1.9866$ $2.1388$ $1.967$ USAGE INZ/CO PRODT $0.6675$ $0.6347$ $0.551$ $0.647$ $0.5792$ CONVERSION \$ $58.12$ $58.77$                                                                                                                                                                                                                                               | RUN  | NO. 10011-6<br>MLYST FE203.15                        | K20, #9673             | - LLE, REFER        | ENCE CATAL | (ST, 80 CC | 86.85 GM     |   |
| RUN & SAMPLE NO.       10011-6-6 10011-6-7 10011-6-8 10011-6-9 10011-6-9 10011-6-10         FFRE M2:CO:AR       51:A8:O       45:45:10 0 45:45:10 45:45:10 116.2         INS ON STREAM       51.0       71.4       03.9       101.5       116.2         PRESENT, PSIG       101       9       9       9       9         TEMP. C       253       253       253       253       253         PEED CC/MIN       400       400       400       400       400         MOURS FREDING       5.4       20.4       22.5       8.0       16.3         FFENT GAS LITER       103.3       391.6       395.0       139.0       280.5         CM AQUEOUS LAYER       0.3       0.65       0.0       0.0       0.0       0.0         GM ATOM CARBON \$       106.51       106.91       94.55       90.03       92.48         GM ATOM MYROGEN \$       106.51       106.91       94.55       90.03       92.48         GM ATOM MYROGEN \$       106.72       107.22       92.66       89.67       90.96         RATIO CHX/(HZ0+CO2)       1.1192       1.0491       1.0283       0.8914       1.0229         RATIO KIN CHX       102.13       1.2213       93.10       1.8                                                                                                                         | FEE  | D HZ:CO:AR                                           | OF 5075071             | 0,45/15/10          | & 607307LC |            | IN OR SOOGIE | 9 |
| FFEE. H2:CO:AR       51:48:0       51:48:0       45:45:10 - 45:45:10       45:45:10         HES ON STREAM       51.0       101       99       97       99       94         PRESSURE, PSIG       101       99       97       99       94         TEMP. C       ,253       ,253       ,253       ,253       ,253         PEED CC/MIN       400       400       400       400       400       400         HOURS FREDING       5.4       20.4       ,22.5       8.0       16.3         MFFLNT, GAS LITER       103.3       391.6       395.0       139.0       280.5         GM AQUEOUS LAYER       0.3       0.65       0.0       0.0       0.0       0.0         GM ATOM CARBON %       106.51       106.91       94.55       90.03       92.48         GM ATOM CARBON %       106.72       107.22       92.66       89.67       90.96         GM ATOM CARBON %       106.72       107.22       92.66       89.67       90.96         GM ATOM MYDROGEN %       102.83       1.02.32       93.70       93.11       91.80         RATIO CHX/(H20+CO2)       1.1192       1.0491       1.0249       1.318       1.0629                                                                                                                                                                 | RUN  | & SAMPLE NO.                                         | 100 <sup>1</sup> 1-6-6 | 1001.1-6-7          | 10011-6-8  | 10011-6-9  | 10011-6-10   |   |
| FFER. H2:CO:AR       51:48:0       51:48:0       45:45:10 • 45:45:10 • 45:45:10       45:45:10         HER ON STREAM       51.0       71.4       93.9       101:29       118.2         PRESSURE, PSIG       101       99       97       09       94         TEMP. C       253       253       253       253       253         PEED CC/MIN       400       400       400       400       400         HOURS FEEDING       5.4       20.4       22.5       8.0       16.3         KFFLNT, GAS LITER       103.3       391.6       395.0       139.0       280.5         CM AQUEOUS LAYER       0.3       0.85       0.00       0.0       0.0         GM ATOM CARBON %       106.51       (106.91       94.55       90.03       92.48         CM ATOM CARBON %       106.51       (106.91       94.55       90.03       92.48         CM ATOM CARBON %       106.51       (106.91       94.55       90.03       92.48         CM ATOM CARBON %       106.51       (106.91       94.55       90.03       92.48         CM ATOM CARBON %       106.51       (106.91       94.55       90.03       92.48         CM ATOM CARBON %       106                                                                                                                                              |      | ала <b>к</b> ала | TANGTGAS               |                     |            |            |              |   |
| IRB ON STREAM       51.0       71.4       73.9       101.05       118.2         PRESSURE, PSIG       101       95       97       99       94         TEMP. C       253       253       253       253       253         PEED CC/MIN       400       400       400       400       400       400         IUOURS FEED ING       5.4       20.4       22.5       8.0       16.3         RFFLNT GAS LITER       193.3       391.6       395.0       139.0       280.5         CM AQUÉDÚIS LAVER       0.3       0.75       0.0       0.0       0.0         GM ATOM CARBON \$       106.51       106.61       94.55       90.03       92.48         CM ATOM CARBON \$       106.72       107.22       92.66       89.67       90.96         GM ATOM MYDROGEN \$       102.72       92.66       89.67       90.96         RATIO CHX7(H20+C02) 1.1.192       1.0491.1       1.0283       0.8914       1.0229         RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USAGE H2/CO PRODT       0.5675       0.5347       0.5811       0.5643       0.5792         K EFPLNT SHIFT REACTN       12.73                                                                                                                                                 | 933  | E H2:CO:AR                                           | 51:48:0                | 51:48:0             | 45:45:10   | 0 45:45:10 | 45:45:10     |   |
| PRUSSUPE.PSIG       101       90       97       43       94         TEMP. C       253       253       253       253       253       253       253         FEED CC/MIN       400       400       400       400       400       400       400         IKURP. C       253       253       253       253       253       253       253         FEED CC/MIN       400       400       400       400       400       400       400         IKURSSERE.PSIG       0.3       91.6       395.0       139.0       280.5       6.3         IKURSSERE.PSIG       0.3       0.15       0.0       0.0       0.0       0.0       0.0         IKURSSERE.PSIG       0.3       0.15       0.0.5       91.6       395.0       139.0       280.5         GM AUBONSENER.SLITER       0.3       0.16.3       106.72       92.66       89.67       90.96         GM ATOM MYROGEN & 106.72       107.22       92.66       89.67       90.96       94.10.229         RATIO CHX/(H20+CO2)       1.1192       1.0491       1.0283       0.8914       1.0229         RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388                                                                                                                                                                        | IIRS | ON STREAM                                            | 51.0                   | 71.4                | 93.9       | 101:59     | 118.2        |   |
| TEMP. C       253       253       253       253       253       253         PEED CC/MIN       400       400       400       400       400       400       400         MOURS FEEDING       5.4       20.4       22.5       8.0       16.3         KFFLNT GAS LITER       103.3       391.6       395.0       139.0       280.5         GM AQUEOUS LAYER       0.3       0.85       0.0       0.0       0.0         GM AQUEOUS LAYER       0.3       0.85       0.0       0.0       0.0         GM ATOM CARBON \$       106.51       106.91       94.55       90.03       92.48         GM ATOM CARBON \$       106.572       107.22       92.66       89.67       90.96         GM ATOM OXYGEN \$       102.83       1.05.32       93.70       93.31       91.86         RATIO CHX/(H20+CO2)       1.1192       1.0491       1.0283       0.79914       1.0229         RATIO XIN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USACE H2/CO PRODT       0.6675       0.6347       0.5811       0.5649       0.5792         K EFPLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15                                                                                                                                            | PRE  | SSURE, PSIG                                          | 101                    | 99                  | . 97       | 60         | 94           |   |
| FEED CC/MIN       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       410       400       400                                                                                                                                                                             | TEM  | P. C.                                                | 253                    | 253                 | °, 253     | 253        | 253          |   |
| HOURS FEEDING       5.4       20.4       22.5       8.0       16.3         MFFLNT GAS LITER       103.3       391.6       395.0       139.0       280.5         GM AQUÉQUES LAVER       0.3       0.85       0.0       0.0       0.0         GM AQUÉQUES LAVER       0.3       0.85       0.0       0.0       0.0         GM AQUÉQUES LAVER       0.3       0.87       04.14       32.81       9.63       23.34         MATERIAL BALANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEE  | D CC/MIN                                             | 400                    | 100                 | 400        | . 400      | 400          |   |
| KFFLNT GAS LITER       103.3       391.6       395.0       139.0       280.5         GM AQUÉQUS LAYER       0.3       0.85       0.0       0.0       0.0       0.0         GM OIL & WAX       8.47       34.14       32.81       9.63       23.34         MATERIAL BALANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101  | RS FEEDING                                           | 5.4                    | 20.4                | 22.5       | 8.0        | 16.3         |   |
| GM AQUÉQUS LAYER       0.3       0.85       0.0       0.0       0.0         GM OIL & WAX       8.47       34.14       32.81       9.63       23.34         MATERIAL BALANCE       0.3       0.651       0.6691       94.55       90.03       92.48         CM ATOM CARBON & 106.72       107.22       92.66       89.67       90.96         GM ATOM MYDROGEN & 106.72       107.22       92.66       89.67       90.96         GM ATOM MYDROGEN & 106.72       107.22       92.66       89.67       90.96         RATIO CHX/(H20+C02) 1.1192       1.0491       1.0283       0.8914       1.0229         RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USAGE H2/CO PRODT       0.6675       0.6347       0.5811       0.5649       0.5792         K EFFLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION &       0       0       64.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT *       0.14       3.70       3.94       4.04       4.67       4.15         C3H6       0.49       0.47       0.41       0.49       0.41       63.88 </td <td>EFF</td> <td>LNT GAS LITER</td> <td>1.03.3</td> <td>391.6</td> <td>395.0</td> <td>139.0</td> <td>280.5</td> <td></td> | EFF  | LNT GAS LITER                                        | 1.03.3                 | 391.6               | 395.0      | 139.0      | 280.5        |   |
| GM OIL & WAX       8.47       34.14*       32.81       9.63       23.34         MATERIAL BALANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GM   | AQUEOUS LAYER                                        | 0.3 =                  | 0.85                | 0.0        | 0.0        | 0.0          |   |
| MATERIAL BALANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GM   | OIL & WAX                                            | 8.47                   | 34.14=              | 32.81      | 9.63       | 23.34        |   |
| MATERIAL BALANCE       4         CM ATOM CARBON \$ 106.51       (106.91       94.55       90.03       92.48         GM ATOM CARBON \$ 106.72       107.22       92.66       89.67       90.96         GM ATOM HYDROGEN \$ 102.83       107.22       92.66       89.67       90.96         GM ATOM CXYGEN \$ 102.83       105.32       93.70       93.31       91.80         RATIO CHX/(H20+CC2)       1.1192       1.0491       1.0283       0.8914       1.0229         RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USAGE H2/CO PRODT       0.6675       0.6347       0.5811       0.5649       0.5792         K EFFLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION \$       0N CO       58.12       58.77       61.87       60.43       61.77         ON H2       35.61       34.81       36.42       35.31       36.16         ON CO       58.12       58.77       61.87       60.43       61.77         ON H2       35.61       34.81       36.42       35.31       36.16         ON CO       58.12       58.77       61.87       60.43       61.77                                                                                                                               | 2 1  |                                                      |                        |                     | ÷          | •          |              |   |
| GM ATOM CARBON \$ 106.51       106.91       94.55       90.03       92.48         GM ATOM HYDROGEN \$ 106.72       107.22       92.66       89.67       90.96         GM ATOM HYDROGEN \$ 106.72       107.22       92.66       89.67       90.96         GM ATOM OXYGEN \$ 102.83       205.32       93.70       93.31       91.80         RATIO CHX/(H20+C02)       1.1193       2.1259       1.9866       2.1388       1.9867         USAGE H2/CO PRODT       0.6675       0.6347       0.5811       0.4649       0.5792         K EFPLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΜΛΤ  | ERIAL BALANCE                                        |                        |                     |            |            |              |   |
| GM ATOM HYDROGEN \$ 106.72       107.22       92.66       89.67       90.96         GM ATOM OXYGEN \$ 102.83       105.32       93.70       91.31       91.80         RATIO CHX/(H20+CO2)       1.1192       1.0491       1.0283       0.8914       1.0229         RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USAGE N2/CO PRODT       0.5675       0.6347       0.5811       0.5649       0.5792         K EFPLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION \$       0N C0       58.12       58.77       61.87       60.43       61.77         ON H2       35.61       34.81       36.42       35.31       36.16         ON C0       58.12       58.77       61.87       60.43       61.77         ON H2       35.61       34.81       36.42       35.31       36.16         ON C0       58.12       64.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT %       61.47       49.15       47.90       48.97         C114       3.70       3.94       4.04       4.67       4.15         C2 HC'S       4.26       4.33 </td <td>G</td> <td>M ATOM CARBON S</td> <td>106.51</td> <td>.106.91</td> <td>94.55</td> <td>90.03</td> <td>92.48</td> <td></td>            | G    | M ATOM CARBON S                                      | 106.51                 | .106.91             | 94.55      | 90.03      | 92.48        |   |
| GM ATOM OXYGEN %:       102.83       105.32       93.70       93.31       91.80         RATIO CHX/(H20+C02)       1.1192       1.0491       1.0283       0.8914       1.0229         RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USAGE H2/CO PRODT       0.6675       0.6347       0.5811       0.5649       0.5792         K EFPLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION %       0N C0       58.12       58.77       61.87       60.43       61.77         ON C0+H2       46.56       46.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT %       CH4       3.70       3.94       4.04       4.67       4.15         C2 HC'S       4.26       4.33       4.13       4.63       3.81         C3H8       0.49       0.47       0.41       0.49       0.41 <t< td=""><td>G</td><td>M ATOM HYDROGEN</td><td>106.72</td><td><sup>0</sup>107.22</td><td>92.66</td><td>89.67</td><td>90.96</td><td></td></t<>                        | G    | M ATOM HYDROGEN                                      | 106.72                 | <sup>0</sup> 107.22 | 92.66      | 89.67      | 90.96        |   |
| RATIO CHX/(H20+C02) 1.1192       1.0491       1.0283       0.8914       1.0229         RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USAGE H2/CO PRODT       0.6675       0.6347       0.5811       0.5649       0.5792         K EFFLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION &       0       58.12       58.77       61.87       60.43       61.77         ON CO       58.12       58.77       61.87       60.43       61.77         ON H2       35.61       34.81       36.42       35.31       36.16         ON CO+H2       46.56       46.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT *       -       -       -       -       -       -         C114       3.70       3.94       4.04       4.67       4.15         C2 HC'S       4.26       4.33       4.13       4.63       3.81         C3H8       0.49       0.47       0.41       0.49       0.41         C3H6-       4.59       4.34       3.94       4.66       3.88         C4H10       0.47       0.43 <t< td=""><td>G</td><td>M ATOM OXYGEN 🛸</td><td>102.83</td><td>205.32</td><td>* 93.70</td><td>93.31</td><td>91.80</td><td></td></t<>                                                  | G    | M ATOM OXYGEN 🛸                                      | 102.83                 | 205.32              | * 93.70    | 93.31      | 91.80        |   |
| RATIO X IN CHX       2.1193       2.1259       1.9866       2.1388       1.9867         USACE H2/CO PRODT       0.6675       0.6347       0.5811       0.6649       0.5792         K EFFLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R    | ATIO CHX/(H2O+C                                      | 02) 1.1192             | 1.0191              | 1.0283     | 0.8914     | 1.0229       |   |
| USAGE II2/CO PRODT       0.6675       0.6347       0.5811       0.5649       0.5792         K EFPLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         CONVERSION %       58.12       58.77       61.87       60.43       61.77         ON CO       58.12       58.77       61.87       60.43       61.77         ON CO       58.12       58.77       61.87       50.31       35.16         ON CO       35.61       34.81       36.42       35.31       35.16         ON CO+IN2       46.56       46.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT %       12.73       1.3.94       4.04       4.63       3.81         C3H8       0.49       0.47       0.41       0.49       0.41         C3H6-       4.59       4.34       3.94       4.66       3.88         C4H10       0.47       0.43       0.39       0.46       0.38         C4HB=       3.42       3.32       3.05       3.51       2.91         C5H12       0.79       0.77       0.72       0.80       0.67         C5H10=       2.66       2.63       2.43       2.88                                                                                                                                                                                             | · R  | ATIO X IN CHX                                        | 2.1193                 | 2.1259              | 1.9866     | 2.1388     | 1.9867       |   |
| K EFPLNT SHIFT REACTN       12.73       14.43       15.72       15.85       15.78         ON CO       58.12       58.77       61.87       60.43       61.77         ON NCO       35.61       34.81       36.42       35.31       36.16         ON CO       46.56       46.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | USA  | GE II2/CO PRODT                                      | 0.6675                 | 0.6347              | 0.5811     | 0.5649     | 0.5792       |   |
| CONVERSION %       58.12       58.77       61.87       60.43       61.77         ON CO       35.61       34.81       36.42       35.31       36.16         ON CO+H2       46.56       46.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT %       3.70       3.94       4.04       4.67       4.15         C114       3.70       3.94       4.04       4.67       4.15         C2 HC'S       4.26       4.33       4.13       4.63       3.81         C3H8       0.49       0.47       0.41       0.49       0.41         C3H6-       4.59       4.34       3.94       4.66       3.88         C4H10       0.47       0.43       0.39       0.46       0.38         C4H8=       3.42       3.32       3.05       3.51       2.91         C5H12       0.79       0.77       0.72       0.80       0.67         C5H2       0.79       0.77       0.72       0.80       0.67         C5H12       0.79       0.77       0.72       0.80       0.67         C5H12       0.00       0.89       0.66       0.75       0.75         C6H14                                                                                                                                                                                                                               | KE   | FFLNT SHIFT REA                                      | CTN 12.73              | 14.43               | 15.72      | 1.5.85     | 15.78        |   |
| CONVERSION & $58.12$ $58.77$ $61.87$ $60.43$ $61.77$ ON R2 $35.61$ $34.81$ $36.42$ $35.31$ $36.16$ ON CO+H2 $46.56$ $46.47$ $49.15$ $47.90$ $48.97$ PRDT SELECTIVITY.WT * $CH4$ $3.70$ $3.94$ $4.04$ $4.67$ $4.15$ CH4 $3.70$ $3.94$ $4.04$ $4.67$ $4.15$ C2 HC'S $4.26$ $4.33$ $4.13$ $4.63$ $3.81$ C3H8 $0.49$ $0.47$ $0.41$ $0.49$ $0.41$ C3H6- $4.59$ $4.34$ $3.94$ $4.66$ $3.88$ C4H10 $0.47$ $0.43$ $0.39$ $0.46$ $0.38$ C4H8= $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10= $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12-*& CYCLO'S $1.51$ $1.62$ $1.60$ $1.69$ $1.45$ C7+ FN GAS $14.91$ $9.63$ $9.19$ $10.07$ $9.08$ LIQ=HC'S $62.19$ $67.60$ $69.43$ $65.38$ $69.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17   |                                                      |                        | ¢                   |            |            |              |   |
| ON CO $58.12$ $58.77$ $61.87$ $60.43$ $61.77$ ON H2 $35.61$ $34.81$ $36.42$ $35.31$ $36.16$ ON CO+H2 $46.56$ $46.47$ $49.15$ $47.90$ $48.97$ PRDT SELECTIVITY.WT * $CH4$ $3.70$ $3.94$ $4.04$ $4.67$ $4.15$ C2 HC'S $4.26$ $4.33$ $4.13$ $4.63$ $3.81$ C3H8 $0.49$ $0.47$ $0.41$ $0.49$ $0.41$ C3H6- $4.59$ $4.34$ $3.94$ $4.66$ $3.88$ C4H10 $0.47$ $0.43$ $0.39$ $0.46$ $0.38$ C4HB= $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10= $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12-<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CON  | VERSION &                                            |                        |                     |            |            |              |   |
| ON H2       35.61       34.81       36.42       35.31       36.16         ON CO+H2       46.56       46.47       49.15       47.90       48.97         PRDT SELECTIVITY.WT %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0    | N CO                                                 | - 58.12                | 58.77               | 61.87      | 60.43      | 61.77        |   |
| ON $CO + HZ$ 46.5646.4749.1547.9048.97PRDTSELECTIVITY.WT %CH43.703.944.044.674.15C2HC'S4.264.334.134.633.81C3H80.490.470.410.490.41C3H6-4.594.343.944.663.88C4H100.470.430.390.460.38C4H8=3.423.323.053.512.91C5H120.790.770.720.800.67C5H10=2.662.662.432.882.41C6H141.000.890.660.750.75C6H12+%CYCLO'S1.511.621.601.69Lig='HC'S62.1967.6069.4365.3869.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0    | N H2                                                 | \$ 35.61               | 34.81               | 36.42      | 35.31      | 36.16        |   |
| PRDT SELECTIVITY.WT %         CH4 $3.70$ $3.94$ $4.04$ $4.67$ $4.15$ C2 HC'S $4.26$ $4.33$ $4.13$ $4.63$ $3.81$ C3H8 $0.49$ $0.47$ $0.41$ $0.49$ $0.41$ C3H6- $4.59$ $4.34$ $3.94$ $4.66$ $3.88$ C4H10 $0.47$ $0.43$ $0.39$ $0.46$ $0.38$ C4H18= $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H14 $1.00$ $1.62$ $1.60$ $1.69$ $1.45$ C7+ FW,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0    | N CO+IIZ                                             | 46.56                  | 46.47               | . 49.15    | 47.90      | 48.97        |   |
| CII4 $3.70$ $3.94$ $4.04$ $4.67$ $4.15$ C2 HC'S $4.26$ $4.33$ $4.13$ $4.63$ $3.81$ C3H8 $0.49$ $0.47$ $0.41$ $0.49$ $0.41$ C3H6- $4.59$ $4.34$ $3.94$ $4.66$ $3.88$ C4H10 $0.47$ $0.43$ $0.39$ $0.46$ $0.38$ C4H8= $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10= $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12- $3.63$ $1.491$ $9.63$ $9.19$ $10.07$ $9.08$ Lig=HC'S $62.19$ $67.60$ $69.43$ $65.38$ $69.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRD  | T SELECTIVITY.W                                      | IT a                   |                     |            |            | · · · · ·    |   |
| C2 HC'S $4.26$ $4.33$ $4.13$ $4.63$ $3.81$ C3H8 $0.49$ $0.47$ $0.41$ $0.49$ $0.41$ C3H6- $4.59$ $4.34$ $3.94$ $4.66$ $3.88$ C4H10 $0.47$ $0.43$ $0.39$ $0.46$ $0.38$ C4H8- $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10= $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12 $3.62$ $1.60$ $1.69$ $1.45$ C7+ $M_N$ GAS $14.91$ $9.63$ $9.19$ $10.07$ $9.08$ L1Q=HC'S $62.19$ $67.60$ $69.43$ $65.38$ $69.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G    | 114                                                  | 3.70                   | 3.94                | 4.04       | 1.67       | 4.15         |   |
| C3H8 $0.49$ $0.47$ $0.41$ $0.49$ $0.41$ C3H6- $4.59$ $4.34$ $3.94$ $4.66$ $3.88$ C4H10 $0.47$ $0.43$ $0.39$ $0.46$ $0.38$ C4H8- $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10- $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12- $3.62$ $1.51$ $1.62$ $1.60$ $1.69$ $1.45$ C7+ $1.51$ $1.62$ $1.60$ $1.69$ $1.45$ C7+ $1.51$ $62.19$ $67.60$ $69.43$ $65.38$ $69.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C    | 2 HC'S                                               | 4.26                   | 4.33                | 4.13       | 4.63       | 3.81         |   |
| C3H6- $4.59$ $4.34$ $3.94$ $4.66$ $3.88$ C4H10 $0.47$ $0.43$ $0.39$ $0.46$ $0.38$ C4H8- $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10- $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12- $3.62$ $1.51$ $1.62$ $1.60$ $1.69$ $1.45$ C7+ $M$ GAS $14.91$ $9.63$ $9.19$ $10.07$ $9.08$ L1Q=HC'S $62.19$ $67.60$ $69.43$ $65.38$ $69.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C    | 3H8                                                  | 0.19                   | 0.47                | 0.41       | 0.19       | 0.41         |   |
| C4H10       0.47       0.43       0.39       0.46       0.38         C4H8=       3.42       3.32       3.05       3.51       2.91         C5H12       0.79       0.77       0.72       0.80       0.67         C5H10=       2.66       2.66       2.43       2.88       2.41         C6H14       1.00       0.89       0.66       0.75       0.75         C6H12=       2.65       1.62       1.60       1.69       1.45         C7+       M GAS       1.4.91       9.63       9.19       10.07       9.08         L1Q=HC'S       62.19       67.60       69.43       65.38       69.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C    | 3H6-                                                 | 1.59                   | 4.34                | 3.94       | 4.66       | 3.88         |   |
| C4H8= $3.42$ $3.32$ $3.05$ $3.51$ $2.91$ C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10= $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12=**% CYCLO'S $1.51$ $1.62$ $1.60$ $1.69$ $1.45$ C7+ $M$ GAS $14.91$ $9.63$ $9.19$ $10.07$ $9.08$ LIQ='HC'S $62.19$ $67.60$ $69.43$ $65.38$ $69.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С    | 4H10                                                 | . 0.47                 | 0.43                | 0.39       | 0.46       | 0.38         |   |
| C5H12 $0.79$ $0.77$ $0.72$ $0.80$ $0.67$ C5H10= $2.66$ $2.66$ $2.43$ $2.88$ $2.41$ C6H14 $1.00$ $0.89$ $0.66$ $0.75$ $0.75$ C6H12=**%CYCLO'S $1.51$ $1.62$ $1.60$ $1.69$ $1.45$ C7+ $M$ GAS $14.91$ $9.63$ $9.19$ $10.07$ $9.08$ LIQ='HC'S $62.19$ $67.60$ $69.43$ $65.38$ $69.99$ TOTAL $100$ $200$ $100$ $100$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C    | 4HB=                                                 | 3.42                   | 3.32                | 3.05       | 3.51       | 2.91         |   |
| C5H10=       2.66       2.66       2.43       2.88       2.41         C6H14       1.00       0.89       0.66       0.75       0.75         C6H12+*** CYCLO'S       1.51       1.62       1.60       1.69       1.45         C7+*** GAS       14.91       9.63       9.19       10.07       9.08         LIQ='HC'S       62.19       67.60       69.43       65.38       69.99         TOTAL       100       100       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C    | 5H12                                                 | 0.79                   | 0.77                | 0.72       | 0.80       | 0.67         |   |
| C6H14       1.00       0.89       0.66       0.75       0.75         C6H12************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C    | 5H10=                                                | 2.66                   | 2.66                | 2.43       | 2.88       | 2.41         |   |
| C6H12************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C    | 6H14                                                 | ⇒. 1.00                | 0.89                | 0.66       | 0.75       | 0.75         |   |
| C7+ 7K GAS 14.91 '9.63 9.19 10.07 9.08<br>LIQ <sup>-</sup> HC'S 62.19 67.60 69.43 65.38 69.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C    | 6H12 CYCLO'S                                         | 1.51                   | - 1.62              | 1.60       | 1.69       | 1.45         |   |
| LIQ <sup></sup> HC'S 62.19 67.60 69.43 65.38 69.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C    | 7+ JN GAS                                            | 14.91                  | -9.63               | 9.19       | 10.07      | 9.08         |   |
| TOTAL 100 \$100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | IQ"HC'S                                              | 62.19                  | 67.60               | 69.43      | 65.38      | 69.99        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т    | OTAL                                                 | 1.00                   | £100 x              | 100        | 100        | 100          |   |

đ

.

-93-

с.

| 5 S S S S S S S S S S S S S S S S S S S |                    |         |           |                |       |  |
|-----------------------------------------|--------------------|---------|-----------|----------------|-------|--|
| SUBGROUP ING                            | 1. 1. <u>1</u> . 1 |         | e - 19    |                |       |  |
| C1 - C4 /                               | 16.93              | 16.83   | 15.96     | 18.42          | 15.65 |  |
| C5 -420 F                               | 33.07E             | 22.87   | 21.27     | 22.27          | 20.30 |  |
| 420-700 F                               | 26.74E             | 28.53   | 29.51     | 28.77          | 31.57 |  |
| 700-END PT                              | 23.26E             | 31.77   | 33.26     | 30:53          | 32.48 |  |
| CS -END PT                              | 83.07              | 83,17   | 84.04     | 8L.58          | 84.35 |  |
| ISO NORMAL MOLE RATIO                   | •                  |         |           |                |       |  |
| / C1                                    | .1667              | .1675   | .1454     | .1503          | 1,595 |  |
| C5                                      | .1806              | . 1.978 | . 1406    | .2124          | .1947 |  |
| C6                                      | 3180               | .3184   | .0519     | .0938          | .2563 |  |
| C4 =                                    | .0867              | .0848   | .0836     | .0823          | .0769 |  |
| PARAFFIN/OLEFIN M RATI                  | 0                  | a .     | · · · · · | •              |       |  |
| C2                                      | .2462 =            | .2456   | .2742     | .2643          | .2174 |  |
| <b>C</b> 3                              | .101.7             | .1037   | .0989     | .1010          | .1018 |  |
| C1                                      | .1325              | .1241   | .1245     | .L259          | .1262 |  |
| CS est                                  | .2901              | .2798   | .2894     | .2714          | .2725 |  |
| LIQ HC COLLECTION                       |                    |         |           |                |       |  |
| PHYS. APPEARANCE                        | WAX                | WAX     | WAX       | WAX            | WAX   |  |
| DENSITY                                 |                    |         |           |                |       |  |
| N, REFRACTIVE INDEX                     |                    |         |           |                |       |  |
| SIMULATED DISTILLATI                    | ION                |         | •         |                |       |  |
| lowr s a deg e                          | _                  | 414     | 422       | 424            | 431   |  |
| 16                                      | _                  | 453 .   | 463 ;     | 465            | ,475  |  |
| 50                                      |                    | 676     | 684       | 674            | . 673 |  |
| 84                                      | -                  | 955     | 965       | 954            | 948   |  |
| 90                                      | -                  | 1014    | 1023      | <b>ξιοιο</b> , | 1006  |  |
| No. C                                   |                    |         |           |                |       |  |
| RANGE(16-84 %)                          |                    | 502     | 502       | 489            | 473   |  |
|                                         |                    |         |           | •              | •     |  |
|                                         | t                  |         |           |                | 0 F   |  |
| WT 3 @420 F                             | 19.6E              | 10.8    | 9.6       | 9.3            | 5.7   |  |
| WT 3 0700 F                             | 62.6E              | 53.0    | 23.T      | <b>*1.5</b> 5  | 93:0  |  |
|                                         |                    |         |           |                | •     |  |

ł,

. . .

5

1. 14

-94-