

May 1998

Engineering Evaluation of Hot-Gas Desulfurization with Sulfur Recovery

Topical Report

Work performed under Contract No. DE-AC21-94MC31258--19

for

U.S. Department of Energy Federal Energy Technology Center 3610 Collins Ferry Road Morgantown, WV 26505

by S.K. Gangwal J.W. Portzer Research Triangle Institute P.O. Box 12194 Research Triangle Park, NC 27709

> and G.W. Roberts S.C. Kozup North Carolina State University Raleigh, NC 27695

¥)

This report was prepared by the Research Triangle Institute (RTI) as an account of work sponsored by the U.S. Department of Energy. RTI makes no warranty or representation, expressed or implied, with respect to the information contained in this report, or that the use of any apparatus, method or process disclosed in this report may not infringe privately owned rights. Furthermore, RTI assumes no liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Engineering Evaluation of Hot-Gas Desulfurization with Sulfur Recovery

Topical Report

Work performed under Contract No. DE-AC21-94MC31258

for U.S. Department of Energy Federal Energy Technology Center 3610 Collins Ferry Road Morgantown, WV 26505

by S.K. Gangwal J.W. Portzer Research Triangle Institute 3040 Cornwallis Road Research Triangle Park, NC 27709

and

G.W. Roberts S.C. Kozup Chemical Engineering Department North Carolina State University Raleigh, NC 27695

May 1998

ABSTRACT

Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO₂ tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO₂. This is followed by air regeneration to fully regenerate the sorbent and provide the required SO₂ for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP.

However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

TABLE OF CONTENTS

Page

Abstractii
List of Figures
List of Tables iv
Acknowledgments
Executive Summary
Introduction
Objective
Background
Sorbent Development
Reactor and Systems
Direct Sulfur Recovery Process
Advanced Hot-Gas Process
Approach
Results
Conclusions
References

Appendix—Process Modeling of Hot-Gas Desulfurization

LIST OF FIGURES

Figure Page E-1 E-2 E-3 E-4 E-5 Comparison of key elements of DSRP and AHGP9 E-6 E-7 E-8

LIST OF TABLES

Table	Page	è
E-1	Simulation Cases Considered	,
E-2	Raw Gas Feed to Base Case Simulations	;

ACKNOWLEDGMENTS

This research was sponsored by the Federal Energy Technology Center of the U.S. Department of Energy. Valuable guidance and suggestions provided by the Contracting Officer's Representative, Mr. Thomas P. Dorchak, are sincerely acknowledged.

EXECUTIVE SUMMARY

INTRODUCTION

Hot-gas desulfurization (HGD) of coal gas in integrated gasification combined cycle (IGCC) power systems has received a great deal of attention over the past two decades due to the potential for high thermal efficiency (up to 47%) and low environmental impact of these advanced power systems. In an advanced IGCC system, coal is gasified at elevated pressures, typically 20 to 30 atm, to produce a low-volume fuel gas which is desulfurized prior to burning in a combustion turbine to produce electricity. Higher efficiency and lower cost are achieved by efficient air and steam integration, and modular designs of the gasification, hot-gas cleanup, and turbine subsystems (Figure E-1). Hot gas cleanup primarily involves removal of particulates and sulfur—mostly hydrogen sulfide (H₂S) and some carbonyl sulfide (COS). H₂S and COS can be efficiently removed to less than 20 ppmv at 350 to 650 °C using zinc-based metal oxide sorbents that can be regenerated for multicycle operation.

Air regeneration of these sorbents results in a dilute sulfur dioxide (SO_2) -containing tail gas that needs to be disposed. Options include conversion of the SO₂ to calcium sulfate using lime (or limestone) for landfilling or conversion to saleable products such as sulfuric acid or elemental sulfur. Elemental sulfur, an essential industrial commodity, is an attractive option because it is the lowest volume product and can be readily stored, disposed, transported, and/or sold.

Research Triangle Institute (RTI), with U.S. Department of Energy (DOE) sponsorship, is pursuing the development of two processes for elemental sulfur production in conjunction with

Figure E-1. Advanced IGCC system.

hot-gas desulfurization. The first process, called the Direct Sulfur Recovery Process (DSRP), involves the selective catalytic reduction of the SO₂ tail gas to sulfur using a small slipstream of the coal gas. DSRP is a highly efficient process that can recover up to 99% of SO₂ as elemental sulfur in a single catalytic reactor. However, for every mole of sulfur produced two moles of hydrogen (H₂) and/or carbon monoxide (CO) are consumed in DSRP and this represents an energy penalty for the IGCC plant. DSRP is currently in an advanced state of development.

A second-generation process being pursued by RTI involves the use of a modified zinc-based sorbent (containing zinc and iron). This sorbent can be regenerated using SO_2 and O_2 to directly produce sulfur. This process, called the Advanced Hot-Gas Process (AHGP), is expected to use much less coal gas than DSRP. DSRP is currently at the pilot-plant scale development stage, whereas AHGP has been demonstrated at small bench-scale. Both DSRP and AHGP are scheduled for slipstream testing at DOE's Power Systems Development Facility (PSDF), Wilsonville, Alabama, in 1999.

OBJECTIVE

The objective of this report is to develop process simulations with mass and heat balances for the DSRP and AHGP and to provide a **preliminary** economic comparison of the two processes in conjunction with an IGCC power plant employing HGD. The process simulation and economic evaluation were carried out by RTI's subcontractor, North Carolina State University (NCSU). NCSU's report of this work in its entirety is attached as an appendix. Background, brief process description, and important results and conclusions are provided below as a stand-alone executive summary.

BACKGROUND

Sorbent Development

Research on HGD methods for coal gas in IGCC systems has concentrated on the use of regenerable metal oxide sorbents (Gangwal, 1991, 1996; Gangwal et al., 1993, 1995; Harrison, 1995; Jalan, 1985; Thambimuthu, 1993). This research and development effort has been spearheaded by DOE's Federal Energy Technology Center (FETC) and its predecessor agencies since 1975.

The HGD process using a regenerable metal oxide (MO) sorbent is typically carried out in a tworeactor system consisting of a desulfurizer and an air regenerator

$MO + H_2S \rightarrow MS + H_2O$	(desulfurizer)
$MS + (3/2) O_2 \rightarrow MO + SO_2$	(regenerator).

The main requirement of the metal oxide sorbent is that it should selectively react with H_2S and COS in a reducing fuel gas at desired conditions (2 to 3 Mpa, 350 to 750 °C). The thermodynamics of the reaction should be favorable enough to achieve the desired level of H_2S and COS removal (as much as 99% or more). The metal oxide should be stable in the reducing gas environment, i.e., reduction of MO to M should be slow or thermodynamically unfavorable since it leads to loss of valuable fuel gas and could also lead to volatile metal evaporation and decrepitation of sorbent structure.

The principle requirement during air regeneration is that the sorbent should predominantly revert back to its oxide rather than to sulfate (MO + SO₂ + 1/2 O₂ \rightarrow MSO₄). Air regeneration is highly exothermic and requires tight temperature control using large quantities of diluent (N₂) or other means to prevent sorbent sintering and sulfate formation.

The bulk of research on regenerable sorbents has been on zinc-based sorbents because sorbents based on zinc oxide appear to have the fewest technical problems among all sorbents. Zinc oxide (ZnO) has highly attractive thermodynamics for H_2S adsorption and can reduce the H_2S to partsper-million levels over a very wide temperature range. Iron oxide appears to be the most popular sorbent for use at around 400 °C.

A combined ZnO-iron oxide (Fe₂O₃) sorbent, namely, zinc ferrite (ZnFe₂O₄) was developed by Grindley and Steinfeld (1981) to combine the advantages of ZnO and Fe₂O₃. A temperature range of 550 to 750 °C received the major research emphasis in the United States during the 1980s and early 1990s. Because of zinc oxide's potential for reduction (ZnO + H₂ \rightarrow Zn + H₂O) at >600 °C followed by evaporation, a zinc oxide-titanium oxide sorbent, namely zinc titanate sorbent, was developed and tested at high temperature and high pressure (HTHP) (Gangwal et al., 1988). Zinc titanate is currently one of the leading sorbents.

During recent years, research emphasis has shifted toward lower temperatures (350 to 550 °C) based on a study in the Netherlands (NOVEM, 1991). According to this study, the thermal efficiency of an 800-MWe IGCC plant increased from 42.75% using cold-gas cleanup to 45.14% using HGD at 350 °C and to 45.46% using HGD at 600 °C. The small efficiency increase from 350 to 600 °C suggested that temperature severity of HGD could be significantly reduced without much loss of efficiency.

Reactor and Systems

A two-reactor configuration is necessary for HGD due to its cyclic nature. Early developments emphasized fixed beds. The highly exothermic regeneration led to a move away from fixed beds toward moving beds (Ayala et al., 1995; Cook et al., 1992) and fluidized beds (Gupta and Gangwal, 1992). Two DOE Clean Coal Technology IGCC demonstration plants, namely TECO and Sierra-Pacific, employing General Electric's (GE's) moving-bed HGD reactor system and M.W. Kellogg's transport reactor HGD system, respectively, are scheduled to begin operation this year. Fluidized-bed HGD systems are receiving a lot of emphasis due to several potential advantages over fixed- and moving-bed reactors, including excellent gas-solid contact, fast kinetics, pneumatic transport, ability to handle particles in gas, and ability to control the highly exothermic regeneration process. However, an attrition-resistant sorbent that can withstand stresses induced by fluidization, transport, chemical transformation, and rapid temperature swings must be developed.

Development of an iron-oxide sorbent-based fluidized-bed HGD reactor system has been carried out in Japan over the past several years (Sugitani, 1989). The process is now up to 200 tons of

coal per day. The sorbent is prepared by crushing raw Australian iron oxide which is inexpensive, but attrition is a big problem with this sorbent. Durable zinc titanate and other zinc-based sorbent development is ongoing for application at the Sierra-Pacific plant for Kellogg's transport reactor (Gupta et al., 1996, 1997; Jothimurugesan et al., 1997; Khare et al., 1996).

A schematic of Kellogg's transport reactor system at Sierra-Pacific is shown in Figure E-2. This technology represents a significant development in HGD because it allows regeneration with neat air. Neat air regeneration produces a more concentrated SO_2 tail-gas stream containing around 14 vol% SO_2 .

The initial sorbent tested at Sierra-Pacific was Phillips Z-Sorb III. Its attrition resistance was not acceptable. Phillips is continuing efforts to improve their sorbent. Recently RTI and Intercat have provided a much more attrition-resistant zinc titanate sorbent, EX-SO3, to Sierra-Pacific for testing after qualifying it through a series of bench- and process development unit (PDU)-scale tests (Gupta et al., 1997). This sorbent has been circulated in the system and has demonstrated satisfactory attrition resistance. Chemical reactivity tests with the sorbent are to be conducted shortly after the Sierra coal gasifier is fully commissioned and begins smooth operation.

Direct Sulfur Recovery Process

The patented DSRP being developed by RTI is a highly attractive option for recovery of sulfur from regeneration tail gas. Using a slipstream of coal gas as a reducing agent, it efficiently converts the SO_2 to elemental sulfur,

an essential industrial commodity that is easily stored and transported. In the DSRP (Dorchak et al., 1991), the SO₂ tail gas is reacted with a slipstream of coal gas over a fixed bed of a selective catalyst to directly produce elemental sulfur at the HTHP conditions of the tail gas and coal gas. Overall reactions involved are shown below:

 $\begin{array}{l} 2 \ H_2 + SO_2 \rightarrow (1/n) \ S_n + 2 \ H_2O \\ \\ 2 \ CO + SO_2 \rightarrow (1/n) \ S_n + 2 \ CO_2 \\ \\ CO + H_2O \rightarrow H_2 + CO_2 \\ \\ H_2 + (1/n) \ S_n \rightarrow H_2S \\ \\ 2 \ H_2S + SO_2 \rightarrow (3/n) \ S_n + 2 \ H_2O \ . \end{array}$

RTI constructed and commissioned a mobile laboratory for DSRP demonstration with actual coal gas from the DOE-Morgantown coal gasifier. Slipstream testing using a 1-L fixed-bed of DSRP catalyst with actual coal gas (Portzer and Gangwal, 1995; Portzer et al., 1996) demonstrated that, with careful control of the stoichiometric ratio of the gas input, sulfur recovery of 96% to 98% can be consistently achieved in a single DSRP stage. The single-stage process, as it is proposed to be integrated with a metal oxide sorbent regenerator, is shown in Figure E-3. With the tail-gas recycle stream shown in the figure, there are no sulfur emissions from the DSRP. RTI also demonstrated the ruggedness of the DSRP catalyst by exposing it to coal gas for over 250 hours in a canister test.

The results show that, after a significant exposure time to actual coal gas, the DSRP catalyst continues to function in a highly efficient manner to convert SO_2 in a simulated regeneration tail gas to elemental sulfur. This demonstration of a rugged, single-stage catalytic process resulted in additional online experience and the assembling of more process engineering data. The development of the DSRP continues to look favorable as a feasible commercial process for the production of elemental sulfur from hot-gas desulfurizer regeneration tail gas.

Canisters of fixed-bed DSRP catalyst have been prepared for another exposure test with actual coal gas, this time at FETC's PSDF at Wilsonville, Alabama. Exposure is expected to take place sometime during FY 2000.

Additional development and testing of a fluidized-bed process is planned, capable of producing elemental sulfur from 14 vol% SO₂ at HTHP. These tests intend to demonstrate the use of DSRP in conjunction with the Kellogg transport regenerator producing 14 vol% SO₂. Due to the exothermic nature of the DSRP reactions, a fluidized-bed reactor is a preferred configuration at these high SO₂ concentrations. Two candidate attrition-resistant fluidizable DSRP catalysts have been prepared in cooperation with a catalyst manufacturer. A series of tests was conducted using these catalysts with up to 14 vol% SO₂ tail gas, at pressures from 1.0 to 2.0 Mpa, temperatures

Figure E-3. Hot-gas desulfurization with DSRP.

from 500 to 600 $^{\circ}$ C, and space velocities from 3,000 to 6,000 stdcm³/cm³. Sulfur recoveries up to 98.5% were achieved during steady-state operation, and no attrition of the catalyst occurred in the fluidized-bed tests.

Planning is underway to conduct a long-duration field test using a skid-mounted six-fold larger (based on reactor volume) (6X) DSRP unit with a slipstream of actual coal gas at PSDF. The mobile laboratory will be refitted at RTI as a control room for the 6X unit and will be moved along with the skid-mounted 6X unit to Wilsonville, Alabama, for the testing to be conducted in FY 2000. This larger unit will utilize a fluidized-bed reactor and will be designed for production of up to 22 times more sulfur than the 7.5-cm I.D. bench-scale unit used in the previous slipstream tests.

Advanced Hot-Gas Process

In the DSRP, for every mole of SO_2 , 2 mol of reducing components are used, leading to a small but noticeable consumption of coal gas. Novel regeneration processes that could lead to elemental sulfur without use of coal gas or with limited use of coal gas are being developed (Gangwal et al., 1996; Harrison et al. 1996). KEMA's hot-gas cleanup process (Meijer et al., 1996) uses a proprietary fluidized-bed sorbent which can remove H_2S to below 20 ppmv and can be regenerated using SO_2 , O_2 mixtures to directly produce elemental sulfur. Along similar lines, a second-generation process, known as the Advanced Hot-Gas Process (AHGP), is being developed by RTI to regenerate the desulfurization sorbent directly to elemental sulfur with minimal consumption of coal gas. In this process (Figure E-4), a zinc-iron sorbent is used and the regenerated by SO_2 in one stage to elemental sulfur. In the other stage, zinc sulfide and any remaining iron sulfide are regenerated by O_2 to provide the required SO_2 . The sorbent is then returned to the desulfurizer.

Figure E-4. Advanced hot-gas process.

The key chemical reactions of interest are as follows:

1. Sulfidation

$$\begin{array}{c} Fe_2O_3 + 2H_2S + H_2 \rightarrow 2FeS + 3H_2O\\ ZnO + H_2S \rightarrow ZnS + H_2O \end{array}$$

2. SO_2 regeneration

$$4\text{FeS} + 3\text{SO}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 7/2 \text{ S}_2$$

3. O_2 regeneration

$$2\text{FeS} + 7/2 \text{ O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 2\text{SO}_2$$

ZnS + 3/2 O₂ \rightarrow ZnO + SO₂.

The feasibility of SO₂ regeneration of combined zinc-iron sorbents was demonstrated using a thermogravimetric analyzer and high-pressure microreactor. Zinc sulfide shows essentially no SO₂ regeneration at temperatures of interest (500 to 600 °C), but zinc is needed to act as a polishing agent in the desulfurizer. A number of sorbents were prepared and tested at the bench scale over multiple cycles. Based on these tests, a highly attrition-resistant sorbent (R-5-58) was prepared and the process was demonstrated over 50 cycles in a 5.0-cm I.D. bench-scale reactor.

The results showed that R-5-58 removed H_2S down to 50 to 100 ppm levels with stable desulfurization activity over the duration. The surface area and pore volume of the sorbent did not change appreciably and the attrition index before and after the test was 3.6% and 1.2%, respectively. Sulfur balances were adequate and the SO₂ regeneration step accounted for up to 70% of the total regeneration of the sorbent. This compares to a theoretical limit of approximately 80%, assuming complete regeneration by SO₂ of the iron component.

The sorbent is being optimized further to increase its desulfurization efficiency. The goal is to develop a sorbent that can remove H_2S below 20 ppmv. Plans call for demonstrating the process at PSDF with a slipstream of actual coal gas in FY 1999 in conjunction with the DSRP field test at PDSF.

APPROACH

An engineering and economic evaluation of the DSRP (Figure E-3) and AHGP (Figure E-4) for large-scale IGCC plants was conducted using ASPEN PLUS[®] computer process simulation software by NCSU. The NCSU report is attached in its entirety as an appendix. Here we present a summary of the approach, key results, and conclusions.

Base case simulations of both processes assumed 0.85 mol% H_2S in the coal-gas feed. Such an H_2S concentration in the coal gas would be produced by an oxygen-blown Texaco gasification using roughly a 3.6 wt% sulfur-containing coal. Both base cases generate 260 MWe from the clean coal gas. Simulations that deviate from the base cases use suffixes to denote the changes. Table E-1 displays the significance of the suffixes. In all cases a coal-gas feed pressure and

temperature of 275 psia and 482 °C, respectively, was used. However, H₂S concentration was varied from 0.25 to 2.5 mol% and power produced was varied from 110 to 540 MWe. Table E-2 shows the composition and flow rate of the raw coal gas feed to the base case HGD processes. The requirement of a higher amount of coal gas to produce the same 260 MW power by DSRP versus the AHGP is noteworthy. The DSRP was assumed to use the standard Sierra-Pacific dual transport reactor configuration shown in Figure E-2 for HGD. The DSRP reactor used for the 14% SO2 tail gas was a fast fluidized bed with an alumina-based catalyst. The AHGP reactor configuration on the other hand used a transport sulfider and a bubbling multistage fluidized-bed regenerator as shown in Figure E-5. The large bubbling reactor was required to provide a greater residence time for the slow SO₂ regeneration stage.

RESULTS

The preliminary process and economic evaluations conducted using ASPEN Plus are summarized. Figure E-6 compares key elements using a simple method in which each parameter for the DSRP-based process is arbitrarily assigned the value of 1.0. A range of values is produced for AHGP to cover

H₂S feed concentration MW Simulations (mol%) produced DSRP, AHGP 0.85 260 (base cases) DSRP-b. 2.50 260 AHGP-b DSRP-c. 0.25 260 AHGP-c DSRP-100, 0.85 110 AHGP-100 DSRP-500, 0.85 540 AHGP-500

Table E-1. Simulation Cases Considered

Table E-2. Raw Gas Feed to Base CaseSimulations

Component	DSRP (lb/h)	AHGP (lb/h)
H₂S	6,300	6,100
H ₂ O	70,500	69,000
H ₂	11,800	11,500
CO	218,200	213,400
CO_2	117,400	114,800
N_2	36,300	35,500
Total	460,500	450,300

the various cases being considered. The big advantage of the AHGP is clearly the reduced parasitic consumption of coal gas. The other operating cost elements are also lower for AHGP, because that process has a considerably lower compression power requirement. A desulfurization process based on the DSRP requires a large flow of compressed air to provide the oxygen necessary to regenerate the sulfided sorbent, and thus has a large compressor horsepower duty. By comparison, the AHGP uses oxygen only for a smaller, polishing regeneration and, by using pure oxygen, the compression duty is lowered further. The AHGP also has the SO₂ loop recycle compressor, but its duty is quite small compared to the DSRP air compressor.

[It should be noted that in the NCSU economic analysis (Appendix) the AHGP recycle compressor duty may be understated, as the calculation was based on a rough estimate for pressure drop, not a calculated value based on a piping design. By comparison, the duty for the DSRP air compressor is primarily a function of the head pressure of the system, which is well defined.]

The value of "capital cost of all equipment" for the AHGP is higher than for the DSRP-based process, as Figure E-5 shows. The higher equipment cost is primarily due to the higher cost of the AHGP reactor vessel(s). Although there are three separate reactor steps required with the DSRP-based process, the single AHGP multistage reactor vessel(s) is larger. The larger size is primarily due to the longer residence time required for the SO₂ regeneration. [It should be noted that the NCSU cost estimates (Appendix) do not include piping costs, so that the total plant capital costs will be higher than the installed equipment costs. However, since piping costs are often estimated as a direct function of the equipment cost numbers, the ratio of the installed equipment costs for the two processes shown in the figure will approximate the ratio of the total plant costs.]

Another advantage of the DSRP is that it is the easier, more understood, process to operate. This is because balancing the SO_2 production and consumption in the AHGP may be difficult.

Figure E-5. Schematic of AHGP desulfurization and regeneration reactors.

Figure E-6. Comparison of key elements of DSRP and AHGP.

Although the AHGP has a higher initial cost, indicated by its larger capital requirements, it has a significantly lower annual operating cost than DSRP. As shown in Figure E-7, the operating cost advantage of the AHGP increases as the sulfur to be recovered increases. The negative annual costs of AHGP at higher sulfur feed result from the sulfur credit with less consumption of coal gas. The operating cost difference is large enough to offset the installation cost of AHGP. As shown in Figure E-8, AHGP has a lower cumulative HGD investment after only 2 years of operation. Both Figures E-7 and E-8 are presented to illustrate only cost comparison of the two processes. Emphasis should not be placed on the accuracy of the absolute cost numbers presented in these figures.

CONCLUSIONS

ASPEN simulations of DSRP and AHGP revealed the complexity of both HGD processes. The AHGP appears to be the more difficult process to operate and may require more employees than

Figure E-7. Annual costs as a function of sulfur feed.

Figure E-8. Cumulative HGD investment.

the DSRP. Capital costs for the AHGP are higher than those for the DSRP—development of DSRP is also much closer to commercialization than AHGP. However, annual operating costs for the AHGP appear to be considerably less than those of the DSRP. Preliminary economic comparison shows that the total cost of implementing AHGP will be less than that of implementing DSRP after as little as 2 years of operation. Thus, despite its greater complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

REFERENCES

- Ayala, R.E., A.S. Feitelberg, and A.H. Furman. 1995. "Development of a High-Temperature Moving-Bed Coal Gas Desulfurization System." In *Proceedings of 12th Ann. Int. Pittsburgh Coal Conf.*, p. 1053, September 11-15, Pittsburgh.
- Cook, C.S., et al. 1992. "Integrated Operation of a Pressurized Fixed Bed Gasifier and Hot Gas Desulfurization System." In *Proceedings of 12th Annual Gasif. Gas Stream Cleanup Systems Contractor's Review Meeting*, Volume 1, DE93000228, p. 84.
- Dorchak, T.P., S.K. Gangwal, and W.J. McMichael. 1991. The Direct Sulfur Recovery Process. *Environmental Progress* 19(2):68.
- Gangwal, S.K. 1991. "Hot-Gas Desulfurization Sorbent Development for IGCC Systems." IChemE Symposium Series No. 123. Sheffield, UK, pp. 159-170.
- Gangwal, S.K. 1996. "Sulfur Removal from Gas Streams at High Temperature," 3rd International Symposium on Gas Cleaning at High Temperature. University of Karlsruhe, Karlsruhe, Germany, September.
- Gangwal, S.K., et al. 1988. "Bench-Scale Testing of Novel High-Temperature Desulfurization Sorbents." Report No. DOE/MC/23126-2662 (DE89000935).
- Gangwal, S.K., R. Gupta, and W.J. McMichael. 1993. "Sulfur Control Options for IGCC Systems." In *Proceedings of 17th Biennial Low-Rank Fuels Symposium*, University of North Dakota, Energy and Environmental Research Center, St. Louis, MO, May 10-13.
- Gangwal, S.K., R. Gupta, and W.J. McMichael. 1995. "Hot-Gas Cleanup-Sulfur Recovery-Technical, Environmental, and Economic Issues," *Heat Recovery Systems and CHP*. Vol. 15, No. 2, p. 205-214, Elsevier Science Limited.
- Grindley, T., and G. Steinfeld. 1981. "Development and Testing of Regenerable Hot Coal-Gas Desulfurization Sorbents." DOE/MC/16545-1125.
- Gupta, R., and S.K. Gangwal. 1992. "Enhanced Durability of Desulfurization Sorbents for Fluidized Bed Applications—Development and Testing of Zinc Titanate Sorbents." DOE/MC/25006-3271.

- Gupta, R., B.S. Turk, and S.K. Gangwal. 1996. "Bench-Scale Development of Fluid-Bed Spray Dried Sorbents." In *Proceedings of Advanced Coal-Fired Power Systems '96 Review Meeting*, Morgantown Energy Technology Center, Morgantown, WV, July.
- Gupta, R., B.S. Turk, and Albert A. Vierheilig. 1997. "Desulfurization Sorbents for Transport-Bed Applications." In *Proceedings of 1997 FETC Power Systems and Environmental Control Contractor's Meeting*, Pittsburgh, PA, July.
- Harrison, D.P. 1995. "Control of Gaseous Contaminants in IGCC Processes, An Overview," In Proceedings of 12th Ann. Int. Pittsburgh Coal Conference, p. 1047, September 11-15, Pittsburgh.
- Harrison, D.P., F.R. Groves, J.D. White, W. Huang, and A. Lopez-Oritz. 1996. "Advanced Sulfur Control Processing." In *Proceedings of Advanced Coal-Fired Power Systems '96 Review Meeting*, Morgantown Energy Technology Center, Morgantown, WV, July.
- Jalan, V. 1985. "High-Temperature Desulfurization of Coal Gases." In *Acid and Sour Gas Treating Processes*, Gulf Publishing Co., Houston, TX, Nov. 7.
- Jothimurugesan, K., S.K. Gangwal, R. Gupta, and B.S. Turk. 1997. "Advanced Hot-Gas Desulfurization Sorbents." In Proceedings of 1997 FETC Power Systems and Environmental Control Contractor's Meeting, Pittsburgh, PA, July.
- Khare, G.P., G.A. Delzer, G.J. Greenwood, and D.H. Kunbicek. 1996. "Phillips Sorbent Development for Tampa Electric and Sierra Pacific." In *Proceedings of Advanced Coal-Fired Power Systems '96 Review Meeting*, Morgantown Energy Technology Center, Morgantown, WV, July.
- Meijer, R., F.J.J.G. Janssen, G.L. Faring, and J.W. H. Hellendoorn. 1996. "KEMA's Hot Gas Cleanup Process." *In Proceedings of 3rd International Symposium on Gas Cleaning at High Temperature*. University of Karlsruhe, Karlsruhe, Germany, September.
- NOVEM. 1991. "System Study High Temperature Gas Cleaning at IGCC Systems." Netherlands Agency for Energy and the Environment.
- Portzer, J.W., and S.K. Gangwal. 1995. "Slipstream Testing of Hot Gas Desulfurization with Sulfur Recovery." In *Proceedings of the Advanced Coal-Fired Power Systems '95 Review Meeting*, pp. 220-228. DOE/METC-95/1018, Vol. 1, NTIS/DE 95009732. Springfield, VA: National Technical Information Service.
- Portzer, J.W., B.S. Turk, and S.K. Gangwal. 1996. "Durability Testing of the Direct Sulfur Recovery Process." In *Proceedings of the Advanced Coal-Fired Power Systems Review Meeting July 16 B18, 1996.* (CD-ROM). U.S. Department of Energy. Morgantown, WV.
- Sugitani, T. 1989. Development of Hot-Gas Desulfurization Process. *Journal of the Fuel Society* of Japan 68(9):787.

Thambimuthu, K.V. 1993. Gas Cleaning for Advanced Coal-Based Power Generation. Report by IEA Coal Research, IEACR/53, London, UK.

Appendix

Process Modeling of Hot-Gas Desulfurization

Steve C. Kozup George W. Roberts North Carolina State University

TABLE OF CONTENTS

			PAGE
EXE	CUT	ΓIVI	E SUMMARY 1
I.	IN	TRC	DUCTION
	1.	Ba	ckground
	2.	Su	Ifur Production
II.	BA	SIC	PROCESS DESCRIPTIONS 4
	1.	Di	rect Sulfur Recovery Process Sorbent Cycle 5
	2.	So	rbent Composition - DSRP
	3.	Ad	vanced Hot Gas Process Sorbent Cycle 8
	4.	So	rbent Composition - AHGP
III.	PH	IYSI	CAL PROPERTIES 12
	1.	Eq	uation of State
		a.	Equation of State's Importance 12
		b.	Selection 13
	2.	Ele	emental Sulfur
IV.	EQ	QUIF	$PMENT \dots \dots$
	1.	DS	RP -Based Process Equipment 16
		a.	Desulfurization and Regeneration Transport Reactors - DSRP 16
		b.	DSRP Reactor - DSRP 19
		c.	PRESAIR - DSRP 20
		d.	RECYCOMP - DSRP
		e.	High Pressure Condenser - DSRP 22
		f.	VAPORIZR - DSRP
		g.	PD-COOLR - DSRP
		h.	AIR-HX - DSRP
	2.	Aŀ	IGP Equipment
		a.	Desulfurization and Regeneration Reactors - AHGP 25
		b.	LIFTCOMP - AHGP
		c.	SO2-COMP - AHGP
		d.	CON-COMP - AHGP

		e.	COND-EQ - AHGP	29	
		f.	DEMISTR - AHGP	29	
		g.	LP-COND - AHGP	29	
		h.	HEATX - AHGP	30	
		i.	N2-COOLR - AHGP	30	
		j.	RCYHEATR - AHGP	30	
V.	PA	RAI	METRIC STUDIES	31	
	1.	H_2	S Inlet Concentration	31	
	2.	Pov	wer Generation	32	
	3.	Pu	re Oxygen vs. Air Oxidation	32	
		a.	DSRP	32	
		b.	AHGP	33	
VI.	AD	DIJ	TIONAL PROCESS CONSIDERATIONS	35	
	1.	Ste	am Generation	35	
	2.	Ma	terial of Construction	36	
	3.	Sul	fur Storage	36	
	4.	Pro	cess Operation	37	
VII.	EC	ON	OMIC ANALYSIS	38	
	1.	Caj	pital Expenditures	38	
	2.	Ye	arly Operating Costs	39	
		a.	Electrical	42	
		b.	Cooling Water	43	
		c.	Oxygen	44	
		d.	Additional Employees	44	
		e.	Consumed Coal Gas	44	
		f.	Additional Yearly Expenditures	45	
	3.	Eco	onomic Summary	45	
VIII.	SU	MM	IARY	46	
REFI	ERE	NCI	ES	47	
Appe	ndiy	ĸА·	- Calculation of the SO ₂ Circulation Rate for AHGP	49	
Appe	Appendix B - Heat Transfer Coefficients 50				
Appe	ndiz	ĸC-	- Determination of Catalyst Velocity in DSRP Reactor	51	
Appe	ndiy	ĸD·	- Calculation of DSRP Catalyst Cycling Rate	54	

Appendix E - Process Flowsheets and Stream Summaries	56
Appendix F - Steam Generation Process Flowsheets	85
Appendix G - Calculation of Reactor Size	92
Appendix H - Sizing Reactors for the DSRP	94
Appendix I - Sizing Reactors for the AHGP 1	05
Appendix J - Power Generation Achievable from Clean Coal Gas 1	11
Appendix K - Calculation of Reactor Pressure Drops 1	13
Appendix L - Summary of the Process Pressure Drops 1	17
Appendix M - Summary of Major HGD Equipment 1	21
Appendix N - Summary of HGD Costs 1	24
Appendix O - Reaction Data Obtained from RTI 1	35

LIST OF TABLES

TAB	LE # PAGE
1.	Coal Gas Characteristics of Simulations 4
2.	Raw Coal Gas Feed to Base Case Simulations 5
3.	Heats of Reaction Calculated by RTI and ASPEN Model
4.	Equilibrium Conversion for FeS Oxidation by SO ₂ 9
5.	Al ₂ O ₃ Circulation Rate Effect on Regenerator Stage 1 Temperature
6.	Dew Point Temperatures for DSRP Product Distributions
7.	Coal Gas Fed to and Consumed by HGD for Various H2S Concentrations 31
8.	N ₂ Removal at Various N2 Concentrations, Condenser Temperatures and Pressures 34

LIST OF FIGURES

FIGU	PAG	GE
1.	U.S. Sulfur Production	3
2.	DSRP - base Desulfurization	7
3.	AHGP Desulfurization	10
4.	RKS and PR Calculated SO ₂ Vapor Pressure Deviation From Tabulated Values	14
5.	Schematic of DSRP - Based HGD Process Desulfurization and Regeneration Reactors	18
6.	Schematic of AHGP Desulfurization and Regeneration Reactors	26
7.	Condenser for Removal of Nitrogen	34
8.	Schematic for HGD Steam Generation	35
9.	Distribution of Capital Costs	39
10.	Distribution of Yearly Expenditures	40
11.	Yearly Expenditures for Different Levels of Power Generation	40
12.	H ₂ S Concentration's Effect on HGD Yearly Operating Costs	41
13.	Power Generation's Effect on HGD Yearly Operating Costs	41
14.	Yearly Costs as a Function of Sulfur Feed	42
15.	Cumulative HGD Investment	45

EXECUTIVE SUMMARY

This report summarizes the process simulation work and economic evaluations that were done under contract to Research Triangle Institute to aid in the design of hot gas desulfurization (HGD) processes. Two processes were evaluated for the removal of sulfur (as H₂S) from coal gas at high temperatures, that produce elemental sulfur as a byproduct. Complete mass and energy balances were accomplished for the Direct Sulfur Recovery Process (DSRP) -based process, for various feed conditions. The Advanced Hot Gas Desulfurization Process (AHGP) was also simulated for various feed conditions. ASPEN PLUS 9.3-1 was used for simulating the processes. The mass and energy balances were used in determining the equipment requirements. Equipment requirements were used for the estimation of capital costs and yearly operating costs.

The technical feasibility of the two processes was briefly evaluated. Operating the DSRP is less complicated than operating the AHGP. The AHGP contains a SO_2 loop that is balanced by reactions that consume and generate SO_2 . The reaction that consumes SO_2 is equilibrium limited, and its equilibrium fractional conversion varies substantially over the range of possible reactor temperatures.

The economic evaluation shows that the AHGP has higher capital costs than the DSRP. However, the savings the AHGP provides with lower operating costs makes it the more attractive process. The economics in this report use two key assumptions: that there is a market credit for recovered elemental sulfur, and that the coal gas consumed by the HGD has an operating cost equal to the cost of the electricity that could have been generated from it. Using these and other assumptions, the analysis shows that, after only two years the AHGP should make up for its higher capital cost. After four years, AHGP could save millions over the DSRP (savings depend on plant size and the coal's sulfur concentration).

I. INTRODUCTION

1. Background

Integrated gasification combined cycle (IGCC) power plants gasify coal and then combust the coal gas to generate power. All new power plants are required to meet federal SO_X emission limitations, currently limited to 1.2 lbs per million BTU (Jaffee). Hot-gas desulfurization (HGD) removes sulfur from coal gas before combustion. HGD has the potential of reducing the cost of electricity (COE) in IGCC plants, compared to conventional liquid absorption desulfurization.

IGCC plants gasify coal using steam and either air or oxygen. The coal gas is then combusted and passes through a gas turbine, generating power. The hot exhaust gas from the turbine is then used to generate steam, which is used for additional power generation. Coal gas is produced at high temperatures and high pressures (HTHP), typically 450 to 800°C and 145 to 580 psia (Gangwal). HGD reduces the coal gas sulfur content before combustion while maintaining the coal gas at HTHP conditions. Currently, IGCC plants remove sulfur with liquid phase scrubbing. The scrubbing process cools the coal gas stream below 150°C. The temperature drop reduces thermal efficiency and limits the potential electricity cost reduction that is theoretically possible with IGCC power plants. IGCC power plants using liquid phase scrubbing have COE's equivalent to those of pulverized coal-based power plants (Gangwal). HGD would give IGCC power plants a competitive advantage. Implementing HGD will increase thermal efficiency, reduce the COE, and ensure SO₂ emissions are acceptable.

Another benefit of HGD is that the sulfur removed from the coal gas would be recovered as elemental sulfur, a valuable byproduct and easily stored material. This report describes work subcontracted to North Carolina State University (NCSU) from Research Triangle Institute (RTI). Two HGD processes that produce elemental sulfur were simulated using ASPEN PLUS 9.3-1. This work contributes to RTI efforts towards developing HGD technology. RTI research and development work includes sorbents development, characterization and a pilot-scale desulfurization testing.

2

Coal gas HGD and sulfur recovery could also be implemented in non-power producing applications. Although not the focus of this report, coal gas is used in methanation and Fischer-Tropsh synthesis. Methanation and Fisher-Tropsh catalysts require H₂S concentrations below 1 ppm (Cusumano) because H₂S and SO₂ poison catalysts with the formation of elemental sulfur.

2. Sulfur Production

The main purpose of the two desulfurization processes investigated is to remove sulfur from the coal gas prior to combustion, thereby reducing stack emissions. An advantage of these two processes is that elemental sulfur, which has commercial value, will be generated. Such "recovered sulfur" has been steadily replacing Frasch sulfur as a sulfur source (Figure 1). Frasch sulfur is obtained by drilling into sulfur deposits and injecting hot water, pushing molten sulfur to the surface.

Figure 1: U.S. Sulfur Production

Sulfur is used in both industrial and agricultural applications. In the U.S., the majority of sulfur is used for agricultural purposes (U.S. Geological).

Recovered sulfur can be sold for \$50 to \$150/ton (Caruanan). Since sulfur purification was not modeled, a \$50/ton credit was assigned to the recovered sulfur for the economic evaluation.

II. BASIC PROCESS DESCRIPTIONS

Two distinct desulfurization processes where simulated, the Direct Sulfur Recovery Process (DSRP) -based process and the Advanced Hot-Gas Process (AHGP). A complete collection of process flowsheets and stream summaries is contained in Appendix E. The defining characteristic of the DSRP -based process is that a slipstream of clean coal gas is used to produce the elemental sulfur from an intermediate regeneration off-gas stream containing sulfur dioxide (SO₂). The defining characteristic of AHGP is that a SO₂ stream (in a recycle loop) is used to regenerate the sorbent and produce elemental sulfur. Base case simulations for both HGD processes, referred to as "DSRP" and "AHGP", have 0.85 mol% H₂S in the coal gas feed. Both base cases also generate 260 MW from the clean coal gas. Simulations that deviate from the base cases use suffixes to denote the changes. Table 1 displays the significance of the suffixes. In all cases the coal gas feed pressure is 275 psia and its temperature is 482°C. Simulations changes were strongly dependent on the quantity of sulfur removed from the coal gas. There is little distinction between HGD processes deviating the total sulfur removal by changing H₂S concentration and those changing sulfur removal by varying the power production.

Simulations	H ₂ S Feed Molar Concentration	MW Produced
DSRP, AHGP (base cases)	0.85 %	260
DSRP- b , AHGP- b	2.50 %	260
DSRP-c, AHGP-c	0.25 %	260
DSRP-100, AHGP-100	0.85 %	110
DSRP-500, AHGP-500	0.85 %	540

Table 1: Coal Gas Characteristics of Simulations

Table 2 shows the composition and flow rate of the "raw" coal gas feed to the base case HGD processes. After sulfur is removed from the streams the coal gas can produce 260 MW.

Component	DSRP (lb/hr)	AHGP (lb/hr)
H_2S	6,300	6,100
H ₂ O	70,500	69,000
H_2	11,800	11,500
СО	218,200	213,400
CO_2	117,400	114,800
N_2	36,300	35,500
Total	460,500	450,500

Table 2 : Raw Coal Gas Feed to Base Case Simulations

1. Direct Sulfur Recovery Process Sorbent Cycle

The term DSRP, strictly speaking, refers only to that part of the entire HGD process that produces elemental sulfur. For convenience, the process simulations were made by assuming a kind of "generic" process (Figure 2) utilizing a ZnO sorbent, with Al_2O_3 support, to remove sulfur (present in the form of H_2S) via reaction 1. The reader should note that in this report "DSRP" is often used as shorthand for the entire "DSRP-based HGD process," while the novel DSRP reactions to form elemental sulfur occur in what this report refers to as the "DSRP Reactor." Reaction 1 occurs in the desulfurization reactor (DESULF, Figure 2).

$$ZnO + H_2S \rightarrow ZnS + H_2O$$
(1)

The spent sorbent is regenerated in an oxidizing environment, forming SO_2 . Reaction 2 occurs in the regenerator reactor (REGEN, Figure 2), it is driven to completion by oxygen.

$$ZnS + 3/2 O_2 \rightarrow ZnO + SO_2$$
 (2)

The SO₂ exits the regenerator in a stream designated regenerator off-gas (ROG). The ROG flows to the DSRP Reactor. A slipstream of clean coal gas is also fed to the DSRP Reactor. The H_2 and CO in the coal gas slipstream participate in catalyzed reactions (3 and 4), converting SO₂

into elemental sulfur. The reactions 3 and 4 are the simplified overall reactions of a more complex series of reactions.

$$H_2 + 1/2 SO_2 \rightarrow H_2O + 1/4 S_2$$
(3)
CO + 1/2 SO₂ \rightarrow CO₂ + 1/4 S₂ (4)

The heats of reaction for converting SO_2 to elemental sulfur have been calculated by RTI (Portzer, 1996). Comparing RTI calculated values with experimental results indicated the RTI values were reasonable. Table 2 shows that ASPEN calculated heats of reaction are in general agreement with those calculated by RTI. The ASPEN model does an accurate job determining the heat evolved during reactions and therefore will predict correct heat transfer requirements in the process simulations.

 Table 3: Heats of Reaction Calculated by RTI and ASPEN Model

Reaction	Temp (°C)	ΔH _{RTI} (BTU/mole)	ΔH_{ASPEN} (BTU/mole)	difference
3	550	- 28,000	- 28,700	2.5 %
3	650	- 28,300	- 29,000	2.5 %
3	750	- 28,600	- 29,200	2.1 %
4	550	- 43,900	- 44,100	0.5 %
4	650	- 43,700	- 44,000	0.7 %
4	750	- 43,800	- 43,600	0.5 %

-Heat of reaction values adjusted to match stoichiometry written, P=300 psig for calculations

2. Sorbent Composition - DSRP

The oxidized sorbent, a mixture of ZnO and Al₂O₃, was assumed to contain 15 wt% zinc metal. This distribution is based on an assumed, "generic" sorbent defined by RTI, and results in an oxidized sorbent containing 18.671 wt% ZnO with the balance as inert Al₂O₃ support. While developing the process model and adjusting the stream flow rates to achieve the desired heat balance, it became desirable to increase sorbent circulation rates above the stoichiometric requirements. For these models, the ratio of Zn to Al remained unchanged. The excess Zn sorbent circulating through the system was assumed to remain in the sulfide state (ZnS).

3. Advanced Hot Gas Process Sorbent Cycle

The AHGP (Figure 3) uses a sorbent containing a mixture of ZnO and Fe_2O_3 on Al_2O_3 support for removing H_2S from the coal gas and converting it into elemental sulfur. Both zinc and iron components react with the H_2S present in the coal gas. The desulfurization reactions are represented below.

$$ZnO + H_2S \rightarrow H_2O + ZnS$$
 (5)
 $Fe_2O_3 + 2 H_2S + H_2 \rightarrow 2 FeS + 3 H_2O$ (6)

The sulfided sorbent is sent to a three-stage regenerating reactor that reoxidizes the sorbent and generates elemental sulfur. Sorbent and a SO_2 gas stream flow counter-currently through the regenerator (Figure 3) (Figure 6). The sorbent enters the regenerator at the HX-STAGE (the third and highest elevated stage) where the sorbent is heated by the effluent gas stream. Sorbent descends to REGEN2 (the second stage) where SO_2 , present in great excess, oxidizes the majority of the FeS sorbent.

$$3 \text{ SO}_2 + 4 \text{ FeS} \stackrel{=}{=} 7/2 \text{ S}_2 + 2 \text{ Fe}_2 \text{ O}_3$$
 (7)

It has been assumed that two-thirds of the FeS oxidizes in REGEN2. Calculated equilibrium conversions for reaction 7 are listed in table 4. Sorbent enters the second stage of the regenerator at 512°C and gas enters the second stage at 715°C. Table 3 shows equilibrium conversions varies significantly over the range of temperatures possible in stage 2, a stage for which it is unclear what value represents its temperature the best. Simulated stage 2 exit temperatures were 580°C, this exit temperature assumes perfectly mixed behavior in the stage 2. In reality there will likely be higher temperatures at lower elevations in the stage. The ASPEN model uses an RSTOICH block to simulate this stage so that the conversion can be arbitrarily fixed at 67%. This value was defined by RTI, based on experimental data. The information in Table 4 suggests that the assumed two-thirds conversion probably overestimates the actual conversion. In commercial practice, increasing the Fe:Zn ratio could compensate for lower than simulated reaction 7 conversions (conversion written in terms of FeS). Another aspect of this reactor stage is that the

extent that FeS oxidizes by SO_2 will vary with temperature fluctuations and increase the difficulty in balancing SO_2 consumption and generation.

Table 4: Equilibrium Conversion for FeS Oxidation by SO_2				
Regenerator Temperature (°C)	Equilibrium Fractional Conversion			
500	0.43			
550	0.53			
600	0.65			
650	0.77			
700	0.90			
Equilibrium calculated from ASPEN REQUIL block, P = 275 psia				

Sorbent oxidization approaches completion in the bottom regenerator stage (REGEN1, Figure 3). REGEN1 oxidizes the sorbent using pure oxygen (reactions 8 and 9). The oxidation generates SO_2 , making up for SO_2 used in reaction 7.

$$7/2 O_2 + 2 FeS \rightarrow 2 SO_2 + Fe_2O_3$$
 (8)
 $3/2 O_2 + ZnS \rightarrow SO_2 + ZnO$ (9)

This modeling assumes that SO_2 does not oxidize sorbent in REGEN1, since equilibrium conversion for SO_2 oxidation is approached in REGEN2. The equilibrium regeneration of sorbent by SO_2 will be quickly superseded by oxygen regeneration.

4. Sorbent Composition - AHGP

AHGP sorbent composition was defined by RTI to contain 3 wt% Zn and 12 wt% Fe, which corresponds to 3.734 wt% ZnO and 17.154 wt% Fe₂O₃. The balance, 79.109 wt%, was inert Al₂O₃. As discussed above, the ratio of Fe to Zn will need to be increased if the actual conversion for reaction 7 is lower than 0.667, its assumed value.

During subsequent simulation development and adjustment of stream flow rates to achieve the desired heat balance, it became apparent the defined sorbent composition was not optimal. To run the reactors adiabatically, it was necessary to increase sorbent flow. Circulating more sorbent increased the heat capacity of the reactive stream and reduced the adiabatic temperature rise. Such a sorbent increase required an increase in Al_2O_3 flow. Increasing Fe or Zn flow would have upset the SO₂ generation and consumption balance created by reactions 7, 8 and 9. Therefore, alumina flow was increased. The effect would be the same as adding pure alumina sorbent to the reactor system, or by manufacturing a sorbent that has a lower active metal content and increasing the total flow to match the amount of alumina added.

The Al₂O₃ circulation was increased until an adiabatic regenerating reactor would operate below 716°C. The effects of changing Al₂O₃ circulation ripple through the process. The required SO₂ circulation rate was affected by varying the Al₂O₃ flow. The desired SO₂ volumetric flow rate increased with increasing sorbent flow rate because of increased reactor size. Increasing the SO₂ circulation helped reduce the adiabatic temperature rise, lessening the need to increase sorbent flow. Table 5 shows how Al₂O₃ flow was increased until an acceptable adiabatic regeneration temperature was achieved. The table displays the stepwise approach used to determine the Al₂O₃ circulation needed in the AHGP-b simulation (-b signifies a 2.5 mol% H₂S in the feed). In the simulation, ZnS and FeS flow rates (leaving the desulfurization reactor) were constant at 7,600 lb/hr and 41,000 lb/hr, respectively.

<u>Al₂O₃ (lb/hr)</u>	T_{REGEN1} (°C)	Desired SO ₂ flow (ft ³ /hr)
165,297	1025	102,000
330,594	787	181,000
400,000	759	214,000
450,000	715	238,000

Table 5: Al₂O₃ Circulation Rate Effect on Regenerator Stage 1 Temperature

III. PHYSICAL PROPERTIES

1. Equation of State

All simulations discussed in this report used the Peng Robinson cubic equation of state with the Boston-Mathias alpha function (PR-BM).

1.a. Equation of State's Importance

Modeling unit operations requires physical property information for all compounds present. In calculating thermodynamic equilibrium, fugacity coefficients are used to determine phase equilibrium. An equation of state can be used for the calculation of fugacity, as well as other important physical properties. The equation of state also relates pressure, temperature, and molar volume so that only two need to be specified and the third can be calculated. Phase equilibrium is established when the fugacity of each component is the same in all phases. A two-phase (vapor and liquid) system is at equilibrium when:

 $f_{\ i}^{v}=f_{\ i}^{l} \qquad \qquad i=1,2,...N \ \text{where N is the number of compounds}$ Where:

$$f_{i}^{v} = \phi_{i}^{v}y_{i}P$$
 Fugacity of component *i* in the vapor phase
 $f_{i}^{l} = \phi_{i}^{l}x_{i}P$ Fugacity of component *i* in the liquid phase

$$\ln \phi_{i}^{\alpha} = -\frac{1}{RT} \int_{\infty}^{V^{\alpha}} \left[\left(\frac{\partial P}{\partial n_{i}} \right)_{T,V,n_{i\neq j}} - \frac{RT}{V} \right] dV - \ln Z_{m}^{\alpha}$$

Notation:

α	=	vapor or liquid (v or l)	Р	=	Pressure
ni	=	Mole number of component <i>i</i>	Т	=	Temperature
Xi	=	Liquid mole faction of component <i>i</i>	R	=	Gas Constant
y_i	=	Vapor mole faction of component <i>i</i>	V	=	Total volume
Ζ	=	Compressibility factor			

The equation of state also is used to determine other properties via departure functions.

• Enthalpy departure:

$$(H_m - H_m^{ig}) = -\int_{\infty}^{V} \left(P - \frac{RT}{V}\right) dV - RT \ln\left(\frac{V}{V^{ig}}\right) + T(S_m - S_m^{ig}) + RT(Z_m - 1)$$

• Entropy departure:

$$(\mathbf{S}_{\mathrm{m}} - \mathbf{S}_{\mathrm{m}}^{\mathrm{ig}}) = -\int_{\infty}^{\mathbf{V}} \left[\left(\frac{\partial \mathbf{P}}{\partial T} \right)_{\mathbf{V}} - \frac{\mathbf{R}}{\mathbf{V}} \right] d\mathbf{V} + \mathbf{R} \ln \left(\frac{\mathbf{V}}{\mathbf{V}^{\mathrm{ig}}} \right)$$

...

• Gibbs Free Energy departure:

$$(G_m - G_m^{ig}) = -\int_{\infty}^{V} \left(P - \frac{RT}{V}\right) dV - RT \ln\left(\frac{V}{V^{ig}}\right) + RT(Z_m - 1)$$

-

Notation:

H = EnthalpyS = EntropyG = Gibbs Free Energyig (superscript) denotes variable's value for ideal gasm (subscript) denotes variable's value for the mixture

1.b. Selection

The Peng Robinson cubic equation of state with the Boston-Mathias alpha function (PR-BM) was used in these simulations because it was recommended for gas-processing, refinery, and petrochemical applications (ASPEN PLUS- Reference Manual 2). It was recommend for modeling nonpolar and mildly polar mixtures, including hydrocarbons and light gases like: carbon dioxide, hydrogen sulfide, and hydrogen. Reasonable results can be expected for all temperatures and pressures. The Peng-Robinson equation of state is:

$$P = \frac{RT}{V_m - b} - \frac{a}{V_m (V_m + b) + b(V_m - b)}$$

Variables 'a' and 'b' account for attractive forces and the space occupied by all species present, R is the ideal gas constant, T is temperature and V_m is the mixture's specific molar volume.

The Boston Mathias extrapolation is used for supercritical components. Boston and Mathias derived an alpha function that is particularly good at modeling decreasing attraction between molecules at high temperatures (ASPEN PLUS- Reference Manual 2).

The above descriptions also apply to the Redlich-Kwong-Soave cubic equation of state with Boston-Mathias alpha function (RKS-BM). The decision to use the PR-BM over RKS-BM was made after comparing literature phase data (Braker) with simulations using both property option sets. Figure 4 shows the fractional deviation of simulated vapor pressures compared to literature values. Both equations of state calculate values in good agreement with actual values, and the Peng-Robinson equation of state gives the best results.

2. Elemental Sulfur

Accurately predicting elemental sulfur properties requires knowing which allotropes of sulfur will be formed. For the conditions occurring in the HGD process S_8 , S_6 , and S_2 are the predominant allotropes (Barnett; Cotton). Temperature is the dominant variable affecting the equilibrium sulfur distribution. The ASPEN simulations concurred with literature distributions, predicting S_2 predominance at high temperatures (reactor temperatures), and a shift towards S_8 and S_6 at lower temperatures (condenser temperatures). Accurate sulfur distributions are important for the integrity of phase equilibrium predictions. In addition, correctly simulating sulfur equilibrium increases the accuracy of energy balances.

It is worth noting some unusual properties of liquid elemental sulfur. Recovered sulfur should not be raised to temperatures above 159°C, as above that temperature the liquid sulfur becomes increasingly viscous (Cotton). Sulfur melts around 114°C; it does not have a sharp melting point due to the presence of various allotropes (Barnett).

IV. EQUIPMENT

1. DSRP- Based Process Equipment

For the purposes of this process simulation and economic evaluation, the DSRP - based HGD process was defined to have a desulfurization and regeneration transport reactor network as shown in Figure 5. Sulfur is removed from coal gas (Reaction 1) in the desulfurization reactor and sorbent regeneration (Reaction 2) takes place in the regeneration reactor. There is also a DSRP Reactor in which the elemental sulfur is formed via Reactions 3 and 4. Other major pieces of equipment in the DSRP include compressors, condensers, and heat exchangers.

$ZnO + H_2S \rightarrow ZnS + H_2O$	(1)
$ZnS + 3/2 O_2 \rightarrow ZnO + SO_2$	(2)
$H_2 \ + \ 1/2 \ SO_2 \ -> \ H_2O \ + \ 1/4 \ S_2$	(3)
$CO + 1/2 SO_2 -> CO_2 + 1/4 S_2$	(4)

In addition to Reactions 3 and 4, intermediate and side reactions occur in the DSRP Reactor. They are discussed later in the report.

1.a. Desulfurization and Regeneration Transport Reactors - DSRP

The DSRP - based HGD process is assumed to use transport reactors for the desulfurization and regeneration reactions. The Sierra Pacific hot-gas desulfurization system (Cambell) has been the basis for the reactor system design (Figure 5). Cyclones separate the sorbent from the exiting gas streams. Sorbent settles from the cyclones into standpipes. The sorbent has a relatively high residence time in the standpipes. Standpipe residence times are several minutes while reactor residence times are only several seconds long. Standpipe heat exchangers remove heat from the reactor system. During startup, sending steam through the standpipe heat exchanger could heat the sorbent partially up to reactor temperatures.

The regeneration reaction releases a substantial amount of heat. Feeding a stoichiometric amount of sorbent in the ASPEN simulation to an adiabatic regeneration reactor results in predicted temperatures surpassing 1,000°C (DSRP base case). RTI guidelines stated that HGD sorbents would experience substantial sintering at temperatures above 815°C. The strategy adopted to control reactor temperature is recycling excess sorbent. The additional sorbent increases the total heat capacity of the reactive streams. The additional sorbent will not result in additional reactions and the increased heat capacity will decrease the adiabatic temperature rise. The adiabatic temperature rise can be expressed by the following relationship:

$$\Delta T_{adiabatic} \approx \frac{\Delta H_{rxn}}{C p_{stream}}$$

Increased sorbent flow was selected as the preferred strategy over that of using a reactor heat exchanger, since it simplifies reactor design. Furthermore, hot spots are more likely to occur in a reactor containing a heat exchanger. Limiting reactor temperature by reducing reactor feed stream temperatures (without additional sorbent circulation) was also investigated. This approach was discarded because the reactions would be extinguished at feed temperatures low enough to keep the reactor temperature below 815° C.

Figure 5: Schematic of DSRP - Based HGD Process Desulfurization and Regeneration Reactors

The transport reactors exhibit numerous advantages over fixed-bed, fluid-bed and moving-bed reactors. The transport reactor has lower capital cost, its high flowrate of sorbent controls reactor temperatures, and the high velocities prevent hot spots from occurring on the sorbent (Campbell). The transport reactor's superior temperature control allows undiluted air to be used during regeneration.

The equations used for sizing and costing the DSRP - based process desulfurization and regeneration transport reactor system are described in Appendix G-Calculation of Reactor Size. The actual calculations can be found in Appendix H-Sizing Reactors for the DSRP.

1.b. DSRP Reactor - DSRP

The DSRP Reactor itself is a fast fluidized bed reactor with its catalyst modeled as Al_2O_3 . There are several ASPEN blocks used to model what will be only one DSRP Reactor, a dashed box has been drawn around the series of blocks used (Figure 2). The catalyst is circulated through the reactor and an external heat exchanger. Heat is removed by cooling the catalyst while it is outside the reactor. The heat exchanger cools the catalyst to 500°C and the catalyst is then reintroduced to the reactor at a rate that is high enough to keep the DSRP Reactor effluent near 600°C. (Appendix D- Calculation of DSRP Catalyst Cycling Rate)

Figure 2 shows that several blocks were used for the simulation of the DSRP Reactor: DSRPXO2, DSRP, DSRP2, and SN-EQUIL.

In DSRPXO2, any oxygen that enters the DSRP as a contaminant in the ROG consumes coal gas by a conventional combustion reaction. The oxygen combines with CO forming CO₂. It is not necessary to model combustion of H_2 since the ratio of CO to H_2 will be set by the Water Gas Shift (WGS) reaction. Also in DSRPXO2 the WGS reaches equilibrium. The WGS reaction is known to reach equilibrium before the reactions of SO₂ with H_2 or CO begin (Chen, 1994). DSRPXO2 uses a Gibbs Free Energy calculation to establish equilibrium for reactions 10 and 11.

DSRPXO2 CO +
$$1/2 O_2 \rightarrow CO_2$$
 $X_{02} = 1$ (10)

$$H_2O + CO = CO_2 + H_2$$
 $K_C(600^{\circ}C) = 2.6$ (11)

The key DSRP reactions have been modeled in the following blocks.

DSRP
$$2 H_2 + SO_2 \rightarrow 0.5 S_2 + 2 H_2O$$
 $X_{H2} = 0.99$ (3)
 $3 CO + SO_2 \rightarrow COS + 2 CO_2$ $X_{CO} = 0.9995$ (12)

$$H_2 + 0.5 S_2 \rightarrow H_2 S$$
 $X_{H2} = 0.01$ (13)

DSRP2 $SO_2 + 2 COS \rightarrow 1.5 S_2 + 2 CO_2 X_{COS} = 0.9999$ (14)

SN-EQUIL establishes the allotropic distribution of elemental sulfur using a Gibbs Free Energy calculation. Including this block more accurately models the heat generated inside the DSRP Reactor.

SN-EQUIL
$$4 S_2 \rightarrow S_8$$
 $X_{S2} = 0.23$ (15)

$$3 S_2 \rightarrow S_6 \qquad X_{S2} = 0.32 \qquad (16)$$

1.c. PRESAIR - DSRP

The transport reactor design for the regenerator in the DSRP - base HGD process model allows the use of undiluted air ("neat air") to regenerate the desulfurization sorbent. Introducing air at the required pressure can be accomplished using either an axial-flow or centrifugal compressor. In most applications, including this process simulation, it is preferable to use a centrifugal compressor. Centrifugal compressors have the advantage of a larger operating range (Dimoplom). Centrifugal compressors typically operate below 225°C (Brown; Dimoplon) in order to avoid equipment damage.

The large increase in pressure (ambient to 275+ psia) in the PRESAIR air compressor generates a considerable temperature rise. Interstage cooling, between the compressor's 6 stages, is necessary to maintain an air temperature below 225°C and to prevent mechanical damage to the compressor (Brown; Dimoplon). The temperature increase across the first stage does not require cooling stage 1 effluent and there is no need to cool the effluent of the final stage as well. Therefore, there will be four interstage coolers needed for the six-stage compressor. Pressure drop during interstage cooling can be approximated as 2% of the pressure entering the cooler or 2 psia, whichever is larger (Brown). For pressuring to 280 psia estimating a 2 psia drop for each cooler is reasonable; these pressure losses are included in the ASPEN PLUS compressor block calculations.

Significant capital will be spent on the purchase of an air compressor. Increasing pressure to 280 psia for an feed of 8,800 ft³/min (DSRP base case) requires a compressor made of steel as opposed to cast iron (Bloch). Compressors made of low value steel should be both mechanically durable and economical. For simplicity, the cost estimates in this report assume electric drive.

Steam turbines could drive the compressors. Steam turbines are historically the most popular means of driving centrifugal compressors. They have the ability to operate over a wide speed range. Electric motors have experienced increasing favor due to a typically lower operating cost. Buying electricity is more economical than small scale steam generation for a specific piece of equipment (Brown). However, with the desulfurization processes generating steam and with steam available from the power plant, a steam turbine may be the best means of driving the compressors.

Air Compressor Costs

Compressor costs were determined from a budgetary quotation obtained from Ingersoll-Rand. Ingersoll-Rand stated a cost of \$241,000 for the Centac Model 2CV23M3EEPF. This model Centac is a centrifugal air compressor (drive and motor) capable of raising 2,250 acfm to 280 psia. Extrapolation was used to determine the cost of compressors needed for the different flow rates. Figures in Peters and Timmerhaus (1991) were used to determine the rate at which compressor costs change with varying flow rates.

The compressor, PRESAIR, is modeled as a six stage compressor. It has been assumed that the interstage coolers lower the air temperature to 115°C. Calculation of stage efficiency was performed using a procedure outlined in Brown (1986). The polytropic efficiencies calculated range from 0.65 to 0.787, which are consistent with other values found in literature (Brown; Dimoplon). PRESAIR pressurizes 8,800 acfm (in the DSRP base case); for such a flow ASPEN predicts a 3,280 HP power requirement. Directly scaling up the Centac (2,250 acfm, 800 HP) compressor predicts a 3,130 HP power requirement. The similar horsepower requirements suggest that ASPEN is realistically simulating the air compressor.

1.d. RECYCOMP - DSRP

The compressor RECYCOMP repressurizes the vapor stream leaving the sulfur condenser (the tailgas of the DSRP reaction) and sends it back to the desulfurization reactor. Recycling this stream eliminates an emissions stream while causing a minor load increase for the reactor network. The pressure increase between the condenser and the desulfurization reactor should be within the capabilities of a single stage centrifugal compressor, and RECYCOMP was modeled as such.

1.e. High Pressure Condenser - DSRP

The High Pressure Condenser condenses sulfur out of the DSRP Reactor effluent stream. It is high pressure in the sense that it operates near the pressure of the DSRP Reactor. Reducing the temperature to 140°C condenses the sulfur. At this temperature, the vast majority of sulfur condenses, and there is no risk of freezing. The High Pressure Condenser is simulated using two blocks (Figure 2). The first, COND-I, is an equilibrium block that establishes equilibrium between S_2 and S_8 . At high temperatures like those in the DSRP reactor, sulfur is predominately in the S_2 form (Barnett; Chen; Cotton). At the cooler condensation temperatures, the S_8 and S_6 sulfur species predominate. The second block, COND-II, establishes equilibrium between the S_8 and S_6 sulfur species and phase equilibrium. The S_8 and S_6 sulfur species are easier to condense. Calculation of the sulfur equilibrium, in addition to more accurately simulating the phase equilibrium, also increases the accuracy of the heat transfer requirements. The low temperature in the condenser makes it unsuitable for the direct production of high pressure steam. The condenser could be used to preheat the feedwater to other steam-generation units (Appendix F).

1.f. VAPORIZR - DSRP

Reducing the sulfur product stream's pressure to ambient will cause the water present in the stream to vaporize. The vaporizing water can cool the sulfur stream enough to cause freezing. The VAPORIZR accomplishes three tasks: a) it reduces sulfur pressure to ambient; b) it supplies heat to the sulfur stream so that the temperature will be maintained at 140°C and sulfur will remain molten; and, c) it also helps purify the product stream by removing water from the sulfur.

1.g. PD-COOLR - DSRP

Prior to entering the condenser, the DSRP Reactor effluent ("RXNPRD") is sent through the Product Cooler (PD-COOLR) heat exchanger. Cooling the reactor products in this heat exchanger reduces the condenser heat duty and PD-COOLR operates at temperatures suitable for generating high pressure steam. Sulfur condensation inside the PD-COOLR should be avoided. Condensation would create the undesirable situation of two phase flow and would require removing the sulfur during shutdown so that it will not freeze inside the heat exchanger. Operating the PD-COOLR above the product stream's dew point would prevent sulfur condensation. Dew point calculations were made for the various reactor effluent distributions. The allotropic sulfur distribution (S_2 , S_6 , S_8) changes with temperature, however the speed at which equilibrium is reached is unknown. It is not known how closely sulfur allotrope distribution will approach equilibrium in the cooler. Therefore, calculations were made for the dew point temperatures at both the equilibrium distribution of sulfur allotropes, and at the allotrope distribution that leaves the reactor (Table 6).

For the simulations, the PD-COOLR was defined to cool reaction products to 415° C. Table 6 shows that at 415° C sulfur condensation will not occur if the sulfur allotrope equilibrium is reached instantaneously (Sulfur Equilibrium = yes) and also will not occur if the sulfur allotrope distribution is still at the DSRP Reactor temperature distribution (Sulfur Equilibrium = no).

Product distribution	<u>Sulfur Equilibrium</u>	Pressure (psia)	Temperature (°C)
DSRP	yes	275	360
DSRP	no	275	405
DSRP-b	yes	275	357
DSRP-b	no	275	402
DSRP-c	yes	275	362
DSRP-c	no	275	406

Table 6: Dew Point Temperatures for DSRP Product Distributions

1.h. AIR-HX - DSRP

The AIR-HX heat exchanger utilizes the hot regenerator off gas ("ROG") stream to raise the temperature of the high pressure air stream ("P-O2-N2"). Heating the air is required to achieve a sufficiently high temperature to initiate the regeneration reaction. Cooling the ROG reduces the heat removal required to keep the DSRP reactor at 600°C. The hot (above 800°C) ROG stream contains SO₂. The presence of hot SO₂ requires that the AIR-HX heat exchanger tubes be constructed from type 310 stainless steel (SS 310).

2. AHGP Equipment

The AHGP consists of a desulfurization transport reactor and a 3-stage bubbling bed regeneration reactor. The reactions that remove sulfur from coal gas (Reactions 5 and 6) proceed in the desulfurization reactor. In the regenerator the sorbent is regenerated with SO₂, to generate elemental sulfur (reaction 7), and is subsequently regenerated with O₂ to produce SO₂ (reactions 8 & 9). Forming elemental sulfur during regeneration eliminates the need a for third reactor, as the DSRP based process requires. Other major pieces of equipment in the AHGP include compressors, condensers, a demister, and heat exchangers.

2.a. Desulfurization and Regeneration Reactors - AHGP

There are several differences between the AHGP desulfurization and regenerator reactor designs (Figure 6) and those envisioned for the DSRP -based process (Figure 5). For example, in the AHGP sorbent descends counter-currently against the rising SO_2 in the regeneration reactor. Sorbent descending through the regenerator makes it necessary to re-elevate sorbent into a standpipe located upstream of the desulfurization reactor. A heat exchanger in the standpipe enables cooling of the sorbent before it re-enters the desulfurization reactor.

The top stage of the regenerator (HX-STAGE, Figure 3) heats the entering sorbent by direct contact with the exiting SO₂ stream. The second stage of the regenerator is modeled with REGEN2 and S-REGEN2. REGEN2 models the following equilibrium reaction:

$$3 \text{ SO}_2 + 4 \text{ FeS} = 7/2 \text{ S}_2 + 2 \text{ Fe}_2 \text{O}_3 \tag{7}$$

This equilibrium reaction is modeled with an RSTOICH block, assuming a 0.667 fractional conversion of FeS. An RSTOICH block is used due to the difficulty of balancing SO_2 consumption and generation. As discussed earlier in the report (Section II.4), assuming a 0.667

Figure 6: Schematic of AHGP Desulfurization and Regeneration Reactors

fractional conversion may be an optimistically high assumption. If so, more Fe will need to be circulated to make up for the discrepancy. The S-REGEN2 block establishes the equilibrium distribution of sulfur allotropes.

The bottom stage is modeled with the REGEN1 and S-REGEN1 blocks. Oxygen feed to REGEN1 oxidizes the sorbent. Although there is SO₂ present in large quantities in REGEN1, it is assumed not to oxidize any sorbent. Equilibrium conversion for SO₂ oxidation is assumed to be reached in the second stage. Any unreacted FeS present in the sorbent coming from the second stage is expected to react very quickly with oxygen present (reactions 17 & 18). The ZnS is expected to regenerate less rapidly than the iron compound. Uncondensed sulfur recycling back to REGEN1 will quickly oxidize. These reactions are modeled to occur in the following order:

$S_8 + 8 O_2> 8 SO_2$	(17)
$S_6 + 6 O_2> 6 SO_2$	(18)
$2 \ FeS \ + \ 3.5 \ O_2 \> \ Fe_2O_3 \ + \ 2 \ SO_2$	(8)
$ZnS \ + 1.5 \ O_2 \ \text{>} \ ZnO \ + \ SO_2$	(9)

The bottom stage is simulated to operate with all oxygen being consumed in REGEN1, and a small portion of ZnS remaining unoxidized.

More than one regeneration reactor maybe used in parallel for the AHGP. Sizing the reactor (Appendix I) revealed that to achieve the desired superficial velocity for removing the larger sulfur quantities requires undesirably large reactor diameters (25+ ft). The larger reactor diameters will require thicker reactor walls (4.5+ in) to contain the high pressures. Reactors in parallel reduce reactor diameter and the required wall thickness resulting in less steel required. A maximum reactor diameter of 13 feet was the guideline used during sizing. The 3-stage regenerator heights were set at 45 feet. It is expected that 5 ft will be needed for the heat exchanging stage, 10 ft for the middle stage, and 2.5 ft for the bottom stage. The rest of the reactor height will be used for phase separation.

The equations used for sizing and costing the AHGP desulfurization and regeneration transport reactor system are described in Appendix G-Calculation of Reactor Size. The actual calculations can be found in Appendix I-Sizing Reactors for the AHGP.

2.b. LIFTCOMP - AHGP

The AHGP desulfurization - regeneration transport reactor system requires a means of elevating the sorbent exiting the regeneration reactor. This will be accomplished using a nitrogen lift (Figure 3 and Figure 6). LIFTCOMP increases the pressure of the nitrogen recycle before it enters the nitrogen lift. A cyclone and filters placed upstream of LIFTCOMP and N2-COOLR will prevent sorbent from damaging the compressor.

2.c. SO2-COMP - AHGP

SO2-COMP recompresses the SO_2 loop. It is advantageous to recompress the SO_2 loop after the condenser because the lower gas temperature will increase the compressor efficiency and reduce wear on the compressor. The pressure increase required will be obtainable using a single stage centrifugal compressor.

2.d. CON-COMP - AHGP

The CON-COMP compressor is used to reintroduce the SO_2 that vaporizes when the sulfur stream is reduced to ambient pressures (LP-COND, Figure 3). The small flow rate means a single stage reciprocating compressor can be used to pressure the SO_2 stream. The pulsing flow of SO_2 coming from CON-COMP will not have a significant effect on the large SO_2 loop.

2.e. COND-EQ - AHGP

The condenser, COND-EQ, cools down the SO₂ loop so that sulfur can be condensed out. The stream temperature is reduced to 140°C, and sulfur distribution is established in COND-EQ. It was initially intended that sulfur equilibrium would be calculated using a REQUIL block; however, this caused convergence problems. Using the RSTOIC block eliminates the convergence problem and does not compromise the validity of the results. The sulfur equilibrium distribution was determined in a separate simulation.

$$4 S_2 --> S_8 X_{S2} = 0.98 (15)$$

$$3 S_2 --> S_6 X_{S2} = 0.02 (16)$$

The large vapor stream containing a small volume of molten sulfur will make a demister necessary to isolate the small liquid flow.

2.f. DEMISTR - AHGP

The large gas stream of SO_2 will suspend the relatively small flow of condensed sulfur. The demister (DEMISTR) will be necessary for collecting the sulfur. The liquid sulfur accounts for 8 wt% of the stream ("IN-COND"), but only 0.1 vol% of the SO_2 - sulfur flow.

2.g. LP-COND - AHGP

Sulfur leaving the demister needs to be brought to ambient pressure for storage. This can be accomplished in a flash tank (LP-COND, Figure 3). The pressure drop vaporizes much of the SO₂ that co-condenses with the sulfur. The temperature drop caused by SO₂ vaporization is not enough to freeze the sulfur. Vaporizing off the SO₂ decreases the sulfur stream temperature to 127° C, well above the melting temperature of sulfur (114°C). The volumetric flow of SO₂ vaporized is 47 times larger than the condensed sulfur flow. The tank should contain a demister pad or some other separation device to prevent sulfur from being entrained with the SO₂ vaporized. The HEATX heat exchanger transfers heat from the warm regenerator effluent (SO₂ and sulfur) to preheat the cool regenerator feed stream of recycled SO₂ and oxygen. Sulfur condensation in the heat exchanger should be avoided. If sulfur condenses, the system would have to handle two phase flow from HEATX to the condenser. Shutdown procedures would also require removing sulfur from the heat exchanger to prevent sulfur from freezing inside. Assuming the sulfur allotrope distribution is at equilibrium when condensation occurs, the SO₂ - sulfur stream's dew point is 310°C. Cooling the SO₂ - sulfur stream to no lower than 315°C should prevent condensation from occurring.

2.i. N2-COOLR - AHGP

The N2-COOLR cools the nitrogen stream prior to its recompression in LIFTCOMP. Cooling the stream decreases the power required for recompression and reduces the possibility of damaging the compressor. The cool nitrogen stream contributes to reducing the temperature of sorbent feed to the desulfurization reactor. Sorbent entering the compressor would cause damage. Therefore, filters should be installed upstream of the compressor. The filters will also be placed upstream of the heat exchanger (N2-COOLR) to prevent build up of sorbent in the heat exchanger.

2.j. RCYHEATR - AHGP

The RCYHEATR was incorporated to ensure that the SO_2 - oxygen feed to the regenerator would be hot enough to initiate the regeneration reactions. Superheated steam is used to raise the SO_2 - oxygen stream temperature, as the separate steam generation process flow sheets show (Appendix F). RCYHEATR works with the HEATX heat exchanger to raise the SO_2 - oxygen stream temperature above 400°C. The RCYHEATR is needed because, HEATX heat transfer is limited to insure no condensation occurs upstream of the condenser.

V. PARAMETRIC STUDIES

Parametric studies were performed to determine how HGD requirements were affected by various coal gas feeds. Inlet H₂S concentrations were varied to simulate variation in sulfur content with different types of coal. Therefore, H₂S concentrations will vary between plants using different coal sources. The effect of power generation capacity was also simulated. Finally, different oxygen sources (air vs. pure oxygen) were investigated. Flow sheets and stream summaries for variations of both processes can be found in appendix H.

1. H₂S Inlet Concentration

DSRP and AHGP simulations were performed using a base case coal gas feed containing 0.85 mol% H_2S and a base case power production of 260 megawatts, after sulfur removal. Additional simulations were performed to determine the effect of H_2S inlet concentration on the amount of coal gas that had to be produced. Table 7 shows how varying H_2S inlet concentration requires increasing the gasification of coal to maintain 260 MW generation.

H ₂ S inlet	Coal Gas	Consumed	Consumed
conc. (mol%)	Fed (lb/hr)	<u>H₂ (lb/hr)</u>	CO (lb/hr)
0.85	460,000	320	6,000
2.50	501,000	1,000	19,000
0.25	447,000	90	1,700
0.85	450,000	160	0
2.50	468,000	470	0
0.25	444,000	46	0
	H ₂ S inlet <u>conc. (mol%)</u> 0.85 2.50 0.25 0.85 2.50 0.25	H_2S inletCoal Gasconc. (mol%)Fed (lb/hr)0.85460,0002.50501,0000.25447,0000.85450,0002.50468,0000.25444,000	H_2S inletCoal GasConsumedconc. (mol%)Fed (lb/hr) H_2 (lb/hr)0.85460,0003202.50501,0001,0000.25447,000900.85450,0001602.50468,0004700.25444,00046

Table 7: Coal Gas Fed to and Consumed by HGD for Various H₂S Concentrations

The sulfur concentration has a profound effect on DSRP flow requirements because of the coal gas slipstream used in the DSRP reactor. The coal gas slipstream increases as the amount of sulfur converted in the DSRP reactor increases. The small increase in required coal gas for the AHGP can be attributed to the consumption of H_2 in the desulfurization reaction:

$$Fe_2O_3 + 2H_2S + H_2 -> 2FeS + 3H_2O$$
 (6)

The higher sulfur concentrations also require more sorbent circulation to dissipate the heat evolved during reactions. Increased sulfur concentrations require larger reactors. Increasing sulfur also increases the heat removal requirements.

2. Power Generation

Parametric studies were performed to determine the influence of power plant capacity; power generation is 260 MW in the base case. Inlet flows were altered to generate 110 MW and 540 MW. The power level adjustments resulted in flow rates and energy transfer that both scale directly with the change in power generation. The effect of the varying coal gas feed rate was similar to the effect of changing H_2S feed concentrations. An economic comparison shows that the process costs depend on the total sulfur removal requirements. Variations in the flow rates of the other coal gas components do not have a significant effect on the HGD.

3. Pure Oxygen vs. Air Oxidation

Sulfur is removed from the coal gas stream by the reaction of H_2S with the active components of the sorbent to form metal sulfides. Regenerating the sorbent allows it to be reused for removing more sulfur. Sorbent regeneration occurs by exposing the sulfurized sorbent to an oxidizing environment. Pure oxygen and air are both capable of performing the oxidation. Implications of using oxygen and air follow.

3.a. DSRP

Pure oxygen is an impractical oxidizing medium for sorbent regeneration. In the DSRP based process, regenerating with pure oxygen would result in such high temperatures that the sorbent would sinter. By comparison, the nitrogen present in air dilutes the oxygen and serves as a heat sink for the highly exothermic regeneration reactions. What is not intuitively obvious is that it is more expensive to supply air to the system than to supply oxygen. For DSRP - based process conditions it is more expensive to compress air than to separate oxygen and then compress only the oxygen (Hvizdos).

3.b. AHGP

Air is not a viable oxidizing medium for use in the Advanced Hot Gas Desulfurization Process. The use of air would require separating nitrogen from sulfur dioxide. The AHGP process has a large SO₂ stream that circulates through the regeneration reactor and the sulfur condenser. In the AHGP, oxygen enters the SO₂ loop as a pure oxygen feed and leaves with the sorbent. Sulfur enters the SO₂ loop on the sorbent and leaves as condensed sulfur. Feeding air instead of oxygen would provide a steady flow of nitrogen into the SO₂ loop. Maintaining steady state would require removing nitrogen at the rate it is introduced.

The concept of adding a condenser to the SO₂ loop was investigated for separating nitrogen from SO₂ (Figure 7). ASPEN simulations were performed to determine the condenser conditions necessary for removing nitrogen at the rate it enters the system. The idea was to condense the SO₂ in the loop and vent only nitrogen. Table 8 shows that this concept is impractical. When the ratio of SO₂: N₂ is large the SO₂ is more prone to condense. This can be seen in table 8 where for the same temperature and pressure, uncondensed SO₂ (SO₂ vented) decreases as the mass fraction of SO₂ increases. Therefore, the most efficient condenser will have the minimum amount of N₂ feed to it. The minimum N₂ fed to the condenser will be equal to the rate at which nitrogen enters the system via the air steam. The minimum corresponds to a case where no N₂ condenses (N₂ unpurged). Table 8 shows that even with the very low N₂ concentration there is an unreasonable amount of SO₂ vented.

Figure 7: Condenser for Removal of Nitrogen

The simulations assumed that the total SO_2 loop flow would be 260,000 lbs/hr and 13,500 lbs N₂/hr would need to be removed.

Table 8: N2 Removal at Various N2 Concentrations, Condenser Temperatures and Pressures

Condenser	Condenser	Condenser	N ₂ unpurged	SO ₂ vented	N ₂ vented
Fed: SO ₂	Pressure	Temperature	(lbs/hr)	(lbs/hr)	(lbs/hr)
mass fraction	(psia)	(°C)			
0.100	275	50	0	26,000	234,000
0.900	275	50	418	58,200	25,600
0.946	275	50	511	30,800	13,500
0.946	400	50	1,010	16,800	13,000
0.940	275	-20	716	1,540	14,900

Furthermore, nitrogen is not needed as a heat sink in the AHGP. The SO_2 stream is a sufficient gas phase heat sink to carry away the heat of the regeneration reaction. The economic analysis showed it is actually desirable to feed oxygen instead of air. The cost of compressing air is higher than the cost of separating out oxygen and then compressing only the oxygen.

VI. ADDITIONAL PROCESS CONSIDERATIONS

1. Steam Generation

The coal gas desulfurization with sulfur production overall process is exothermic. DSRP and AHGP both require heat removal for condensation and to maintain reaction temperatures. The heat removal requirements create the opportunity to generate high pressure steam that could drive plant equipment or be incorporated into the plant's power generation steam cycle.

Steam generation has been modeled as a closed loop. Steam is generated by removing heat from the desulfurization process. The steam is then utilized, by undefined means, condensed, cooled and the condensate is reused. Cooling tower water is used to cool the steam-condensate loop (Figure 8). There are benefits to having a self-contained loop for steam production. First, it makes it easy to maintain steam-condensate purity, which reduces fouling and corrosion. It also allows for higher cool water feed temperatures (~ 90°C), which increases steam production.

The steam generated from the HGD process was assumed to be at 950 psia and 441°C (Appendix F). Since desulfurization would be incorporated into a larger power generating plant, it is not possible to discern the most useful steam conditions without knowledge of the power generation facility. It is likely that steam generated from the HGD would be utilized by existing power plant equipment. Since the end use of the steam generated is unknown a generic dollar

credit for the steam generated was used for the economic analysis. Peters and Timmerhaus (1991) state that 500 psig steam was worth \$ 0.0039/lb in 1990; this value was used during the economic assessment. The benefit calculated should be a conservative value since the simulated steam produced is at a higher pressure (950 psia) and the economic calculations use 1996 as a basis. However, another source notes that for 900 psi and 441°C steam, 1 kWh power generation can be expected per 22.44 pounds of steam (Noyes). The economic credit from the conversion of steam to power according to this relationship was less than the credit obtained using the Peters and Timmerhaus relationship. Since the Peters and Timmerhaus credit value is conservative and still predicts a larger benefit, the Peters and Timmerhaus value was used.

2. Material of Construction

Type 310 stainless steel (25%Cr - 20%Ni) should be used for the construction of equipment that contacts sulfur species. Type 310 stainless steel (SS 310) will be more durable than type 316 stainless steel (SS 316) (17%Cr - 8% Ni - 2%Mo). Higher chromium content gives SS310 greater oxidation resistance, and the higher nickel concentration gives improved resistance to carburization (EPRI). Cost data for SS310 is not contained in ASPEN so SS316 material cost factors were used.

3. Sulfur Storage

Transporting molten sulfur is preferred over solid sulfur. Liquid sulfur is easier to transport and reduces handling losses. It will be necessary to store the molten sulfur before it is shipped out by train. The storage tank should be capable of storing several days worth of recovered sulfur. It should also be equipped with a heat exchanger to keep sulfur molten. The costs of the sulfur storage tanks were calculated using ASPEN assuming SS 310 was used to construct storage for seven days of sulfur production (SS 316 was entered in ASPEN due to lack of data for SS 310).

4. Process Operation

The DSRP should be the easier process to operate. Balancing the SO_2 production and consumption in the AHGP appears to be particularly difficult. The difficulty arises from the reaction of FeS with SO_2 to form elemental sulfur. The reaction's equilibrium varies significantly with temperature. If the reactants are too thermodynamically favored, less SO_2 will be consumed than expected. However, SO_2 production will remain constant (sorbent oxidation being driven to completion by oxygen). Thus, if the reaction:

$$3 \text{ SO}_2 + 4 \text{ FeS} \iff 7/2 \text{ S}_2 + 2 \text{ Fe}_2 \text{ O}_3$$
 (7)

does not reach design conversions, SO_2 flow will increase and sulfurized sorbent will be returned to the desulfurization reactor. With SO_2 already present in great excess the increased SO_2 flow will not significantly shift equilibrium towards the products.

It is recommended that the AHGP be operated at conditions that will cause a net consumption of SO₂. Replenishing depleted SO₂ levels can easily be accomplished by increasing the oxygen feed. Excess oxygen will convert elemental sulfur into SO₂.

Preventing the build up of impurities in the SO_2 loop contributes to the complexity of the AHGP. Venting a portion of the loop is undesirable since it contains mostly SO_2 . Venting would release SO_2 , emissions the system is designed to eliminate. Operating the AHGP requires determining the rate at which impurities build up in the recycle loop and the appropriate purge stream for the rate of build up. The purge stream should be fed to the desulfurization reactor, reducing the release of SO_2 .

VII. ECONOMIC ANALYSIS

1. Capital Expenditures

The AHGP requires more capital investment than the DSRP. Reactors account for over half of the capital investment. The higher cost of AHGP reactors results in an higher overall capital investment necessary for the AHGP (Figure 9). The majority of equipment was costed using ASPEN. Equipment costed by ASPEN has a purchase date set at June, 1996. Equipment contacting sulfur will experience less corrosion when constructed of stainless steel 310 (SS310). Since ASPEN lacks material of construction correction factors for SS310, SS316 values were used. While the majority of equipment was costed using ASPEN, the equipment that comprises the majority of the capital expenditures, such as the reactors, were estimated by other means.

The reactor costs were calculated using a procedure outlined in Peters and Timmerhaus (1991). The reactor costs were determined using the amount of steel required for their construction. The procedure is described in appendix G, and the calculations are contained in appendix H and appendix I. The reactor cost includes the cost of installation.

Another piece of equipment not costed by ASPEN is the PRESAIR - air compressor used in the DSRP. PRESAIR costs were determined by scaling a price quote for the Ingersoll-Rand Centac air compressor. The Centac Model 2CV23M3EEPF, capable of raising 2,250 acfm to 280 psia, was quoted at \$241,000. Extrapolation was used in determining the cost of compressors needed for the different flow rates. Figures in Peters and Timmerhaus (1990) were used to determine the rate at which compressor costs change with varying flow rates.

There are additional capital costs not included in this report, two of which, piping costs and sorbent/catalyst costs, will probably be significant. There will be other expenses, like additional office space for employees, which are site dependent. The site dependent expenses should not have an significant effect on the total capital investment calculations. At this stage of investigation the piping and sorbent/catalyst cost are assumed identical for both HGD process. If this assumption is valid than a comparison of the overall capital costs for the AHGP and the DSRP will not be affected by their absence.

2. Yearly Operating Costs

The AHGP has a lower yearly operating cost than the DSRP. Figures 10 and 11 show the distribution of the major yearly expenditures for both processes.

The bases cases (DSRP and AHGP) have coal gas feeds containing 0.85 mol% H_2S and produce 260 MW. Most of the yearly expenditures decline as the amount sulfur in the coal gas is decreased (DSRP-c and AHGP-c have feeds containing 0.25 mol% H_2S). The exception is the yearly costs of additional employees, which have been assumed to be dependent on the complexity of the HGD process and not its size. As the sulfur concentration decreases both the absolute expenditure difference (DSRP cost - AHGP cost) and the relative expenditure difference ([DSRP cost - AHGP cost] / AHGP cost) decrease. This decrease indicates that the competitive advantage of the AHGP is smaller for cleaning a coal gas stream containing a low H_2S concentration. The same trend exists comparing the economics of different levels of power generation: the AHGP's yearly economic advantage over the DSRP declines as the overall power generation is decreased.

0

-0.5 -1

-1.5

110 MW

In assessing the yearly cost of maintaining HGD, benefits of the process should also be accounted for. Two sources of credit were observed: the recovery of sulfur and the production of steam. Sulfur credits where consistently larger than steam credits within the same simulation. The sulfur credits remained virtually unchanged between corresponding DSRP and AHGP simulations. Figure 12 and 13 show that for several AHGP conditions the credits are larger than the expenditures. This results in negative yearly operating costs. When larger amounts of sulfur are removed, the yearly expenditures combined with the sulfur and steam credits result in negative yearly costs for the AHGP. In such cases it is more profitable to use the AHGP, then to leave the coal gas stream untreated (if Federal Regulations allowed). The profit that results from the sale of recovered sulfur (Appendix M) allows the AHGP to be more profitable than generating power without desulfurization.

260 MM

Simulations

540 MW

The yearly costs have a linear dependence on the amount of sulfur being processed. This can be seen by comparing all simulations (DSRP, DSRP-b, DSRP-c, DSRP-100, DSRP-500, AHGP, AHGP-b, AHGP-c, AHGP-100, AHGP-500). Figure 14 shows that regardless of how the sulfur feed is varied (changing concentration vs. changing power generation), the yearly costs scale directly with sulfur removed.

2.a. Electrical

The pumps and compressors have been assumed to account for the majority of the electrical requirements for the HGD processes. The additional power requirements for lighting and instrumentation have been assumed to be 20% of the compressor and pump requirements for the base case of each HGD. It is assumed that the additional power requirements will not vary significantly with plant size.

The DSRP power requirement is significantly higher than that of the AHGP. The PRESAIR air compressor is the reason for the high DSRP power requirement. The air compressor supplies air to the regenerator for the oxidation of sulfurized sorbent. It is interesting to note that the cost of supplying oxygen by compressing air is more than the cost of separating oxygen and then compressing the pure oxygen. The phenomenon is not unprecedented; it has been observed that as the pressure of injection is raised the cost of compressing air increases faster than the cost of separating oxygen and pressuring only oxygen (Hvizdos).

The compressed nitrogen feed to the DSRP - based process regenerator that is included in the air stream will increase the total volumetric flow to the turbine. This would indicate that there should be a power credit associated with the nitrogen's introduction, offsetting some of the compression costs. However, nitrogen will also increase the heat capacity of the stream, lowering the combustion temperature, thus lowering the power production. These competing effects have been assumed to cancel each other out. The design work assumes there is no change in power production attributed to the introduction of nitrogen.

2.b. Cooling Water

The steam generation/cooling loop is closed; maintaining water purity is not difficult for a self-contained loop. Furthermore, makeup water requirements will be negligible, for the detail level of this report. The is no debit calculated for the HGD steam system water because of the above mentioned reasons.

The steam condensate is assumed to be cooled to 90°C by cooling tower water. Tower water is exposed to the atmosphere, which means maintaining water purity will be an issue. There will also be makeup water requirements. Therefore a yearly debit has been calculated for the use of tower water. The tower water flow rates have been calculated in the Complete Steam Generation Scheme simulations (Appendix F). The tower water cools the steam stream that is considered "utilized." Utilized steam is a stream that was steam (441°C, 950 psia) but has been reduced to 30 psia and the corresponding bubble point temperature. Tower water cools the utilized steam stream to 90°C, before its reuse. The cost of the tower water is \$2.6x10⁻⁵/lb (Peters). The cost of the tower water is insignificant compared to the other yearly capital expenditures.

The cost of the tower is not an issue as there will already be a tower on site. HGD water sent to it will represent only a minor increase in load.

2.c. Oxygen

The cost of supplying oxygen has been assessed as a yearly expenditure with no capital cost. Dr. George Roberts indicated that its reasonable to expect oxygen to cost \$20/ton. The value is reasonable when compared with a dated guideline (Chilton, 1960) stating 99.5% pure oxygen at 450 psig would sell at \$8 to \$15/ton. There are no capital costs associated with the supplied oxygen assuming the oxygen will be bought from a gas supplier, in which only a usage charge is assigned. The price has been assumed to be set at \$20/ton, the price will actually be dependent on usage. The unit cost of oxygen decreases as quantity purchased increases.

There are oxygen costs only for the AHGP, since air is used to oxidize the sorbent in the DSRP.

2.d. Additional Employees

The number of additional employees required to operate the HGD processes have been assumed constant with process size. The additional employees required will depend more upon the complexity of the process than its size. The hiring of two additional engineers and two maintenance personal have been assigned to the DSRP. The AHGP has the hiring of three engineers accounted for. An additional engineer is hired since the AHGP is a more complex process to control because SO₂ production and consumption must be balanced. Furthermore, the purity of the SO₂ loop must be maintained. Two maintenance personnel are also accounted for in AHGP costs. The unit cost for an engineer is assumed to be 100,000/year, and maintenance personnel are assumed to cost 70,000/year. These numbers include the base salary and benefits.

2.e. Consumed Coal Gas

Coal gas (H_2 and CO) is consumed in both HGD processes. The consumption reduces the amount power that can be produced. The cost of consumed coal gas is calculated from the CO and H_2 lost during HGD, and calculating the value of the energy that the CO and H_2 could have produced. Calculation of power generation is described in Appendix J.

The DSRP consumes substantially more coal gas then the AHGP; this is the major factor in the lower yearly operating cost of the AHGP.

2.f. Additional Yearly Expenditures

Sorbent and catalyst attrition have not been accounted for in this report. The rate at which sorbent and catalyst need to be replaced times their unit cost will represent another yearly expenditure. Assuming the attrition costs for both processes are identical a comparison of the process economics will be unaffected by the absence of attrition costs in this report.

Maintenance charges have not be fully accounted for in this report. While the cost of additional employees to maintain equipment has been included, the cost of the replacement parts and equipment have not. Yearly maintenance costs should increase with years of service as well as with the size of the HGD process.

3. Economic Summary

The AHGP has a higher initial startup costs, indicated by its larger capital requirements. However, the AHGP has lower yearly expenditures then the DSRP. The operating cost difference is large enough to offset the initial startup cost difference within a few years.

Figure 15 shows that despite an higher initial investment, within two years the AHGP can financially outperform the DSRP.

VIII. SUMMARY

Mass and energy balances were calculated for the Direct Sulfur Recovery Process based Hot Gas Desulfurization and the Advanced Hot Gas Process. Establishing the balances has helped determine the equipment requirements for both processes. The specifications for the major pieces of equipment have been described in this report.

Simulating the HGD processes revealed the complexity of both processes. The AHGP appears to be the more difficult of the two processes to operate. More employees may be needed to operate the AHGP process than the DSRP -based process.

Capital costs for the AHGP are higher than those for the DSRP. However, yearly operating costs for the AHGP are considerably less than those of the DSRP. After two years of operation the total cost of implementing an AHGP will be less then the cost of a DSRP -based process. It will be more difficult to operate an AHGP but the substantial savings the process delivers makes it the more desirable process to implement.
REFERENCES

- ASPEN PLUS, *Reference Manual Volume 2 Physical Property Methods and Models*, Release 9, Aspen Technology, INC, 1994
- Barnett, E. B., Wilson, C. L., *Inorganic Chemistry A Text-book For Advanced Students*, 2nd Edition, John Wiley & Sons Inc., New York, 1957
- Bird, R.B., Stewart, W.E., Lightfoot, E.N., *Transport Phenomena*, John Wiley & Sons, New York, 1960
- Bloch, H. P., A Practical Guide to Compressor Technology, McGraw-Hill, New York 1996
- Braker, W., Mossman, A. L., *Matheson Gas Data Book*, 5th Edition, Matheson Gas Products, Milwaukee, 1971
- Brown, R. N., Compressors Selection & Sizing, Gulf Publishing Company, Houston 1986
- Campbell, W. M., and Henningsen, G. B., "Hot Gas Desulfurization Using Transport Reactors" *Proceedings of the Twelfth Annual International Pittsburgh Coal Conference*, Pittsburgh, 1995
- Caruanan, C. M., "Processes Aim to Improve Sulfur Recovery From Gases," *Chemical Engineering Progress*, February 1996, pp. 11-17
- Chen, D. H., *Kinetically Modified Equilibrium Calculation and Thermodynamic Analysis for the DSRP Hot Gas Sulfur Recovery Process*, Final Report to Research Triangle Institute, March 10, 1994 report 1994
- Chilton, C. H., Cost Engineering In the Process Industries, McGraw-Hill Company, New York, 1960, pg. 302-303
- Cootner, P. H., Lof, G. O., *Water Demand for Steam Electric Generation*, John Hopkins Press, Baltimore, 1965
- Cotton, F. S., Wilkinson, G., Advanced Inorganic Chemistry A Comprehensive Text, 2nd Edition, Interscience Publishers, New York 1966
- Cusumano, J. A., Dalla Betta, and R. A., Levy R. B., *Catalysis in Coal Conversion*, Academic Press, Inc. New York 1978
- Dimoplon, W., "What Process Engineers Need to Know About Compressors," *Hydrocarbon Processing* May 1978, pp. 221-227

- EPRI CS-4035, "Continuous Testing of the Resox Process," Project 1257-2, Final Report, May 1985
- Gangwal, S. K., Hot-Gas Desulphurisation Sorbent Development for IGCC Systems, "Desulphurisation 2 Technologies and Strategies for Reducing Sulphur Emissions" *Institution of Chemical Engineers*, New York 1991
- Hvizdos, L. J., Howard, J. V., Roberts, G. W., "Enhanced Oil Recovery Through Oxygen Enriched In-Situ Combustion: Test Results From the Forest Hill Field in Texas" *Journal* of Petroleum Technology June 1983, pp. 1061-1070
- Jaffee, R. I., "Advances in Materials for Fossil Power Plants," Advances in Material Technology for Fossil Power Plant - Proceedings of an International Conference on Advances in Material Technology for Fossil Power Plants, ASM International, Chicago, 1987
- Kern, D. Q., Process Heat Transfer, McGraw-Hill Book Company, New York, 1950
- Noyes, R. Cogeneration of Steam and Electric Power, Noyes Data Corporation Park Ridge, Park Ridge, NJ, 1978
- Perry, R.H., Green, D.W., Maloney, J.O., *Perry's Chemical Engineers' Handbook*, 6th Edition, McGraw Hill Inc., New York, 1984
- Peters, M. S., Timmerhaus, K. D., *Plant Design and Economics for Chemical Engineers*, 4th Edition, McGraw Hill Inc. New York, 1991
- Portzer, J. W., Research Triangle Institute internal memo, November 26, 1996
- Ulrich, G. D., A Guide to Chemical Engineering Process Design And Economics, John Wiley & Sons, Inc. New York 1984
- U.S. Geological Survey, Minerals Information, http://minerals.er.usgs.gov/minerals/pubs/commodity/sulfur/stat/
- Welty, J.R., Wicks, C.E., Wilson, R.E., Fundamentals of Momentum, Heat, and Mass Transfer, 3rd Edition, John Wiley & Sons, New York, 1984

Appendix A Calculation of the SO₂ Circulation Rate for AHGP

 SO_2 circulation rates are set to create the desired flow conditions in the regenerating reactor. First the sorbent flow rate through the regenerator must be determined. Al₂O₃ must pass through the reactor in large quantities to keep the adiabatic temperature raise small. The sorbent flow is used to determine the reactor's cross sectional area. The SO₂ circulation rate necessary to provide a 2.5 cm/s upwards velocity is then calculated. Calculation results follow:

SO2 Regenerator Sizing - C	Commercial Em	bodiment				
	AGHP	AHGP-b	AHG	AHGP-c		
	(SO2 Regen)	(SO2 Regen)				
Givens:	Case E-2	Case E-2				
Sorbent circulation rate, lb/hr	166010	49	0000	48000		
Sorbent bulk density, lb/ft3	62.4		62.4	62.4		
Req'd rxtr residence time, hr	1		1	1		
Regen Gas v _{super} , cm/sec	2.5		2.5	2.5		
Desired H/D	2		2	2		
Adjusted values:						
Assumed Bed Depth, ft	10		10	10		
SO2 needed ft3/hr	79,813	238	8,462	23,077		
Calculated values:						
Hold-up volume, ft3	2660		7949	769		
Diameter, ft	18		32	9.9		
X-section area, ft2	266		795	77		
Calculated H/D	0.54		0.31	1.01		
RG Vol. flow rate, acf/sec	21.8		65.2	6.3		
RG flow rate, lb/hr	86366	25	8043	24972		
Ratio of RG flow/sorbent, lb/lb	0.52		0.52	0.52		
Calculated Bed Depth, ft						
Operating conditions/Gas Densi	ty Calc'ns:					
Pressure, psig	275		275	275		
Pressure, psia	289.7		289.7	289.7		
MW of gas	64		64	64		
Bed Temp., C	600		600	600		
Bed Temp., R	1571.67	157	71.67	1571.67		
R, gas constant,	10.73		10.73	10.73		
Gas density, lb/ft3	1.1		1.1	1.1		

Appendix B Heat Transfer Coefficients

The following approximate overall heat transfer coefficients were found in the literature. The values were in used estimating the heat exchangers' overall heat transfer coefficients.

	Coolers	
Hot Fluid	Cold Fluid	Overall U _D , BTU/hr ft ² °F
Water	Water	250 - 500
Gases	Water	2 - 50
	Heaters	
Hot Fluid	Cold Fluid	Overall U _D , BTU/hr ft ² °F
Steam	Water	200 - 700
Steam	Gases	5 - 50

Values above found in Kern (1950).

U, BTU/hr ft ² °F
10 - 30
150-275
100-600
5 - 50

Values above found in Welty, Wicks, and Wilson (1984).

Appendix C **Determination of Catalyst Velocity in DSRP Reactor**

In order to determine whether the catalyst in the DSRP Reactor (a fast fluid-bed reactor) will be transported to the top of the reactor by the gas feed, the following calculation was performed. A terminal velocity calculation was performed on a catalyst particle. This calculation will approximate the catalyst's velocity relative to the gas phase. The gas velocity through the DSRP will be 3 ft/s (0.9 m/s). The catalyst's relative velocity needs to be less than the gas velocity in order for the catalyst to be elevated.

Terminal velocity is determined from a force balance on the particle.

$$m\frac{dv}{dt} = F_g - F_d - F_b$$
$$m\frac{dv}{dt} = mg - \frac{C_D v^2 \rho (\pi D_p^2 / 4)}{2} - \frac{m\rho g}{\rho_p}$$

At steady state the left side equals zero and the equations simplify to give the steady state (terminal) velocity:

$$v_{ss} = \sqrt{\frac{4}{3} (\frac{D_p g}{C_D \rho})(\rho_p - \rho)}$$

The catalyst size is 160 micron. $D_p = 1.6 \ x \ 10^{-4} \ m \qquad \qquad \rho_p = 1.2 \ g/cm^3 \qquad \qquad g = 9.8 \ m/s^2$

Bulk samples of the catalyst have a density (ρ_{bulk}) of 0.9 g/cm³. The bulk catalyst is assumed to have a packing fraction of 0.74, the highest packing fraction possible for spheres. Assuming the packing fraction enables calculation of the individual catalyst density (ρ_{p}).

$$\rho_{\rm p} = \rho_{\rm bulk} / ({\rm packing fraction})$$
 $\rho_{\rm p} = 1.2 \ {\rm g/cm^3} = (0.9 \ {\rm g/cm^3}) / (0.74)$

The gas density is taken as a weighted average of the feeds ROG-COOL and SLIPSTRM.

$$\rho = 0.50 \text{ lb/ft}^3 \text{ x} (1,000 \text{ gr}) / (2.205 \text{ lb}) \text{ x} (1 \text{ ft}^3) / (30.48 \text{ cm})^3 = 0.008 \text{ g/cm}^3 = 8 \text{ kg/m}^3$$

Inserting the values gives:

$$v_{ss} = \sqrt{\frac{0.3136\frac{m^2}{s^2}}{C_D}}$$

The drag coefficient C_D is correlated with the Reynolds number (N_{Re}) of the gas phase. After determining the Reynolds number C_D can be determined from charts in Bird (1960).

$$N_{Re} = D_p v_{ss} \rho / \mu$$

The steady state velocity is determined iteratively. That leaves μ , viscosity of the gas, the only other unknown.

For viscosity calculations, the gas will been assumed to have the properties of nitrogen (N_2 represents over 50 wt% of reactor gas).

Reactor conditions $T = 600^{\circ}C$ and P = 275 psia.

The Reichenberg correlation was used for the determination of the high pressure viscosity (Perry's 3-279). The correlation typically has errors of less than 10 percent.

Equations

$$(\mu - \mu^{0})/(\mu^{0}/2) = A P_{r}^{1.5} / [B P_{r} + (1 + C P_{r}^{D})^{-1}]$$

$$A = 1.9824 \times 10^{-3} T_{r}^{-1} \exp (5.2683 T_{r}^{-0.5767})$$

$$B = A (1.6552 T_{r} - 1.2760)$$

$$C = 0.1319 T_{r}^{-1} \exp (3.7035 T_{r}^{-79.8678})$$

$$D = 2.9496 T_{r}^{-1} \exp (2.9190 T_{r}^{-16.6169})$$

 $\begin{array}{l} \underline{Nitrogen\ Properties}\\ T_r = T \ / \ T_c = 873\ K \ / \ 126.2\ K = 6.91 \\ \mu^o = \mu\ (1\ atm,\ 873\ K) = 3.8\ x\ 10^8\ Poise\\ And\ for\ nonpolar\ molecules: \ P = 1 \end{array}$

$$\begin{aligned} & \frac{Calculated Values}{C = 0.01615} \\ A &= 0.001615 \\ B &= 0.0164 \\ C &= 0.01909 \\ D &= 0.4269 \end{aligned}$$

$$(\mu - \mu^{\circ}) / (\mu^{\circ}) &= 6.7498 \text{ x } 10^{-4} / 0.9945 = 6.787 \text{ x } 10^{-4} \\ \mu &= 3.8 \text{ x } 10^{-4} + (3.8 \text{ x } 10^{-4})(6.787 \text{ x } 10^{-4}) \end{aligned}$$

$$\mu = 3.8 \times 10^{-4}$$
 Poise = 3.8 x 10⁻⁵ Pa s = 3.8 x 10⁻⁵ kg/(m s)

The Reynolds number is can now be expressed:

$$N_{Re} = (1.6 \times 10^{-4} \text{ m}) (v_{ss}) (8 \text{ kg/m}^3) / [3.8 \times 10^{-5} \text{ kg/(m s)}]$$

 $N_{Re} = (v_{ss}) 33.68 \text{ s/m}$

And our velocity equation is: $v_{ss} = \sqrt{\frac{0.3136\frac{m^2}{s^2}}{C_D}}$

First Iteration, take $v_{ss} = 0.9$ m/s then $N_{Re} = 30$ (above equation) For the above Reynolds number $C_D = 2.4$ (Fig. 6.3-1 in Bird) Velocity equation gives $v_{ss} = 0.36$ m/s

The calculations are repeated.

Second iteration:	$v_{ss} = 0.36 \text{ m/s}$ $C_D = 4.2$	$\begin{split} N_{\text{Re}} &= 12 \\ v_{\text{ss}} &= 0.27 \text{ m/s} \end{split}$
Third iteration:	$\begin{array}{l} v_{ss}=0.27 \mbox{ m/s} \\ C_D=4.9 \end{array}$	$N_{Re} = 9.09$ $v_{ss} = 0.252$ m/s
Fourth iteration:	$v_{ss} 0.252 \text{ m/s}$ $C_D = 5.13$	$N_{Re} = 8.49$ $v_{ss} = 0.247$ m/s

The velocity of falling catalyst is 0.25 m/s. Thus in a gas stream flowing up at 0.9 m/s the catalyst will rise at 0.65 m/s (2.1 ft/s).

CONCLUSION: The gas stream will be capable of elevating the catalyst. Sorbent in the risers will be elevated at approximately the same velocity (20 ft/s) as the gas lifting it.

Appendix D Calculation of DSRP Catalyst Cycling Rate

The rate at with catalyst is fed to the DSRP was determined by the heat removal requirements of the DSRP reactor. Heat is removed from the reactor by cooling the catalyst effluent and reintroducing that catalyst. Exiting catalyst temperature is set at 600° C and the catalyst is cooled to 500° C.

Catalyst Properties

The DSRP reactor catalyst is a porous aluminum oxide catalyst modeled as Al_2O_3 . Catalyst density at ambient conditions is 56.18 lb/ft³. This density includes the void space filled by air. ASPEN was utilized to determine the void space in the settled catalyst, assuming nitrogen fills the voids in the solid catalyst. At ambient conditions 1 lb of Al_2O_3 and 0.00095 lb of N_2 have a combined density of 55.6 lb/ft³.

The similar densities allow us to assume that there is roughly 0.00095 lb of nitrogen present for every 1 lb of solid Al_2O_3 (at ambient conditions). That quantity of nitrogen occupies 0.0132 ft³ (at ambient conditions). This represents the catalyst void volume and is expected to remain constant.

 $V_{void} = 0.0132 \text{ ft}^3 / 1 \text{ lb } Al_2O_3$

The density of the gas in the reactor was taken as the average of nitrogen's density at 600° C (275 psia) and 500° C (275 psia).

$$\rho_{gas} = 0.483 \text{ lb/ft}^3$$

Therefore the mass of gas (in the settled catalyst) per pound Al₂O₃ can be calculated.

$$M_{gas} = 0.483 \text{ lb/ft}^3 \text{ x } 0.0132 \text{ ft}^3 = 0.0064 \text{ lbs}$$

The heat transfer requirements for cooling Al_2O_3 were than simulated (including cooling nitrogen contained in the catalyst voids).

$$Q(600^{\circ}C \rightarrow 500^{\circ}C) = -51.239 \text{ BTU/lb } Al_2O_3$$

Calculation of necessary catalyst circulation rate:

(circulation rate {lb/hr}) = $(Q_{DSRP}) / (-51.239 \text{ BTU/lb } Al_2O_3)$

- **DSRP** (circulation rate {lb/hr}) = $(-15,340,000 \text{ BTU/hr}) / (-51.239 \text{ BTU/lb Al}_2\text{O}_3)$ = **300,000 lb Al}2O}3 / hr**
- **DSRP-b** (circulation rate {lb/hr}) = $(-51,320,000 \text{ BTU/hr}) / (-51.239 \text{ BTU/lb Al}_2\text{O}_3)$ = 1,000,000 lb Al}2O_3 / hr
- **DSRP-c** (circulation rate {lb/hr}) = $(-4,029,000 \text{ BTU/hr}) / (-51.239 \text{ BTU/lb Al}_2O_3)$ = **79,000 lb Al}2O_3 / hr**
- **DSRP-100** (circulation rate {lb/hr}) = $(-6,459,000 \text{ BTU/hr}) / (-51.239 \text{ BTU/lb Al}_2\text{O}_3)$ = **130,000 lb Al}2O}3 / hr**
- **DSRP-500** (circulation rate {lb/hr}) = $(-31,370,000 \text{ BTU/hr}) / (-51.239 \text{ BTU/lb } Al_2O_3)$ = 610,000 lb Al₂O₃ / hr

Appendix E Process Flowsheets and Stream Summaries

Direct Sulfur Recovery Process Simulations

DSRP (base case)	0.85 mole% H ₂ S	260 MW generated
DSRP-b	2.50 mole% H ₂ S	260 MW generated
DSRP-c	$0.25 \text{ mole}\% \text{ H}_2\text{S}$	260 MW generated
DSRP-100*	0.85 mole% H ₂ S	110 MW generated
DSRP-500	0.85 mole% H ₂ S	540 MW generated

Advanced Hot Gas Process Simulations

AHGP (base case)	0.85 mole% H ₂ S	260 MW generated
AHGP-b	2.50 mole% H ₂ S	260 MW generated
AHGP-c	0.25 mole% H ₂ S	260 MW generated
AHGP-100*	0.85 mole% H ₂ S	110 MW generated
AHGP-500*	0.85 mole% H ₂ S	540 MW generated

*DSRP-100, AHGP-100, and AHGP-500 were not simulated. The flowrates and heat duties will scale directly from the base cases (DSRP and AHGP). DSRP-100 and AHGP-100 values equal DSRP and AHGP values scaled by 0.4211. AHGP-500 values equal AHGP values scaled by 2.1055.

DSRP 12/20/97 pg1

Display ALLS	TREAMS	CG-CALC	CLEAN-CG	COOLPRD	H2S-CG	HP-O2-N2	IN-COND	IN-CONDL	INDESULF	INDSRP	INREGEN	INRXNTOR	O2-N2	Display ALLS	TREAMS
Units:	From	DESULSEP	VALVSLIP	PD-COOLR		AIR-HX	COND-I	COND-I	DESULF	DSRP2	REGEN	DSRP		Units:	From
Format: SOLI	DS To	VALVSLIP		COND-I	FEEDMIX	REGEN	COND-II	COND-II	DESULSEP	SN-EQUIL	REGENSEP	DSRP2	PRESAIR	Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	557.2	557.2	415	482.2	450	140	140	557.2	600	814.4	600	30	Temperature	[C]
Pressure	[PSI]	274.4	274.4	266.6	275	276.9	264.6	264.6	274.4	268.6	273.6	268.6	13.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	0	0.43	3 1	0.143	1	1	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0.57	′ C	0.857	0	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	505972.781	492141.531	55125.902	460451.688	38308.016	48474.25	6651.654	1.18E+06	55125.902	289544.469	55126.063	38308.016	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1.37E+06	1.33E+06	87129.523	1.15E+06	67432.328	49166.316	48.953	1.37E+06	112094.914	96496.891	111308.695	567372.75	Volume Flow	[CUFT/HR
Enthalpy	[BTU/HR]	-1.15E+09	-1.11E+09	-6.57E+07	-1.09E+09	7.31E+06	-7.15E+07	-4.68E+06	-4.84E+09	-5.85E+07	-1.38E+09	-5.82E+07	79241.141	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.37	0.37	0.633	0.399	0.568	0.986	135.877	0.857	0.492	3.001	0.495	0.068	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S		63.71	61.968	63.879			63.7	0.18	63.71	63.879	11909.276	1787.733		O2S	
H2S		6.82	6.634	72.073	6270.481		71.958	0.116	6.82	72.072		72.072		H2S	
H2O		78082.43	75947.969	4963.325	70525.25		4175.116	788.209	78082.43	4963.325		4963.325		H2O	
S2		< 0.001	< 0.001	2631.176			< 0.001	0.212	< 0.001	5861.615		3273.283		S2	
S6		0.39	0.38	1891.255			0.965	1890.29	0.39	0.011		0.011		S6	
S8		2.764	2.688	1339.271			2.025	3968.209	2.764	0.076		0.076		S8	
CO		218164.266	212200.516	2.262	218162		2.262	< 0.001	218164.266	6 2.262		2.262		CO	
CO2		130332.672	126769.898	12929.425	117407.195		12925.243	4.181	130332.672	12929.425		10560.996		CO2	
H2		11766.221	11444.579	0.85	11765.37		0.85	< 0.001	11766.221	0.85		0.85		H2	
O2						8922.588							8922.588	02	
N2		67553.203	65706.57	31232.063	36321.383	29385.428	31231.807	0.256	67553.203	31232.063	29385.428	31232.063	29385.428	N2	
COS		0.323	0.314	0.323			0.323	< 0.001	0.323	0.323		3233.392		COS	
ZNO											15129.819			ZNO	
ZNS									144457.359)	36055			ZNS	
AL2O3									525506.5	5	197064.938			AL2O3	

DSRP 12/20/97 pg.2

Display ALLS	TREAMS	P-02-N2	PCG-RECY	RAW-CG	ROG	ROG-COOL	RXNPRD	SLIPSTRM	SLPSTRM	SN-LIQ	SN-VAP	STNDPIPE	SULFUR	Display ALLS	TREAMS
Units:	From	PRESAIR	RECYCOMP	FEEDMIX	REGENSEP	AIR-HX	DSRPMIX	VALVSLIP	VALVE2	SN-EQUIL	SN-EQUIL	ZNSCOOLR	VAPORIZR	Units:	From
Format: SOLI	DS To	AIR-HX	FEEDMIX	DESULF	AIR-HX	DSRPXO2	PD-COOLR	VALVE2	DSRPXO2	DSRPMIX	DSRPMIX	STANDPIP		Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	MISSING	VAPOR	MISSING	LIQUID		Phas
Temperature	[C]	207.6	146.5	458.8	814.4	590.7	600	557.2	557.2	2	600	557.2	140	Temperature	[C]
Pressure	[PSI]	278.9	275	275	273.6	271.6	268.6	274.4	271.6	6	268.6	6 275	14.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	1	1		1	C	0	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	C	0)	C) 1	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	38308.016	48507.805	508959.5	41294.703	41294.703	55125.902	13831.278	13831.278	3 (55125.902	669963.875	6002.956	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	44510.953	48127.191	1.20E+06	95300.984	76325.195	109933.391	37429.125	37813.297	,	109933.273	3189.083	33.124	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	3.05E+06	-7.15E+07	-1.16E+09	-9.58E+06	-1.38E+07	-6.05E+07	-3.13E+07	-31319000	0.00E+00	-6.05E+07	-3.69E+09	-4.57E+05	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.861	1.008	0.423	0.433	0.541	0.501	0.37	0.366	6	0.501	210.08	181.225	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S			63.71	63.71	11909.276	11909.276	63.879	1.742	1.742	2	63.879)	0.001	O2S	
H2S			71.964	6342.445			72.073	0.186	0.186	6	72.072	2	< 0.001	H2S	
H2O			4208.244	74733.492			4963.325	2134.462	2134.462	2	4963.325	5	146.193	H2O	
S2			< 0.001	< 0.001			2631.176	trace	trace		2631.176	5	0.212	S2	
S6			0.39	0.39			1891.255	0.011	0.011		1891.255	5	724.696	S6	
S8			2.764	2.764			1339.271	0.076	0.076	6	1339.271		5131.851	S8	
СО			2.262	218164.266			2.262	5963.741	5963.741		2.262	2	trace	CO	
CO2			12925.476	130332.672			12929.425	3562.775	3562.775	5	12929.425	i	0.002	CO2	
H2			0.85	11766.221			0.85	321.642	321.642	2	0.85	i	trace	H2	
02		8922.588												02	
N2		29385.428	31231.822	67553.203	29385.428	29385.428	31232.063	1846.635	1846.635	5	31232.063	6	trace	N2	
COS			0.323	0.323			0.323	0.009	0.009)	0.323	8	trace	COS	
ZNO														ZNO	
ZNS												144457.359		ZNS	
AL2O3												525506.5		AL2O3	

DSRP 12/20/97 pg.3

Display ALLS	TREAMS	TAILGAS	TAILGAS2	TO-VAP	VENT	XO2LIQ	XO2VAP	ZNO	ZNS	ZNS-RECY	ZNS2RGEN		Display ALLS	TREAMS
Units:	From	COND-II	VALVE	COND-II	VAPORIZR	DSRPXO2	DSRPXO2	REGENSEP	DESULSEP	STANDPIP	STANDPIP		Units:	From
Format: SOLI	DS To	VALVE	RECYCOMP	VAPORIZR		DSRP	DSRP	DESULF	ZNSCOOLR	DESULF	REGEN		Format: SOLI	DS To
	Phas	VAPOR	VAPOR	LIQUID	VAPOR	MISSING	VAPOR	MISSING	MISSING	MISSING	MISSING			Phas
Temperature	[C]	140	139.9	140	140		600	814.4	557.2	557.2	557.2		Temperature	[C]
Pressure	[PSI]	264.4	262	264.4	14.7		268.6	273.6	274.4	275	275		Pressure	[PSI]
Mass VFrac		1	1	0	1		1	0	0	0	0		Mass VFrac	
Mass SFrac		0	0	0	0)	0	1	1	1	1		Mass SFrac	
*** ALL PHAS	ES ***												*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	48507.805	48507.805	6618.099	615.143	0	55126.27	248249.766	669963.875	418727.406	251236.453		Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	49255.441	49703.582	46.323	18288.283		118222.719	1195.906	3189.083	1993.177	1195.906		Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-7.17E+07	-7.17E+07	-4482800	-3.48E+06	0.00E+00	-4.54E+07	-1.37E+09	-3.69E+09	-2307300000	-1.38E+09		Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.985	0.976	142.868	0.034		0.466	207.583	210.08	210.08	210.08		Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S		63.71	63.71	0.17	0.169)	11911.018						O2S	
H2S		71.964	71.964	0.109	0.109)	0.186						H2S	
H2O		4208.244	4208.244	755.081	608.888	5	1209.115						H2O	
S2		< 0.001	< 0.001	0.212	< 0.001		trace						S2	
S6		0.39	0.39	724.917	0.221		0.011						S6	
S8		2.764	2.764	5133.418	1.567	,	0.076						S8	
CO		2.262	2.262	< 0.001	< 0.001		4524.921						CO	
CO2		12925.476	12925.476	3.95	3.948	6	5823.677						CO2	
H2		0.85	0.85	< 0.001	< 0.001		425.192						H2	
02													02	
N2		31231.822	31231.822	0.241	0.241		31232.063						N2	
COS		0.323	0.323	< 0.001	< 0.001		0.009						COS	
ZNO								15129.819					ZNO	
ZNS								36055	144457.359	90285.852	54171.508		ZNS	
AL2O3								197064.938	525506.5	328441.563	197064.938		AL2O3	

DSRP-b 12/20/97 pg1

Display ALLS	TREAMS	CG-CALC	CLEAN-CG	COOLPRD	H2S-CG	HP-O2-N2	IN-COND	IN-CONDL	INDESULF	INDSRP	INREGEN	INRXNTOR	O2-N2	Display ALLS	TREAMS
Units:	From	DESULSEP	VALVSLIP	PD-COOLR		AIR-HX	COND-I	COND-I	DESULF	DSRP2	REGEN	DSRP		Units:	From
Format: SOLI	DS To	VALVSLIP		COND-I	FEEDMIX	REGEN	COND-II	COND-II	DESULSEP	SN-EQUIL	REGENSEP	DSRP2	PRESAIR	Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	647.5	647.5	415	482.2	450	140	140	647.5	600	810	600	30	Temperature	[C]
Pressure	[PSI]	273.6	273.6	265.6	275	277.4	263.6	263.6	273.6	267.6	272.6	267.6	13.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	0	0.197	1	0.099	1	1	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0.803	0	0.901	0	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	655189.75	601554.75	184610.219	501234.031	121500	163323.219	21287.002	3324180	184607.219	1322550	184607.719	121500	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1887870	1733330	294846.875	1244460	213489.484	166528.75	159.053	1900580	378670.75	307882.375	376264.813	1799510	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-1.36E+09	-1.24E+09	-2.24E+08	-1.16E+09	2.32E+07	-2.43E+08	-1.61E+07	-1.60E+10	-2.00E+08	-6.55E+09	-1.99E+08	2.51E+05	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.347	0.347	0.626	0.403	0.569	0.981	133.836	1.749	0.488	4.296	0.491	0.068	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
02S		194.606	178.675	195.105			194.579	0.526	194.606	195.105	37772.176	5444.741		02S	
H2S		62.453	57.341	240.342	19916.91		239.971	0.371	62.453	240.342		240.342		H2S	
H2O		99935.453	91754.563	17155.324	74738.914		14470.859	2684.464	99935.453	17155.324		17155.324		H2O	
S2		< 0.001	< 0.001	8658.119			< 0.001	0.695	< 0.001	18593.258		10711.036		S2	
S6		1.28	1.175	5885.709			3.086	5882.623	1.28	0.105		0.105		S6	
S8		8.967	8.233	4053.262			6.665	12704.021	8.967	0.734		0.734		S8	
CO		231203.391	212276.672	6.89	231196.5		6.89	< 0.001	231203.391	6.89		6.89		CO	
CO2		167878.578	154135.734	43469.434	124421.914		43455.953	13.482	167878.578	43469.434		36256.879		CO2	
H2		12471.098	11450.191	2.783	12468.315		2.783	< 0.001	12471.098	2.783		2.783		H2	
02						28299.416							28299.416	02	
N2		143432.969	131691.281	104942.266	38491.473	93200.586	104941.445	0.818	143432.969	104942.266	93200.586	104942.266	93200.586	N2	
COS		0.984	0.904	0.985			0.984	< 0.001	0.984	0.985		9846.616		COS	
ZNO											47986.641			ZNO	
ZNS									576614.875		202017.281			ZNS	
AL2O3									2092380		941570.188			AL2O3	

DSRP-b 12/20/97 pg.2

Display ALLS	TREAMS	P-02-N2	PCG-RECY	RAW-CG	ROG	ROG-COOL	RXNPRD	SLIPSTRM	SLPSTRM	SN-LIQ	SN-VAP	STNDPIPE	SULFUR	Display ALLS	TREAMS
Units:	From	PRESAIR	RECYCOMP	FEEDMIX	REGENSEP	AIR-HX	DSRPMIX	VALVSLIP	VALVE2	SN-EQUIL	SN-EQUIL	ZNSCOOLR	VAPORIZR	Units:	From
Format: SOLI	DS To	AIR-HX	FEEDMIX	DESULF	AIR-HX	DSRPXO2	PD-COOLR	VALVE2	DSRPXO2	DSRPMIX	DSRPMIX	STANDPIP		Format: SOLI	DS To
	Phas	VAPOR	MISSING	VAPOR	MISSING	LIQUID		Phas							
Temperature	[C]	207.7	147.5	418.7	810	586.3	600	647.5	647.5		600	640	140	Temperature	[C]
Pressure	[PSI]	279.4	275	275	272.6	270.6	267.6	273.6	270.6		267.6	275	14.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	1	1		1	0	0	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0		0	1	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	121500	163428.5	664662.5	130972.758	130972.758	184610.219	53635.004	53635.004	0	184610.219	2668990	19044.756	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	140938.547	162790.359	1410320	302165.188	241725.797	372001.438	154544.391	156250.734		372001.031	12704.87	105.13	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	9691570	-2.43E+08	-1.40E+09	-3.07E+07	-4.42E+07	-2.06E+08	-1.11E+08	-1.11E+08	0	-2.06E+08	-1.46E+10	-1.45E+06	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.862	1.004	0.471	0.433	0.542	0.496	0.347	0.343		0.496	210.076	181.154	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S			194.606	194.606	37772.176	37772.176	195.105	15.931	15.931		195.105		0.002	O2S	
H2S			239.99	20156.9			240.342	5.113	5.113		240.342		0.001	H2S	
H2O			14574.853	89313.766			17155.324	8180.895	8180.895		17155.324		464.116	H2O	
S2			< 0.001	< 0.001			8658.119	< 0.001	< 0.001		8658.119		0.695	S2	
S6			1.28	1.28			5885.709	0.105	0.105		5885.709		2321.039	S6	
S8			8.967	8.967			4053.262	0.734	0.734		4053.262		16258.897	S8	
CO			6.89	231203.391			6.89	18926.723	18926.723		6.89		trace	CO	
CO2			43456.652	167878.578			43469.434	13742.839	13742.839		43469.434		0.006	CO2	
H2			2.783	12471.098			2.783	1020.906	1020.906		2.783		trace	H2	
02		28299.416												02	
N2		93200.586	104941.492	143432.969	93200.586	93200.586	104942.266	11741.678	11741.678		104942.266		< 0.001	N2	
COS			0.984	0.984			0.985	0.081	0.081		0.985		trace	COS	
ZNO														ZNO	
ZNS												576614.875		ZNS	
AL2O3												2092380		AL2O3	

DSRP-b 12/20/97 pg.3

Display ALLS	TREAMS	TAILGAS	TAILGAS2	TO-VAP	VENT	XO2LIQ	XO2VAP	ZNO	ZNS	ZNS-RECY	ZNS2RGEN		Display ALLS	TREAMS
Units:	From	COND-II	VALVE	COND-II	VAPORIZR	DSRPXO2	DSRPXO2	REGENSEP	DESULSEP	STANDPIP	STANDPIP		Units:	From
Format: SOLI	DS To	VALVE	RECYCOMP	VAPORIZR		DSRP	DSRP	DESULF	ZNSCOOLR	DESULF	REGEN		Format: SOLI	DS To
	Phas	VAPOR	VAPOR	LIQUID	VAPOR	MISSING	VAPOR	MISSING	MISSING	MISSING	MISSING			Phas
Temperature	[C]	140	139.9	140	140		600	810	647.5	640	640		Temperature	[C]
Pressure	[PSI]	263.6	261	263.6	14.7		267.6	272.6	273.6	275	275		Pressure	[PSI]
Mass VFrac		1	1	0	1		1	0	0	0	0		Mass VFrac	
Mass SFrac		0	0	0	0		0	1	1	1	1		Mass SFrac	
*** ALL PHAS	ES ***												*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	163428.5	163428.5	21181.719	2136.962	0	184608.375	1191570	2668990	1467950	1201050		Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	166691.297	168340.75	150.956	63551.742		398196.594	5717.191	12704.87	6987.678	5717.191		Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-2.43E+08	-2.43E+08	-1.54E+07	-1.21E+07	0	-1.59E+08	-6.52E+09	-1.46E+10	-8.03E+09	-6.57E+09		Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.98	0.971	140.317	0.034		0.464	208.419	210.076	210.076	210.076		Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S		194.606	194.606	0.499	0.497		37788.105						O2S	
H2S		239.99	239.99	0.353	0.352		5.113						H2S	
H2O		14574.853	14574.853	2580.471	2116.355		4870.572						H2O	
S2		< 0.001	< 0.001	0.695	< 0.001		< 0.001						S2	
S6		1.28	1.28	2321.814	0.776		0.105						S6	
S8		8.967	8.967	16264.332	5.434		0.734						S8	
CO		6.89	6.89	< 0.001	< 0.001		13779.622						CO	
CO2		43456.652	43456.652	12.781	12.774		21830.447						CO2	
H2		2.783	2.783	< 0.001	< 0.001		1391.339						H2	
02													02	
N2		104941.492	104941.492	0.773	0.773		104942.266						N2	
COS		0.984	0.984	< 0.001	< 0.001		0.081						COS	
ZNO								47986.641					ZNO	
ZNS								202017.281	576614.875	317138.188	259476.688		ZNS	
AL2O3								941570.188	2092380	1150810	941570.188		AL2O3	

High Pressure Condenser Q = -2,940,000 BTU/hr

DSRP-c 12/21/97 pg.1

Display ALLS	TREAMS	CG-CALC	CLEAN-CG	COOLPRD	H2S-CG	HP-O2-N2	IN-COND	IN-CONDL	INDESULF	INDSRP	INREGEN	INRXNTOR	O2-N2	Display ALLS	TREAMS
Units:	From	DESULSEP	VALVSLIP	PD-COOLR		AIR-HX	COND-I	COND-I	DESULF	DSRP2	REGEN	DSRP		Units:	From
Format: SOLI	DS To	VALVSLIP		COND-I	FEEDMIX	REGEN	COND-II	COND-II	DESULSEP	SN-EQUIL	REGENSEP	DSRP2	PRESAIR	Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	506.4	506.4	415	482.2	450	140	140	506.4	600	772.6	600	30	Temperature	[C]
Pressure	[PSI]	274.9	274.9	267.1	275	277.3	265.1	265.1	274.9	269.1	274.1	269.1	13.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	0	0.865	1	0.143	1	1	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0.135	0	0.857	0	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	459805.594	456146.75	15437.757	447104.125	10927	13544.205	1893.551	531468.188	15437.757	82589.578	15437.803	10927	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1187320	1177870	24296.518	1125490	19206.873	13705.025	13.869	1187660	31278.654	26436.727	31051.443	161837.719	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-1.08E+09	-1.08E+09	-1.83E+07	-1.07E+09	2.09E+06	-1.99E+07	-1.30E+06	-1.48E+09	-1.63E+07	-3.94E+08	-1.62E+07	2.26E+04	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.387	0.387	0.635	0.397	0.569	0.988	136.533	0.447	0.494	3.124	0.497	0.068	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S		15.704	15.579	15.747			15.702	0.045	15.704	15.747	3397.009	515.087		O2S	
H2S		14.867	14.749	20.399	1801.676		20.366	0.033	14.867	20.399		20.399		H2S	
H2O		71265.617	70698.523	1374.565	69146.555		1154.749	219.816	71265.617	1374.565		1374.565		H2O	
S2		< 0.001	< 0.001	741.13			< 0.001	0.06	< 0.001	1673.231		923.483		S2	
S6		0.11	0.109	543.432			0.274	543.158	0.11	0.001		0.001		S6	
S8		0.78	0.774	388.677			0.57	1129.177	0.78	0.006		0.006		S8	
CO		213897.828	212195.766	0.655	213897.172		0.655	trace	213897.828	0.655		0.655		CO	
CO2		118728.914	117784.148	3618.024	115112.016		3616.834	1.189	118728.914	3618.024		2931.973		CO2	
H2		11535.61	11443.817	0.24	11535.37		0.24	trace	11535.61	0.24		0.24		H2	
02						2545.084							2545.084	02	
N2		44346.063	43993.184	8734.794	35611.336	8381.916	8734.721	0.073	44346.063	8734.794	8381.916	8734.794	8381.916	N2	
COS		0.094	0.093	0.094			0.094	< 0.001	0.094	0.094		936.6		COS	
ZNO											4315.638			ZNO	
ZNS									15452.001		10284.438			ZNS	
AL2O3									56210.578		56210.578			AL2O3	

DSRP-c 12/21/97 pg.2

Display ALLS	TREAMS	P-02-N2	PCG-RECY	RAW-CG	ROG	ROG-COOL	RXNPRD	SLIPSTRM	SLPSTRM	SN-LIQ	SN-VAP	STNDPIPE	SULFUR	Display ALLS	TREAMS
Units:	From	PRESAIR	RECYCOMP	FEEDMIX	REGENSEP	AIR-HX	DSRPMIX	VALVSLIP	VALVE2	SN-EQUIL	SN-EQUIL	ZNSCOOLR	VAPORIZR	Units:	From
Format: SOLI	DS To	AIR-HX	FEEDMIX	DESULF	AIR-HX	DSRPXO2	PD-COOLR	VALVE2	DSRPXO2	DSRPMIX	DSRPMIX	STANDPIP		Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	MISSING	VAPOR	MISSING	LIQUID		Phas
Temperature	[C]	207.7	146.8	475.2	772.6	547.5	600	506.4	506.4		600	506.4	140	Temperature	[C]
Pressure	[PSI]	279.3	275	275	274.1	272.1	269.1	274.9	272.1		269.1	275	14.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	1	1		1	0	0	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0)	C) 1	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	10927	13553.382	460657.5	11778.925	11778.925	15437.757	3658.844	3658.844	. C	15437.757	71662.578	1713.577	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	12679.411	13452.904	1139190	26095.605	20645.352	30656.066	9447.959	9544.736	i	30656.035	341.12	9.454	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	871552.063	-1.99E+07	-1.09E+09	-2.96E+06	-4.18E+06	-1.68E+07	-8.63E+06	-8.63E+06	6 (-1.68E+07	-3.97E+08	-1.30E+05	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.862	1.007	0.404	0.451	0.571	0.504	0.387	0.383	5	0.504	210.08	181.246	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S			15.704	15.704	3397.009	3397.009	15.747	0.125	0.125		15.747	r	< 0.001	O2S	
H2S			20.368	1822.044			20.399	0.118	0.118	6	20.399)	< 0.001	H2S	
H2O			1163.806	70310.359			1374.565	567.087	567.087		1374.565	5	41.723	H2O	
S2			< 0.001	< 0.001			741.13	trace	trace		741.13	3	0.06	S2	
S6			0.11	0.11			543.432	0.001	0.001		543.432	2	206.281	S6	
S8			0.78	0.78			388.677	0.006	0.006	j	388.677	7	1465.512	S8	
CO			0.655	213897.828			0.655	1702.064	1702.064	-	0.655	5		CO	
CO2			3616.9	118728.914			3618.024	944.77	944.77	•	3618.024	ŀ	0.001	CO2	
H2			0.24	11535.61			0.24	91.793	91.793	6	0.24	ŀ	trace	H2	
02		2545.084												02	
N2		8381.916	8734.726	44346.063	8381.916	8381.916	8734.794	352.878	352.878	6	8734.794	ŀ	trace	N2	
COS			0.094	0.094			0.094	0.001	0.001		0.094	ł	trace	COS	
ZNO														ZNO	
ZNS												15452.001		ZNS	
AL2O3												56210.578		AL2O3	

DSRP-c 12/21/97 pg.3

Display ALLS	TREAMS	TAILGAS	TAILGAS2	TO-VAP	VENT	XO2LIQ	XO2VAP	ZNO	ZNS	ZNS-RECY	ZNS2RGEN		Display ALLS	TREAMS
Units:	From	COND-II	VALVE	COND-II	VAPORIZR	DSRPXO2	DSRPXO2	REGENSEP	DESULSEP	STANDPIP	STANDPIP		Units:	From
Format: SOLI	DS To	VALVE	RECYCOMP	VAPORIZR		DSRP	DSRP	DESULF	ZNSCOOLR	DESULF	REGEN		Format: SOLI	DS To
	Phas	VAPOR	VAPOR	LIQUID	VAPOR	MISSING	VAPOR	MISSING	MISSING	MISSING	MISSING			Phas
Temperature	[C]	140	139.9	140	140		600	772.6	506.4		506.4		Temperature	[C]
Pressure	[PSI]	265.1	262.5	265.1	14.7		269.1	274.1	274.9		275		Pressure	[PSI]
Mass VFrac		1	1	0	1		1	0	0		0		Mass VFrac	
Mass SFrac		0	0	0	0		0	1	1		1		Mass SFrac	
*** ALL PHAS	ES ***												*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	13553.382	13553.382	1884.374	170.798	C	15437.86	70810.656	71662.578	0	71662.578		Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	13719.107	13854.065	13.12	5077.429		33024.156	341.12	341.12		341.12		Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-2.00E+07	-2.00E+07	-1.25E+06	-9.65E+05	C	-1.25E+07	-3.91E+08	-3.97E+08	0.00E+00	-3.97E+08		Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.988	0.978	143.629	0.034		0.467	207.583	210.08		210.08		Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S		15.704	15.704	0.043	0.042		3397.134						O2S	
H2S		20.368	20.368	0.031	0.031		0.118						H2S	
H2O		1163.806	1163.806	210.759	169.036		315.4						H2O	
S2		< 0.001	< 0.001	0.06	< 0.001		trace						S2	
S6		0.11	0.11	206.342	0.061		0.001						S6	
S8		0.78	0.78	1465.947	0.435		0.006						S8	
CO		0.655	0.655	trace	trace		1310.713						CO	
CO2		3616.9	3616.9	1.124	1.123		1559.735						CO2	
H2		0.24	0.24	trace	trace		119.958						H2	
02													02	
N2		8734.726	8734.726	0.069	0.069		8734.794						N2	
COS		0.094	0.094	< 0.001	< 0.001		0.001						COS	
ZNO								4315.638					ZNO	
ZNS								10284.438	15452.001		15452.001		ZNS	
AL2O3								56210.578	56210.578		56210.578		AL2O3	

DSRP-500 - based Desulfurization

DSRP-500 1/19/98 pg.1

Display ALLS	TREAMS	CG-CALC	CLEAN-CG	COOLPRD	H2S-CG	HP-O2-N2	IN-COND	IN-CONDL	INDESULF	INDSRP	INREGEN	INRXNTOR	O2-N2	Display ALLS	TREAMS
Units:	From	DESULSEP	VALVSLIP	PD-COOLR		AIR-HX	COND-I	COND-I	DESULF	DSRP2	REGEN	DSRP		Units:	From
Format: SOLI	DS To	VALVSLIP		COND-I	FEEDMIX	REGEN	COND-II	COND-II	DESULSEP	SN-EQUIL	REGENSEP	DSRP2	PRESAIR	Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	556.1	556.1	415	482.2	450	140	140	556.1	600	808.9	600	30	Temperature	[C]
Pressure	[PSI]	274.4	274.4	266.6	275	276.9	264.6	264.6	274.4	268.6	273.6	268.6	13.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	0	0.43	1	0.14	1	1	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0.57	0	0.86	0	0 0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	1063260	1034810	113570.906	969485	78963.703	99863.633	13707.267	2.47E+06	113570.898	607948.188	113571.234	78963.703	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	2.87E+06	2.80E+06	179490.672	2.43E+06	138997.172	101285.656	100.854	2.88E+06	230923.609	197974.375	229302.5	1169520	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-2.41E+09	-2.35E+09	-1.35E+08	-2.30E+09	1.51E+07	-1.47E+08	-9.63E+06	-1.02E+10	-1.20E+08	-2.90E+09	-1.20E+08	163338.5	Entha lpy	[BTU/HR]
Density	[LB/CUFT]	0.37	0.37	0.633	0.399	0.568	0.986	135.912	0.859	0.492	3.071	0.495	0.068	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S		134.563	130.963	134.922			134.543	0.379	134.563	134.922	24548.4	3689.37		O2S	
H2S		298.899	290.901	156.105	13202.553		155.855	0.25	298.899	156.105		156.105		H2S	
H2O		164058.219	159668.297	10220.242	148491.516		8597.656	1622.586	164058.219	10220.242		10220.242		H2O	
S2		< 0.001	< 0.001	5421.442			< 0.001	0.438	< 0.001	12080.898		6743.967		S2	
S6		0.803	0.782	3898.438			1.989	3896.449	0.803	0.021		0.021		S6	
S8		5.689	5.537	2761.193			4.175	8178.022	5.689	0.152		0.152		S8	
СО		459346.656	447055.344	4.665	459341.969		4.665	< 0.001	459346.656	4.665		4.665	5	CO	
CO2		273825.563	266498.469	26631.824	247201.875		26623.211	8.614	273825.563	26631.824		21748.314		CO2	
H2		24773.842	24110.938	1.752	24772.09		1.752	< 0.001	24773.842	1.752		1.752		H2	
02						18391.988							18391.988	02	
N2		140814.141	137046.203	64339.652	76474.984	60571.711	64339.125	0.528	140814.141	64339.652	60571.711	64339.652	60571.711	N2	
COS		0.666	0.649	0.667			0.666	< 0.001	0.666	0.667		6666.993		COS	
ZNO											31186.855			ZNO	
ZNS									304172		76721.18			ZNS	
AL2O3									1106450		414920.063			AL2O3	

DSRP-500 1/19/98 pg.2

Display ALLS	TREAMS	P-02-N2	PCG-RECY	RAW-CG	ROG	ROG-COOL	RXNPRD	SLIPSTRM	SLPSTRM	SN-LIQ	SN-VAP	STNDPIPE	SULFUR	Display ALLS	TREAMS
Units:	From	PRESAIR	RECYCOMP	FEEDMIX	REGENSEP	AIR-HX	DSRPMIX	VALVSLIP	VALVE2	SN-EQUIL	SN-EQUIL	ZNSCOOLR	VAPORIZR	Units:	From
Format: SOLI	DS To	AIR-HX	FEEDMIX	DESULF	AIR-HX	DSRPXO2	PD-COOLR	VALVE2	DSRPXO2	DSRPMIX	DSRPMIX	STANDPIP		Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	MISSING	VAPOR	MISSING	LIQUID		Phas
Temperature	[C]	207.6	147.1	459.3	808.9	585.1	600	556.1	556.1		600	556.1	140	Temperature	[C]
Pressure	[PSI]	278.9	275	275	273.6	271.6	268.6	274.4	271.6	i	268.6	275	14.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	1	1		1	0	0	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0		0	1	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	78963.703	99930.422	1069420	85120.109	85120.109	113570.906	28450.951	28450.951	0	113570.906	1410630	12372.203	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	91749.711	99302.75	2.53E+06	195456.375	156297.594	226467.672	76921.539	77711.063	6	226467.438	6714.697	68.27	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	6.30E+06	-1.47E+08	-2.44E+09	-2.00E+07	-2.88E+07	-1.25E+08	-6.45E+07	-64473000	0.00E+00	-1.25E+08	-7.77E+09	-9.42E+05	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.861	1.006	0.422	0.435	0.545	0.501	0.37	0.366	i	0.501	210.08	181.225	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S			134.563	134.563	24548.4	24548.4	134.922	3.601	3.601		134.922		0.002	O2S	
H2S			155.868	13358.421			156.105	7.998	7.998		156.105		0.001	H2S	
H2O			8663.586	157155.109			10220.242	4389.911	4389.911		10220.242		301.303	H2O	
S2			< 0.001	< 0.001			5421.442	trace	trace		5421.442		0.437	S2	
S6			0.803	0.803			3898.438	0.021	0.021		3898.438	6	1493.655	S6	
S8			5.689	5.689			2761.193	0.152	0.152		2761.193		10576.802	S8	
CO			4.665	459346.656			4.665	12291.313	12291.313	6	4.665	5	trace	CO	
CO2			26623.678	273825.563			26631.824	7327.093	7327.093		26631.824	-	0.005	CO2	
H2			1.752	24773.842			1.752	662.905	662.905		1.752		trace	H2	
02		18391.988												02	
N2		60571.711	64339.152	140814.141	60571.711	60571.711	64339.652	3767.94	3767.94	ł	64339.652		trace	N2	
COS			0.666	0.666			0.667	0.018	0.018	6	0.667		trace	COS	
ZNO														ZNO	
ZNS												304172		ZNS	
AL2O3												1106450		AL2O3	

DSRP-500 1/19/98 pg.3

Display ALLS	TREAMS	P-02-N2	PCG-RECY	RAW-CG	ROG	ROG-COOL	RXNPRD	SLIPSTRM	SLPSTRM	SN-LIQ	SN-VAP	STNDPIPE	SULFUR	Display ALLS	TREAMS
Units:	From	PRESAIR	RECYCOMP	FEEDMIX	REGENSEP	AIR-HX	DSRPMIX	VALVSLIP	VALVE2	SN-EQUIL	SN-EQUIL	ZNSCOOLR	VAPORIZR	Units:	From
Format: SOLI	DS To	AIR-HX	FEEDMIX	DESULF	AIR-HX	DSRPXO2	PD-COOLR	VALVE2	DSRPXO2	DSRPMIX	DSRPMIX	STANDPIP		Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	MISSING	VAPOR	MISSING	LIQUID		Phas
Temperature	[C]	207.6	147.1	459.3	808.9	585.1	600	556.1	556.1		600	556.1	140	Temperature	[C]
Pressure	[PSI]	278.9	275	275	273.6	271.6	268.6	274.4	271.6	6	268.6	8 275	14.7	Pressure	[PSI]
Mass VFrac		1	1	1	1	1	1	1	1		1	0	0	Mass VFrac	
Mass SFrac		0	0	0	0	0	0	0	0)	() 1	0	Mass SFrac	
*** ALL PHAS	ES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	78963.703	99930.422	1069420	85120.109	85120.109	113570.906	28450.951	28450.951	0	113570.906	1410630	12372.203	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	91749.711	99302.75	2.53E+06	195456.375	156297.594	226467.672	76921.539	77711.063	5	226467.438	6714.697	68.27	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	6.30E+06	-1.47E+08	-2.44E+09	-2.00E+07	-2.88E+07	-1.25E+08	-6.45E+07	-64473000	0.00E+00	-1.25E+08	-7.77E+09	-9.42E+05	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.861	1.006	0.422	0.435	0.545	0.501	0.37	0.366	6	0.501	210.08	181.225	Density	[LB/CUFT]
Mass Flow	[LB/HR]													Mass Flow	[LB/HR]
O2S			134.563	134.563	24548.4	24548.4	134.922	3.601	3.601		134.922	2	0.002	O2S	
H2S			155.868	13358.421			156.105	7.998	7.998	3	156.105	5	0.001	H2S	
H2O			8663.586	157155.109			10220.242	4389.911	4389.911		10220.242	2	301.303	H2O	
S2			< 0.001	< 0.001			5421.442	trace	trace		5421.442	2	0.437	S2	
S6			0.803	0.803			3898.438	0.021	0.021		3898.438	3	1493.655	S6	
S8			5.689	5.689			2761.193	0.152	0.152	2	2761.193	3	10576.802	S8	
CO			4.665	459346.656			4.665	12291.313	12291.313	3	4.665	5	trace	CO	
CO2			26623.678	273825.563			26631.824	7327.093	7327.093	3	26631.824		0.005	CO2	
H2			1.752	24773.842			1.752	662.905	662.905	5	1.752	2	trace	H2	
O2		18391.988												O2	
N2		60571.711	64339.152	140814.141	60571.711	60571.711	64339.652	3767.94	3767.94	L	64339.652		trace	N2	
COS			0.666	0.666			0.667	0.018	0.018	3	0.667	,	trace	COS	
ZNO														ZNO	
ZNS												304172		ZNS	
AL2O3												1106450		AL2O3	

AHGP 1/19/98 pg1

Display ALLS	TREAMS	CLEAN-CG	COLDFEED	COLDSORB	COOLFES	COOLS2	FEEDRG1	FEO-ZNO	FEO-ZNS	FES-ZNS	H2S-CG	IN-COND	Display ALLS	TREAMS
Units:	From	DSULSTND	MIXFEED	RGENSTND	HX-STAGE	HX-STAGE	HEATX	S-REGEN1	S-REGEN2	DSULSTND		COND-EQ	Units:	From
Format: SOLI	DS To		RCYHEATR	DESULF	REGEN2	HEATX	REGEN1	LIFTPIPE	REGEN1	HX-STAGE	DESULF	DEMISTR	Format: SOLI	DS To
	Phas	VAPOR	MIXED	MISSING	MISSING	VAPOR	VAPOR	MISSING	MISSING	MISSING	VAPOR	MIXED		Phas
Temperature	[C]	482.4	136.5	450	512.3	512.3	440.6	713.9	580.4	482.4	482.2	140	Temperature	[C]
Pressure	[PSI]	274.7	279.2	275	274.7	274.7	275.2	274.7	274.7	274.7	275	270.7	Pressure	[PSI]
Mass VFrac		1	1	0	0	1	1	0	0	0	1	0.921	Mass VFrac	
Mass SFrac		< 0.001	0	1	1	0	0	1	1	1	C	0	Mass SFrac	
*** ALL PHAS	S ES ***												*** ALL PHAS	SES ***
Mass Flow	[LB/HR]	448832.344	72935.094	164357.922	166009.453	74586.227	72935.094	164357.922	165181.094	166009.453	450483.875	74586.227	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1.13E+06	30858.555	756.208	793.141	60581.492	59761.762	756.208	768.468	793.141	1.13E+06	2.82E+04	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-1.09E+09	-1.35E+08	-1.06E+09	-1.03E+09	-1.25E+08	-1.28E+08	-1.04E+09	-1.04E+09	-1.04E+09	-1.07E+09	-1.35E+08	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.397	2.364	217.345	209.306	1.231	1.22	217.345	214.949	209.306	0.399	2.645	Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S			68800			68860.266	68800					68860.266	O2S	
H2S		23.01									6134.738	5	H2S	
H2O		73613.648									68998.523	6	H2O	
S2						519.707							S2	
S6			2.397	•		2171.238	2.397					2181.632	S6	
S8			3.894			3035.012	3.894					3544.325	S8	
CO		213439.25									213439.25	j	CO	
CO2		114865.578									114865.578	6	CO2	
H2		11355.747	•								11510.675	j	H2	
02			4128.805				4128.805						02	
N2		35535.098									35535.098	6	N2	
COS													COS	
ZNO				2084.988				2084.988					ZNO	
ZNS					2496.573				2496.573	2496.573			ZNS	
FE2O3				12272.938				12272.938	8199.015				FE2O3	
FEO													FEO	
FES		0.001			13512.88				4485.513	13512.88			FES	
AL2O3				150000	150000			150000	150000	150000			AL2O3	

AHGP 1/19/98 pg2

Display ALLS	6 TREAMS	INDESULF	INREGEN1	INREGEN2	LIFTDFEO	MADE-S2	MADESO2	MOD-RECY	N2-COOL	N2EXIT	N2SOURCE	02	Display ALLS	TREAMS
Units:	From	DESULF	REGEN1	REGEN2	LIFTPIPE	S-REGEN2	S-REGEN1	X-FLOW	N2-COOLR	LIFTPIPE	LIFTCOMP		Units:	From
Format: SOL	IDS To	DSULSTND	S-REGEN1	S-REGEN2	RGENSTND	HX-STAGE	REGEN2	MIXFEED	LIFTCOMP	N2-COOLR	LIFTPIPE	MIXFEED	Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	MISSING	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	482.4	713.9	556.4	631	580.4	713.9	146.1	208	631	210.1	30	Temperature	[C]
Pressure	[PSI]	274.7	274.7	274.7	274.7	274.7	274.7	279.2	272	274.7	275	279.2	Pressure	[PSI]
Mass VFrac		0.575	0.31	0.311	0	1	1	1	1	1	1	1	Mass VFrac	
Mass SFrac		0.425	0.69	0.689	1	0	0	0	0	0	0	0	Mass SFrac	
*** ALL PHA	SES ***												*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	780850.875	238116.203	239767.375	164357.922	74586.227	73758.273	68806.289	35000	35000	35000	4128.805	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1132710	8.08E+04	68028.672	756.208	66784.258	80083.75	27821.109	43008.844	79902.289	42726.648	2669.199	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-3.16E+09	-1.17E+09	-1.16E+09	-1.05E+09	-1.22E+08	-1.30E+08	-1.35E+08	2866710	9.89E+06	2899740	-1712.78	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.689	2.946	3.525	217.345	1.117	0.921	2.473	0.814	0.438	0.819	1.547	Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S			73722.469	68860.266		68860.266	73722.469	68800					O2S	
H2S		23.01											H2S	
H2O		73613.648											H2O	
S2				5726		1563.893							S2	
S6						2146.613		2.397					S6	
S8						2015.451		3.894					S8	
CO		213439.25											CO	
CO2		114865.578											CO2	
H2		11355.747											H2	
02			35.801				35.801					4128.805	02	
N2		35535.098							35000	35000	35000		N2	
COS													COS	
ZNO			2084.988		2084.988								ZNO	
ZNS		4993.106		2496.573									ZNS	
FE2O3			12272.938	8199.016	12272.938								FE2O3	
FEO													FEO	
FES		27025.441		4485.513									FES	
AL2O3		300000	150000	150000	150000								AL2O3	

AHGP 1/19/98 pg3

Display ALLS	TREAMS	P-SO2	PS2	RECYCLE	RECYCLES	S2V+L	STNDPIPE	SULFUR	UNP-RSO2	UP-SO2	WARMRCY	Display ALLS	TREAMS
Units:	From	CON-COMP	DEMISTR	SO2-COMP	SO2MIX	HEATX	DSULSTND	LP-COND	DEMISTR	LP-COND	RCYHEATR	Units:	From
Format: SOLI	DS To	SO2MIX	LP-COND	SO2MIX	X-FLOW	COND-EQ	DESULF		SO2-COMP	CON-COMP	HEATX	Format: SOLI	DS To
	Phas	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	MISSING	LIQUID	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	500.6	139.6	145.1	146.1	315	482.4	127.1	139.6	127.1	240	Temperature	[C]
Pressure	[PSI]	279.2	265.7	279.2	279.2	272.7	274.7	14.7	265.7	14.7	277.2	Pressure	[PSI]
Mass VFrac		1	0	1	1	1	0	0	1	1	1	Mass VFrac	
Mass SFrac		0	0	0	0	0	1	0	0	0	0	Mass SFrac	
*** ALL PHAS	S ES ***											*** ALL PHAS	5 ES ***
Mass Flow	[LB/HR]	179.039	5910.173	68676.164	68855.203	74586.227	166009.094	5731.134	68676.133	179.039	72935.094	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	148.551	33.732	27679.805	27840.887	44448.238	793.139	31.631	28725.764	1460.365	41204.621	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-3.30E+05	120743.211	-1.35E+08	-135330000	-1.30E+08	-1.04E+09	472141.281	-135100000	-351400	-132710000	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	1.205	175.208	2.481	2.473	1.678	209.307	181.187	2.391	0.123	1.77	Density	[LB/CUFT]
Mass Flow	[LB/HR]											Mass Flow	[LB/HR]
O2S		178.945	190.34	68669.961	68848.906	68860.266		11.396	68669.93	178.945	68800	O2S	
H2S												H2S	
H2O												H2O	
S2						519.707						S2	
S6		0.036	2179.265	2.363	2.398	2171.238		2179.229	2.363	0.036	2.397	S6	
S8		0.058	3540.567	3.838	3.897	3035.012		3540.509	3.838	0.058	3.894	S8	
CO												CO	
CO2												CO2	
H2												H2	
02											4128.805	02	
N2												N2	
COS												COS	
ZNO												ZNO	
ZNS							2496.533					ZNS	
FE2O3												FE2O3	
FEO												FEO	
FES							13512.56					FES	
AL2O3							150000					AL2O3	

AHGP-b 1/19/98 pg1

Display ALLS	S TREAMS	CLEAN-CG	COLDFEED	COLDSORB	COOLFES	COOLS2	FEEDRG1	FEO-ZNO	FEO-ZNS	FES-ZNS	H2S-CG	IN-COND	Display ALLS	TREAMS
Units:	From	DESULSEP	MIXFEED	RGENSTND	HX-STAGE	HX-STAGE	HEATX	S-REGEN1	S-REGEN2	DESULSEP		COND-EQ	Units:	From
Format: SOL	IDS To		RCYHEATR	DESULF	REGEN2	HEATX	REGEN1	LIFTPIPE	REGEN1	HX-STAGE	DESULF	COND	Format: SOLI	DS To
	Phas	VAPOR	MIXED	MISSING	MISSING	VAPOR	VAPOR	MISSING	MISSING	MISSING	VAPOR	MIXED		Phas
Temperature	[C]	482.7	136.3	450	512.1	512.1	421.5	711.6	579.5	482.7	482.2	140	Temperature	[C]
Pressure	[PSI]	274.1	278.6	275	274.1	274.1	274.6	274.1	274.1	274.1	275	5 270.1	Pressure	[PSI]
Mass VFrac		1	1	0	0	1	1	0	0	0	1	0.919	Mass VFrac	
Mass SFrac		0	0	1	1	0	0	1	1	1	0	0 0	Mass SFrac	
*** ALL PHA	SES ***												*** ALL PHAS	S ES ***
Mass Flow	[LB/HR]	463167.313	216585.75	493649.531	498669.813	221603.984	216585.75	493649.531	496152.125	498669.813	468187.563	3 221603.984	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1.17E+06	91955.008	2270.583	2382.878	180074.938	173024.047	2270.583	2307.888	2382.878	1.16E+06	6 8.38E+04	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-1.16E+09	-4.01E+08	-3.18E+09	-3.10E+09	-3.69E+08	-3.80E+08	-3.12E+09	-3.13E+09	-3.11E+09	-1.08E+09	-4.00E+08	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.397	2.355	217.411	209.272	1.231	1.252	217.411	214.981	209.272	0.403	3 2.643	Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S			204031.219			204180.078	204031.219					204180.078	O2S	
H2S		23.471									18603.785	5	H2S	
H2O		83842.484									69811.359)	H2O	
S2						1549.572							S2	
S6			7.099			6588.625	7.099					6619.617	S6	
S8			11.587			9285.715	11.587					10804.296	S8	
CO		215953.672									215953.672	2	CO	
CO2		116218.758									116218.758	5	CO2	
H2		11175.208									11646.276	j	H2	
02			12535.85				12535.85						02	
N2		35953.723									35953.723	5	N2	
COS													COS	
ZNO				6332.866				6332.866					ZNO	
ZNS					7583				7583	7583			ZNS	
FE2O3				37316.672				37316.672	24919.895				FE2O3	
FEO													FEO	
FES					41086.797				13649.23	41086.797			FES	
AL2O3				450000	450000			450000	450000	450000			AL2O3	

AHGP-b 1/19/98 pg2

Display ALLS	S TREAMS	INDESULF	INREGEN1	INREGEN2	LIFTDFEO	MADE-S2	MADESO2	MOD-RECY	N2-COOL	N2EXIT	N2SOURCE	02	Display ALLS	TREAMS
Units:	From	DESULF	REGEN1	REGEN2	LIFTPIPE	S-REGEN2	S-REGEN1	X-FLOW	N2-COOLR	LIFTPIPE	LIFTCOMP		Units:	From
Format: SOL	IDS To	DESULSEP	S-REGEN1	S-REGEN2	RGENSTND	HX-STAGE	REGEN2	MIXFEED	LIFTCOMP	N2-COOLR	LIFTPIPE	MIXFEED	Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	MISSING	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	482.7	711.6	554.9	649.8	579.5	711.6	146.1	208	649.8	210.1	30	Temperature	[C]
Pressure	[PSI]	274.1	274.1	274.1	274.1	274.1	274.1	278.6	272	274.1	275	278.6	Pressure	[PSI]
Mass VFrac		0.317	0.307	0.309	0	1	1	1	1	1	1	1	Mass VFrac	
Mass SFrac		0.683	0.693	0.691	1	0	0	0	0	0	0	0	Mass SFrac	
*** ALL PHAS	SES ***												*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	1460510	712737.875	717757.063	493649.531	221603.984	219088.344	204049.906	75000	75000	75000	12535.85	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1171290	2.40E+05	202161.641	2270.583	198350.969	237827.297	82715.25	92161.805	175148.922	91557.102	8121.884	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-7.37E+09	-3.51E+09	-3.49E+09	-3.13E+09	-3.62E+08	-3.87E+08	-4.01E+08	6142950	2.19E+07	6213730	-5136.922	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	1.247	2.969	3.55	217.411	1.117	0.921	2.467	0.814	0.428	0.819	1.543	Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S			219000	204180.953		204180.078	219000	204031.219					O2S	
H2S		23.471											H2S	
H2O		83842.484											H2O	
S2				17423.979		4630.148							S2	
S6						6555.111		7.099					S6	
S8						6238.653	1	11.587					S8	
CO		215953.672											CO	
CO2		116218.758											CO2	
H2		11175.208											H2	
O2			88.344				88.344					12535.85	O2	
N2		35953.723							75000	75000	75000		N2	
COS													COS	
ZNO			6332.866		6332.866								ZNO	
ZNS		15166		7583									ZNS	
FE2O3			37316.672	24919.895	37316.672								FE2O3	
FEO													FEO	
FES		82173.594		13649.23									FES	
AL2O3		900000	450000	450000	450000								AL2O3	

AHGP-b 1/19/98 pg3

Display ALLS	TREAMS	P-SO2	PS2	RECYCLE	RECYCLES	S2V+L	STANDPIP	SULFUR	UNP-RSO2	UP-SO2	WARMRCY	Display ALLS	TREAMS
Units:	From	CON-COMP	COND	SO2-COMP	SO2MIX	HEATX	DESULSEP	LP-COND	COND	LP-COND	RCYHEATR	Units:	From
Format: SOLI	DS To	SO2MIX	LP-COND	SO2MIX	X-FLOW	COND-EQ	DESULF		SO2-COMP	CON-COMP	HEATX	Format: SOLI	DS To
	Phas	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	MISSING	LIQUID	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	500.4	139.6	145.1	146.1	315	482.7	127.2	139.6	127.2	220	Temperature	[C]
Pressure	[PSI]	278.6	265.1	278.6	278.6	272.1	274.1	14.7	265.1	14.7	276.6	Pressure	[PSI]
Mass VFrac		1	0	1	1	1	0	0	1	1	1	Mass VFrac	
Mass SFrac		0	0	0	0	0	1	0	0	0	0	Mass SFrac	
*** ALL PHAS	SES ***											*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	543.2	17983.422	203620.531	204163.734	221603.984	498669.813	17440.221	203620.938	543.2	216585.75	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	451.514	102.6	82271.875	82761.391	132160.859	2382.878	96.225	85387.891	4431.133	117188.945	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-1.00E+06	370562.063	-4.00E+08	-401270000	-3.84E+08	-3.11E+09	1436680	-400560000	-1066100	-394990000	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	1.203	175.276	2.475	2.467	1.677	209.272	181.244	2.385	0.123	1.848	Density	[LB/CUFT]
Mass Flow	[LB/HR]											Mass Flow	[LB/HR]
O2S		542.913	577.553	203602.125	204145.031	204180.078		34.64	203602.531	542.913	204031.219	O2S	
H2S												H2S	
H2O												H2O	
S2						1549.572						S2	
S6		0.109	6612.687	6.994	7.103	6588.625		6612.578	6.994	0.109	7.099	S6	
S8		0.178	10793.182	11.415	11.593	9285.715		10793.004	11.415	0.178	11.587	S8	
CO												CO	
CO2												CO2	
H2												H2	
02											12535.85	02	
N2												N2	
COS												COS	
ZNO												ZNO	
ZNS							7583					ZNS	
FE2O3												FE2O3	
FEO												FEO	
FES							41086.797					FES	
AL2O3							450000					AL2O3	

AHGP-c 1/19/98 pg1

Display ALLS	TREAMS	CLEAN-CG	COLDFEED	COLDSORB	COOLFES	COOLS2	FEEDRG1	FEO-ZNO	FEO-ZNS	FES-ZNS	H2S-CG	IN-COND	Display ALLS	TREAMS
Units:	From	DESULSEP	MIXFEED	RGENSTND	HX-STAGE	HX-STAGE	HEATX	S-REGEN1	S-REGEN2	DESULSEP		COND-EQ	Units:	From
Format: SOL	DS To		RCYHEATR	DESULF	REGEN2	HEATX	REGEN1	LIFTPIPE	REGEN1	HX-STAGE	DESULF	DEMISTR	Format: SOLI	DS To
	Phas	VAPOR	MIXED	MISSING	MISSING	VAPOR	VAPOR	MISSING	MISSING	MISSING	VAPOR	MIXED		Phas
Temperature	[C]	482.1	136.9	450	517.8	517.8	441.4	711	594.5	482.1	482.2	140	Temperature	[C]
Pressure	[PSI]	274.9	279.4	275	274.9	274.9	275.4	275.4	275.4	274.9	275	270.9	Pressure	[PSI]
Mass VFrac		1	1	0	0	1	1	0	0	0	1	0.924	Mass VFrac	
Mass SFrac		0	0	1	1	0	0	1	1	1	0	0	Mass SFrac	
*** ALL PHASES ***													*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	443898.906	21199.451	48050.277	48507.699	21656.5	21199.451	48050.277	48263.68	48507.699	444356.313	21656.5	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1.12E+06	8971.891	221.013	231.696	17760.699	17373.199	221.013	224.428	231.696	1.12E+06	8.21E+03	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-1.07E+09	-3.93E+07	-3.11E+08	-3.03E+08	-3.62E+07	-3.71E+07	-3.05E+08	-3.05E+08	-3.04E+08	-1.06E+09	-3.93E+07	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.397	2.363	217.409	209.359	1.219	1.22	217.409	215.052	209.359	0.397	2.638	Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S			20002.434			20061.83	20002.434					20061.83	O2S	
H2S		65.815									1790.604		H2S	
H2O		70033.773									68721.594		H2O	
S2						164.784							S2	
S6			0.719			612.014	0.719					615.31	S6	
S8			1.144			817.872	1.144					979.36	S8	
CO		212582.609									212582.609		CO	
CO2		114404.563									114404.563		CO2	
H2		11419.664									11464.477		H2	
02			1195.155				1195.155						02	
N2		35392.48									35392.48		N2	
COS													COS	
ZNO				500.379				500.379					ZNO	
ZNS					599.156				599.156	599.156			ZNS	
FE2O3				3549.896				3549.896	2415.33				FE2O3	
FEO													FEO	
FES					3908.545				1249.193	3908.545			FES	
AL2O3				44000	44000			44000	44000	44000			AL2O3	
AHGP-c 1/19/98 pg2

Display ALLS	TREAMS	INDESULF	INREGEN1	INREGEN2	LIFTDFEO	MADE-S2	MADESO2	MOD-RECY	N2-COOL	N2EXIT	N2SOURCE	O2	Display ALLS	TREAMS
Units:	From	DESULF	REGEN1	REGEN2	LIFTPIPE	S-REGEN2	S-REGEN1	X-FLOW	N2-COOLR	LIFTPIPE	LIFTCOMP		Units:	From
Format: SOLI	DS To	DESULSEP	S-REGEN1	S-REGEN2	RGENSTND	HX-STAGE	REGEN2	MIXFEED	LIFTCOMP	N2-COOLR	LIFTPIPE	MIXFEED	Format: SOLI	DS To
	Phas	VAPOR	VAPOR	VAPOR	MISSING	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	482.1	711	573.5	651.5	594.5	711	146.5	208	651.5	210.1	30	Temperature	[C]
Pressure	[PSI]	274.9	275.4	275.4	275	275.4	275.4	279.4	272	275	275	279.4	Pressure	[PSI]
Mass VFrac		0.82	0.308	0.31	0	1	1	1	1	1	1	1	Mass VFrac	
Mass SFrac		0.18	0.692	0.69	1	0	0	0	C	0	0	0	Mass SFrac	
*** ALL PHAS	ES ***												*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	541032.563	69463.133	69920.453	48050.277	21656.5	21412.854	20004.297	7000	7000	7000	1195.155	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	1119290	2.34E+04	20135.34	221.013	19779.051	23221.412	8092.941	8601.769	16324.121	8545.33	772.086	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-1.68E+09	-3.42E+08	-3.41E+08	-3.06E+08	-3.54E+07	-3.76E+07	-3.93E+07	573341.625	2.05E+06	579948.125	-497.809	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	0.483	2.963	3.473	217.409	1.095	0.922	2.472	0.814	0.429	0.819	1.548	Density	[LB/CUFT]
Mass Flow	[LB/HR]												Mass Flow	[LB/HR]
O2S			21310.348	20062.115		20061.83	21310.348	20002.434					O2S	
H2S		65.815											H2S	
H2O		70033.773											H2O	
S2				1594.662		542.278							S2	
S6						569.93		0.719					S6	
S8						482.462		1.144					S8	
CO		212582.609											CO	
CO2		114404.563											CO2	
H2		11419.664											H2	
02			102.507				102.507					1195.155	02	
N2		35392.48							7000	7000	7000)	N2	
COS													COS	
ZNO			500.379		500.379								ZNO	
ZNS		1316.587		599.156									ZNS	
FE2O3			3549.896	2415.33	3549.896								FE2O3	
FEO													FEO	
FES		7817.09		1249.193									FES	
AL2O3		88000	44000	44000	44000								AL2O3	

AHGP-c 1/19/98 pg3

Display ALLS	TREAMS	P-SO2	PS2	RECYCLE	RECYCLES	S2V+L	STNDPIPE	SULFUR	UNP-RSO2	UP-SO2	WARMRCY	Display ALLS	TREAMS
Units:	From	CON-COMP	DEMISTR	SO2-COMP	SO2MIX	HEATX	DESULSEP	LP-COND	DEMISTR	LP-COND	RCYHEATR	Units:	From
Format: SOLI	DS To	SO2MIX	LP-COND	SO2MIX	X-FLOW	COND-EQ	DESULF		SO2-COMP	CON-COMP	HEATX	Format: SOLI	DS To
	Phas	VAPOR	LIQUID	VAPOR	VAPOR	VAPOR	MISSING	LIQUID	VAPOR	VAPOR	VAPOR		Phas
Temperature	[C]	501.6	140	145.5	146.5	315	482.1	127.7	140	127.7	235	Temperature	[C]
Pressure	[PSI]	279.4	265.9	279.4	279.4	272.9	274.9	14.7	265.9	14.7	277.4	Pressure	[PSI]
Mass VFrac		1	0	1	1	1	0	0	1	1	1	Mass VFrac	
Mass SFrac		0	0	0	0	C) 1	0	0	C	0	Mass SFrac	
*** ALL PHAS	ES ***											*** ALL PHAS	ES ***
Mass Flow	[LB/HR]	49.58	1645.675	20010.68	20060.26	21656.5	48625.977	1596.094	20010.973	49.58	21199.451	Mass Flow	[LB/HR]
Volume Flow	[CUFT/HR]	41.161	9.405	8070.953	8115.582	12934.794	232.279	8.823	8375.842	404.953	11828.04	Volume Flow	[CUFT/HR]
Enthalpy	[BTU/HR]	-9.14E+04	34663.465	-3.93E+07	-39425000	-3.78E+07	-3.04E+08	131964.156	-39363000	-97300.727	-38619000	Enthalpy	[BTU/HR]
Density	[LB/CUFT]	1.205	174.979	2.479	2.472	1.674	209.343	180.904	2.389	0.122	1.792	Density	[LB/CUFT]
Mass Flow	[LB/HR]											Mass Flow	[LB/HR]
O2S		49.553	52.704	20008.838	20058.391	20061.83	3	3.15	20009.131	49.553	20002.434	O2S	
H2S												H2S	
H2O												H2O	
S2						164.784	ł					S2	
S6		0.01	614.651	0.711	0.721	612.014		614.641	0.711	0.01	0.719	S6	
S8		0.016	978.32	1.131	1.148	817.872	2	978.303	1.131	0.016	1.144	S8	
CO												CO	
CO2												CO2	
H2												H2	
02											1195.155	02	
N2												N2	
COS												COS	
ZNO												ZNO	
ZNS							717.431					ZNS	
FE2O3												FE2O3	
FEO												FEO	
FES							3908.545					FES	
AL2O3							44000					AL2O3	

Appendix F Steam Generation Process Flowsheets

The following flowsheets represent possible design schemes for producing high pressure steam. Desulfurization units that require heat removal are utilized for producing the steam. The steam generated will result in an economic credit for the process. The steam generation simulations will help determine the equipment necessary for cooling the desulfurization process.

DSRP-b Complete Steam Generation Scheme

DBSTEAM 11/26/97

DSRP-c Complete Steam Generation Scheme

Temperature (C) Pressure (PSI)

Appendix G Calculation of Reactor Size

The reactor's diameter is determined from the average volumetric flow rate and the linear velocity.

v = 20 ft/sec = 72,000 ft/hr

V = [(gas volume entering) + (gas volume leaving)]/2 + (sorbent mass flow) (60 lb/ft³)⁻¹

Area = V/v = (Volumetric flow rate ft³/hr) / 72,000 ft/hr {ft²}

Calculating the area allows for the calculation of the reactor inside diameter.

Area =
$$\pi$$
 (I.D.)² / (4 x 144 in²/ft²)
I.D. = [(Area) (4 x 144) / π]^{0.5} {in}

The reactor cost will be based on the material of construction costs. The reactor wall thickness and height are necessary for such a calculation. The reactor system cost will be calculated to include installation costs.

The reactor will be cylindrical. The wall and heads will be assumed to have the same thickness. The following equation was used for determining wall thickness (Peters & Timmerhaus, 1991).

Thickness = $P(I.D.) / [2 (Max. allowable working stress psia) (Efficiency of joints) - 0.6 P] + C_c$

 $P = pressure \{psia\}$ $C_c = corrosion losses \{in\}$

Thickness =
$$275 (I.D.) / [2 (12,000) (0.85) - 0.6 (275)] + 0.125$$
 {in}

Taking steel density to be 489 lb/ft³, the reactor weight is calculated with the equations below.

Weight of shell =
$$\pi$$
 (I.D./12) (height) (Thickness/12)(489) {lbs}

Weight of heads =
$$2 \pi [12 \text{ I.D.}/2]^2$$
 (Thickness) (489/12³) (2) {lbs}

The total weight is increased 15% to account of nozzles, manholes, ect.

The cost of carbon steel can be calculated by the equation below.

(Cost per lb) = 80 (total weight)^{-0.34}

The equation above in applicable for 800 lb to 100,000 lb vessels (Peters and Timmerhaus 1991). Estimates for weights over 100,000 lbs could not be found. Therefore, in such cases the unit cost for carbon steel was taken as an average of the above equation calculated for 100,000 lb and the above equation calculated for the total weight. The unit cost is expected to continue to decrease at larger quantities but the decrease should become less pronounced.

Unit cost of carbon steel (weight > 100,000 lbs)

(Cost per lb) = 80 [(total weight)^{-0.34} + $(100,000)^{-0.34}$] / 2

The cost of installation will be twice of the cost of the reactor if it were constructed of carbon steel.

(Cost of installation) = 2 (Cost per lb) (total weight)

The total cost of the reactor system includes installation and material costs. Material cost is multiplied by 3.5 to account for using stainless steel 310 instead of carbon steel.

(Total cost for reactor) = (Cost of installation) + 3.5 (Cost per lb) (total weight)

Appendix H Sizing Reactors for the DSRP

Copies of the reactor system sizing calculations follow. They include estimates of the reactor system costs. The equations describe in *Appendix G* - *Calculation of Reactor Size* where used in the spreadsheet.

reactors DSRP

DSRP	-		egen nonepe			
Regenerate	or Reactor			air volume	67,895 cfh	HP-O2-N2
v (ft/sec) =	20	72000	ft/hr	ROG volume	94,813 cfh	ROG
V (cfh) =	85,541			regen sorbent flow	251,240 lb/hr	ZNS2RGEN
Area =	1.188 ft^2	2		regen sorbent vol.	4,187 cfh	
I.D.	15.068 in			-		
				sorbent vol%	4.90%	
thickness=	0.330					
shell wt.=	5,302 lbs			Corrosion depth	0.125 in	
heads wt.=	67 lbs			reactor height	100 ft	
		0.474				
	total wt.	6,174	lbs (includes add	ditional 15% for nozzles, i	manholes, etc.)	
Regenerate	or Standpipe					
-				size vs. regen size	1	
	total wt.	6,174	lbs	-		
Desulfuriza	tion Reactor			coal gas in volume	1 200 000 cfb	RAW-CG
v (ft/sec) =	20	72000	ft/hr	ca out volume	1,200,000 cfh	CG-CALC
V(cfh) =	1 296 166	12000	10111	regen sorbent flow	669 972 lb/hr	ZNS
Area =	18 002 ft^2	,		regen sorbent vol	11 166 cfh	2.10
	58 653 in	•			11,100 011	
	00.000 11			sorbent vol%	0.86%	
thickness=	0.922					
shell wt.=	57,707 lbs			Corrosion depth	0.125 in	
heads wt.=	2,821 lbs			reactor height	100 ft	
		~~~~			<u> </u>	
	total wt.	69,607	ibs (includes add	ditional 15% for nozzles, i	mannoles, etc.)	
Desulfuriza	tion Standpipe					
				size vs. desulf size	1	
	total wt.	69,607	lbs			
total wt.	151,561 lbs		weight for desulfu	urization and regeneration	n transport reactors	
COST						
					>100,000 lb calc	
C.S. unit p	rice for quantiy	needed	1.491 \$/lb	1990 \$	1.490988 1.386	5
			1.593 \$/lb	1996 \$	<100,0	000 lb calc
Cost of ins	tallation	\$482,917				
Total rac	otor acat	¢1 220 020	includes sector	of installation		
rotarrea	CIOF COSE	₽I,3ZO,UZU	includes cost o	ว่า แารเลแลแบบ		

# Desulf and Regen transport reactor price calculation

### DSRP reactor

			DOIN		1 0031			
DSRP DSRP Reactor v (ft/sec) gas = V (cfh) = space time -gas v (ft/sec) cat = Area = I.D. thickness= shell wt.= heads wt.=	3 114,923 33.33 seconds 2.3 10.782 ft^2 45.391 in 0.742 in 35,930 lbs 1,359 lbs otal wt.	10800 f 8280 f 42,882 l	it/hr it/hr	cludes additi	slipstream ROG volume reactor effluer DSRP reactor catalyst flow catalyst vol. catalyst vol% Corrosion dep reactor height onal 15% for n	nt r Q	37,342 cfh 75,166 cfh 107,359 cfh -15,340,000 BTU/r 299,381 lb/hr 4,990 cfh 5.59% 0.125 in 100 ft manholes, etc.)	SLIPSTREAM ROG-COOL RXNPRD
							. ,	
DSRP Standpipe								
Cyclone (20% of restandpipe heigh	eactor size)	8,576		Area = I.D. thickness= shell wt.=	1	10.78 ft/ 45.39 in 0.74 in 4,372 lb	^2 s	
residense time	10.81 minutes			heads wt.=	-	1,359 lb	S	
to Heat Exchanger Heat Exchanger A volume of steel	otal wt. rea (ft^2) 22 otal weight	26,667 1063 10,829	lbs (incl	ludes additio	onal 15% on sta	andpipe kness	weight + Cyclone we	eight)
total wt. <u>COST</u>	80,379 lbs	v	weight	for DSRP re	actor system	>	100.000 lb calc	
C.S. unit price for	quantiy needed		1.719 1.837	9 \$/lb 7 \$/lb	1990 \$ 1996 \$	-	1.657735955 1.719 <100,	) 000 lb calc
Cost of installation	\$29	95,320						
Total reactor of	ost \$812	2 <b>,129</b> i	includ	es cost of	installation			

#### DSRP Reactor Cost

### reactors DSRP-b

# Desulf and Regen transport reactor price calculation

Regenerator Reactor v (ft/sec) = 20       72000 ft/hr       air volume ROG volume regen sorbent flow regen sorbent flow 20,018 cfh       HP-O2-N2 ROG ZNS2RGEN         Area = 3.854 ft/2 LD. 27.137 in       sorbent vol.       20,018 cfh       HP-O2-N2 ROG         I.D. 27.137 in       sorbent vol.       20,018 cfh       ZNS2RGEN         thickness= 0.494 shell wt.= 14,298 lbs       corrosion depth       0.125 in       ZNS2RGEN         thickness= 0.494 shell wt.= 14,298 lbs       corrosion depth       0.125 in       RAW-CG         total wt.       16,814 lbs       Corrosion depth       0.125 in         total wt.       16,814 lbs       size vs. regen size       1         Desulfurization Reactor v (ft/sec) = 20       72000 ft/hr       coal gas in volume regen sorbent vol.       1,409,220 cfh       RAW-CG         Q(ft) = 1,687,918       regen sorbent vol.       1,409,220 cfh       RAW-CG         Area = 23,443 ft/2 LD.       66.933 in       sorbent vol.       44,483 cfh         LD.       66.933 in       sorbent vol%       2.64%         thickness= 1.035 shell wt.= 73,889 lbs       Corrosion depth       0.125 in         heads wt.= 4,121 lbs       size vs. desulf size       1         total wt.       89,711 lbs       size vs. desulf size       1         total wt.       <	DSRP	in and regen transport i					
v (tr/sec) =       20       72000 ft/hr       ROG volume regen sorbent ftow regen sorbent ftow 1200,050 lto/hr       ROG zNS2RGEN         Area =       3.854 ftv2       regen sorbent vol.       2018 cfh       ZNS2RGEN         I.D.       27.137 in       sorbent vol.       7.21%       ZNS2RGEN         thickness=       0.494       sorbent vol.%       7.21%       ZNS2RGEN         shell wt.=       14,298 lbs       Corrosion depth       0.125 in       100 ft         total wt.       16,814 lbs       Corrosion depth       0.125 in       CG-CALC         V (tfvsc) =       20       72000 ft/hr       coal gas in volume regen sorbent flow       1.409,220 cfh       CG-CALC         V (tfvsc) =       20       72000 ft/hr       coal gas in volume regen sorbent flow       1.877,650 cfh       CG-CALC         V (tfvsc) =       20       72000 ft/hr       coal gas in volume regen sorbent vol.       44,483 cfh       2NS         I.D.       66.933 in       sorbent vol%       2.64%       2.64%       2NS         thickness=       1.035       sorbent vol%       2.64%       2.64%       2NS         heads wt.=       4,121 lbs       corrosion depth       100 ft       100 ft       100 ft         beaulfurization Standpipe	Regenerator Reactor		air volume	215,340 cfh	HP-O2-N2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v (ft/sec) = 20	72000 ft/hr	ROG volume	299,541 cfh	ROG		
Area =       3.854 ft%2       regen sorbent vol.       20,018 cfh         I.D.       27.137 in       sorbent vol.       7.21%         thickness=       0.494       sorbent vol%       7.21%         shell wt.=       14,298 lbs       Corrosion depth       0.125 lin         heads wt.=       323 lbs       corrosion depth       0.125 lin         total wt.       16,814 lbs       for nozzles, manholes, etc.)         Regenerator Standpipe       size vs. regen size       1         total wt.       16,814 lbs       coal gas in volume       1,409,220 cfh       RAW-CG         V (tfvscc) =       20       72000 ft/hr       cg out volume       1,409,220 cfh       CG-CALC         V (cfh) =       1,687,918       regen sorbent flow       2,669,000 lb/hr       ZNS         Area =       23,443 ft/2       regen sorbent vol.       44,483 cfh       ZNS         I.D.       66,933 in       sorbent vol%       2.64%       thickness=       1.035         shell wt.=       73,889 lbs       corrosion depth       0.125 lin       teat wt.       89,711 lbs         total wt.       213,051 lbs       weight for desulfurization and regeneration transport reactors       200,000 lb calc         CSS unit price for quantiy needed	V (cfh) = 277,458		regen sorbent flow	1,201,050 lb/hr	ZNS2RGEN		
I.D.       27.137 in       sorbent vol%       7.21%         thickness=       0.494       sorbent vol%       7.21%         shell wt.=       14,298 lbs       Corrosion depth       0.125 in         heads wt.=       323 lbs       corrosion depth       0.125 in         total wt.       16,814 lbs       lbs (includes additional 15% for nozzles, manholes, etc.)         Regenerator Standpipe         total wt.       16,814 lbs         Desulfurization Reactor         v (ftysec) =       20       72000 ft/hr       coal gas in volume       1,877,650 cfh       RAW-CG         V (fth) =       1,687,918       regen sorbent flow       2,669,000 lb/hr       ZNS         Area =       23,443 ft/2       regen sorbent vol%       2,64%         I.D.       66.933 in       sorbent vol%       2,64%         thickness=       1.035       size vs. desulf size       1         beads wt.=       4,121 lbs       weight for desulfurization and regeneration transport reactors       2	Area = 3.854 ft^2		regen sorbent vol.	20,018 cfh			
$sorbent vol% 7.21\%$ thickness= 0.494 thickness= 0.494 thickness= 14.298 lbs heads wt.= 323 lbs Corrosion depth 0.125 lin 100 ft total wt. 16,814 lbs (includes additional 15% for nozzles, manholes, etc.) Regenerator Standpipe total wt. 16,814 lbs Corrosion depth 1.409,220 cfh RAW-CG (J.669,000) lb/hr V (ft/sec) = 20 72000 ft/hr cg out volume 1.409,220 cfh RAW-CG 2.669,000 lb/hr ZNS Area = 23.443 ft^2 regen sorbent vol% 2.64% thickness= 1.035 shell wt.= 6.933 in corrosion depth 0.125 lin total wt. 89,711 lbs Corrosion depth 0.125 lin total wt. 89,711 lbs total wt. 213,051 lbs weight for desulfurization and regeneration transport reactors COST C.S. unit price for quantiy needed 1.415 \$/lb 1990 \$ 1.415 2335 1.234 (100,000 lb calc Cost of installation 5644 349	I.D. 27.137 in		-				
thickness= 0.494 shell wt.= 14,298 lbs heads wt.= 323 lbs total wt. 16,814 lbs (includes additional 15% for nozzles, manholes, etc.) Regenerator Standpipe total wt. 16,814 lbs Desulfurization Reactor v (ftysec) = 20 v (ftysec) = 1,687,918 Area = 23,443 tfv2 I.D. 66.933 in sorbent vol. thickness= 1.035 shell wt.= 73,889 lbs heads wt.= 4,121 lbs total wt. 89,711 lbs (includes additional 15% for nozzles, manholes, etc.) Desulfurization Standpipe total wt. 89,711 lbs (includes additional 15% for nozzles, manholes, etc.) Desulfurization Standpipe total wt. 89,711 lbs total wt. 213,051 lbs weight for desulfurization and regeneration transport reactors COST c.S. unit price for quantiy needed 1.415 \$/lb 1990 \$ 1.4152335 1.234 1.512 \$/lb 1996 \$			sorbent vol%	7.21%			
shell wt.=       14,298 lbs       Corrosion depth       0.125 in         heads wt.=       323 lbs       includes additional 15% for nozzles, manholes, etc.)         Regenerator Standpipe       size vs. regen size       1         total wt.       16,814 lbs       includes additional 15% for nozzles, manholes, etc.)         Regenerator Standpipe       size vs. regen size       1         total wt.       16,814 lbs       includes additional 15% for nozzles, manholes, etc.)         Desulfurization Reactor       coal gas in volume       1,409,220 cfh       RAW-CG         v (ft/sec) =       20       72000 ft/hr       cg out volume       1,877,650 cfh       CG-CALC         V (ft/sec) =       20       72000 ft/hr       regen sorbent flow       2,669,000 lb/hr       ZNS         Area =       23,443 ft/2       regen sorbent vol.       44,483 cfh       INS         LD.       66.933 in       sorbent vol%       2.64%         thickness=       1.035       stort vol%       2.64%         shell wt.=       73,889 lbs       Corrosion depth       0.125 in         heads wt.=       4,121 lbs       size vs. desulf size       1         total wt.       89,711 lbs       weight for desulfurization and regeneration transport reactors	thickness= 0.494						
heads wt.=       323 lbs       reactor height       100 ft         total wt.       16,814 lbs (includes additional 15% for nozzles, manholes, etc.)         Regenerator Standpipe       size vs. regen size       1         total wt.       16,814 lbs         Desulfurization Reactor       coal gas in volume       1,409,220 cfh       RAW-CG         v (ft/sec) =       20       72000 ft/hr       cg out volume       1,877,650 cfh       CG-CALC         V (cfh) =       1,687,918       regen sorbent flow       2,669,000 lb/hr       ZNS         Area =       23,443 ft^2       regen sorbent vol.       44,483 cfh         I.D.       66.933 in       sorbent vol%       2.64%         thickness=       1.035       corrosion depth       0.125 in         heads wt.=       4,121 lbs       reactor height       100 ft         total wt.       89,711 lbs (includes additional 15% for nozzles, manholes, etc.)       Desulfurization Standpipe         total wt.       89,711 lbs       weight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc       1.415 \$/lb       1990 \$       1.4152335       1.234         Cost of installation       \$644 349       1596 \$       <100,000 lb calc	shell wt.= 14,298 lbs		Corrosion depth	0.125 in			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	heads wt.= 323 lbs		reactor height	100 ft			
total wt.       16,814 lbs (includes additional 15% for nozzles, manholes, etc.)         Regenerator Standpipe         total wt.       16,814 lbs         Desulfurization Reactor         v (ft/sec) =       20       72000 ft/hr       coal gas in volume       1,409,220 cfh       RAW-CG         1,877,650 cfh       CG-CALC       2,669,000 lb/hr       ZNS         V (ft/sec) =       20       72000 ft/hr       regen sorbent flow       2,669,000 lb/hr       ZNS         Area =       23.443 ft/2       regen sorbent vol.       44,483 cfh       ZNS         I.D.       66.933 in       sorbent vol%       2.64%         thickness=       1.035       Corrosion depth       0.125 in         heads wt.=       4,121 lbs       Corrosion depth       100 ft         itotal wt.       89,711 lbs       (includes additional 15% for nozzles, manholes, etc.)         Desulfurization Standpipe         itotal wt.       89,711 lbs       size vs. desulf size       1         >100,000 lb calc         COST         >100,000 lb calc         Cost of installation         \$644 349							
Regenerator Standpipe $total wt.$ 16,814 lbsDesulfurization Reactor v (ff/sec) =2072000 ft/hrcoal gas in volume1,409,220 cfh 1,877,650 cfh 2,669,000 lb/hrRAW-CG CG-CALC ZNSV (ofh) =1,687,918 1,687,918 Area =23.443 ft^2 2 regen sorbent flow2,669,000 lb/hr 2,669,000 lb/hrZNSArea =23.443 ft^2 1,0.regen sorbent vol.44,483 cfhLD.66.933 insorbent vol%2.64%thickness=1.035 shell wt.=73,889 lbs 4,121 lbsCorrosion depth 100 fttotal wt.89,711 lbs (includes additional 15% for nozzles, manholes, etc.)Desulfurization Standpipe total wt.size vs. desulf size1total wt.89,711 lbsweight for desulfurization and regeneration transport reactorsCOST C.S. unit price for quantiy needed1.415 \$/lb1990 \$1.4152335 1.234 1.512 \$/lbCost of installation\$644 349	total wt.	16,814 lbs (includes addition	nal 15% for nozzles,	manholes, etc.)			
Negenerator Standpipe         size vs. regen size         1         total wt.       16,814 lbs         Desulfurization Reactor       coal gas in volume       1,409,220 cfh       RAW-CG         V (ft/sec) =       20       72000 ft/hr       cg out volume       1,477,650 cfh       CG-CALC         V (cfh)       1,687,918       regen sorbent flow       2,669,000 lb/hr       ZNS         Area =       23.443 ft^2       regen sorbent vol.       44,483 cfh         I.D.       66.933 in       sorbent vol%       2.64%         thickness=       1.035         shell wt.=       73,889 lbs       Corrosion depth       0.125 in         heads wt.=       4,121 lbs       corrosion depth       0.125 in         total wt.       89,711 lbs (includes additional 15% for nozzles, manholes, etc.)       Desulfurization Standpipe       >100,000 lb calc         COST       >100,000 lb calc         Cost of installation       \$644 349	Paganaratar Standhina						
$\underline{\text{total wt.}} = 16,814 \text{ lbs}$ $\underline{\text{Desulfurization Reactor}}_{V (ff/sec) = 20 72000 \text{ ft/hr}} = 20 72000 \text{ ft/hr}} = 20 72000 \text{ ft/hr}}_{Cg out volume} = 1,409,220 \text{ cfh}} = RAW-CG CG-CALC 2,669,000 \text{ lb/hr}}_{1,877,650 \text{ cfh}} = CG-CALC 2,669,000 \text{ lb/hr}}_{2,877,650 \text{ cfh}} = CG-CALC 2,669,000 \text{ lb/hr}}_{2,877,650 \text{ cfh}} = CG-CALC 2,669,000 \text{ lb/hr}}_{2,877,650 \text{ cfh}}_{2,669,000 \text{ lb/hr}}_{2,877,650 \text{ cfh}}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,64\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,6}\%}_{2,64\%}_{2,6}\%}_{2,60\%}_{2,6}\%}_{2,60\%}_{2,6}\%}_{2,6}\%}_{2,60\%}_{2,6}\%}_{2,6}\%}_{2,60$	Regenerator Standpipe		size vs. regen size	1			
Desulfurization Reactor v (ft/sec) =Court into $v$ (ft/sec) =2072000 ft/hrcoal gas in volume cg out volume1,409,220 cfhRAW-CGV (cfh) =1,687,918regen sorbent flow2,669,000 lb/hrZNSArea =23.443 ft/2regen sorbent vol.44,483 cfhI.D.66.933 insorbent vol%2.64%thickness=1.035corrosion depth0.125 inheads wt.=4,121 lbscorrosion depth100 fttotal wt.89,711 lbs(includes additional 15% for nozzles, manholes, etc.)Desulfurization Standpipe total wt.size vs. desulf size1total wt.89,711 lbssize vs. desulf size1costCOST>100,000 lb calcC.S. unit price for quantiy needed1.415 \$/lb1990 \$1.4152335 1.2341.512 \$/lb1996 \$<100,000 lb calc	total wt	16 814 lbs	Size vs. regen size				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10,014 103					
v (ft/sec) =2072000 ft/hrcg out volume1,877,650cfhCG-CALC $V$ (cfh) =1,687,918regen sorbent flow2,669,000lb/hrZNSArea =23.443 ft/2regen sorbent vol.44,483 cfhI.D.66.933 insorbent vol.44,483 cfhI.D.66.936Sorbent vol.2.64%thickness=1.035Corrosion depth0.125shell wt.=73,889 lbsCorrosion depth100 fttotal wt.89,711lbsreactor height100 fttotal wt.89,711total wt.89,711lbstotal wt.89,711total wt.89,711lbsveight for desulfurization and regeneration transport reactorsCOSTCOST>100,000 lb calcC.S. unit price for quantiy needed1.415 \$/lb1990 \$1.512 \$/lb1996 \$<100,000 lb calc	Desulfurization Reactor		coal das in volume	1.409.220 cfh	RAW-CG		
V (cfh) =1,687,918regen sorbent flow $2,669,000$ lb/hrZNSArea =23,443 ft^2regen sorbent vol.44,483 cfhI.D.66.933 insorbent vol.44,483 cfhthickness=1.035sorbent vol.0.125 inshell wt.=73,889 lbsCorrosion depth0.125 inheads wt.=4,121 lbsreactor height100 fttotal wt.89,711 lbs (includes additional 15% for nozzles, manholes, etc.)Desulfurization Standpipetotal wt.89,711 lbstotal wt.89,711 lbsweight for desulfurization and regeneration transport reactorsCOST>100,000 lb calcC.S. unit price for quantiy needed1.415 \$/lb1990 \$1.512 \$/lb1996 \$<100,000 lb calc	v (ft/sec) = 20	72000 ft/hr	ca out volume	1.877.650 cfh	CG-CALC		
Area =23.443 ft^2regen sorbent vol. $44,483$ cfhI.D.66.933 insorbent vol% $2.64\%$ thickness=1.035Corrosion depth $0.125$ inheads wt.=4,121 lbscorrosion depth $100$ fttotal wt.89,711 lbs (includes additional 15% for nozzles, manholes, etc.)Desulfurization Standpipetotal wt.89,711 lbstotal wt.89,711 lbsweight for desulfurization and regeneration transport reactorsCOST>100,000 lb calcC.S. unit price for quantiy needed1.415 \$/lb1990 \$1.512 \$/lb1996 \$<100,000 lb calc	V(cfh) = 1.687.918		regen sorbent flow	2.669.000 lb/hr	ZNS		
I.D.66.933 insorbent vol%2.64%thickness=1.035Sorbent vol%2.64%thickness=1.035Corrosion depth $0.125$ inheads wt.=4,121 lbsCorrosion depth $100$ fttotal wt.89,711 lbs (includes additional 15% for nozzles, manholes, etc.)Desulfurization Standpipetotal wt.89,711 lbstotal wt.89,711 lbstotal wt.89,711 lbstotal wt.89,711 lbstotal wt.213,051 lbsweight for desulfurization and regeneration transport reactorsCOST>100,000 lb calcC.S. unit price for quantiy needed1.415 \$/lb1.512 \$/lb1990 \$1.512 \$/lb1996 \$<100,000 lb calc	Area = 23.443 ft^2		regen sorbent vol.	44,483 cfh			
sorbent vol% 2.64% thickness= 1.035 shell wt.= 73,889 lbs heads wt.= 4,121 lbs Corrosion depth 0.125 in reactor height 100 ft total wt. 89,711 lbs (includes additional 15% for nozzles, manholes, etc.) Desulfurization Standpipe size vs. desulf size 1 total wt. 89,711 lbs total wt. 89,711 lbs weight for desulfurization and regeneration transport reactors COST C.S. unit price for quantiy needed 1.415 \$/lb 1990 \$ 1.4152335 1.234 1.512 \$/lb 1996 \$ <100,000 lb calc Cost of installation \$644 349	I.D. 66.933 in			.,			
thickness=       1.035         shell wt.=       73,889 lbs         heads wt.=       4,121 lbs         total wt.       89,711 lbs (includes additional 15% for nozzles, manholes, etc.)         Desulfurization Standpipe       size vs. desulf size         total wt.       89,711 lbs         total wt.       100,000 lb calc         COST       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335         1.512 \$/lb       1996 \$       <100,000 lb calc			sorbent vol%	2.64%			
shell wt.=       73,889 lbs       Corrosion depth       0.125 in         heads wt.=       4,121 lbs       reactor height       100 ft         total wt.       89,711 lbs (includes additional 15% for nozzles, manholes, etc.)         Desulfurization Standpipe       size vs. desulf size       1         total wt.       89,711 lbs       size vs. desulf size       1         total wt.       89,711 lbs       veight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335       1.234         1.512 \$/lb       1996 \$       <100,000 lb calc	thickness= 1.035						
heads wt.=       4,121 lbs       reactor height       100 ft         total wt.       89,711 lbs (includes additional 15% for nozzles, manholes, etc.)         Desulfurization Standpipe       size vs. desulf size       1         total wt.       89,711 lbs         total wt.       89,711 lbs       size vs. desulf size       1         total wt.       213,051 lbs       weight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335       1.234         1.512 \$/lb       1996 \$       <100,000 lb calc	shell wt.= 73,889 lbs		Corrosion depth	0.125 in			
total wt.       89,711 lbs (includes additional 15% for nozzles, manholes, etc.)         Desulfurization Standpipe       size vs. desulf size 1         total wt.       89,711 lbs         total wt.       89,711 lbs         total wt.       89,711 lbs         total wt.       89,711 lbs         total wt.       213,051 lbs         weight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335       1.234         1.512 \$/lb       1996 \$       <100,000 lb calc	heads wt.= 4,121 lbs		reactor height	100 ft			
total wt.       89,711       lbs (includes additional 15% for nozzles, manholes, etc.)         Desulfurization Standpipe       size vs. desulf size       1         total wt.       89,711       lbs       1         total wt.       89,711       lbs       1         total wt.       213,051       lbs       weight for desulfurization and regeneration transport reactors         COST       >100,000       lb calc         C.S. unit price for quantiy needed       1.415       1990       1.4152335       1.234         1.512       1996        <100,000							
Desulfurization Standpipe       size vs. desulf size 1         total wt.       89,711 lbs         total wt.       213,051 lbs         weight for desulfurization and regeneration transport reactors         COST         C.S. unit price for quantiy needed       1.415 \$/lb         1.512 \$/lb       1990 \$         1.512 \$/lb       1996 \$         Cost of installation       \$644 349	total wt.	89,711 lbs (includes addition	nal 15% for nozzles,	manholes, etc.)			
Desulturization Standpipe         size vs. desulf size 1         total wt. 89,711 lbs         total wt. 213,051 lbs       weight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335       1.234         1.512 \$/lb       1996 \$       <100,000 lb calc							
Size vs. desulf size1         total wt.       89,711 lbs         total wt.       213,051 lbs       weight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335       1.234         L.512 \$/lb       1996 \$       <100,000 lb calc	Desulfurization Standpipe						
total wt.       89,711 lbs         total wt.       213,051 lbs       weight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335       1.234         1.512 \$/lb       1996 \$       <100,000 lb calc         Cost of installation       \$644 349	totoluut	00 711 lba	size vs. desult size	1			
total wt.       213,051 lbs       weight for desulfurization and regeneration transport reactors         COST       >100,000 lb calc         C.S. unit price for quantiy needed       1.415 \$/lb       1990 \$       1.4152335       1.234         1.512 \$/lb       1996 \$       <100,000 lb calc	total wt.	89,711 IDS					
COST         >100,000 lb calc           C.S. unit price for quantiy needed         1.415 \$/lb         1990 \$         1.4152335         1.234           1.512 \$/lb         1996 \$         <100,000 lb calc	total wt 213 051 lbs	weight for desulfurize	ation and regeneration	n transport reactors			
COST         >100,000 lb calc           C.S. unit price for quantiy needed         1.415 \$/lb         1990 \$         1.4152335         1.234           1.512 \$/lb         1996 \$         <100,000 lb calc							
C.S. unit price for quantiy needed         1.415 \$/lb         1990 \$         1.4152335         1.234           1.512 \$/lb         1996 \$ <t< td=""><td>COST</td><td></td><td></td><td></td><td></td></t<>	COST						
C.S. unit price for quantiy needed 1.415 \$/lb 1990 \$ 1.4152335 1.234 1.512 \$/lb 1996 \$ <100,000 lb calc				>100,000 lb calc			
1.512 \$/lb         1996 \$         <100,000 lb calc	C.S. unit price for quantiy nee	eded 1.415 \$/lb	1990 \$	1.4152335 1.234	4		
Cost of installation \$644,349		1.512 \$/lb	1996 \$	<100,	000 lb calc		
Cost of installation \$644.349							
	Cost of installation \$644,349						
Total reactor cost \$1,771,959 includes cost of installation							

#### DSRP-b reactor

### **DSRP-b** Reactor Cost

DSRP		-			
DSRP Reactor				slipstream	153.708 cfh SLIPSTREAM
v (ft/sec) gas =	3	10800 ft/hr		ROG volume	237.184 cfh ROG-COOL
V(cfh) =	393.089			reactor effluent	361.900 cfh RXNPRD
space time -gas	33.33 seconds			DSRP reactor Q	-51.320.000 BTU/hr
v (ft/sec) cat =	2.3	8280 ft/hr		catalyst flow	1.001.581 lb/hr
( ,				catalyst vol.	16.693 cfh
Area =	36.868 ft^2			<b>,</b>	- ,
I.D.	83.936 in			catalvst vol%	5.47%
thickness=	1.266 in			,	
shell wt.=	113,355 lbs			Corrosion depth	0.125 in
heads wt.=	7,929 lbs			reactor height	100 ft
	,				
to	otal wt.	139,477 lbs (ir	ncludes additi	ional 15% for nozzle	es, manholes, etc.)
					· · · · ·
DSRP Standpipe					
Cyclone (20% of re	eactor size)	27,895	Area =	36.87	7 ft^2
			I.D.	83.94	4 in
standpipe height	40 ft		thickness=	- 1.27	7 in
			shell wt.=	45,342	2 lbs
residense time	11.05 minutes		heads wt.=	= 7,929	) lbs
to	tol wit	90 157 lba (in	oludoo odditi	anal 15% an atanda	ing weight ( Cyclong weight)
<u></u>	ilai wi.	69,157 IDS (III	ciudes additio	onal 15% on stanup	pe weight + Cyclone weight)
Heat Exchanger					
- Hoat External iger					
Heat Exchanger A	rea (ft^2)	3556	heat excha	anger pipe thickness	s 0.25 in
0				0 11	
volume of steel	74				
to	otal weight	36,229 lbs			
	Ū				
total wt.	264,863 lbs	weigh	t for DSRP re	actor system	
COST					
					>100,000 lb calc
C.S. unit price for (	quantiy needed	1.37	′1 \$/lb	1990 \$	1.371208108 1.146
0.0. unit price for v				1000 \$	100,000 lb 1-
	. ,	1.46	55 \$/ID	1996\$	<100,000 lb caic
	. ,	1.46	5 \$/ID	1996\$	<100,000 lb calc
Cost of installation		1.46 \$776,129	5 \$/ID	1996 \$	<100,000 lb caic
Cost of installation	\$	1.46 \$776,129	55 \$/ID	1996 \$	<100,000 lb caic

### reactors DSRP-c

# Desulf and Regen transport reactor price calculation

DSRP	and regen nanopert						
Regenerator Reactor		air volume	19,366 cfh	HP-O2-N2			
v (ft/sec) = 20	72000 ft/hr	ROG volume	26,009 cfh	ROG			
V (cfh) = 23,882		regen sorbent flow	71,663 lb/hr	ZNS2RGEN			
Area = 0.332 ft^2		regen sorbent vol.	1,194 cfh				
I.D. 7.962 in							
		sorbent vol%	5.00%				
thickness= 0.233			l				
shell wt.= 1,981 lbs		Corrosion depth	0.125 in				
heads wt.= 13 lbs		reactor height	100 ft				
total wt.	2,293 lbs (includes additi	ional 15% for nozzles, n	nanholes, etc.)				
Regenerator Standpipe							
		size vs. regen size	1				
total wt.	2,293 lbs						
Desulfurization Peactor		coal gas in volume	1 130 050 ofb				
$\frac{Descritchization (eactor)}{20}$	72000 ft/br		1,139,050 cm				
V(cfh) = 1.164.094	72000 1011	regen sorbent flow	71 663 lb/hr	ZNS			
$Area = 16.168 \text{ ft}^2$		regen sorbent vol	1 194 cfh	2.10			
LD. 55.585 in		logon consone von	1,101 011				
		sorbent vol%	0.10%				
thickness= 0.880							
shell wt.= 52,215 lbs		Corrosion depth	0.125 in				
heads wt.= 2,419 lbs		reactor height	100 ft				
total wt.	62,829 lbs (includes additi	ional 15% for nozzles, n	nanholes, etc.)				
Desulfurization Standpipe							
<u></u>		size vs. desulf size	1				
total wt.	62,829 lbs						
total wt. 130,244 lbs	weight for desulfuri	zation and regeneration	transport reactors				
<u>COST</u>							
C.S. unit price for quantity as	adad 1 520 ¢/lb	1000 \$	> 100,000 ID CalC				
C.S. unit price for quantity he	1 632 ¢/lb	1990 \$ 1996 \$	-100	, 000 lb calc			
	1.032 \$/ID	1990 Q	<100,				
Cost of installation	Cost of installation \$425,193						
Total reactor cost       \$1,169,282 includes cost of installation							

#### DSRP-c reactor

### **DSRP-c Reactor Cost**

DSRP		_					
DSRP Reactor				slipstream	9,443 cfh SLIPSTREAM		
v (ft/sec) gas =	3	10800 ft/hr		ROG volume	20,364 cfh ROG-COOL		
V (cfh) =	31,212			reactor effluent	29,995 cfh RXNPRD		
space time -gas	33.33 seconds			DSRP reactor C	Q -4,029,000 BTU/hr		
v (ft/sec) cat =	2.3	8280 ft/hr		catalyst flow	78,632 lb/hr		
				catalyst vol.	1,311 cfh		
Area =	2.93 ft^2						
I.D.	23.650 in			catalyst vol%	5.41%		
thickness=	0.446 in						
shell wt.=	11,265 lbs			Corrosion depth	n 0.125 in		
heads wt.=	222 lbs			reactor height	100 ft		
tot	al wt.	13,210 lbs	(includes additi	ional 15% for noz	zzles, manholes, etc.)		
DSRP Standpipe							
<b>o</b> , , , , , , , , , , , , , , , , , , ,							
Cyclone (20% of rea	actor size)	2,642	Area =	2	2.93 ft/2		
a ta mala ta a ta stark d	40 4		I.D.	23			
standpipe neight	40 It		thickness=	= 0	5.45 IN		
rocidonco timo	11 17 minutos		snell wt.=				
residense linte	11.17 minutes		neaus wi.=		222 105		
tot	al wt.	8,079 lbs (	includes additio	onal 15% on stan	dpipe weight + Cyclone weight)		
Heat Exchanger							
Heat Exchanger Are	ea (ft^2)	279	heat excha	anger pipe thickn	ess 0.25 in		
volume of steel	6						
tot	al weight	2,844 lbs					
total wt	24 122 lbc	woia	bt for DSPD ro	actor evetom			
Iolai wi.	24,133 105	weig		actor system			
COST							
0001					>100 000 lb calc		
C.S. unit price for a	uantiv needed	2!	588 \$/lb	1990 \$	2 092218539 2 588		
and price for q		2	766 \$/lb	1996 \$	<100.000 lb calc		
				+			
Cost of installation	Cost of installation \$133,482						
	·	*					
Total reactor co	ost \$36	67,075 incl	udes cost of	installation			
		,					

### reactors DSRP-100

## Desulf and Regen transport reactor price calculation

DSRP					
Regenerator Reactor		air volume 28,592 cfh HP-O2-N2			
v (ft/sec) = 20	72000 ft/hr	ROG volume 39,921 cfh ROG			
V (cfh) = 36,020		regen sorbent flow 105,797 lb/hr ZNS2RGEN			
Area = 0.500 ft^2		regen sorbent vol. 1,763 cfh			
I.D. 9.778 in		-			
		sorbent vol% 4.90%			
thickness= 0.258					
shell wt.= 2,690 lbs		Corrosion depth 0.125 in			
heads wt.= 22 lbs		reactor height 100 ft			
total wt.	3,119 lbs (includes additio	nal 15% for nozzles, manholes, etc.)			
Regenerator Standpipe					
		size vs. regen size 1			
total wt.	<u>3,119</u> lbs				
Deculturization Decetor					
Desulurization Reactor	70000 件//	coal gas in volume 506,745 cm RAW-CG			
V(II/SEC) = 20	72000 10/11	regen aerhant flow 281 071 lb/br ZNS			
V(CIII) = 545,644		regen sorbent liow 281,971 ib/hr ZINS			
Area = 7.58 Tt/2		regen sorbent vol. 4,700 cm			
1.D. 38.06 In		$\rho$ as the part $\gamma$ $\rho$			
thickness 0.642					
chall with 26.075 lba		Correction depth 0.125 in			
Shell wit = $20,075$ lbs		reactor beight 100 ft			
Tieads wi.= 027 lbs					
total wt	30 938 lbs (includes additio	nal 15% for nozzles, manholes, etc.)			
Desulfurization Standpipe					
		size vs. desulf size 1			
total wt.	30,938 lbs				
total wt. 68,113 lbs	weight for desulfuriza	ation and regeneration transport reactors			
COST					
		>100,000 lb calc			
C.S. unit price for quantity n		1990 \$ 1./0/5181 1.819			
	1.943 \$/Ib	1996 \$ <100,000 lb calc			
Cost of installation	\$264 748				
	ψ204,140				
Total reactor cost     \$728,057     includes cost of installation					

#### DSRP-100 reactor

### DSRP-100 Reactor Cost

DSRPDSRP Reactorv (ft/sec) gas = $3$ V (cfh) =48,391space time -gas33.33 sev (ft/sec) cat =2.3Area =4.540 ft/I.D.29.454 inthickness=0.525 inshell wt.=16,508 lbs	10800 ft/hr conds 8280 ft/hr 2	slipstream ROG volu reactor eff DSRP rea catalyst filo catalyst vo catalyst vo Corrosion	15,723           me         31,647           iluent         45,210           ctor Q         -6,459,000           ow         126,056           ol.         2,101           ol%         5.59%           depth         0.125           isth         400	cfh SLIPSTREAM cfh ROG-COOL cfh RXNPRD BTU/hr lb/hr cfh
116a03 WI 400 103		reactor ne		
total wt.	<u>19,451</u> lbs (in	cludes additional 15% f	or nozzles, manholes, etc.	)
DSRP Standpipe				
Cyclone (20% of reactor size)	3,890	Area = I.D.	4.54 ft^2 29.45 in	
standpipe height 40 ft		thickness=	0.53 in	
residense time 10.81 mi	nutes	shell wt.= heads wt.=	6,603 lbs 405 lbs	
total wt.	11,950 lbs (inc	cludes additional 15% or	n standpipe weight + Cyclo	one weight)
Heat Exchanger				
Heat Exchanger Area (ft^2)	448	heat exchanger pipe	hickness 0.25	in
volume of steel 9				
total weight	4,560 lbs			
total wt. 35,960 lbs	s weight	for DSRP reactor syste	m	
COST				
<u></u>			>100,000 lb cald	;
C.S. unit price for quantiy neede	d 2.26 2.41	0 \$/lb   1990 \$ 5 \$/lb   1996 \$	1.928109822	2.26 <100.000 lb calc
Cost of installation	\$173,677			
Total reactor cost	\$477,612 includ	les cost of installation	n	

### reactors DSRP-500

# Desulf and Regen transport reactor price calculation

DSRP	in and regen transport is						
Regenerator Reactor		air volume 139,951 cfh	HP-O2-N2				
v (ft/sec) = 20	72000 ft/hr	ROG volume 194,430 cfh	ROG				
V (cfh) = 176,007		regen sorbent flow 528,985 lb/hr	ZNS2RGEN				
Area = 2.445 ft^2		regen sorbent vol. 8,816 cfh					
I.D. 21.614 in		-					
		sorbent vol% 5.01%					
thickness= 0.419							
shell wt.= 9,656 lbs		Corrosion depth 0.125 in					
heads wt.= 174 lbs		reactor height 100 ft					
total wt.	11,305 lbs (includes addition	nal 15% for nozzles, manholes, etc.)					
Regenerator Standpipe							
		size vs. regen size 1					
total wt.	<u>11,305</u> lbs						
Desulfurization Reactor		coal das in volume 2 531 530 cfb	RAWLCG				
v (ft/sec) = 20	72000 ft/br	cq out volume $2,867,390$ cfh	CG-CALC				
V(cfh) = 2.722.971	12000 1011	regen sorbent flow 1,410,630 lb/hr	ZNS				
Area = $37.82 \text{ ft}^2$		regen sorbent vol 23.511 cfh					
I.D. 85.01 in							
		sorbent vol% 0.86%					
thickness= 1.280348							
shell wt.= 116,135 lbs		Corrosion depth 0.125 in					
heads wt.= 8,227 lbs		reactor height 100 ft					
total wt.	143,017 lbs (includes addition	nal 15% for nozzles, manholes, etc.)					
Desulfurization Standpipe							
		size vs. desulf size 1					
total wt.	143,017 lbs						
total wt. 308,644 lbs	weight for desulfuriza	tion and regeneration transport reactors					
<u>COST</u>							
		>100,000 lb calc					
C.S. unit price for quantity nee	eded 1.342 \$/Ib	1990 \$ 1.3421617 1.088	00 lb 1-				
	1.434 \$/lb	1990 \$ <100,0	UU ID CAIC				
Cost of installation	Cost of installation \$885,263						
Total reactor cost       \$2,434,474 includes cost of installation							

#### DSRP-500 reactor

### **DSRP-500 Reactor Cost**

DSRP	_			
DSRP Reactor		S	lipstream	76,726 cfh SLIPSTREAM
v (ft/sec) gas =	3 10800 ft/hr	R	ROG volume	153,894 cfh ROG-COOL
V (cfh) = 236,09	5	re	eactor effluent	221,163 cfh RXNPRD
space time -gas 33.3	3 seconds	D	SRP reactor Q	-31,370,000 BTU/hr
v (ft/sec) cat = 2.	3 8280 ft/hr	C	atalyst flow	612,229 lb/hr
		C	atalyst vol.	10,204 cfh
Area = 22.14	8 ft^2			
I.D. 65.05	8 in	C	atalyst vol%	5.56%
thickness= 1.00	9 in			
shell wt.= 70,05	0 lbs	C	Corrosion depth	0.125 in
heads wt.= 3,79	8 lbs	re	eactor height	100 ft
total wt.	84.925 lbs (i	includes addition	nal 15% for nozzle	s. manholes. etc.)
				-,,,,
DSRP Standpipe				
Cyclone (20% of reactor siz	e) 16,985	Area =	22.15	5 ft^2
		I.D.	65.06	3 in
standpipe height 4	<u>O</u> ft	thickness=	1.01	in
		shell wt.=	28,020	) lbs
residense time 10.8	6 minutes	heads wt.=	3,798	3 lbs
total wt.	<u>53,575</u> lbs (ir	ncludes additiona	al 15% on standpi	pe weight + Cyclone weight)
Heat Exchanger				
Heat Exchanger Area (ft^2)	2174	heat exchang	ger pipe thickness	0.25 in
volume of steel 4	5			
total waish	t 00.146 lba			
total weight	L 22,140 IDS			
total wt. 160,64	6 lbs weigh	ht for DSRP read	ctor system	
	_		-	
COST				
				>100,000 lb calc
C.S. unit price for quantiy ne	eeded 1.4	77 \$/lb 1	990 \$	1.477409568 1.359
	1.5	579 \$/lb 1	996 \$	<100,000 lb calc
Cost of installation	\$507,200			
	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>			
Total reactor cost	<b>\$1,394,800</b> inclu	udes cost of in	stallation	

# Appendix I Sizing Reactors for the AHGP

Copies of the reactor system sizing calculations follow. They include estimates of the reactor system costs. The equations describe in *Appendix G* - *Calculation of Reactor Size* where used in the spreadsheet.

reactors AHGP

	Desulf and Regen transport reactor price calculation					
AHGP <u>N2 lift</u> v (ft/sec) = V (cfh) = Area = I.D.	50 64,033 0.356 ft^2 8.245 in	180000 ft/hr	N2 in volume N2 out volume regen sorbent flow regen sorbent vol.	42,761 cfh 79,826 cfh 164,358 lb/hr 2,739 cfh	N2SOURCE N2EXIT FEO-ZNO	
thickness= shell wt.= heads wt.=	0.237 2,085 lbs 14 lbs		Corrosion depth reactor height	4.20% 0.125 in 100 ft	inputed variables	
tot	al wt.	2,415 lbs (inclu	des additional 15% for nozzles, r	nanholes, etc.)		
Regenera	tor Standnine					
volume -sorbe	nt	457 ft^3	residence time	10 min		
		407 100	heat removal	14,850,494 BTU/h	r RGENSTND	
length of pipe volume -heat	exchanger	2,620 ft 32 ft^3	heat exchanger pipe I.D.	1in		
necessary sta Area = I.D. =	ndpipe volum 8 ft^2 39 in	489 ft^3	standpipe height	60 ft		
thickness= shell wt. = heads wt. =	0.650 in 16,085 lbs 863 lbs		Corrosion depth	0.125 in		
tot	al wt.	19.491 lbs (includ	des additional 15% for nozzles, m	anholes.etc.		
	ration Poactor			4 420 000 -	1120.00	
v (ft/sec) =	20 20	72000 ft/hr	cg out volume	1,130,000 cfh	CLEAN-CG	
V (cm) = Area =	1,135,506 15.77 ft^2			164,358 lb/hr 166,009 lb/hr	STNDPIPE	
I.D.	54.90 In		regen sorbent flow regen sorbent vol.	5,506 cfh		
thickness= shell wt.=	0.871 in 51,023 lbs		Sorbent vol% Corrosion depth	0.48% 0.125 in		
heads wt.=	2,334 lbs		reactor height	<u>100</u> ft		
tot	al wt.	61,361 lbs (inclu	des additional 15% for nozzles, n	nanholes, etc.)		
<u>Desulfuriz</u>	ation Standpipe		residence time	1 min		
volume -sorbe	ent	2,767 ft^3				
Area = I.D. =	28 ft^2 71 in		standpipe height	100 ft		
thickness=	1.093 in		Corrosion depth	0.125 in		
shell wt. = heads wt. =	83,058 lbs 4,930 lbs					
tot	al wt.	101,186 lbs (inclue	des additional 15% for nozzles, m	anholes,etc.		
Three Sta	ge Regenerator					
I.D. =	13.01 ft		number of reactors standpipe height	2 45 ft		
I.D. = thickness=	156 in 2.247 in					
shell wt. = heads wt. =	168,516 lbs 48,735 lbs		Corrosion depth	0.125 in		
tot	al wt.	260,701 lbs (inclue	des additional 20% for cyclones, i	nozzles, manholes,et	с.	
total wt.	383,793 lbs	weight f	or desulfurization and regen	eration transport	reactors	
COST						
C.S. unit price	for quantiy needed	1.30 1.39	3 \$/lb 1990 \$ 3 \$/lb 1996 \$	>100,000 lb calc 1.30330926 1.01 <100,0	000 lb calc	
Cost of installa	ation \$	1,068,941				
Total react	or cost \$2,	939,588 includes	cost of installation			
SO2 Reger	erator Sizing - Con Revised	mmercial Embod	liment			
Givens:	(SO2 Reg Case E-2	yen)	Hold-up volume, ft3	2660.41667	Pressure, psig 275	
Sorbent circul	ation rate, lb/h	166010	X-section area, ft2	266.041667	rressure, psia 289.7 MW of gas 64	
Sorbent bulk o Req'd rxtr resi	ensity, Ib/ft3 dence time, hi	62.4 1	Calculated H/D RG Vol. flow rate, acf/sec	0.54333781 21.8210028	веа гетр., С 600 Bed Temp., R 1571.67	
Regen Gas v _s Desired H/D	_{uper} , cm/sec	2.5 2	RG flow rate, lb/hr Ratio of RG flow/sorbent, lb/lb	86366.3549 0.52024791	R, gas constant,         10.73           Gas density, lb/ft3         1.099429	
Adjusted valu	les:		Calculated Bed Depth, ft			
Assumed Bed I SO2 needed	Depth, ft ft3/hr	10 79812.5				

AHGP-b

	De	sulf and Regen t	ransport reactor price calc	ulation	
AHGP <u>N2 lift</u> v (ft/sec) = V (cfh) = Area = I.D.	50 141,578 0.787 ft^2 12.260 in	180000 ft/hr	N2 in volume N2 out volume regen sorbent flow regen sorbent vol. sorbent vol%	91,631 cfh 175,069 cfh 493,650 lb/hr 8,228 cfh 5.81%	N2SOURCE N2EXIT FEO-ZNO <u>key</u> caculated or constant values
thickness= shell wt.= heads wt.=	0.292 3,815 lbs 39 lbs		Corrosion depth reactor height	0.125 in 100 ft	inputed variables
tota	al wt.	4,432 lbs (inc	ludes additional 15% for nozzles,	manholes, etc.)	
Regenerat	tor Standpipe				
volume -sorbe	nt	1371 ft^3	residence time	10 min	
Heat Exchang length of pipe volume -heat o	er Area exchanger	3,462 ft^2 8,817 ft 108 ft^3	heat removal heat exchanger pipe thickness heat exchanger pipe I.D.	49,966,040 BTU/h 0.25 in 1 in	r RGENSTND
necessary sta Area = I.D. =	ndpipe volum 24.7 ft^2 67.2 in	1,479 ft^3	standpipe height Corrosion depth	60 ft	
thickness= shell wt. = heads wt. =	1.039 in 44,713 lbs 4,176 lbs				
tota	al wt.	56,222 lbs (incl	udes additional 15% for nozzles, r	nanholes,etc.	
Desulfuriz v (ft/sec) = V (cfh) = Area = I.D. thickness= shell wt.= beads wt -	ation Reactor 20 1,176,539 16.341 ft ^{A2} 55.881 in 0.884 in 52,734 lbs 2 456 lbs	72000 ft/hr	coal gas in volume cg out volume regen sorbent flow regen sorbent vol. sorbent vol% Corrosion depth reactor beight	1,160,000 cfh 1,160,000 cfh 493,650 lb/hr 992,320 lb/hr 16,539 cfh 1.41% 0.125 in 100 ft	H2S-CG CLEAN-CG COLDSORB STANDPIP
tot:	2,400 103	63.468 lbs (inc	ludes additional 15% for nozzles	manholes etc.)	
<u></u> Doculfuriz	ation Standning	<u> </u>			
Desulturiz		2 0 0 1 1 1 1 0	residence time	1 min	
Aroo -	92 642	8,311 103	standning height	100 #	
I.D. =	123 in			0.125 in	
thickness= shell wt. = heads wt. =	1.803 in 237,425 lbs 24,424 lbs		Conosion depin	0.125	
tot	al wt.	301,127 lbs (incl	udes additional 15% for nozzles, r	nanholes,etc.	
Three Sta I.D. = I.D. = thickness= shell wt. = heads wt =	12.99 ft 156 in 2.243 in 167,848 lbs 48 443 lbs	<u>prs</u>	number of reactors standpipe height Corrosion depth	6 45 ft 0.125 in	
tot	al wt.	1.557.295 lbs (incl	udes additional 20% for cyclones.	nozzles, manholes,e	tc.
total wt.	1,919,076 lbs	weight	for desulfurization and rege	neration transport	reactors
COST				+ 100 000 lb colo	
C.S. unit price	for quantiy needed	1.0 1.1	90 \$/lb 1990 \$ 65 \$/lb 1996 \$	1.09039137 0.585 <100,0	5 100 lb calc
Cost of installa	ation	\$4,471,817			
Total react	or cost \$12	2,297,497 include	es cost of installation		
SO2 Regen	erator Sizing - C AHGP-	ommercial Embo	odiment		
Givens:	(SO2 Re C	^{gen)} ase E-2	Calculated values: Hold-up volume, ft3	7948.71795	Operating conditions/Gas Density Calc'ns: Pressure, psig 275
Sorbent circul Sorbent bulk o Req'd rxtr resi Regen Gas v ₉ Desired H/D	ation rate, lb/ł lensity, lb/ft3 dence time, h uper, cm/sec	496000 62.4 1 2.5 2	X-section area, ft2 Calculated H/D RG Vol. flow rate, act/sec RG flow rate, lb/hr Ratio of RG flow/sorbent, lb/lb Calculated Bed Depth, ft	794.871795 0.31433751 65.1961774 258042.961 0.52024791	NW of gas         64           Bed Temp., C         600           Bed Temp., R         1571.67           R, gas constant,         10.73           Gas density, lb/ft3         1.099429
Adjusted valu Assumed Bed E SO2 needed	res: Depth, ft ft3/hr 2	10 238461.5385			

	г	esulf and Pegen tr	AHG	P-c	
AHGP <u>N2 lift</u> v (ft/sec) = V (cfh) = Area =	50 13,240 0.074 ft^2	180000 ft/hr	N2 in volume N2 out volume regen sorbent flow regen sorbent vol.	8,552 cfh 16,326 cfh 48,050 lb/hr 801 cfh	N2SOURCE N2EXIT FEO-ZNO
I.D. thickness= shell wt.= heads wt.=	3.749 in 0.176 704 lbs 2 lbs		sorbent vol% Corrosion depth reactor height	6.05% 0.125 in 100 ft	key caculated or constant values inputed variables
to	otal wt.	812 lbs (inclu	des additional 15% for nozzles,	manholes, etc.)	
Regenera	ator Standpipe				
volume -sorb	ent	133 ft^3	residence time	10 min	
Heat Exchan length of pipe volume -heat	ger Area e exchanger	3.25 ft^2 8.27 ft 0.10 ft^3	heat removal heat exchanger pipe thickness heat exchanger pipe I.D.	48,050 BTU/h 0.25 in 1 in	r RGENSTND
necessary st Area = I.D. =	andpipe volume 2.2 ft^2 20.2 in	134 ft^3	standpipe height	60 ft	
thickness= shell wt. = heads wt. =	0.400 in 5,168 lbs 145 lbs		Corrosion depth	0.125 in	
to	otal wt.	6,110 lbs (includ	des additional 15% for nozzles, r	nanholes,etc.	
Desulfuri v (ft/sec) = V (cfh) = Area = I.D.	20 1,121,611 15.58 ft^2 54.56 in	72000 ft/hr	coal gas in volume cg out volume regen sorbent flow regen sorbent vol.	<ul> <li>1,120,000 cfh</li> <li>1,120,000 cfh</li> <li>48,050 lb/hr</li> <li>48,626 lb/hr</li> <li>96,676 lb/hr</li> <li>1,611 cfh</li> </ul>	H2S-CG CLEAN-CG COLDSORB STANDPIP
thickness= shell wt.= heads wt.=	0.867 in 50,444 lbs 2,294 lbs		sorbent vol% Corrosion depth reactor height	0.14% 0.125 in 100 ft	
to	otal wt.	60,648 lbs (inclu	des additional 15% for nozzles,	manholes, etc.)	
Desulfuri	zation Standpi	<u>pe</u>			
volume -sorb	ent	810 ft^3	residence time	1 min	
Area = I.D. =	8.10 ft^2 38.55 in		standpipe height	100 ft	
thickness= shell wt. = heads wt. =	0.649 in 26,687 lbs 857 lbs		Corrosion depth	0.125 in	
to	otal wt.	31,676 lbs (includ	des additional 15% for nozzles, r	nanholes,etc.	
<u>Three Sta</u> I.D. = I.D. =	age Regenerat 9.90 ft 119 in	or	number of reactors standpipe height	s 1 45 ft	
shell wt. = heads wt. =	99,156 lbs 21,807 lbs		Corrosion depth	0.125 in	
to	otal wt.	145,156 lbs (includ	des additional 20% for cyclones,	nozzles, manholes,etc	
total wt.	183,754 lbs	weight f	or desulfurization and rege	eneration transport	reactors
COST				>100 000 lb calc	
C.S. unit pric	e for quantiy needed	1.44 1.54	7 \$/lb 1990 \$ 6 \$/lb 1996 \$	1.44706713 1.298 <100,0	3 00 lb calc
Cost of instal	llation	\$568,244			
Total read	tor cost	\$1,562,672 includes	s cost of installation		
JOL Nege	AHG (SO2	P-C Regen)	Calculated values:		Operating conditions/Gas Density Calc'ns:
Givens:	lation rate lb/b	Case E-2	Hold-up volume, ft3 Diameter, ft X-section area, ft2	769.23 9.90 76.92	Pressure, psig 275 Pressure, psia 289.7 MW of gas 64
Sorbent bulk Req'd rxtr res Regen Gas v Desired H/D	density, Ib/ft3 sidence time, hi / _{super} , cm/sec	62.4 1 2.5 2	Calculated H/D RG Vol. flow rate, acf/sec RG flow rate, lb/hr Ratio of RG flow/sorbent, lb/lb Calculated Bed Denth ft	1.01 6.31 24971.90 0.52	Intro yas         b4           Bed Temp., C         600           Bed Temp., R         1571.67           R, gas constant,         10.73           Gas density, Ib/ft3         1.10
Adjusted va	lues:	10			

Assumed Bed Depth, ft 10 SO2 needed ft3/hr 23077

			AHGF	P-100	
	Desi	ulf and Regen tra	ansport reactor price calo	culation (0.421	1 the size of the AHGP case)
AHGP			NO in unlump	40.007 -#-	Nacoura
v (ft/sec) =	50	180000 ft/hr	N2 in volume N2 out volume	33.615 cfh	N2SOURCE
V (cfh) =	26,964		regen sorbent flow	69,211 lb/hr	FEO-ZNO
Area =	0.150 ft^2		regen sorbent vol.	1,154 cfh	key
I.D.	5.350 In		sorbent vol%	4.28%	caculated or constant values
thickness=	0.198				inputed variables
shell wt.=	1,129 lbs		Corrosion depth	0.125 in	
neaus wi.=	5 105		reactor neight	100 11	
tota	il wt.	1,304 lbs (inclu	des additional 15% for nozzles, r	nanholes, etc.)	
Regenerat	or Standnine				
Regenerat			residence time	10 min	
volume -sorber	nt	192 ft^3			
Heat Exchange	ar Area	433 ftA2	heat removal	6,253,543 BTU/h	nr RGENSTND
length of pipe		1,103 ft	heat exchanger pipe I.D.	1 in	
volume -heat e	xchanger	14 ft^3			
necessary stan	dpipe volume	206 ft^3	standpipe height	60 ft	
Area =	3.43 ft^2				
I.D. =	25.08 in		Corrosion depth	0.125 in	
thickness=	0.466 in		concolor doput	0.120	
shell wt. =	7,478 lbs				
neaus wi. =	200 lbs				
tota	il wt.	8,899 lbs (includ	les additional 15% for nozzles, n	nanholes,etc.	
Deculturin	ation Depoter			e	
Desuliunza	20	72000 ft/br	coal gas in volume	475,843 cth 475,843 cfb	H2S-CG CLEAN-CG
V (cfh) =	478,162	72000 1011	eg our volume	69,211 lb/hr	COLDSORB
Area =	6.64 ft^2			69,906 lb/hr	STNDPIPE
I.D.	35.62 In		regen sorbent now regen sorbent vol.	2.319 cfh	
thickness=	0.609 in		sorbent vol%	0.48%	
shell wt.=	23,154 lbs		Corrosion depth	0.125 in	
neddo wi.=	007 103		Teactor neight	100 11	
tota	al wt.	27,418 lbs (inclu	des additional 15% for nozzles, r	nanholes, etc.)	
Desulfuriza	ation Standpipe				
Decalianza			residence time	1 min	
volume -sorber	nt	1,165 ft^3			
Area =	11.7 ft^2		standpipe height	100 ft	
I.D. =	46.2 in		3		
			Correction donth	0.125 in	
thickness=	0.753 in		Conosion depin	0.125 III	
shell wt. =	37,140 lbs				
heads wt. =	1,430 Ibs				
tota	il wt.	44,356 lbs (includ	les additional 15% for nozzles, n	nanholes,etc.	
Thursd Ora					
Inree Stag	ge Regenerators	<u>i</u>	number of reactors	1	
I.D. =	11.94 ft		standpipe height	45 ft	
I.D. =	143 in				
shell wt. =	2.073 in 142.638 lbs		Corrosion depth	0.125 in	
heads wt. =	37,858 lbs				
tota	al sust	216 505 lbc (includ	los additional 20% for suclanas	nozzlas manhalas at	
1012	u w.	210,393 IDS (Includ	les additional 20 % for cyclones,	nozzies, maimoles,elo	
total wt.	271,154 lbs	weight f	or desulfurization and rege	eneration transport	t reactors
COST					
0001				>100.000 lb calc	
C.S. unit price	for quantiy needed	1.36	7 \$/lb 1990 \$	1.36665221 1.13	7
		1.46	0 \$/lb 1996 \$	<100,0	000 lb calc
Cost of installa	tion	\$791,924			
Total reacto	or cost \$2,1	177,791 includes	s cost of installation		
SO2 Regen	erator Sizing - Co	mmercial Emboo	liment		
	AHGP-10	00			
Givens	(SO2 Reger	n) o E-2	Calculated values:	1 120 25	Operating conditions/Gas Density Calc'ns:
Givens:	Cas	C L-2	Diameter, ft	11.94	Pressure, psig 275 Pressure, psia 289.7
Sorbent circula	tion rate, lb/h	69910	X-section area, ft2	112.04	MW of gas 64
Sorbent bulk de	ensity, lb/ft3 lence time, br	62.4 1	Calculated H/D RG Vol. flow rate act/sec	0.84	Bed Lemp., C 600 Bed Temp. R 1571.67
Regen Gas van	per, cm/sec	2.5	RG flow rate, lb/hr	36,370.53	R, gas constant, 10.73
Desired H/D		2	Ratio of RG flow/sorbent, lb/lb	0.520	Gas density, lb/ft3 1.099429
Adjusted velo	oc.		Calculated Bed Depth, ft		
Assumed Bed D	epth, ft	10.00			
SO2 needed f	t3/hr	33611			

			AHGF	P-500	
AHGP		Desult and Regen to	ansport reactor price calc	culation (2.10	55 the size of the AHGP case)
N2 lift	50	100000 (//	N2 in volume	90,033 cfh	N2SOURCE
v (ft/sec) = V (cfh) =	50 134,821	180000 ft/hr	N2 out volume regen sorbent flow	168,074 cth 346,056 lb/hr	N2EXII FEO-ZNO
Area =	0.75 ft/2 11.96 in	2	regen sorbent vol.	5,768 cfh	kev
44-1-1	0.007500.400		sorbent vol%	4.28%	caculated or constant values
shell wt.= heads wt.=	0.287592409 3,671 lbs 37 lbs		Corrosion depth reactor height	0.125 in 100 ft	inputed variables
<u>t</u>	otal wt.	4,264 lbs (inclu	ides additional 15% for nozzles, r	nanholes, etc.)	
Regener	ator Standpip	e			
volume -sort	pent	961 ft^3	residence time	10 min	
Heat Exchar	nger Area	2,167 ft^2	heat removal heat exchanger pipe thickness	31,267,715 BTU/ 0.25 in	hr RGENSTND
length of pip volume -hea	e t exchanger	5,517 ft 68 ft^3	heat exchanger pipe I.D.	1 in	
necessary st	tandpipe volume	1,029 ft^3	standpipe height	60 ft	
Area = I.D. =	17 ft^2 56 in	2			
thickness-	0.887 in		Corrosion depth	0.125 in	
shell wt. =	31,844 lbs				
neads wt. =	2,480 IDS	00 (TO II (' )			
<u>t</u>	otal wt.	39,472 lbs (inclu	des additional 15% for nozzles, m	anholes,etc.	
Desulfur	ization Reacto	<u>72000 ft/br</u>	coal gas in volume	2,379,215 cfh	H2S-CG
V (cfh) =	2,390,808	72000 1011	og out volume	346,056 lb/hr	COLDSORB
Area = I.D.	33.21 ft/2 79.66 in	2	regen sorbent flow	695,588 lb/hr	STNDPIPE
thickness=	1.208 in		regen sorbent vol. sorbent vol%	11,593 cfh 0.48%	
shell wt.=	102,638 lbs 6,813 lbs		Corrosion depth	0.125 in 100 ft	
tioudo m	otal wt.	125.868 lbs (inclu	ides additional 15% for nozzles, r	nanholes, etc.)	
Doculturi	ization Stand			,	
Desului			residence time	1 min	
volume -sort	pent	5,826 ft^3			
Area = I.D. =	58 ft^2 103 in	2	standpipe height	100 ft	
			Corrosion depth	0.125 in	
thickness=	1.530 in				
heads wt. =	14,526 lbs				
<u>t</u>	otal wt.	210,666 lbs (inclu	des additional 15% for nozzles, m	anholes,etc.	
Three St	age Regener	ators			
I.D. =	11.94 ft		number of reactors standpipe height	5 45 ft	
I.D. = thickness=	143 in 2 073 in				
shell wt. =	142,618 lbs		Corrosion depth	0.125 in	
	otal wt	1 082 809 lbe /inclu	des additional 20% for cyclonos	nozzles manholes of	c
<u>-</u>		1,002,000 100 (11010			
total wt.	1,337,211 lb	s weight	for desulfurization and rege	neration transpo	rt reactors
COST				400.000 "	
C.S. unit pric	ce for quantiy neede	ed 1.12 1.20	29 \$/lb 1990 \$ 16 \$/lb 1996 \$	>100,000 lb calc 1.12859015 0.66 <100	i1 ,000 lb calc
Cost of insta	Illation	\$3,225,118			
Total read	ctor cost	\$8,869,074 include	s cost of installation		
SO2 Rege	enerator Sizing	- Commercial Embo	diment		
Givens:	(SC	^{12 Regen)} Case E-2	Calculated values: Hold-up volume, ft3	5,600.96	Operating conditions/Gas Density Calc'ns: Pressure, psig 275
Sorbent circ	ulation rate. lb/h	349500	Diameter, ft X-section area. ft2	26.70 560.10	Pressure, psia 289.7 MW of gas 64
Sorbent bulk	density, lb/ft3	62.4	Calculated H/D	0.37	Bed Temp., C 600 Rod Temp. R 607
Regen Gas	sidence ume, ni v _{super} , cm/sec	2.5	RG flow rate, lb/hr	40.94 181,826.64	R, gas constant, 10.73
Desired H/D		2	Ratio of RG flow/sorbent, lb/lb Calculated Bed Depth. ft	0.520	Gas density, lb/ft3 1.099429
Adjusted va Assumed Bec	alues: d Depth, ft	10.00	······		
SO2 neede	d ft3/hr	168,029			

### Appendix J Power Generation Achievable from Clean Coal Gas

Two sources where used in determining the power generated by the clean coal gas. The Sierra power generating facility was used as the basis for determining the power generating capacity coal gas.

	Sierra Clean Coal Gas Feed	
H ₂ (lbmole/hr)	CO (lbmole/hr)	Power Generation (MW)
5760	7570	260

The individual contribution of the  $H_2$  and CO where determined assuming there relative contribution was consistent with their standard heats of combustion.

Standard heat of combustion (Felled & Rousseau):  $\Delta H^{o}_{comb}$  (H₂) = -3.605E-2 MW hr/ lbmole  $\Delta H^{o}_{comb}$  (Combustion)

 $\Delta H^{o}_{comb}$  (CO) = -3.569E-2 MW hr/ lbmole

Power generation can be expressed:

E  $[5760 \Delta H_{C} (H_{2}) + 7570 \Delta H_{C} (CO)] = 260 \text{ MW}$ 

where:

E = Efficiency of power generation

assuming:

 $\Delta H_{\rm C} (\rm CO) = 0.99 \ \Delta H_{\rm C} (\rm H_2)$ 

and substituting gives:

 $13,254 \text{ E} \Delta H_{C}(H_{2}) = 260 \text{ MW}$ 

 $E \Delta H_C(H_2) = 0.0196$  MW hr / lbmole

therefore

 $E \Delta H_C(CO) = 0.0194$  MW hr / lbmole

The values calculated above can be used to write a power generation expression.

Power Generation {MW} = 0.0196 (H₂ {lbmoles/hr}) + 0.0194 (CO {lbmoles/hr})

The plants power generation is determined by inserting the clean coal gas flows for  $H_2$  and CO into the above equation. HGD coal gas consumption is assessed as a debit equivalent to the cost of the lost power generation. The power generation lost is determined by inserting the difference in the dirty coal gas and clean coal gas molar flow rates into the above equation. The cost of the electricity is taken as \$0.04 per kWh. The plant has been assumed to be in operation 90% of the year.

# Summary of Power Generation Calculations

simulation	$H_2$ clean	$H_2$ in	CO clean	CO in	MW made	MW lost
DSRP	11,444.58	11,765.37	212,200.52	218,162.00	258.25	7.248
DSRP-b	11,450.19	12,468.32	212,276.67	231,196.50	258.35	23.003
DSRP-c	11,443.82	11,535.37	212,195.77	213,897.17	258.24	2.069
DSRP-100	4,819.31	4,954.40	89,357.59	91,868.05	108.75	3.052
DSRP-500	24,110.94	24,772.09	447,055.34	459,341.97	544.06	14.938
AHGP	11,355.75	11,510.68	213,439.25	213,439.25	258.24	1.506
AHGP-b	11,175.21	11,646.28	215,953.67	215,953.67	258.23	4.580
AHGP-c	11,419.66	11,464.48	212,582.61	212,582.61	258.27	0.436
AHGP-100	4,781.91	4,847.15	89,879.27	89,879.27	108.74	0.634
AHGP-500	23,909.53	24,235.73	449,396.34	449,396.34	543.72	3.172

### Appendix K Calculation of Reactor Pressure Drops

Pressure drops for transport reactors have been calculated assuming the pressure drops are related to the energy required to lift the sorbent / catalyst to the top of the reactor.

Energy balance for lifting solid to top of reactor:

$$\begin{split} \Delta E_{PART} &= \Delta E_{GAS} \\ m_{PART} \left( g \mid g_C \right) h = \Delta P \; m_{GAS} \mid \rho_{GAS} \\ \Delta P &= m_{PART} \left( g \mid g_C \right) h \; \rho_{GAS} \mid m_{GAS} \end{split}$$

 $\Delta P_{\text{REACTOR}} = 1.5$  (Energy to lift particle)

### **DSRP** Regeneration Reactor

 $\Delta P = 1.5 m_{PART} (g / g_C) h \rho_{GAS} / m_{GAS}$   $m_{PART} = \text{sorbent mass flow, ZNS2RGEN & ZNO average}$   $(g / g_C) = 1 lb_f / lb_m$  h = reactor height, defined in Appendix H  $\rho_{GAS} = \text{gas density, HP-O2-N2 & ROG average}$  $m_{GAS} = \text{gas mass flow, HP-O2-N2 & ROG average}$ 

#### DSRP Regeneration Reactor (DSRP)

$$\begin{split} \Delta P &= 1.5 \; (250,\!000 \; lb_m/hr) \; (1 \; lb_f/lb_m) \; (100 \; ft) \; (0.5 \; lb_m/ft^3) \; / \; (40,\!000 \; lb_m/hr) \; (1 \; ft^3 \; / \; 144 \; in^2) \\ \Delta P &= 3.32 \; psi \end{split}$$

DSRP Regeneration Reactor (DSRP-b)

 $\Delta P = 1.5 (1,200,000 \text{ lb}_m/\text{hr}) (1 \text{ lb}_f/\text{lb}_m) (100 \text{ ft}) (0.5 \text{ lb}_m/\text{ft}^3) / (130,000 \text{ lb}_m/\text{hr})(1 \text{ ft}^3 / 144 \text{ in}^2)$  $\Delta P = 4.8 \text{ psi}$ 

DSRP Regeneration Reactor (DSRP-c)

 $\Delta P = 1.5 (71,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ lb}_{\text{f}}/\text{lb}_{\text{m}}) (100 \text{ ft}) (0.5 \text{ lb}_{\text{m}}/\text{ft}^3) / (12,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ ft}^3 / 144 \text{ in}^2)$ 

 $\Delta P = 3.2 \text{ psi}$ 

DSRP Regeneration Reactor (DSRP-100) (DSRP-500)

same as base case  $\Delta P = 3.3 \text{ psi}$ 

#### **DSRP** Reactor

 $\Delta P = 1.5 m_{PART} (g / g_C) h \rho_{GAS} / m_{GAS}$  $m_{PART} = catalyst mass flow, Appendix H$  $(g / g_C) = 1 lb_f / lb_m$ h = reactor height, defined in Appendix H $\rho_{GAS} = gas density, ROG-COOL \& RXNPRD average$  $m_{GAS} = gas mass flow, RXNPRD$ 

#### **DSRP** Reactor (DSRP)

$$\label{eq:expansion} \begin{split} \Delta P &= 1.5 \; (300,\!000 \; lb_m/hr) \; (1 \; lb_f/lb_m) \; (100 \; ft) \; (0.53 \; lb_m/ft^3) \; / \; (55,\!000 \; lb_m/hr) \; (1 \; ft^3 \; / \; 144 \; in^2) \\ \Delta P &= 3.0 \; psi \end{split}$$

 $\Delta P = 1.5 (1,000,000 \text{ lb}_m/\text{hr})(1 \text{ lb}_f/\text{lb}_m) (100 \text{ ft}) (0.53 \text{ lb}_m/\text{ft}^3) / (185,000 \text{ lb}_m/\text{hr})(1 \text{ ft}^3/144 \text{ in}^2)$  $\Delta P = 3.0 \text{ psi}$ 

DSRP Reactor (DSRP-c)

 $\Delta P = 1.5 (79,000 \text{ lb}_m/\text{hr})(1 \text{ lb}_f/\text{lb}_m) (100 \text{ ft}) (0.55 \text{ lb}_m/\text{ft}^3) / (15,000 \text{ lb}_m/\text{hr})(1 \text{ ft}^3/144 \text{ in}^2)$ 

 $\Delta P = 3.0 \text{ psi}$ 

DSRP Reactor (DSRP-100) (DSRP-500)

same as base case  $\Delta P = 3.0 \text{ psi}$ 

**DSRP** Desulfurization Reactor

$$\begin{split} \Delta P &= 1.5 \ m_{PART} \ (g \ / \ g_C) \ h \ \rho_{GAS} \ / \ m_{GAS} \\ m_{PART} &= \text{sorbent mass flow, ZNS} \\ (g \ / \ g_C) &= 1 \ lb_f \ / lb_m \\ h &= \text{reactor height, defined in Appendix H} \\ \rho_{GAS} &= \text{gas density, RAW-CG & CG-CALC average} \\ m_{GAS} &= \text{gas mass flow, CG-CALC} \end{split}$$

DSRP Desulfurization Reactor (DSRP)

$$\Delta P = 1.5 (670,000 \text{ lb}_m/\text{hr}) (1 \text{ lb}_f/\text{lb}_m) (100 \text{ ft}) (0.4 \text{ lb}_m/\text{ft}^3) / (510,000 \text{ lb}_m/\text{hr}) (1 \text{ ft}^3 / 144 \text{ in}^2)$$
  
$$\Delta P = 0.6 \text{ psi}$$

DSRP Desulfurization Reactor (DSRP-b)

 $\Delta P = 1.5 (2,700,000 \text{ lb}_m/\text{hr})(1 \text{ lb}_f/\text{lb}_m) (100 \text{ ft}) (0.4 \text{ lb}_m/\text{ft}^3) / (660,000 \text{ lb}_m/\text{hr}) (1 \text{ ft}^3 / 144 \text{ in}^2)$  $\Delta P = 1.6 \text{ psi}$ 

DSRP Desulfurization Reactor (DSRP-c)

 $\Delta P = 1.5 (72,000 \text{ lb}_{\text{m}}/\text{hr})(1 \text{ lb}_{\text{f}}/\text{lb}_{\text{m}}) (100 \text{ ft}) (0.4 \text{ lb}_{\text{m}}/\text{ft}^3) / (460,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ ft}^3 / 144 \text{ in}^2)$ 

 $\Delta P = 0.06 \text{ psi}$ 

DSRP Desulfurization Reactor (DSRP-100) (DSRP-500)

same as base case  $\Delta P = 0.6 \text{ psi}$ 

### AHGP Desulfurization Reactor

 $\Delta P = 1.5 \text{ m}_{PART} (g / g_C) \text{ h } \rho_{GAS} / \text{m}_{GAS}$ 

 $m_{PART}$  = sorbent mass flow, STNDPIPE + COLDSORB

 $(g / g_C) = 1 lb_f / lb_m$ 

h = reactor height, defined in Appendix I

 $\rho_{GAS}$  = gas density, H2S-CG & CLEAN-CG average

m_{GAS} = gas mass flow, CLEAN-CG

AHGP Desulfurization Reactor (AHGP-100 and AHGP-500 results will be consistent)

 $\Delta P = 1.5 (330,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ lb}_{\text{f}}/\text{lb}_{\text{m}}) (100 \text{ ft}) (0.4 \text{ lb}_{\text{m}}/\text{ft}^3) / (450,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ ft}^3 / 144 \text{ in}^2)$  $\Delta P = 0.3 \text{ psi}$ 

AHGP-b Desulfurization Reactor

 $\Delta P = 1.5 (990,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ lb}_{\text{f}}/\text{lb}_{\text{m}}) (100 \text{ ft}) (0.4 \text{ lb}_{\text{m}}/\text{ft}^3) / (460,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ ft}^3 / 144 \text{ in}^2)$ 

 $\Delta P = 0.9 \text{ psi}$ 

AHGP-c Desulfurization Reactor

 $\Delta P = 1.5 (97,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ lb}_{\text{f}}/\text{lb}_{\text{m}}) (100 \text{ ft}) (0.4 \text{ lb}_{\text{m}}/\text{ft}^3) / (440,000 \text{ lb}_{\text{m}}/\text{hr}) (1 \text{ ft}^3 / 144 \text{ in}^2)$  $\Delta P = 0.09 \text{ psi}$  The pressure drop through the bubble bed regenerator is calculated as the sum of the static head in each stage times 1.3.

### AHGP 3-Stage Regenerator Reactor

$$\begin{split} \Delta P &= 1.3 \ g/g_C \ (\rho \ h_{top-stage} + \rho \ h_{stage2} + \rho \ h_{bottom-stage}) \ (1/144) \\ m_{PART} &= sorbent \ mass \ flow, \ FES-ZNS \\ (g \ / \ g_C) &= 1 \ lb_f / lb_m \\ h &= reactor \ stage \ height, \end{split}$$

 $\rho_{GAS}$  = average of density of streams entering and exiting the reactor stage

### AHGP 3-Stage Regenerator Reactors

$$\begin{split} \Delta P &= 1.3 \; (1 \; lb_f / lb_m) \; [ \; (3.66 \; lb_m / ft^3) \; (5.0 \; ft) + (3.20 \; lb_m / ft^3) \; (10 \; ft) + (3.40 \; lb_m / ft^3) \; (2.5 \; ft) ] \; (\; 1 \; ft^3 / \; 144 \; in^2) \\ \Delta P &= 0.5 \; psi \end{split}$$

### Appendix L Summary of the Process Pressure Drops

This appendix contains lists of the calculated pressure drops for the DSRP and AHGP at the various feed conditions.

DSRP pressure drops are used to determine the pressure rise needed from the RECYCOMP (sends tailgas to the Desulfurization reactor) and PRESAIR (pressurizes the air fed to the regenerator) Reactor pressure drops are calculated in Appendix H. Pressure drops in other equipment has been assigned without calculations.

Having streams enter the DSRP Reactor at the same pressure (bold pressures) was the starting point for the calculations.

Equipment	$\Delta P drop (psi)$	P _{EXIT} (psia)
PRESAIR	13.7 psia inlet P	278.9
pipe [P-02-N2]	0	278.9
AIR-HX (shell)	2.0	276.9
pipe [HP-O2-N2]	0	276.9
REGENERATOR	3.3	273.6
pipe [ROG]	0	273.6
AIR-HX (tube)	2.0	271.6
pipe [ROG-COOL]	0	271.6
DSRP	2.0	268.6
pipe [RXNPRD]	0	268.6
PD-COOLR	2.0	266.6
pipe [COOLPRD]	0	266.6
High Press. Cond.	2.0	264.6
pipe [TAILGAS]	0	264.6
VALVE	2.6	262.0
pipe [TAILGAS2]	0	262.0
RECYCOMP		275

### DSRP (base case) & DSRP-100 & DSRP-500

Coal Gas	Slipstream	Pressure	

Equipment	$\Delta P drop (psi)$	P _{EXIT} (psia)
Desulfurization Reactor	0.6	274.4
pipe [SLIPSTRM]	0	274.4
VALVE2	2.8	271.6
pipe [SLPSTRM]	0	271.6

# DSRP-b

Equipment	$\Delta P drop (psi)$	P _{EXIT} (psia)
PRESAIR	13.7 psia inlet P	279.4
pipe [P-O2-N2]	0	279.4
AIR-HX (shell)	2.0	277.4
pipe [HP-O2-N2]	0	277.4
REGENERATOR	4.8	272.6
pipe [ROG]	0	272.6
AIR-HX (tube)	2.0	270.6
pipe [ROG-COOL]	0	270.6
DSRP	3.0	267.6
pipe [RXNPRD]	0	267.6
PD-COOLR	2.0	265.6
pipe [COOLPRD]	0	265.6
High Press. Cond.	2.0	263.6
pipe [TAILGAS]	0	263.6
VALVE	2.6	261.0
pipe [TAILGAS2]	0	261.0
RECYCOMP		275

# Coal Gas Slipstream Pressure

Equipment	$\Delta P drop (psi)$	P _{EXIT} (psia)
Desulfurization Reactor	1.6	273.4
pipe [SLIPSTRM]	0	273.4
VALVE2	2.8	270.6
pipe [SLPSTRM]	0	270.6

# DSRP-c

Equipment	$\Delta P drop (psi)$	P _{EXIT} (psia)
PRESAIR	13.7 psia inlet P	279.3
pipe [P-O2-N2]	0	279.3
AIR-HX (shell)	2.0	277.3
pipe [HP-O2-N2]	0	277.3
REGENERATOR	3.2	274.1
pipe [ROG]	0	274.1
AIR-HX (tube)	2.0	272.1
pipe [ROG-COOL]	0	272.1
DSRP	3.0	269.1
pipe [RXNPRD]	0	269.1
PD-COOLR	2.0	267.1
pipe [COOLPRD]	0	267.1
High Press. Cond.	2.0	265.1
pipe [TAILGAS]	0	265.1
VALVE	2.6	262.5
pipe [TAILGAS2]	0	262.5
RECYCOMP		275
### DSRP-c

Coal Gas Slipstream Pressure

Equipment	$\Delta P drop (psi)$	P _{EXIT} (psia)
Desulfurization Reactor	0.06	274.9
pipe [SLIPSTRM]	0	274.9
VALVE2	2.8	272.1
pipe [SLPSTRM]	0	272.1

AHGP pressure drop calculations determine the required  $\Delta P$  for the SO2-COMP, compressor. The pressure drop balance is done to insure the SO₂ loop with maintain desired pressure. The set pressure (bold) in the SO₂ loop is the pressure at the 3-Stage Regenerator exit. This pressure is set to equal the calculated exit pressure of the AHGP Desulfurization reactor (Appendix K).

### AHGP (base case), & AHGP-100 & AHGP-500

<u>Equipment</u>	$\Delta P drop (psi)$	P _{EXIT} (psia)
3-Stage Regenerator	0.5 (Append. K)	274.7
pipe [COOLS2]	0	274.7
HEATX (tube)	2.0	272.7
pipe [S2V+L]	0	272.7
COND-EQ	2.0	270.7
pipe [IN-COND]	0	270.7
DEMISTR	5	265.7
pipe [UNP-RSO2]	0	265.7
SO2-COMP		279.2
pipe [RCYHEATR]	0	279.2
RCYHEATR	2.0	277.2
pipe [WARMRCY]	0	277.2
HEATX (shell)	2.0	275.2
pipe [FEEDRG1]	0	275.2 to 3-Stage Regenerator

#### AHGP-b

<u>Equipment</u>	$\Delta P drop (psi)$	<u> </u>
3-Stage Regenerator	0.5 (Append. K)	274.1
pipe [COOLS2]	0	274.1
HEATX (tube)	2.0	272.1
pipe [S2V+L]	0	272.1
COND-EQ	2.0	270.1
pipe [IN-COND]	0	270.1
DEMISTR	5	265.1
pipe [UNP-RSO2]	0	265.1
SO2-COMP		278.6
pipe [RCYHEATR]	0	278.6
RCYHEATR	2.0	276.6
pipe [WARMRCY]	0	276.6
HEATX (shell)	2.0	274.6
pipe [FEEDRG1]	0	274.6 to 3-Stage Regenerator

## AHGP-c

$\Delta P drop (psi)$	<u>P_{EXIT} (psia)</u>
0.5 (Append. K)	274.9
0	274.9
2.0	272.9
0	272.9
2.0	270.9
0	270.9
5	265.9
0	265.9
	279.4
0	279.4
2.0	277.4
0	277.4
2.0	275.4
0	275.4 to 3-Stage Regenerator
	<u>ΔP drop (psi)</u> 0.5 (Append. K) 0 2.0 0 2.0 0 5 0 0 2.0 0 2.0 0 2.0 0 2.0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 2.0 0 0 0 2.0 0 0 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Appendix M Summary of Major HGD Equipment

The following tables list equipment required for both HGD processes under various feed conditions. Equipment specifications are also listed in the tables.

# DSRP - base Process Equipment Specifications

		DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500
REACTOR	RS					
Desulfuriz	ation reactor					
	height (ft)	100	100	100	100	100
	diameter (ft)	4.9	5.6	4.6	3.2	7.1
	weight (lbs)	70,000	90,000	63,000	31,000	140,000
Desulf. sta	andpipe					
	height (ft)	100	100	100	100	100
	diameter (ft)	4.9	5.6	4.6	3.2	7.1
	weight (lbs)	70,000	90,000	63,000	31,000	140,000
Regenerat	tion reactor					
-	height (ft)	100	100	100	100	100
	diameter (ft)	1.3	2.3	0.66	0.82	1.8
	weight (lbs)	6,000	17,000	2,000	3,000	11,000
Regen. sta	andpipe					
-	height (ft)	100	100	100	100	100
	diameter (ft)	1.3	2.3	0.66	0.82	1.8
	weight (lbs)	6,000	17,000	2,000	3,000	11,000
DSRP Rea	actor					
	height (ft)	100	100	100	100	100
	diameter (ft)	3.8	7.0	2.0	2.5	5.4
	weight (lbs)	43,000	140,000	13,000	19,000	85,000
DSRP star	ndpipe					
	height (ft)	40	40	40	40	40
	diameter (ft)	3.8	7.0	2.0	2.5	5.4
	weight (lbs)	27,000	89,000	8,000	12,000	540,000
COMPRE	SSORS					
PRESAIR						
	acfh	570,000	1,800,000	160,000	240,000	1,200,000
	Pin (psia)	13.7	13.7	13.7	13.7	13.7
	Pout (psia)	278.9	279.4	279.3	278.9	278.9
	power (hp)	3,300	10,000	900	1,400	6,900
	stages	6	6	6	6	6
RECOMP						
	acfh	49,000	170,000	14,000	21,000	100,000
	Pin (psia)	264.4	261	262.5	264.4	264.4
	Pout (psia)	275	275	275	275	275
	power (hp)	59	227	17	25	124
	stages	1	1	1	1	1
HEAT EX	CHANGERS					
AIRHX						
	Duty (BTU/hr)	4,300,000	14,000,000	1,200,000	1,900,000	9,600,000
	Area (ft^2)	700	2,200	200	300	1,400
	tube mat.	SS 310	SS 310	SS 310	SS 310	SS 310
	shell mat.	SS 304	SS 304	SS 304	SS 304	SS 304
DSRP			E4 000 000	1 000 000	0 500 000	04 000 000
	Duty (BTU/hr)	15,000,000	51,000,000	4,000,000	6,500,000	31,000,000
	Area (ft^2)	1,000	3,600	280	450	2,200
	tube mat.	55 310	55 310	55 310	55 310	55 310
PDCOOL	<b>X</b>	F 000 000	47 000 000	4 400 000	0.000.007	44 000 000
	Duty (BTU/nr)	5,200,000	17,000,000	1,400,000	2,200,000	11,000,000
	Area (ft/2)	1,000	3,200	300	300	2,000
	tube mat.	SS 310	SS 310	SS 310	SS 310	SS 310
MICO	snell mat.	55 310	55 310	55 310	55 310	55 310
	ouro Condesee					
rign Pres		10 500 000	25 100 000	2 0 40 000	4 200 000	21 600 000
	Motoric	10,000,000	30,100,000	2,940,000	4,320,000	21,000,000
	iviaterial	55 310	55 310	55 310	55 310	55 310
VAPORIZI			1 000 000	450.000	000 000	1 400 000
		550,000	1,900,000	150,000	230,000	1,100,000
Store as T	iviaterial	55 310	55 310	55 310	55 310	55 310
Siorage Ta		E COO	10.000	4 600	0.400	44.000
	VOI. (IL'3)	5,600	18,000	1,600	2,400	11,000
1	waterial	22 210	SS 310	SS 310	SS 310	SS 310

EQPTSPEC.XLS

## AHGP Process Equipment Specifications

	Ī	AHGP	AHGP - b	AHGP - c	AHGP - 100	AHGP -500
REACTO	RS					
Desulfuriz	ation reactor					
	height (ft)	100	100	100	100	100
	diameter (ft)	4.58	4.66	4.55	2.97	6.64
	weight (lbs)	61,361	63,000	61,000	27,000	130,000
Desulf. sta	andpipe	100	100	100	100	100
	neight (tt)	100	100	100	100	100
	alameter (It)	100 000	300,000	3.21	3.85	210,000
Pegonoro	tion reactor	100,000	300,000	32,000	44,000	∠10,000
Regenera	# of reactors	2	6	1	1	5
	height (ft)	45	45	45	45	45
	diameter (ft)	13.0	13.0	0.8	11.9	11.9
	weight (lbs)	260,000	1,600,000	150,000	270,000	1,000,000
Regen. st	andpipe & RGENSTAND	· · · ·				
-	height (ft)	60	60	60	60	60
	diameter (ft)	3.25	5.6	1.68	2.1	4.7
	weight (lbs)	19,000	56,000	6,100	8,900	39,000
	Duty (BTU/hr)	15,000,000	50,000,000	48,000	6,300,000	31,000,000
N2 Lift						
	neight (ft)	100	100	100	100	100
	diameter (ft)	0.69	1.02	0.31	0.45	1.00
COMPRE		2,400	4,400	800	1,300	4,300
CONLCOM	AD					
	acfh	1 500	4 400	400	600	3 200
	Pin (psia)	1,500	4,400	400	15	3,200
	Pout (psia)	279	279	279	279	279
	power (hp)	8	26	2.0	3	17
	stages	1	1	1	1	1
LIFTCOM	P					
	acfh	43,000	92,000	8,600	18,000	91,000
	Pin (psia)	272	272	272	272	272
	Pout (psia)	275	275	275	275	275
	power (hp)	13	28	3	5	27
	stages	1	1	1	1	1
SO2-CON	/P	00.000	05 000	0.400	10.000	04.000
	actn Din (noin)	29,000	85,000	8,400	12,000	61,000
	Pin (psia)	266	265	200	200	266
	Poul (psia)	279	279	2/9	2/9	279
	stages	30	114	1	10	1
HFAT FX	CHANGERS					
N2-COOL	R					
	Duty (BTU/hr)	7.020.000	15.800.000	1.480.000	3.130.000	15.700.000
	Area (ft^2)	1,100	2,600	210	470	2,300
	tube mat.	SS 304	SS 304	SS 304	SS 304	SS 304
	shell mat.	SS 304	<u>SS</u> 304	SS 304	SS 304	SS 304
HEATX						
	Duty (BTU/hr)	5,100,000	15,000,000	1,500,000	2,100,000	11,000,000
	Area (ft^2)	1,600	3,600	500	700	3,500
	tube mat.	SS 310	SS 310	SS 310	SS 310	SS 310
DOV	shell mat.	SS 310	SS 310	SS 310	SS 310	SS 310
RCYHEA	IK Duty (DTU/5-1)	0 500 000	6 070 000	607.000	1 070 000	E 200 000
		2,530,000	6,070,000	697,000	1,070,000	5,330,000
	Area (It'2)	3,200	7,800	5/0	1,300	6,700
	shell mat	00 0 10 99 210	00 0 10 99 210	33 3 10 99 310	CC 210	SS 310 SS 310
MISC	onon mat.	00.010	55 510	55 510	55 510	55 510
COND-FC	2					
	Duty (BTU/hr)	5,380.000	16.000.000	1,560.000	2,400.000	12,000,000
	Material	SS 310	SS 310	SS 310	SS 310	SS 310
DEMISTR						
	Duty (BTU/hr)	0	0	0	0	0
	Material	SS 310	SS 310	SS 310	SS 310	SS 310
LP-COND	)					
	vol. (ft^3)	30	100	10	10	70
	Material	SS 310	SS 310	SS 310	SS 310	SS 310
Storage T	ank					
	vol. (ft^3)	5,600	18,000	1,600	2,400	11,000
	Material	SS 310	SS 310	SS 310	SS 310	SS 310

EQPTSPEC.XLS

## Appendix N Summary of HGD Costs

The following pages are taken from an Excel spreadsheet containing the culmination of all costs and benefits for all simulated Hot Gas Desulfurization processes.

Equip	ment -Sulfur	side	DODD -	DODD				Durahaa	Durek	data - f
Type Heat Exc	unit	Price	DSRP-b Price	DSRP-c Price	DSRP-100 Price	DSRP-500 Price	Mat. of Construction	Purchase date	Purchase price ref.	date of calculation
	AIRHX	\$33,500	\$71,500	\$17,900	\$19,400	\$55,300	SS304 / SS310 tubes	June, 1996	aspen DAIRHX	1/22/98
	PDCOOLR	\$63,400	\$126,600	\$25,200	\$42,000	\$90,400	SS310 (calc w SS316)	June, 1996	aspen	1/22/98
Tanks	0.16.01.01.01.01.01.01.01.01.01.01.01.01.01.	6405 500	\$00F 400	<b>\$05 000</b>	<b>\$00.000</b>	¢474.000	00040 (1 00040)	h		44/0/07
7 days Condens	s Sulfur Storage	\$125,500	\$205,400	\$65,000	\$80,000	\$171,000	SS310 (calc w SS316)	June, 1996	aspen	11/6/97
	High Pressure	\$40,400	\$82,200	\$18,500	\$21,900	\$59,600	SS310 (calc w SS316)	June, 1996	aspen	
Vaporise		\$16 100	\$17 800	\$15,900	\$15 200	\$16 700	SS310 (calc w SS316)	lune 1996	aspen	
Compres	sor	\$10,100	ψΠ,000	ψ10,300	ψ13,200	φ10,700	00010 (calc w 00010)	June, 1990	aspen	
-	RECOMP	\$52,900	\$52,900	\$52,900	\$52,900	\$52,900	Carbon Steel	June, 1996	aspen	
Reactors	PRESAIR	\$844,000	\$2,680,000	\$241,000	\$416,000	\$1,740,000		1997 Ingesoll-Rar	nd Centac Pricing	10/20/97
riodotore	Desulf & Regen	\$1,328,000	\$1,772,000	\$1,169,000	\$728,000	\$2,434,000	SS310 (calc w SS316)	) June, 1996 (w ins	tall) P&T calc	10/7/97
Dines	DSRP reactor	\$812,129	\$2,134,355	\$367,075	\$477,612	\$1,394,800	SS310 (calc w SS316	) June, 1996 (w ins	tall) P&T calc	10/16/97
Pipes	pipe lines									
	••									
	totals	\$3,315,929	\$7,142,755	\$1,972,475	\$1,853,012	\$6,014,700				
Equip	ment -Steam	side								
1.1		DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500				Purchase
Туре	unit	Price	Price	Price	Price	Price	Mat. of Construction	date		price ref.
Heat Exc	LCOOLR	\$7,600	\$8,100	\$0	\$6.800	\$7.600		June, 1996	aspen	11/26/97
	VCOOLR	\$7,000	\$8,400	\$6,700	\$6,800	\$7,600		June, 1996	aspen	11/26/97
Pumps										
	PTOWR PHOTH2O	\$4,200 \$1,000	\$8,000 \$3,500	\$2,800 \$0	\$3,200	\$5,500 \$3,500		June, 1996	aspen	11/26/97
	PSTEAM	\$57,400	\$75,100	\$57,400	\$57,400	\$59,300		June, 1996	aspen	11/26/97
	totals	\$77,200	\$103,100	\$66,900	\$74,600	\$83,500				
Expen	datures									
		DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500		cost	ref.	
Electrica	1									
Pumps 8 kW	RECYCOMP	59	227	5	7	37		ver requirements		
kW	PRESAIR	3282	10414	900	999	4889	ASPEN generated pov	ver requirements		
kW	Steam pumps	76	193	30	32	160	ASPEN steam simulat	ions		11/26/97
Light & ir kW	nstruments misc.	683	683	683	683	683	20% base case pump	& compressor reg	uirements	
TOTAL	kW	4100.4	11517.4	1618.4	1721	5769	2070 babb babb pamp	a compresser roq.		
00.0/	unit cost \$/kWh	0.04	0.04	0.04	0.04	0.04	Self-gen. (Jan. 1990)	Peters & Timmera	ius	
90 % op Coolina \	Cost \$/yr Water	\$1,293,988	\$3,634,615	\$510,728	\$543,234	\$1,820,690				
	lbs/hr	149,000	500,000	25,000	62,744	313,720	ASPEN Complete Ste	am Generation Sch	neme simulations	
00.0/ 00	unit value \$/lb	2.6E-05	2.6E-05	2.6E-05	2.6E-05	2.6E-05	Tower (Jan. 1990)	Peters & Timmera	aus	
90 % op Oxygen	COSt \$/yr	\$21,004	\$73,330	\$3,00 <i>1</i>	\$9,203	\$40,014				
,,,	lbs/hr	0	0	0	0	0				
	unit value \$/lb									
Addtiona	I Employees									
	Engineers	2	2	2	2	2				
	unit cost Maintenance	\$100,000	\$100,000	\$100,000 2	\$100,000 2	\$100,000				
	unit cost	\$70,000	\$70,000	\$70,000	\$70,000	\$70,000				
0	Cost \$/yr	\$340,000	\$340,000	\$340,000	\$340,000	\$340,000				
Consume	MW lost	7	23	2	3	15	Appendix J			
	unit cost \$/MWh	40	40	40	40	40	Self-gen. (Jan. 1990)	Peters & Timmera	ius	
	Cost \$/yr	\$2,287,295	\$7,259,195	\$652,927	\$963,138	\$4,714,074				
	totals (vearly)	\$3.943.137	\$11.307.146	\$1.507.322	\$1.855.574	\$6.920.778				
	G 37			–		, -				
Benef	its									
0		DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500	Condition	value	ref.	date of calc.
Sullur Re	lbs/hr	5.840	18.590	1.667	2,460	12.300				
90% op	tons/year	23,037	73,332	6,576	9,704	48,520				11/4/97
	unit value \$/ton	50	50 \$2,666,500	50	50 \$495 400	50	low purity	Chem. Eng. Progr	ess 1996	
Steam G	eneration	əı, iə1,852	93,000,599	as∠8,791	<b>⊉40</b> 0,198	<b>⊅∠,4∠5,991</b>				
	lbs/hr	23,200	77,700	6,160	9,800	48,800	950 psia, 441 C			11/4/97
0.0% ~~	unit value \$/lb	0.0039	0.0039	0.0039	0.0039	0.0039	500 psig, (Jan. 1990)	Peters and Timme	eraus	
30% op	Revenue \$/yr.	ə <i>i</i> 13,833	ą∠,390,725	\$109,535	JJU1,533	φ1,501,511				
	totals (yearly)	\$1,865,685	\$6,057,324	\$518,326	\$786,731	\$3,927,501				
		DSRP	DSRP-b	DSRP-c	DSRP-100 F	OSRP-500	1			
1	YEARLY COST	\$2,077,452	\$5,249,823	\$988,996	\$1,068,843	\$2,993,277	1			
EQU	JIPMENT COSTS	\$3,393,129	\$7,245,855	\$2,039,375	\$1,927,612	\$6,098,200				

Equipment -Sulfur	side								
•••	DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500		Purchase	Purchase	date of
Type unit	Price	Price	Price	Price	Price	Mat. of Construction	date	price ref.	calculation
Heat Exchangers									
AIRHX	\$33,500	\$71,500	\$17,900	\$19,400	\$55,300	SS304 / SS310 tubes	June, 1996	aspen DAIRHX	1/22/98
PDCOOLR	\$63,400	\$126,600	\$25,200	\$42,000	\$90,400	SS310 (calc w SS316)	June, 1996	aspen	1/22/98
Tanks									
7 days Sulfur Storage	\$125,500	\$205,400	\$65,000	\$80,000	\$171,000	SS310 (calc w SS316)	June, 1996	aspen	11/6/97
Condenser						,			
High Pressure	\$40,400	\$82,200	\$18,500	\$21,900	\$59,600	SS310 (calc w SS316)	June, 1996	aspen	
Vaporiser									
VAPORIZR	\$16,100	\$17,800	\$15,900	\$15,200	\$16,700	SS310 (calc w SS316)	June, 1996	aspen	
Compressor									
RECOMP	\$52,900	\$52,900	\$52,900	\$52,900	\$52,900	Carbon Steel	June, 1996	aspen	
PRESAIR	\$844,000	\$2,680,000	\$241,000	\$416,000	\$1,740,000		1997 Ingesoll-Rand C	Centac Pricing	10/20/97
Reactors							-	-	
Desulf & Regen	\$1,328,000	\$1,772,000	\$1,169,000	\$728,000	\$2,434,000	SS310 (calc w SS316)	June, 1996 (w install)	P&T calc	10/7/97
DSRP reactor	\$812,129	\$2,134,355	\$367,075	\$477,612	\$1,394,800	SS310 (calc w SS316)	June, 1996 (w install)	P&T calc	10/16/97
Pipes									
pipe lines									
totals	\$3,315,929	\$7,142,755	\$1,972,475	\$1,853,012	\$6,014,700				

Equip	oment -Steam	side							
		DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500			Purchase
Туре	unit	Price	Price	Price	Price	Price Mat. of Construction	date		price ref.
Heat E	xchangers								
	LCOOLR	\$7,600	\$8,100	\$0	\$6,800	\$7,600	June, 1996	aspen	11/26/97
	VCOOLR	\$7,000	\$8,400	\$6,700	\$6,800	\$7,600	June, 1996	aspen	11/26/97
Pumps									
	PTOWR	\$4,200	\$8,000	\$2,800	\$3,200	\$5,500	June, 1996	aspen	11/26/97
	PHOTH2O	\$1,000	\$3,500	\$0	\$400	\$3,500	price quote from	General Pumps	
	PSTEAM	\$57,400	\$75,100	\$57,400	\$57,400	\$59,300	June, 1996	aspen	11/26/97
	totals	\$77,200	\$103,100	\$66,900	\$74,600	\$83,500			

		DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500	cost ref.
Electrica	d						
Pumps &	Compressors						
kW	RECYCOMP	59	227	5	7	37	ASPEN generated power requirements
kW	PRESAIR	3282	10414	900	999	4889	ASPEN generated power requirements
kW	Steam pumps	76	193	30	32	160	ASPEN steam simulations 11/26/9
Liaht & i	nstruments						
kW	misc.	683	683	683	683	683	20% base case pump & compressor requirements
TOTAL	kW	4100.4	11517.4	1618.4	1721	5769	
-	unit cost \$/kWh	0.04	0.04	0.04	0.04	0.04	Self-gen, (Jan, 1990) Peters & Timmeraus
90 % op	Cost \$/vr	\$1.293.988	\$3.634.615	\$510.728	\$543.234	\$1.820.690	
Cooling	Water	• • • • • • • • •	<i>t - ) )</i>	<i>t , -</i>		* ))	
Ŭ	lbs/hr	149.000	500.000	25.000	62.744	313.720	ASPEN Complete Steam Generation Scheme simulations
	unit value \$/lb	2.6E-05	2.6E-05	2.6E-05	2.6E-05	2.6E-05	Tower (Jan. 1990) Peters & Timmeraus
90 % op	Cost \$/yr	\$21,854	\$73,336	\$3,667	\$9,203	\$46,014	
Oxygen				. ,	. ,	. ,	
,,,	lbs/hr	0	0	0	0	0	
	unit value \$/lb						
	Cost \$/yr						
Addtiona	al Employees						
	Engineers	2	2	2	2	2	
	unit cost	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	
	Maintenance	2	2	2	2	2	
	unit cost	\$70,000	\$70,000	\$70,000	\$70,000	\$70,000	
	Cost \$/yr	\$340,000	\$340,000	\$340,000	\$340,000	\$340,000	
Consum	ed Coal Gas					· · ·	
	MW lost	7	23	2	3	15	Appendix J
	unit cost \$/MWh	40	40	40	40	40	Self-gen. (Jan. 1990) Peters & Timmeraus
	Cost \$/yr	\$2,287,295	\$7,259,195	\$652,927	\$963,138	\$4,714,074	<u> </u>
		¢0.040.407	¢44.007.4.40	¢4 507 000		¢0.000 <b>7</b> 70	
	totals (yearly)	\$3,943,13 <i>1</i>	\$11,307,146	\$1,507,322	\$1,855,574	\$6,920,778	

Benef	its								
		DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500	Conditio	n value ref.	date of calc.
Sulfur R	ecovered								
	lbs/hr	5,840	18,590	1,667	2,460	12,300			
90% op	tons/year	23,037	73,332	6,576	9,704	48,520			11/4/97
	unit value \$/ton	50	50	50	50	50 low purity		Chem. Eng. Progress 1996	
	Revenue \$/yr	\$1,151,852	\$3,666,599	\$328,791	\$485,198	\$2,425,991			
Steam G	Generation								
	lbs/hr	23,200	77,700	6,160	9,800	48,800 950 psia, 4	441 C		11/4/97
	unit value \$/lb	0.0039	0.0039	0.0039	0.0039	0.0039 500 psig, (	(Jan. 1990)	Peters and Timmeraus	
90% op	Revenue \$/yr.	\$713,833	\$2,390,725	\$189,535	\$301,533	\$1,501,511			
	totals (yearly)	\$1,865,685	\$6,057,324	\$518,326	\$786,731	\$3,927,501			

	DSRP	DSRP-b	DSRP-c	DSRP-100	DSRP-500
YEARLY COST	\$2,077,452	\$5,249,823	\$988,996	\$1,068,843	\$2,993,277
EQUIPMENT COSTS	\$3,393,129	\$7,245,855	\$2,039,375	\$1,927,612	\$6,098,200

Equip	ment									
		AHG	AHG-b	AHG-c	AHG-100	AHG-500		Purchase		date of
Туре	unit	Price	Price	Price	Price	Price	Mat. of Construction	date	price ref.	calculation
Heat Exe	changers									
	HEATX	\$64,900	\$125,700	\$32,900	\$39,600	\$107,300	SS310 (SS 316)	June, 1996	aspen	12/3/97 AHGPcosts
	RCYHEATR	\$102,800	\$162,900	\$35,300	\$60,500	\$181,000	SS310 (SS 316)	June, 1996	aspen	1/22/98 steam
	N2-COOLR	\$42,000	\$72,200	\$16,800	\$26,500	\$66,400	SS304	June, 1996	aspen	1/22/98 steam
Condens	sers								-	
	COND	\$82,200	\$177,000	\$41,000	\$51,400	\$138,500	SS310-heat exchanger	June, 1996	aspen	1/22/98 steam
	LP-COND	\$8,200	\$11,100	\$6,200	\$7,000	\$10,000	SS310 tank ( $\tau = 1$ min)	June, 1996	aspen	12/3/97 AHGPcosts
Demiste	r									
	DEMISTR	\$53,100	\$109,000	\$30,600	\$35,000	\$83,700	SS310 1.5tank (τ =1mi	r June, 1996	aspen	12/3/97 AHGPcosts
Compres	ssor									
	CON-COMP	\$201,100	\$203,300	\$200,900	\$200,900	\$202,100	3 x (Carbon Steel)	June, 1996	aspen	12/3/97 AHGPcosts
	LIFTCOMP	\$485,000	\$820,000	\$161,600	\$161,600	\$820,000	3 x (Carbon Steel)	June, 1996	aspen mod.	12/3/97 AHGPcosts
	SO2-COMP	\$53,900	\$66,200	\$53,900	\$53,900	\$1,410,000	3 x (Carbon Steel)	June, 1996	aspen	12/3/97 AHGPcosts
Tanks										
7 da	ys storage	\$125,500	\$205,400	\$65,000	\$80,000	\$171,000	SS316	June, 1996	aspen	11/6/97
Reactors	5									
		\$2,939,588	\$12,297,497	\$1,562,672	\$2,177,791	\$8,869,074	SS310	June, 1996 (w install	) P&T calc	11/20/97
Pipes										
	pipe lines									

totals \$4,158,288 \$14,250,297 \$2,206,872 \$2,894,191 \$12,059,074

### Equipment -Steam side

				11105	11100 100					
L		AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500				Purchase
Type pumps	unit	Price	Price	Price	Price	Price N	Nat. of Construction	date		price ref.
· ·	PTOWR	\$3,400	\$5,000	\$2,800	\$2,800	\$4,300		June, 1996	aspen	11/26/97 steam
1	PSTEAM	\$57,400	\$63,300	\$57,400	\$57,400	\$59,300		June, 1996	aspen	11/26/97 steam
Heat Exch	nangers	,	,		,	,				
	VCOOLR	\$7,000	\$8,000	\$6,700	\$6,800	\$7,600 s	hell CS / tube 304	June, 1996	aspen	11/26/97 steam
	totals	\$67,800	\$76,300	\$66,900	\$67,000	\$71,200				
Expend	latures									
		AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500		cost ref		
Electrical						1	kW = 1.341 hp			
Pumps &	Compressors						· · · · · · · · · · · · · · · · · · ·			
kW	CON-COMP	8	26	2	3	17 A	SPEN generated pow	ver requirements		1/22/98
kW	LIFTCOMP	13	28	3	5	27 A	SPEN generated pow	ver requirements		1/22/98
kW	SO2-COMP	38	114	11	16	80 A	SPEN generated now	ver requirements		1/22/98
kW	Steam pumps	64	148	28	27	135 A	SPEN generated pov	ver requirements		
Light & in:	struments	•					- <u>J</u> -			
kŴ	misc.	25	25	25	25	25 2	0% base case pump	& compressor reauiren	nents	
TOTAL	kW	148	341	68	76	284				
	unit cost \$/kWh	0.04	0.04	0.04	0.04	0.04 5	Self-gen. (Jan. 1990)	Peters & Timmeraus		
90 % op	Cost \$/yr	\$46,579	\$107,485	\$21,491	\$24,109	\$89,490				
Cooling V	/ater									
	lbs/hr	79,200	4,530	434	33,351	166,756				
	unit value \$/lb	2.6E-05	2.6E-05	2.6E-05	2.6E-05	2.6E-05 T	ower (Jan. 1990)	Peters & Timmeraus		
90 % op	Cost \$/yr	\$29,041	\$1,661	\$159	\$12,229	\$61,146	. ,			
Oxygen										
	lbs/hr	4,129	12,536	1,195	1,739	8,694				
	unit value \$/ton	\$20	\$20	\$20	\$20	\$20 Ir	ncreased O2 plant pro	duction	Dr. Roberts	
90 %op	Cost \$/yr	\$325,753	\$989,015	\$94,278	\$137,175	\$685,874				
Additional	Employees									
	Engineers	3	3	3	3	3				
	unit cost	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000				
	Maintenance	2	2	2	2	2				
	unit cost	\$70,000	\$70,000	\$70,000	\$70,000	\$70,000				
	Cost \$/yr	\$440,000	\$440,000	\$440,000	\$440,000	\$440,000				
Consume	d Coal Gas									
	MW lost	1.506	4.580	0.436	0.634	3.172 A	Appendix J			
	unit cost \$/MWh	40	40	40	40	40 S	Self-gen. (Jan. 1990)	Peters & Timmeraus		
	Cost \$/yr	\$475,257	\$1,445,338	\$137,591	\$200,075	\$1,001,007				
	totals (yearly)	\$1,316,631	\$2,983,500	\$693,519	\$813,588	\$2,277,517				

#### Benefits

		AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500 C	Condition	value ref.	date of calc.
Sulfur Re	covered								
	lbs/hr	5,731	17,440	1,593	2,413	12,067			
90% op	tons/year	22,607	68,796	6,284	9,520	47,599			11/4/97
	unit value \$/ton	50	50	50	50	50 low purity		Chem. Eng. Progress 1996	
	Revenue \$/yr	\$1,130,354	\$3,439,778	\$314,195	\$475,992	\$2,379,960			
Steam G	eneration								
	lbs/hr	19,400	59,000	5,650	8,169	40,847 950 psia, 441 0	2		11/4/97
	unit value \$/lb	0.0039	0.0039	0.0039	0.0039	0.0039 500 psig, (Jan.	1990)	Peters and Timmeraus	
90% op	Revenue \$/yr.	\$596,912	\$1,815,351	\$173,843	\$251,360	\$1,256,798			
	totals (yearly)	\$1,727,266	\$5,255,129	\$488,038	\$727,352	\$3,636,758			

	AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500
YEARLY COST	-\$410,635	-\$2,271,630	\$205,481	\$86,236	-\$1,359,241
EQUIPMENT COSTS	\$4,226,088	\$14,326,597	\$2,273,772	\$2,961,191	\$12,130,274

Equipr	nent									
		AHG	AHG-b	AHG-c	AHG-100	AHG-500		Purchase		date of
Туре	unit	Price	Price	Price	Price	Price	Mat. of Construction	date	price ref.	calculation
Heat Exc	hangers									
	HEATX	\$64,900	\$125,700	\$32,900	\$39,600	\$107,300	SS310 (SS 316)	June, 1996	aspen	12/3/97 AHGPcosts
	RCYHEATR	\$102,800	\$162,900	\$35,300	\$60,500	\$181,000	SS310 (SS 316)	June, 1996	aspen	1/22/98 steam
	N2-COOLR	\$42,000	\$72,200	\$16,800	\$26,500	\$66,400	SS304	June, 1996	aspen	1/22/98 steam
Condens	ers								·	
	COND	\$82,200	\$177.000	\$41,000	\$51,400	\$138.500	SS310-heat exchanger	June, 1996	aspen	1/22/98 steam
	LP-COND	\$8,200	\$11,100	\$6,200	\$7.000	\$10.000	SS310 tank ( $\tau = 1$ min)	June, 1996	aspen	12/3/97 AHGPcosts
Demister		<b>*</b> - <b>,</b>	• ,	,	• ,	• • • • • • •	(, ,			
	DEMISTR	\$53,100	\$109,000	\$30,600	\$35,000	\$83,700	SS310 1.5tank (τ =1mir	June, 1996	aspen	12/3/97 AHGPcosts
Compres	sor						,		·	
	CON-COMP	\$201,100	\$203,300	\$200,900	\$200,900	\$202,100	3 x (Carbon Steel)	June, 1996	aspen	12/3/97 AHGPcosts
	LIFTCOMP	\$485.000	\$820.000	\$161,600	\$161,600	\$820.000	3 x (Carbon Steel)	June, 1996	aspen mod.	12/3/97 AHGPcosts
	SO2-COMP	\$53,900	\$66.200	\$53,900	\$53,900	\$1,410,000	3 x (Carbon Steel)	June, 1996	aspen	12/3/97 AHGPcosts
Tanks		• ,	···, ···	• ,	• ,	• , -,	()			
7 day	/s storage	\$125,500	\$205,400	\$65.000	\$80.000	\$171.000	SS316	June, 1996	aspen	11/6/97
Reactors	e energe	<b>•</b> · <b>_</b> •,••••	+,	+,	+,	••••,•••				
		\$2.939.588	\$12.297.497	\$1.562.672	\$2.177.791	\$8.869.074	SS310	June, 1996 (w install)	P&T calc	11/20/97
Pipes		• ,,	• , - , -	• / /-	• , , -			,		
1.00	pipe lines									

totals \$4,158,288 \$14,250,297 \$2,206,872 \$2,894,191 \$12,059,074

Equip	ment -Steam	side							
		AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500			Purchase
Туре	unit	Price	Price	Price	Price	Price Mat. of Construction	date		price ref.
pumps									
	PTOWR	\$3,400	\$5,000	\$2,800	\$2,800	\$4,300	June, 1996	aspen	11/26/97 steam
	PSTEAM	\$57,400	\$63,300	\$57,400	\$57,400	\$59,300	June, 1996	aspen	11/26/97 steam
Heat Ex	changers								
	VCOOLR	\$7,000	\$8,000	\$6,700	\$6,800	\$7,600 shell CS / tube 304	June, 1996	aspen	11/26/97 steam
	totals	\$67,800	\$76,300	\$66,900	\$67,000	\$71,200			

Expen	datures						
		AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500 cost ref.	
Electrica	I					1 kW = 1.341 hp	
Pumps &	Compressors					·	
kW .	CON-COMP	8	26	2	3	17 ASPEN generated power requirements 1/2	22/98
kW	LIFTCOMP	13	28	3	5	27 ASPEN generated power requirements 1/2	22/98
kW	SO2-COMP	38	114	11	16	80 ASPEN generated power requirements 1/2	22/98
kW	Steam pumps	64	148	28	27	135 ASPEN generated power requirements	
Light & ir	nstruments						
kŴ	misc.	25	25	25	25	25 20% base case pump & compressor requirements	
TOTAL	kW	148	341	68	76	284	
	unit cost \$/kWh	0.04	0.04	0.04	0.04	0.04 Self-gen. (Jan. 1990) Peters & Timmeraus	
90 % op	Cost \$/yr	\$46,579	\$107,485	\$21,491	\$24,109	\$89,490	
Cooling \	Water						
-	lbs/hr	79,200	4,530	434	33,351	166,756	
	unit value \$/lb	2.6E-05	2.6E-05	2.6E-05	2.6E-05	2.6E-05 Tower (Jan. 1990) Peters & Timmeraus	
90 % op	Cost \$/yr	\$29,041	\$1,661	\$159	\$12,229	\$61,146	
Oxygen							
	lbs/hr	4,129	12,536	1,195	1,739	8,694	
	unit value \$/ton	\$20	\$20	\$20	\$20	\$20 Increased O2 plant production Dr. Roberts	
90 %op	Cost \$/yr	\$325,753	\$989,015	\$94,278	\$137,175	\$685,874	
Additiona	al Employees						
	Engineers	3	3	3	3	3	
	unit cost	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	
	Maintenance	2	2	2	2	2	
	unit cost	\$70,000	\$70,000	\$70,000	\$70,000	\$70,000	
	Cost \$/yr	\$440,000	\$440,000	\$440,000	\$440,000	\$440,000	
Consume	ed Coal Gas						
	MW lost	1.506	4.580	0.436	0.634	3.172 Appendix J	
	unit cost \$/MWh	40	40	40	40	40 Self-gen. (Jan. 1990) Peters & Timmeraus	
	Cost \$/yr	\$475,257	\$1,445,338	\$137,591	\$200,075	\$1,001,007	
	totals (yearly)	\$1,316,631	\$2,983,500	\$693,519	\$813,588	\$2,277,517	

Bene	efits								
		AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500	Condition	value ref.	date of calc.
Sulfur I	Recovered								
	lbs/hr	5,731	17,440	1,593	2,413	12,067			
90% op	o tons/year	22,607	68,796	6,284	9,520	47,599			11/4/97
	unit value \$/ton	50	50	50	50	50	low purity	Chem. Eng. Progress 1996	
	Revenue \$/yr	\$1,130,354	\$3,439,778	\$314,195	\$475,992	\$2,379,960			
Steam	Generation								
	lbs/hr	19,400	59,000	5,650	8,169	40,847	950 psia, 441 C		11/4/97
	unit value \$/lb	0.0039	0.0039	0.0039	0.0039	0.0039	500 psig, (Jan. 1990)	Peters and Timmeraus	
90% op	Revenue \$/yr.	\$596,912	\$1,815,351	\$173,843	\$251,360	\$1,256,798			
	totals (yearly)	\$1,727,266	\$5,255,129	\$488,038	\$727,352	\$3,636,758			
		AHGP	AHGP-b	AHGP-c	AHGP-100	AHGP-500			
	YEARLY COST	-\$410,635	-\$2,271,630	\$205,481	\$86,236	-\$1,359,241			
E	QUIPMENT COSTS	\$4,226,088	\$14,326,597	\$2,273,772	\$2,961,191	\$12,130,274			

## Appendix O Reaction Data Obtained from RTI

The following data was obtained during correspondence with RTI.

DSRP reactions at 300 psi Reaction	ΔH at 550°C	ΔH at 650°C	ΔH at 750°C	
	(J/mol)	(J/mol)	(J/mol)	
$0.5 \text{ SO}_2 + \text{H}_2 = (1/4)\text{S}_2 + \text{H}_2\text{O}$	-65128	-65795	-66436	
$\underline{0.5 \text{ SO}_2 + \text{CO}} = (1/4)S_2 + \text{CO}_2$	-101938	-101629	-101295	

 $ZnO + H_2S(g) = ZnS + H_2O(g)$ 

Temp.	$\Delta H$	$\Delta S$	$\Delta G$	Κ
°C	kcal	cal	kcal	
400	-17.079	-0.071	-17.031	3.387E+5
500	-17.056	-0.040	-17.025	6.502E+4
600	-17.047	-0.029	-17.022	1.824E+4
700	-17.050	-0.032	-17.019	6.645E+3

 $ZnS + 1.5 O_2(g) = ZnO + SO_2(g)$ 

Temp.	$\Delta H$	$\Delta S$	$\Delta G$	Κ
°C	kcal	cal	kcal	
500	-107.110	-18.940	-92.467	1.381E+26
550	-107.135	-18.971	-91.519	1.999E+24
600	-107.155	-18.995	-90.570	4.694E+22
650	-107.172	-19.013	-89.620	1.654E+21
700	-107.185	-19.027	-88.669	8.220E+19
750	-107.195	-19.038	-87.717	5.474E+18
800	-107.204	-19.046	-86.765	4.692E+17