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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or other wise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



ABSTRACT

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power
plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, -amine scrubbing /
regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems
involves typically the use of zinc oxide-based sorbents. The sulfided sorbent is regenerated
using dilute air to produce a dilute SO, (sulfur dioxide) tail gas. Under previous contracts (DE-
AC21-93MC30010, DE_AC21-90MC27224), RTI (Research Triangle Institute) and the U.S.
Department of Energy / National Energy Technology Laboratory (DOE/NETL) have developed
the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic
reduction of this SO, tail gas to elemental sulfur. This process is currently undergoing field-
testing.

In this project, advanced concepts were evaluated to reduce the number of unit operations
in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that
could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP).
Development of this process has been described in detail in Appendices A-F. RTI began the
development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents
and multiple reactors in sulfur removal and recovery. This process showed promising

preliminary results and thus further process development of AHGP was abandoned in favor of
SSRP. '

The SSRP is a direct Claus process that consists of injecting SO, directly into the
quenched coal gas from a coal gasifier, and reacting the H,S-SO, mixture over a selective
catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier
pressure and 125 to 160°C. The proposed commercial embodiment of the SSRP involves a
liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

From micro fixed bed reactor experiments, a total sulfur conversion of 99% with 35 ppm
COS formation was achieved. Increasing pressure had a positive effect on sulfur removal. The
SSRP process concept was found to be feasible in liquid sulfur medium. The liquid sulfur was
shown to be inactive for direct reaction with reducing gases in coal gas. The process was scaled
up to 50 cc of catalyst dispersed in 400 cc of molten sulfur in a continuous stirred tank reactor
(CSTR). Conversion, as expected, was lower (up to 97%) in the CSTR compared to the fixed-
bed reactor. COS formation up to 500 ppm occurred, but it could be reduced to 75 ppm by
increasing the total flow and steam concentration and reducing the operating temperature.

A preliminary economic evaluation of SSRP with amine-based sulfur removal process
showed that SSRP had the potential of reducing the cost of electricity in a 400 MWe IGCC plant
by about 5%. It is recommended that the SSRP be tested with actual coal gas to evaluate the
effect of coal gas contaminants. Further work is needed to mitigate COS slip in SSRP, e.g. by
using a Claus catalyst with COS hydrolysis functionality. Kinetics of the SSRP reactions should
be evaluated and solubility of sulfur gases and major coal gas components in molten sulfur
should be measured to enable modeling of the SBCR based commercial embodiment. Following
development of dual function catalysts, the process should be scaled up to a pilot-scale SBCR.
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EXECUTIVE SUMMARY
Background

Gasification of heavy feedstock (e.g. coal, petcoke, resid, biomass, and others) produces a
raw syngas that must be cleaned before it can be used to produce electricity in a integrated
gasification combined cycle (IGCC) power plant and/or synthetic liquid fuel using Fischer-
Tropsch synthesis. The commercially proven process for gas cleaning involves quenching the
gas to remove particulates and trace contaminants. Then a complex multi-step highly equipment
intensive amine-based process consisting of an amine scrubber, regenerator, Claus plant, and
tail-gas treatment plant to remove hydrogen sulfide (H,S) and recover elemental sulfur follows.
Also, conventional amine systems cannot effectively remove COS, and thus it needs to be
hydrolyzed to H,S first in a separate reactor. ’

To reduce the cost of electricity and increase efficiency of IGCC systems, research has
been conducted on solid sorbent-based desulfurization systems for the past two decades.
Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based
sorbents in a two-reactor system to reduce the H,S and COS in syngas to below 10 ppmv:

ZnO + H;S (or COS) — ZnS + H;0 (or COy)  (sulfidation)
ZnS+ 3/2 O, — ZnO + SO, (regeneration)

Due to the highly exothermic regeneration a dilute air stream is used. Unfortunately, this
results in a problematic dilute SO, tail-gas that must be properly disposed. Conversion of this
SO, to elemental sulfur is the most attractive disposal option. RTI has developed the highly
effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of the
SO, tail-gas to elemental sulfur using a small slip stream of the syngas:

SO, +2 H; (or 2 CO) — 1/n S, +2 H,0 (or 2 CO»)

The combined sorbent / DSRP process is slated to begin undergoing field-testing in 2003
under a separate DOE contract (DE-AC26-99FT 40675).
Project Goal

The ultimate goal of this project is to develop a simple economically attractive process to
remove and recover elemental sulfur from raw syngas that can be easily integrated with the
gasifier. To this end advanced concepts were evaluated to reduce the complexity of conventional
and advanced sulfur removal/recovery process.

Advanced Hot Gas Process (AHGP)

The problematic dilute SO, tail gas produced by air regeneration not only needs disposal
but also consumes 2 mol of valuable reducing component in syngas for every mol of SO, that is
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converted to elemental sulfur. To alleviate this problem, substantial effort was directed towards
an Advanced Hot Gas Process (AHGP) that uses a bimetallic zinc-iron sorbent. It aimed to
eliminate the problematic SO, tail-gas using a two-stage regeneration reactor in which the
sulfided sorbent flows down counter current to a regenerating gas containing SO, and O,. The
iron sulfide portion of the sorbent is regenerated by SO, in the upper stage whereas the zinc
sulfide portion of the sorbent is regenerated by O, in the lower stage to provide heat and SO, for
the upper stage:

FeS +% SOz — FeO + % S, (upper stage)
ZnS + % 0, — ZnO + SO, (lower stage)

The effluent SO, and S, mixture is cooled to condense elemental sulfur, and the SO, is
recycled. Following lab-scale feasibility studies, multi-cycle bench-scale tests were conducted at
high-temperature, high-pressure conditions, to demonstrate quantitative elemental sulfur
recovery. Preparations were made for a field test of the process at Southern Company Services
Power Systems Development Facilities in early 2000. However, research emphasis had shifted
toward lower temperature desulfurization due to the difficulty of trace containment (NH3, Cl,
Hg) removal at high temperature. '

RTI began the development of a lower temperature Single Step Sulfur Recovery Process
(SSRP). This process showed promising preliminary results and thus further process

development of AHGP was abandoned in favor of SSRP. Complete details of the AHGP work
are provided in Appendices A-F and the rest of this summary is dedicated to SSRP.

Single-Step Sulfur Recovery Process (SSRP)

Process Description

Unlike the amine-based process, the SSRP is a direct Claus process consisting of
injecting SO, directly into the syngas to oxidize H,S selectively on a suitable catalyst to both
remove and recover sulfur in a single step.

2 H,S +S0; — 3/mn S, +2 H,O (Claus Reaction)

The key differences between SSRP and the traditional Claus process are: a) in SSRP the
catalytic oxidation of HpS by SO, (Claus reaction) occurs selectively in a highly reducing
atmosphere containing the highly reactive H, and CO fuel gas components, and b) the reaction is
carried out at the pressure of the fuel gas (300-1200 psig). Higher pressures favor conversion
due to more favorable thermodynamics. The temperature of the SSRP reactor is between 125°C
(257°F, where sulfur liquefies) and 160°C (320°F, where liquid sulfur viscosity starts to increase
rapidly). The SSRP uses a catalyst that is highly selective for the oxidation of H,S as opposed to
the undesirable oxidation of H; and CO that is present in great excess in the syngas.
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Commercial Embodiment

The proposed commercial embodiment of the SSRP involves a liquid phase of molten
sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR) as shown in Figure ES-
1; it is currently under development. The advantages of this embodiment are: a) ease of scale-up
and excellent temperature control; and b) the potential to eliminate the Claus plant, amine
regenerator, and COS hydrolyzer, by removing COS in addition to H,S in a single step.

Furthermore, the molten sulfur can act to:

e Moderate the reaction, minimize side reactions, and control the temperature; and
e Dissolve sulfur formed on the catalyst surface, thereby achieving recovery of product as
well as a potential shift in thermodynamic limitations on sulfur formation.

Experimental

The SSRP was studied in a 5-cc micro fixed-bed reactor, a 1-cc molten sulfur bubbler and
a 2.0-liter continuous stirred tank reactor containing up to 50 cc of catalyst and 400 cc of sulfur.
Most of the experiments were conducted using an Engelhard alumina catalyst. Blank reactors
and molten sulfur without catalyst were also evaluated.

— Clean Syngas

1|00 1=SBCR
) 2= Catalyst Filter
3 =125 °C Cooling Medium

: 4 = Mist Eliminator
Raw Syngas R ' 5 = Sulfur Burner

./ so,

\

\ 4

Molten Sulfur
to Pit

Figure ES-1. Proposed commercial embodiment of the Single-step Sulfur Recovery Process
(SSRP) '
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Results and Accomplishments

e From micro fixed-bed reactor experiments, a total sulfur conversion of 99% with 35 ppm
COS formation was achieved.

e The SSRP concept was shown to be feasible in the liquid sulfur medium.

e The process was scaled up to 50 cc of catalyst dispersed in 400 cc of molten sulfur in a
continuous stirred tank reactor (CSTR).

e The liquid sulfur was shown to be inactive for direct reaction with reducing gases (H, and
CO) in coal gas, but was shown to be active for the Claus reaction.

o Conversion, as expected, was lower in the CSTR (up to 97%) compared to fixed-bed
reactor (up to 99%). .

e COS formation up to 500 ppm occurred in the CSTR, but it could be reduced to 75 ppm
by increasing the total feed flow and steam inlet concentration and reducing the reaction
temperature.

e Runs over 100 hours duration demonstrated no deactivation of the catalyst. This
suggested that the sulfur formed on the catalyst surface dissolved into the molten sulfur
medium. '

e A patent was filed on the process and papers were presented at the Pittsburgh Coal
Conference (September 2002) and AIChE Meeting (November 2002).

e A preliminary economic comparison of the SSRP with a conventional amine-based
process showed the potential to reduce the installation cost, operating cost, and cost of
electricity of a 400 MWe IGCC plant by about 5%.

Recommendations for Future Work |

Further work is needed to minimize COS formation in SSRP by (1) preventing COS
formation during SSRP and (2) promoting COS hydrolysis and hydrogenation during SSRP.
Fundamental research is needed to develop proper catalysts by combining Claus and COS
conversion functionalities. Kinetics of the SSRP reactions should be evaluated. The solubility
of sulfur gases and major coal gas components in molten sulfur should be measured to enable

modeling of the SBCR commercial embodiment. The process should be scaled up to a pilot-
scale SBCR. '
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