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Abstract

This is the final technical report describing the activities performed under Task 1 of Contract No.
DE-AC21-94MC31160.  The analyses of hot gas stream cleanup (HGCU) particulate samples
and descriptions of filter performance studied under this contract were designed to address
problems with filter operation that have been linked to characteristics of the collected particulate
matter.  One objective of this work was to generate an interactive, computerized data bank of the
key physical and chemical characteristics of ash and char collected from operating advanced
particle filters and to relate these characteristics to the operation and performance of these filters.
The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen
pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high
pressure barrier filters.  As a deliverable item under this contract, the HGCU data bank was to be
submitted to the Department of Energy by the closing date of the contract (September 30, 1999).
All of the data measured and activities conducted under Task 1 of Contract DE-AC21-
94MC31160, and a significant proportion of data and activities generated under a prior contract
with DOE/FETC (Contract No. DE-AC21-89MC26239) are presented in this final report.
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1.0  EXECUTIVE SUMMARY

This is the final technical report describing the activities performed under Task 1 of Contract No.
DE-AC21-94MC31160.  The analyses of hot gas stream cleanup (HGCU) ashes and descriptions
of filter performance studied under this contract were designed to address problems with filter
operation that have been linked to characteristics of the collected ash.  Task 1 was designed to
generate an interactive, computerized data bank of the key characteristics of ash and char samples
collected from pressurized fluidized-bed combustion (PFBC) and gasification facilities.  This
task was also designed to relate these characteristics to the operation and performance of
operating advanced particle filters (APFs).  APF operations have also been limited by the
strength and durability of the ceramic materials that have served as barrier filters for the capture
of entrained HGCU ashes.  Task 2, which is summarized under a separate cover, concerned
testing and failure analyses of ceramic filter elements currently used in operating APFs and the
characterization and evaluation of new ceramic materials.

Ceramic barrier filters operating in HGCU environments face several potential challenges that
may result from the characteristics of the ash or char being collected.  The condition that has
received the most attention since the first testing of these filters is the formation of tenacious ash
deposits in the filter vessel that can form bridge-like structures that often result in lateral
mechanical forces being exerted on the filter elements.  Ash bridging can become extensive
enough to significantly reduce active filter area, and ash deposits can become large enough to
cause damage to filter elements if the deposits dislodge and fall to the hopper.  Observations of
the formation of high-strength ash deposits and ash bridging under this task were confined to
PFBC facilities.  Although experiences at American Electric Power Service Company’s 70 MWe
Tidd Pressurized Fluidized-Bed Combustor (Tidd) and Foster Wheeler’s 10 MWt Pressurized
Circulating Fluid Bed Facility in Karhula, Finland (Karhula) led to improved filter elements and
filter system design to minimize the damaging effects of these ash deposits, operating
experiences and supporting laboratory studies indicate that these improvements are not sufficient
to completely remove the potential for ash bridges to form.1  Residence time in the filter vessel,
combined with filter temperature, and ash and flue gas chemistry, can provide conditions
sufficient for strong PFBC ash deposits to form in HGCU filters.  Although the fundamental
mechanisms controlling the formation and strengthening of these ash deposits have not been
completely verified, a great deal of information has been compiled characterizing PFBC ash
deposits.  Based on these characterizations, this task developed and presented a model of deposit
growth based on the formation of eutectic compounds in PFBC ash.

Several approaches to limiting the potential for bridging have been tried.  Bridging was
significantly reduced at Tidd by limiting the time that ash remained in the APF.1  At Karhula,
various combinations of coals and sorbent materials were evaluated with one of the objectives
being to minimize ash bridging.2  At the Kellogg Brown & Root Advanced Transport Reactor at
the Department of Energy / Southern Company Services Power Systems Development Facility
(PSDF), the temperature of the filter vessel has not been allowed to approach the levels where
severe bridging was encountered at Tidd.  It is clear from the experiences at these facilities that
understanding and optimizing ash characteristics is one of the keys to successful and optimized
HGCU filter operation on PFBC systems.
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In addition to bridging in HGCU filters, other key issues that are strongly dependent on the
characteristics of the particles collected in the filter are pressure loss across the filter, the
development of filter cakes that may be hard to remove during reverse-pulse cleaning, and the
reentrainment and recollection on the filter cake of previously collected particles following their
removal by cleaning pulses.

For a given filter design, the permeability of the filter cake is the primary variable determining
overall pressure loss across the filter.  (Although inlet mass concentration, filtering face velocity,
gas viscosity, and the permeability of clean ceramic filter elements also contribute to the overall
pressure loss, these factors are set by the system design.)  Given these design factors, the pressure
loss through the filter cake is determined by the amount of cake on the filter surface (usually
expressed in terms of its areal density), and the morphology of the filter cake.  This morphology
is a combination of the porosity of the cake structure, and the morphology of the particles
composing the cake.  As with the other factors set by the system design, the morphology of the
particles reaching the filter cake is determined by operating variables of the combustion or
gasification system.  Precollectors, such as cyclones upstream of the barrier filter can also modify
particle morphology by preferentially removing the larger entrained particles.

Mathematical models of filtration, including the semi-empirical model refined under Task 1 of
this contract describing the permeability of filter cakes composed of fine, irregular particles,
demonstrate the sensitivity of flow resistance to cake porosity 3, 4, 5, 6, 7.  Factors that can decrease
the porosity of filter cakes in barrier filters include cake collapse caused by filtering pressure
drop, alteration of particle morphology and rearrangement of the collected particles as a result of
the formation of eutectic melts, and the filling of interparticle voids by the additional formation
of sulfate salts on the surfaces of incompletely reacted sorbent particles.

Because the relationships between chemical constituents and particulate behavior are not yet
established for gasification processes, the effect on filtration behavior of the various chemical
compounds present in gasification particulate samples are not yet known.  Chemical reactions
such as tar formation and chemical sintering between particles have the potential to create
problems such as bridging in filters collecting gasification particulates.

Some of the gasification chars studied under this task comprised irregularly-shaped particles with
very high specific surface areas, and often exhibited extremely fine size distributions.  Chars with
very high surface areas (> 100 m2/g) have the potential to generate filter cakes that have
extremely low permeabilities.  In addition, there is a potential for some filter cakes comprising
gasifier char to compact, which would adversely affect permeability.  Also, many of the
gasification char samples studied under this task exhibited relatively low tensile strengths.  The
low tensile strengths measured for these samples may indicate that char particles dislodged from
filter elements during pulse cleaning cycles may break up into very small agglomerates.  If this
type of breakup occurs, reentrainment of previously collected gasification residues may pose a
significant problem.  Continued observation of the behavior of gasifier char filter cakes in HGCU
filters is needed to assess to what extent these phenomena (the formation of low permeability
filter cakes, filter cake compaction, and particle reentrainment) occur.
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This task has catalogued many characteristics of PFBC ashes and gasification chars, and has
studied the fundamental ways in which these characteristics ultimately affect filter operation.
Figure 1-1 summarizes the ranges measured for some of the key physical characteristics of the
filter cake samples discussed in this report.  As can be seen in this figure, there are several
distinct differences between these two types of filter cake material.  This report examines these
data in detail, and discusses the implications of these characteristics on HGCU filter
performance.  In addition to this report, the interactive data bank issued as a deliverable to
DOE/FETC under this task serves as an important tool for advancing these studies.  (The reader
of this report is referred to the DOE/FETC Project Manager, Thomas P. Dorchak, for access to
the interactive data bank.)

In order to maximize the benefit of the characterization and analysis of particulate properties for
HGCU technology, additional samples should be analyzed as they become available, operating
data and observations from operating HGCU facilities should continue to be compiled, and
critical analysis of these data must continue to be performed and communicated to the users of
these filters.  Tasks like the one described in this report, and especially the interactive data bank
it produced, provide excellent means for achieving these continuing objectives.

Figure 1-1.  Ranges measured for some of the key physical characteristics of the filter cake
samples discussed in this report.
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2.0  INTRODUCTION

This is the final technical report describing the activities performed under Contract No. DE-
AC21-94MC31160.  Task 1 of this contract concerned analyses of HGCU ashes and
descriptions of filter performance that were designed to address problems with filter
operation linked to characteristics of the collected particulate matter.  Much of the work
conducted under Task 1 built directly on work performed under a prior contract (No. DE-
AC21-89MC26239) with the Department of Energy’s Federal Energy Technology Center in
Morgantown, WV (DOE/FETC-MGN).  Discussions of Task 2 of this contract are presented
under separate cover, and concern characterization of new and used filter elements.  Some of
the problems observed at PFBC facilities include excessive filtering pressure drop, the
formation of large, tenacious ash deposits within the filter vessel, and bent or broken candle
filter elements.  These problems have been attributed to ash characteristics, durability of the
ceramic filter elements, and specific limitations of the filter design.  In addition to the
problems related to the characteristics of PFBC ashes, laboratory characterizations of gasifier
and carbonizer particulates have shown that they also have characteristics that might
negatively affect filtration.  Specifically, gasifier particulates form filter cakes that could
accumulate in thickness quite rapidly, might compact as a result of the filtering pressure drop
across them, and also may tend to reentrain following cleaning pulses.

To identify which particulate characteristics can lead to problems with filtration, 375
particulate samples from fourteen facilities involved in FETC’s HGCU program have been
assembled into an interactive, computerized data bank.  Three samples from gasification
studies carried out by Herman Research Pty Ltd. (HRL) of Melbourne, Australia have also
been studied under this task and are included in the data bank.  An overview of these
facilities and samples is provided in Table 2-1.  Many of the samples have been analyzed
with a variety of laboratory tests.  Physical attributes of the particles that have been examined
include size distribution, specific surface area, particle morphology, and bulk ash cohesivity
and permeability.  A range of chemical analyses of these samples, as well as characterizations
of agglomerates of particles removed from filter vessels at Tidd, Karhula, the Power Systems
Development Facility, and Foster Wheeler’s pilot-scale combustion facility located in
Livingston, New Jersey have also been performed.  The data obtained in these studies were
assembled into an interactive, computerized data bank to help the manufacturers and
operators of high-temperature barrier filters tailor their designs and operations to the specific
characteristics of the particulate materials to be collected.  This report describes the methods
used to analyze the HGCU particulate samples, presents the data measured for these samples,
and discusses the implications these data have for HGCU filter operation at PFBC and
gasification facilities.

2.1  OBJECTIVES

Task 1 had two primary objectives.  The first was to generate a readily accessible data bank
of the key characteristics of particulate samples collected from operating advanced particle
filters.  The second objective was to relate these measured properties and the contents of the
data bank to the operation and performance of the advanced particle filters and filter
components.  The first objective included formatting the data bank and collecting, analyzing,
and maintaining particulate samples from operating HGCU facilities.  The second objective



2-2

of this task involved the collection of operating histories from advanced particle filters,
correlating these histories with sample characteristics, interpreting these correlations, and
communicating results in the various venues prescribed by DOE/FETC-MGN.

Table 2-1
Overview of Facilities and Particulate Samples

# of samples HGCU facility Process
7 New York University bubbling bed PFBC
8 Kellogg Brown & Root circulating PFBC

14 Kellogg Brown & Root gasification
2 Texaco Montebello Research Lab gasification

11 Grimethorpe circulating PFBC
9 KRW gasification
2 Allison coal-fired combustion turbine

10 Foster Wheeler carbonizer
7 Foster Wheeler circulating PFBC
3 Iowa State University AFBC

61 Karhula circulating PFBC
116 Tidd bubbling bed PFBC
12 DOE/FETC gasification
7 UNDEERC transport reactor gasification
2 UNDEERC transport reactor circulating PFBC
3 Herman Research Pty Ltd. gasification

101 PSDF transport reactor circulating PFBC
3 Piñon Pine Power Project gasification
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3.0  FIELD SAMPLING AND ON-SITE MEASUREMENTS

Site visits were made to three HGCU filters which included observations, on-site
measurements, documentation of the condition of the filter, and collection of samples for
analysis.  Descriptions of the conditions of these filters during each of these visits are
presented in this section, along with brief descriptions of the HGCU facility visited.
(Descriptions of the other HGCU facilities from which particulate samples were received for
analysis under this task are presented under section 4.0  Analyses of Particulate Samples.)

Each site visit conducted under this task began with photographic documentation of the
condition of the filter vessel.  The ranges of on-site measurements and samples that can be
obtained during site visits depend on the types of particulate deposits in the vessel, the
condition of the filter elements, and the constraints of the sampling location.  During several
of these visits, areal density determinations and cake thickness measurements were made at
various locations on the surfaces of the filter elements.  (When both of these measurements
can be made close to one another, filter cake porosity can be calculated.)  These
measurement techniques, which are described below, were limited to elements located on
the outer perimeter of the filter arrays.

The measurement of areal density is made with a thin-walled core sampling tube that has a
leading edge shaped to conform to the outer surface of the cylindrical filter elements.  After
a representative region is selected for this measurement, the sampling tube is pressed
laterally through the filter cake until it firmly and evenly contacts the surface of the filter
element.  While it is held in place, the filter cake adjacent to the area isolated within the tube
is brushed away to expose the surface of the filter element.  A small catch basin shaped to
conform to the outer surface of the filter element is placed below the core sampling tube,
and the tube is gently removed so that any particulate material falling out of the tube is
caught in the basin.  Once the sampling tube has cleared the surface of the cake, its contents
are added to any material already in the basin.  Finally, the filter cake adhered to the surface
of the element is brushed into the catch basin.  The areal density of the sampled region is
calculated by dividing the weight of the material collected by the cross-sectional area of the
sampling tube.

A traversing transverse laser gauge is used to measure the thickness of filter cakes.  After a
region of the filter cake is selected, the gauge, which is mounted on a tripod, is positioned so
that the horizontally-directed laser beam is tangent to the curvature of the filter element for
the region of interest.  The laser is mounted on a linear traversing mechanism so the beam
can be moved horizontally at a right angle to its direction.  The traversing mechanism
includes a scale to record the location of the beam.  Two positions of the beam are needed
for a thickness measurement.  The first is when the beam just contacts the surface of the
filter cake.  After this position is recorded, the filter cake between the contact point of the
beam with the cake and the element surface is brushed away to expose the surface of the
filter element.  Then the beam is traversed laterally until it just contacts the surface of the
cleaned region of the filter element.  This second position is recorded, and the thickness of
the cake is the difference between these two readings.
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Other measurement and sample preservation techniques that have been made on site include
preservation of nodules and deposits with epoxy (described under Nodule Porosity in section
4.1  Laboratory Methods Used to Characterize Samples), and preservation of the filter cakes
on the surface of a candle removed from the filter vessel to an on-site laboratory.  This
technique is described in Appendix A  Technique for Preserving Filter Cakes.

3.1  TIDD

The objective of the test program carried out at Tidd was to evaluate the design and obtain
operating experience for a commercial size Advanced Particle Filter (APF) through long-
term testing on a slipstream at Ohio Power Company’s Pressurized Fluidized Bed
Combustion (PFBC) Demonstration Plant.  The 70 MWe Tidd PFBC Demonstration Plant
in Brilliant, Ohio was completed in late 1990, and operated through March 1995 as part of
the Department of Energy’s Clean Coal Technology Program.  The original design of the
Tidd Plant utilized seven strings of primary and secondary cyclones to remove 98% of the
particulate matter from the gases between the fluidized bed and the gas turbine.  A HGCU
slipstream replaced one of the seven secondary cyclones by taking the discharge gas of one
of the primary cyclones to outside of the combustor vessel and into the APF.1  The general
features of the APF are shown in Figure 3-1.  The filter was designed to operate with 384
filter elements, each nominally 2.36 in. (6 cm) O.D. and 4.92 feet (150 cm) long.8

Under the original maximum design load conditions, gas at approximately 150 psig, 1550 °F
flowed into the filter at 7600 acfm with a dust loading of 600 ppmw.  In January 1994, the
dust loading was increased to 3400 ppmw by detuning the primary cyclone upstream of the
APF.  During the tests conducted in 1994, the APF generally operated between 1350 and
1450°F.  In January 1995, the primary cyclone was bypassed which increased the loading to
approximately 20,000 ppmw.  This change was made to take advantage of a larger particle
size distribution, as described later in this section.  The operating temperature of the APF
was allowed to reach 1550 °F for a significant portion of its operation with the cyclone
bypassed.1

Southern Research Institute personnel made four site visits to the Tidd APF to inspect and
document the condition of the filter vessel and to collect for analysis representative samples
of the various deposits of ash found in the APF.  The first two of these visits were made on
an earlier contract (No. DE-AC21-89MC26239).  All four site visits are discussed in this
section.  In addition, a topical report entitled Analyses of Ashes from the Tidd PFBC
Advanced Particulate Filter summarizing on-site observations and the results of on-site and
laboratory ash analyses was submitted in August 1995 to DOE/FETC-MGN.
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Figure 3-1.  General features of the APF at the Tidd Demonstration Plant.

3.1.1  September 30, 1993

When the filter assembly was opened on September 30, 1993, extensive deposits of ash were
found on candle surfaces, bridged between candles, and on non-filtering surfaces (ash sheds,
plenum support conduits, and on the underside of the tube sheet).  Deposits found on these
non-filtering surfaces were formed by the gradual deposition of particles as a result of
turbulent diffusion.  Some of these passive deposits were up to six inches thick, with high
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tensile strength.  Many of the candle filter elements were covered by filter cakes up to one
inch thick.  Like the passively deposited agglomerates of ash, these filter cakes also had high
tensile strength.  Figures 3-2 through 3-5 provide representative views of the condition of
the APF as observed on this site visit.  Figure 3-6 shows one of the thick, strong filter cake
specimens collected while on site.

Figure 3-2.  Severe ash bridging was evident as the top two plenums were lifted into view.
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Figure 3-3.  Thick, patchy cakes were present throughout the filter vessel.

Figure 3-4.  Ash almost completely enveloped many of the candle filter elements.
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Figure 3-5.  The appearance of these candles is believed to be the result of patchy cleaning
and the loss of cake during cooling down of the filter vessel.

Figure 3-6.  A number of laboratory analyses were performed on this thick filter cake deposit
(ID # 4012).  The deposition layers formed during filtration are clearly visible in this
specimen.
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3.1.2  May 5, 1994

The filter vessel was again opened for inspection and refitting on May 5, 1994.  Despite the
relative cleanliness of the candles, significant deposits of ash were observed at several other
locations in the assembly.  The undersides of all of the nine tube sheets were coated with
deposits of ash about eight inches thick.  Although the outer (presumably the most recently
deposited) portions of these deposits were fairly fluffy, the inner regions were hard, strong,
and well consolidated.  Similar deposits were found on the ash sheds above the middle and
bottom plenums.  These deposits were about three inches thick, and were also strong and
well consolidated.  Strong, thick deposits were present on the plenum support conduits
positioned in the center of the top and middle plenum assemblies.  These deposits were thick
enough (over four inches) in most areas to envelop the inner ring of candles in these plenum
assemblies.  Many of the innermost candles in the top and middle plenums were bent away
from the plenum support conduits.  The regions between these candles and the plenum
support conduits were almost completely filled with ash.  Figures 3-7 through 3-23
document the condition of the APF on this site visit.

Observations of the APF during this site visit indicated that severe bridging of ash between
adjacent candles was still a serious problem.  Many ash bridges were present, some of which
extended from the deposit on the underside of the tube sheet all the way down to the conical
surface of the ash shed below the bottom ends of the candles.  Ash bridges were identified in
many different stages of formation.  Most ash bridges were found in the top and middle
plenums, which were also the locations where most of the severely bent candles were found.
The bottom plenums had the fewest ash bridges, and the fewest bent or broken candles.  As
was observed previously, the ash deposits throughout the APF had high tensile strength.
However, the filter cakes observed during this second site visit were only about 0.4 inch
thick, compared with the one-inch thick cakes present in September 1993.




