Return to DOE Reports Table of Contents - S

Return to Advanced Turbine Systems Program Conceptual Design and Product Development Table of Contents

Advanced Turbine Systems Program Conceptual Design and Product Development.
Final Report - July 26, 1996.

Solar Turbines Incorporated

Part 1, Pages i - 52, 4.07 MB
Part 2, Pages 53 - 89, 2.57 MB

Table of Contents

Part 1, Pages i - 52, 4.07 MB

Table of Contents

i - x

1.

Executive Summary

1

2.

Introduction

2

3.

Selection of Cycle to Meet Market Needs

4

3.1

WBS 2.3 Selection of Gas Fired Advanced Turbine System (GFATS)

4

3.2

General Configuration

4

3.3

Market Considerations

6

3.4

Technology Options/Risk Factors

7

3.5

ICR Configurations Evaluated

8

3.6

ICR Components

9

3.6.1

Low Pressure Compressor

9

3.6.2

Intercooler

9

3.6.3

High Pressure Compressor

10

3.6.4

Recuperator

10

3.6.5

Low Emissions Combustor

10

3.7

Turbine Section

11

3.7.1

Gas Producer Turbine Section

11

3.7.2

Power Turbine Section

11

3.8

Configuration and Cycle Selection

11

3.9

Critical Technologies

12

3.9.1

High Temperature GP Turbine Blades

12

3.9.2

Recuperator

13

3.9.3

Intercooler

13

3.9.4

Catalytic Combustion System

14

4.

Conversion to Coal

15

4.1

Introduction

15

4.2

Direct Fired Systems

15

4.2.1

Coal-Water Slurry

15

4.2.2

Other Coal-Fired Systems

16

4.3

Indirect- or External-Fired Systems (EFS)

16

4.4

Gasification

17

4.5

Discussion and Conclusions

17

5.

Market Survey

18

5.1

Introduction

18

5.2

Market Survey

18

5.2.1

Organization and Planning

18

5.2.2

Market Segments

19

5.2.2.1

Oil and Natural Gas Production, Transmission, and Storage

19

5.2.2.2

Electrical Power Generation

20

5.2.2.3

Prime Movers

21

5.2.2.4

Other Markets

22

5.2.3

Competing Equipment

23

5.2.3.1

Simple Cycle Gas Turbine

23

5.2.3.2

Combined Cycle Gas Turbines

23

5.2.3.3

Cogeneration Systems

24

5.2.3.4

Reciprocating Engines

24

5.2.3.5

Fuel Cells

24

5.2.3.6

Comparison of Systems

24

5.3

Trends in the Largest Potential Markets

25

5.3.1

General Trends

25

5.3.2

Trends in the Utility Market

26

5.3.3

Trends in the Oil and Gas Industry

27

5.3.3.1

Trends in the Natural Gas Industry

27

5.3.3.2

Trends in the Oil Production Industry

28

5.3.3.3

Common Trends in Oil and Gas Industries

28

5.3.4

Trends in Cogeneration

29

5.3.5

Trends in the Commercial Segment

29

5.4

ATS Market Potential

29

5.5

Risk Analysis

31

6.

System Definition and Analysis

32

6.1

Introduction

32

6.2

System Selection

32

6.3

Conceptual Design of Recuperated Engine

33

6.4

Cycle Analysis

34

6.4.1

Design Parametric Matrix

35

6.4.2

Input Values

35

6.4.3

Preliminary Design Iteration

36

6.5

ATS Compressor Design

37

6.6

Recuperator

38

6.7

Combustor Design

39

6.7.1

Catalytic Combustor

40

6.7.2

Ultra-Lean Premixed (ULP) Combustor

41

6.7.3

Fuel Flexibility

43

6.8

ATS Turbine Design

43

6.8.1

Technical Challenges Gas Producer Turbine

43

6.8.2

Technical Challenges Power Turbine

44

6.8.3

Turbine Blade Tip Clearance Control

45

6.9

Total Plant Controls

46

6.10

Overall System

46

6.10.1

ATS Driver Frame

48

6.10.2

Lube Oil System

49

6.10.3

Condition Monitoring

49

6.10.4

Fuel Gas System

49

6.10.5

Reduction Gearbox

49

6.10.6

AC Generator

49

6.10.7

Package Enclosure

50

6.11

Attainment of ATS Program Goals

50

6.11.1

Pollution Prevention

50

6.11.2

Reliability, Availability, Maintainability, Durability (RAMD)

50

6.11.3

Cost of Power

50

6.11.4

Thermal Efficiency

51

6.11.5

Fuel Flexibility

51

Part 2, Pages 53 - 89, 2.57 MB

7.

Design/Test Critical Components

53

7.1

Low Pressure Drop Recuperator

53

7.1.1

Introduction

53

7.1.2

Background on the PSR

53

7.1.3

Work Program

54

7.1.3.1

Life Prediction Work

55

7.1.3.2

Performance Predictions

56

7.1.3.3

Transient Tests

57

7.2

Subscale Catalytic Combustor

58

7.2.1

Introduction

58

7.2.2

Background

58

7.2.3

Approach

59

7.2.4

Catalyst Design Considerations

59

7.2.5

Subscale Rig Design Iterations

60

7.2.6

Subscale Test Results

61

7.2.7

Coordination with ATS Phase III

63

7.3

Autothermal Fuel Reformation

63

7.3.1

Introduction

63

7.3.2

Background to Fuel Reformation Technology

63

7.3.3

Reformation of Natural Gas

64

7.3.4

Catalyst Life

65

7.3.5

Reformation of Liquid Fuels

66

7.3.6

Reformed Fuel (Hydrogen-Rich) Combustion

67

7.3.7

Integration with ATS

68

7.4

High Temperature Turbine Disk

69

7.4.1

Problem Statement

69

7.4.2

Dual-Alloy Bonding Demonstration

70

7.4.2.1

Selection of Materials

70

7.4.2.2

Processing

70

7.4.2.3

Solid-to-Solid HIP Bonding

71

7.4.3

Stress Analysis and Life Prediction

72

7.4.4

Non-Destructive Inspection Development

72

7.5

Full Scale, Single Can Catalytic Combustor Rig

73

7.5.1

Introduction

73

7.5.2

Design of a Full-Scale, Single Can Combustor

73

7.6

Total Plant Control

74

7.6.1

Introduction

74

7.6.2

Design Work Prototype

75

7.6.3

Detailed Design Specification

75

7.7

High Temperature Recuperator Materials

75

7.7.1

Introduction

75

7.7.2

Tensile Tests

76

7.7.3

Oxidation Tests

77

7.7.4

Creep Tests

78

7.7.4.1

Type 347 Stainless Steel

78

7.7.4.2

Inconel 625

79

7.7.4.3

Other Alloys

79

7.7.5

Other Work

79

7.8

Low Cost Ceramic Material

80

7.8.1

Introduction

80

7.8.2

Modification of Program

81

7.8.3

Coordination With the CSGT Program

81

7.8.4

Coordination with ATS Phase III

81

7.9

Advanced Ceramic Materials

82

7.9.1

Introduction

82

7.9.2

Selection of Components

82

7.9.3

Coordination with ATS Phase III Program

83

8.

Glossary

84