APPENDIX G

PREDICTION OF RICHARDSON-ZAKI PARAMETERS FOR PDU EXPERIMENTAL MODELING

APPENDIX G

PREDICTION OF RICHARDSON-ZAKI PARAMETERS FOR PDU EXPERIMENTAL MODELING

BED EXPANSION OF CYLINDRICAL CATALYSTS IN LIQUID FLUIDIZATION

ABSTRACT

Fluidization of cylindrical particles by pure fluids and by coal slurries has been studied. It is shown that bed expansion data of cylindrical-shaped particles in liquid fluidization are adequately correlated using the Richardson-Zaki method. Particle terminal velocities are shown to be well predicted using the drag coefficient—Reynolds number relation—ship for infinte cylinders, with the characteristic dimension given by the cylinder diameter. The original correlations suggested by Richardson and Zaki for their index, n, in terms of particle Reynolds number are shown to be satisfactory.

INTRODUCTION

Nearly all gas-solid and liquid-solid fluidization data have been obtained in beds of spherical or near-spherical particles. Fluidization data for cylindrically shaped pellets are scarce. Table I lists only four sources where these kinds of data are available. In view of the recent interest in the catalytic hydroliquefaction of coal (the H-Coal process) and the hydroprocessing of petroleum resids, a better understand of the fundamentals of ebullated (or three-phase fluidized) beds is essential for successful scale-up. The commercial catalysts used in these processes are nearly all in the form of cylindrical extrudates. The prediction of the hydrodynamic behavior of a three-phase fluidized bed from basic fluid and particle mechanics is not possible at present. This applied even to basic parameters such as bed expansion and phase holdup. At least two phenomenological models have been proposed: namely, those of Bhatia and Epstein (1), and

Darton and Harrison (5). However, their correlations for gas holdups were borrowed entirely from the two-phase literature, and a more definitive analysis seems necessary. As for the treatment of the particulate phase (i.e., phase excluding the bubble and its associated wake), both models suggest the use of the Richardson-Zaki correlation (8). Thus it is crucial to determine how well the Richardson-Zaki correlation can predict liquid fluidized bed behavior of cylindrical particles. For such a study, Vasalos et al (12) found that the data could be correlated by the Richardson-Zaki type of correlation, but the two parameters (i.e., terminal velocity and index n) in the Richardson-Zaki correlation were fit empirically using the data. The present study is an extension of Vasalos' work. In addition, methods are suggested for determining the two parameters in the Richardson-Zaki correlation.

DISCUSSION

The Richardson-Zaki correlation (8) has been widely used to correlate gassolid and liquid-solid fluidization data. Basically, the model relates the liquid holdup, ϵ_1 , to the sperficial liquid velocity, j_1 , and the terminal velocity of the solid, U_t :

$$\boldsymbol{\epsilon}_1^n = \mathbf{j}_1/\mathbf{U}_t \tag{1}$$

where n is the so-called Richardson-Zaki index. Richardson and Zaki used the drag-coefficient relationship to estimate $\mathbf{U}_{\mathbf{t}}$ and proposed to correlate n as a function of particle Reynolds number.

Usually the settled bed porosity, ϵ_{10} , and bed height, H_0 , are known, and the material balance on the solids yields:

$$(1 - \epsilon_1)H = (1 - \epsilon_{1o})H_o$$
 (2)

Thus, bed expansion can be predicted once the liquid holdup inside the bed is found using Equation 1.

Terminal Velocity of a Cylindrical Particle

The terminal velocity of a particle falling in a fluid is determined by balancing the gravitational and drag forces. For spherical particles of diameter, d, we have:

$$\pi d^3 g (\rho_s - \rho_1)/6 = c_D(\pi d^2/4)(\rho_1 v_t^2/2)$$
 (3)

where the nomenclature has the usual meaning. The drag coefficient, ${\bf c}_{\rm D}$, is a function of the particle Reynolds number, ${\bf Re_t}$, defined by:

$$Re_{t} = \rho_{1}U_{t}d/\mu_{1} \tag{4}$$

For example, the drag coefficients for spheres, disks, and cylinders can be found in Perry (10) and are shown in Figure 1. In order to calculate

the terminal velocity, one has to resort to trial and error using Figure 1. However, one can simplify Equation 3 and replace U, with Re, thus obtaining:

$$c_{\rm p} Re_{\rm t}^2 = 4/3 \left[d^3 \rho_{1} g(\rho_{\rm s} - \rho_{1}) / \mu_{1}^2 \right] = (4/3) Ga$$
, for spheres (5)

where Ga is the Galileo number and can be evaluated solely from known quantities. Since C_D is a function of Re_{t} , C_DRe_{t} can be expressed analytically or graphically as a function of Re_{t} . The resulting graphical relationship based on Figure 1 is shown in Figure 2 for all three shapes, and therefore the Reynolds number, Re_{t} , and hence terminal velocity, U_{t} , can be derived.

Terminal velocity measurements were made by dropping single HDS-2A (American Cyanamid) catalyst extrudates in various fluids. Since the catalyst is porous in nature, it was thoroughly soaked in the particular fluid studied before testing. The soaked catalyst density was then determined by simple volume displacement and weighing methods. The results are summarized in Table II. Experimentally, the catalyst was observed to fall with its axis horizontal, even in cases where it was released from the vertical position. The following methods were used to correlate the data.

Method A-The pellet diameter, d, was used as the characteristic length. Here, a similar relationship can be derived between $C_{\mathrm{D}}^{\mathrm{Re}}$ and the Galileo number; namely:

$$c_{\rm D} Re_{\rm c}^2 = (\pi/2) Ga$$
, for cylinders (6)

The experimental data are plotted in Figure 3, where the data exhibited good agreement with the infinite cylinder ${\rm C_D}$ vs. ${\rm Re_t}$ relationship.

Method B-For this calculation of the dimensionless groups (Re, Ga), the equivalent particle diameter, d, (defined as the diameter of a sphere having the same volume) is used. For a cylindrical pellet:

$$d_{s} = (3d^{2} 2/2)^{1/3}$$
 (7)

The results shown in Figure 4 indicate that the data lie significantly below the sphere relationship; hence, it is concluded that d_s is not a suitable dimension to be used. Note that this is the characteristic diameter used by Vasalos et al (12) and their proposed correlation is also shown in Figure 4 for comparison. It is not surprising that the Vasalos et al correlation fit the data in this form quite well because d_s was used to calculate these data points.

Method C--Heywood (7) suggested using the projected diameter, d, equal to the diameter of the circle, having an area equal to the projected area of the particle when placed in the most stable position. In the present case, d_h is given by:

$$d_{h} = (4d\mathbf{Z}/\pi)^{1/2}$$
 (8)

The terminal velocity data reduced by Heywood's approach are presented in Figure 5. The agreement with the sphere $C_{\rm D}$ vs $Re_{\rm r}$ relation is poor.

Method D--In packed column studies, the usual mean particle diameter, d_m , (see Bird, et al, 1960) is given by:

$$d_{m} = 6/a_{v} \tag{9}$$

where the specific surface, a,, is the ratio of particle surface area to particle volume. It can easily be shown that d is related to d via sphericity, ϕ_c ; i.e.:

$$d_{\mathbf{m}} = \phi_{\mathbf{S}} d_{\mathbf{S}} \tag{10}$$

where the sphericity is defined as:

φ_s = (surface area of sphere/surface area of particle, both of the same volume)

and hence for a cylindrical-shaped particle

$$\phi_{s} = (3/2 d^{2})^{2/3} / [(d^{2}/2) + d]$$
 (11)

The terminal velocity data using d_m as the characteristic length are shown in Figure 6. As a whole, the drag relationship for a sphere correlates the data very well at Reynolds numbers less than 100, but tends to overestimate the terminal velocity at higher Reynolds numbers.

Among the four methods tried, the best correlation is obtained by using the pellet diameter as the characteristic length in conjunction with the C_D vs Re relationship for infinite cylinders. This analysis demonstrates that the drag coefficient for finite cylinders of 2/d equal to 3 approaches closely to that for infinite cylinders.

Bed Expansion

According to the Richardson-Zaki correlation, bed expansion data can be reduced on a plot of $\log j_1$ versus $\log \epsilon_1$. A straight line can be drawn through the data:

$$\log j_1 = \log U_t + n \log \epsilon_1 \tag{12}$$

The intercept at ϵ_1 = 1 yields log U_t and the slope of the line gives the value for n. All the available data were reduced in this fashion. Liquid holdup was evaluated based on the expanded bed height. In the case of H-Coal AU-77H data (11), the kerosene/coal fines slurry holdup was obtained from bed height measurements using a travelling gamma-ray densitometer. All of the results are summarized in Table III, and the corresponding Richardson-Zaki plots can be found in Appendix A. As a whole, the data were found to be well correlated by a straight line on these plots, thus confirming the validity of the form of the correlation proposed by Richardson and Zaki.

Viscosity

For pure liquids such as kerosene and mineral oil, the liquid viscosity, μ_0 , can be easily measured or obtained from physical property tables. However, for the kerosene/coal fines slurry employed in the H-Coal modeling study, the mixture (effective) viscosity, μ_m , is dependent on the solid content. In general, it was found (6) that the relative viscosity (μ_m/μ_0) is a function of the solid volume fraction. The mixture viscosity data (11) for kerosene slurry were so reduced, as shown in Figure 7, and a best linear fit was found:

$$\mu_{\rm m} = \mu_{\rm o} (1 + 26.8 \, \epsilon_{\rm s})$$
 (13)

The dimensionless numbers in Table III for the kerosene/coal fines slurry fluidization data were all evaluated using Equation 13 for the viscosity values.

Terminal Velocity

The terminal velocity data extrapolated using the Richardson-Zaki method were plotted as terminal velocity Reynolds number versus the Galileo number. Figure 8 shows that on a plot of Ret versus Galusing das the characteristic length, the terminal velocity data can be well correlated by the drag coefficient relationship for infinite cylinders. However, the mineral oil data from the H-Coal AU-77H unit were found to lie significantly lower than other data in Figure 8. One possible explanation is that the catalyst was not completely soaked before the mineral oil experiments were conducted. Table IV compares the predicted terminal velocities with the experimental terminal velocities from Richardson-Zaki plots. The overall mean ratio of predicted value to observed value is 0.967, although the mean ratio for mineral oil data is only 0.737. This analysis demonstrates that the terminal velocities for cylindrical pellets in a fluidized bed can be predicted using the CD vs Ret relationship for infinite cylinders with the characteristic dimension given by the pellet diameter.

Correlation of Index, n

Richardson and Zaki found the index, n, to be a function of the particle Reynolds number as follows:

Re
$$< 0.2$$
 $n = 4.65$
 $0.2 < Re < 1$ $n = 4.35 Re^{-0.03}$
 $1 < Re < 500$ $n = 4.45 Re^{-0.1}$
 $500 < Re$ $n = 2.39$

However, this relationship was obtained for spherical particles only. Values of n for the present data are plotted in Figure 9 as a function of Galileo number. Since a unique relationship exists between Reynolds number and Galileo number for spherical particles, Equation 14 can easily

be transformed to yield n as a function of Ga. The resulting curve as shown in Figure 9 is seen to slightly overpredict the value of n. Values of n are also presented as a function of particle Reynolds number as shown in Figure 10. The original Richardson-Zaki correlation for n (Equation 14) is seen to correlate the data slightly better in terms of Reynolds number. However, more data are needed to confirm the validity of this correlation for cylindrical particles, particularly in the laminar (Re \leq 1) and turbulent (Re \geq 1000) regimes.

Richardson and Jeronimo (9) have also recently investigated methods of estimating n. One method that appears quite promising is to assume Equation 1 to be valid at both the minimum fluidization point and the fully expanded bed of voidage unity. The minimum fluidization velocity, $\mathbf{U}_{\mathbf{mf}}$, was estimated using the Ergun equation (2) for packed beds. The value of n is hence given by:

$$n = \frac{\log U_{\rm mf} / U_{\rm t}}{\log \varepsilon_{\rm mf}}$$
 (15)

where $\epsilon_{\rm mf}$ is the voidage at minimum fluidization. Their results indicate that values of n calculated using Equation 15 and the Ergun equation are considerably higher than the original Richardson-Zaki values, i.e., Equation 14. Richardson and Jeronimo attributed the discrepancy to the validity of using Ergun's equation for a fluidized bed and the uncertainty of choosing the value for $\epsilon_{\rm mf}$. We feel that the Richardson-Zaki correlation (Equation 1) does not apply near the minimum fluidization point and the original experimental data of Richardson and Zaki tend to support this observation. Richardson and Jeronimo's data also show that the Richardson-Zaki approach does not apply at the minimum fluidization point, which resulted in the larger values of n being obtained. Thus, Equation 15 is not recommended as a method for evaluation of n. Equation 14 is the best available at the present time.

CONCLUSIONS

- The Richardson-Zaki type correlation can be used to analyze bed expansion data of cylindrical-shaped particles in both pure liquid and coal slurry fluidization.
- 2) The terminal velocity values obtained from both single cylindrical catalyst drop experiments and liquid fluidized bed experiments can be adequately correlated using the CD versus Ret relationship for infinite cylinders with the characteristic dimension given by the pellet diameter. Three other characteristic dimensions were tried in attempting to correlate the single pellet terminal velocity data, but none was found to be satisfactory.
- 3) The Richardson-Zaki index, n, obtained from data used in this study is presented both as a function of the Galileo number and the Reynolds number. The original Richardson-Zaki correlation for index n is found to correlate present data better in terms of Reynolds number. More data are required, however, to confirm the validity of this correlation at both low and high Reynolds number.

REFERENCES FOR APPENDIX G

- G-1) Bhatia, V. K., and N. Epstein, "Three-Phase Fluidization: A Generalized Wake Model," Proc Euro Symp on Fluidization, 380 (1974).
- G-2) Bird, R. B., et al., <u>Transport Phenomena</u>, John Wiley and Sons (New York) (1960).
- G-3) Chemical Systems, Incorporated, "Liquid Phase Methanation," R&D NPT No. 78, Interim Report No. 1 (1973).
- G-4) Darton, R. C., and D. Harrison, "Gas and Liquid Holdup in Three-Phase Fluidization," Chem Eng Sci, 30, 581 (1975).
- G-5) Happel, J., and H. Brenner, <u>Low Reynolds Number Hydrodynamics with</u>
 <u>Special Applications to Particulate Media</u>, Chapter 9, Prentice-Hall
 (New Jersey) (1965).
- G-6) Heywood, H., "Uniform and Non-uniform Motion of Particles in Fluids,"

 Sym Interaction Between Fluids and Particles, Inst Chem Eng (London)

 (1962).
- G-7) Richardson, J. F., and W. N. Zaki, "Sedimentation and Fluidization: Part I," Trans Inst Chem Eng, 32, 35 (1954).
- G-8) Richardson, J. F., and M. Jeronimo, "Velocity-Voidage Relations for Sedimentation and Fluidization," Chem Eng Sci, 34, 1419 (1979).
- G-9) Perry, J. H., Chemical Engineers' Handbook, Fourth Edition, McGraw-Hill (New York) (1963).
- G-10) Vasalos, I. A., et al., "Study of Ebullated Bed Fluid Dynamics for H-Coal," Final Report, M80-21 (1980).
- G-11) Vasalos, I. A., et al., "Holdup Correlations in Slurry Solid Fluidized Beds," AIChE_J, 28, 346 (1982).
- G-12) Wolk, R., "Gas-Liquid-Solid Fluidization," MS Thesis, Polytechnic Institute of Brooklyn (1962).

JCL/ml 9/28/81

TABLE I

LIQUID FLUIDIZATION DATA FOR CYLINDRICAL CATALYSTS

Test Column Diameter (cm)	15.2	2.5	2.2
Fluid	Kerosene/Coal Fines Slurry Mineral Oil (Amoco 9 NF)	2-Propanol	Hexane
Catalyst	HDS-2A d = 0.16 cm l = 0.51 cm	Nalcomo 471 d = 0.079 cm l = 0.48 cm	Methanation Catalyst d = 0.16 cm l = 0.32 cm
Source	Amoco Oil (Vasalos, 1980)	HRI (Wolk, 1962)	Chem Systems, Inc. (1973)

TABLE II

SUMMARY OF TERMINAL VELOCITY MEASUREMENTS OF INDIVIDUAL CYLINDRICAL PELLET

Pellet	Particle Diameter, cm	Particle Length,	Fluid	Temp,	Fluid Density g/cm ³	Viscosity,	Soaked Density, g/cm ³	Measured (2) Terminal Velocity, cm/s
HDS-2A	0.16	0.5	Water	20	1.0	1.0	1.79	14.4
HDS-2A	0.16	0.5	Mineral Oil	99	0.82	6.2	1.61	11.9
HDS-2A	0.16	0.5	Mineral Oil	79	0.81	4.2	1.61	13.0
HDS-2A	0.16	0.5	Kerosene	20	0.79	1.39	1.68	16.4,17.0
HDS-2A	0.16	0.5	Ethylene Glycol	20	1.11	19.9	1.76	0.9
Glass Rod	0.20	0.5	Ethylene Glycol	20	1.11	19.9	2.23	10.8

(1) All Lengths are nominal values.

(2) At least 20 particles were dropped and the velocities reported are statistical averages.

JCL/ml 9/28/81

TABLE III

TABULATION OF RICHARDSON-ZAKI PARAMETERS FROM LIQUID FLUIDIZATION DATA

ક ા	13,970	13,970	024.7	790	650	1,250	130	310	800	1,570	
Ref	121	136	34	56	24	35	9.9	12	20	32	
Index	2.66	2.64	. e	2.89	3.05	2.81	3.58	3.28	2.94	2.83	
Ut (CM/8)	14.0	15.0	12.5	10.7	10.2	11.0	7.1	8.2	9.0	10.3	
vis- cosity (cP)	1.39	1.39	5.28	5.84	6.40	4.58	14.6	9.5	6.0	4.2	
f(stry) g/cm ³	0.79	0.79	0.89	0.90	0.93	0.91	0.85	0.83	0.82	0.81	
Soaked P(Cat.) g/cm ³	1.64	1.64	1.64	1.64	1.64	1.63	1.68	1.67	1.66	1.66	
Temp OC	23	22 16	1 61	22	36	99	37	22	; ;	62	
Coal Fines Conc	•	0 2	10.4	11.9	15.5	15.5	•	•	0		
Fluid	Kerosene	Kerosene Kerosene	Kerosene	Kerosene	Kerosene	Kerosene	Mineral Oil	Mineral Oil	Mineral Oil	Mineral Oil	
No.							4 20,				
P/1	3.2										
Extrudate Diameter (Cm)	0.16	•									
Catalyst	HDS-2A										
Source	Amoco Oil	(ABCT 'SOTBOAL									

Chem Sys, Inc.	Standard Methanation Catalyst	0.16	2.0	2.0 46-1	Hexane	•	20	2.25	0.66	20 2.25 0.66 0.3 25.0	25.0	2.6	898	3.67 × 10 ⁵
HRI (Wolk, 1962)	Nalcomo 471	0.079	6.0	ŀ	2-Propanol 0	0	20	1.42	20 1.42 0.79 2.5	2.5	9.6 2.81		24 391	391

(1) Run number corresponding to original report.

⁽²⁾ This run was conducted in a 15.2 cm ID column.

TABLE IV

TERMINAL VELOCITY PREDICTIONS FOR BED EXPANSION DATA

į.	66 (1)	24 4	
	x = 0.966 \(\sigma = 0.041 \)	x = 0.737 g = 0.024	
Pred Ut/ Expt Ut	0.915 0.980 1.030 1.008 0.939 0.944	$ \begin{array}{c} 0.747 \\ 0.739 \\ 0.703 \\ 0.757 \end{array} $	1.008
Pred Ut (cm/s)	15.3 13.4 12.4 11.4 11.6	9.5 11.1 13.6 13.6	24.8
Expt Ut (cm/s)	14.0 15.0 13.8 12.5 10.7 11.0	7.1 8.2 9.0 10.3	25.0
ଞ୍ଚା	13,970 13,970 2,420 960 790 650 1,250	130 310 800 1,570	3.67×10 ⁵
Run ID	201 301 204 205 210 209 208,214	420,427 421,428 422,426 423,429	46-1
Fluid	Kerosene Slurry	Mineral Oil	Hexane n-Propanol
Source	Amoco Oil (Vasalos)		Chem Sys HRI (Wolk)

JCL/ml 9/28/81

⁽¹⁾ x = mean; = standard deviation.

Figure 1
DRAG COEFFICIENTS FOR SPHERES, DISKS AND CYLINDERS (from Perry (10))

	-19 <u>####</u>
Figure 7	
SLURRY VISCOSITY CORRELATION	
SLURRI VISCOSITI CORRELATION	
SLURRY TEMP	
\$ 1 St. 1 St	
23 €	
0 38 6	
£ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
8 5	- 2016 11 - 11 - 12 - 12 - 12 - 12 - 12
The state of the s	40 (1+26.8 Cg.)
1 3 - 1 - 1	
\mathcal{L}	
Vol. Protest God	2 0.3
The state of the s	Fige Co. Y

DE WIND SOTENAS

APPENDIX

RICHARDSON-ZAKI PLOTS OF BED EXPANSION DATA

The Richardson-Zaki plots for the bed expansion data are presented in this appendix.

	10						:-1		1	. ;		E- 11	= 1	<u> </u>			
	9						 	<u>. </u>	-		-	====	<u>=</u>	-			
	8							- ' '	-		-					JAI	9/12/31
	,											-	- 1			٧٥٢	1//5/01
			====				===	 							=		
	6							:==:			- :-			-			
							= :			-	-			-:::	- :		
	5		72	Bod	5	am/		7	,	7	Ē	fox	-1	10.			
		+19	15	DOB					4	7	Ţ.	<i></i>	===				
	4			Dys.	أمط		مين	2		2	<u></u>		1111				
						=					== :			1			
											=	===					
	34					=	1.12						=				,
	2.5					-					-			: -		u_t	25 cm/s
								-	: : : :				: .	111	7	ัท	25 cm/s 2.6
											-	===	:		÷		
	202				-		1:=::		===	_	=	-	=				
		= CH	em sys	ZNC									 		-		
	1.5.		A 74	no E 4	tru d	Fin] 		-			-				
	1.7		1	<u>a – </u>					: .:								
		He	rane_				-		-	-							
				<u> </u>		:								ļ. 			
	, A10					-		<u> </u>									
	1010.							F			-						
	-												. : :				
	5.						ļ =					0	<u> </u>	 ::	Ξ		
	7.								 		-				Ξ		
	6						<u> </u>	-			la			= =			
												ΙĒ	-				
	5					量										1	
										0	Ę				==]	
72	4					〓		F		=							
•							\equiv				:::	=	-		=	1	
cm/s							\equiv	E	-		-						
	3								\$	=							
	2.5								E	E						1	
										E							
	2							亖				量					
						丰				E				E			
				* (1						E	=			ŧ	丰	=	
	1.5									E	-	=	-	=	=	3	
								=	#=	+	Ė		1=		三三	3	
	٠				1		 =			-	-		1-	-	-	3	
			1 1 1 1 1 1	1 (E	-[-	E	1		$oxed{oxed}$	E		
	1	1	1.5	2	2.5	3		4		5		6	7	8	9	10	
						₹-	2										

																	a
		9===		-		=		= =	=					-			$u_{\ell} = 9.6 \frac{c_{so}}{s}$ $u_{\ell} = 2.31$
		8		<u> </u>	-		.:: T.: 3	 :-				+			_		$\frac{1}{i}$
		E			= ====			-			+					+	-100 = 2.31
		7						= =		-	4	<u> </u>					<u> </u>
		<u> </u>									.: :		-	-	-	-1	-
										=	+				-	-	
		,	HR	(w	Ne 19	61,5	1 -)		= 1	-	+	-		_1_:		+	<u>•4</u>
			E<,	5	AF	- /						- -			: :		
		.=		propy		-07/6					=	= =			-	- 1 -	
	•		Na	Como	177	,	1/2 >	# -		=		#	+=				
				Carno		==	732	==	=[=	E				Ģ		- :	:
									=			-	=]
	3						-	+	-					+	\vdash	-	1
]=		= -	F	O				
	2.5							-		-		+	-	=	1	Ę.	4
						==	==	= =	-		= =			-			
	2	=====							:::			10	3 :	_	:	Ţ =	4
							-	= =		-			==			1:	7
					-					E		T-		=			:
	1.5	<u> </u>				 	<u> </u>	- =		- -	e		==	[==			
										1=	-/-	-			П]
				• • • • •			.			-		-	F	-			
						 			_	1	1	<u> </u>	<u> </u>	-	1:		
	1.0						-	-		ļ				 -	1		
	9.		===			===	===	ÌΞ	1.0				===		-		1
								1	-			- : :		 	-	+	†
	5.									+		F			-	-	4
,	7.				===		=	=		-		=				=	
de en/s	_						==		#==	=	-					-	
en/s								Œ								7 = -	
•	5								E						=	=	
											-	\equiv					
									E		苣						
	•									H							
									三			=		====			
	_[===				\equiv						-	
	3								量								
	2.5												☷				
	2.3											\equiv				\equiv	
	1							=	〓	=		\equiv					
	0.2					===		==		\equiv				===			
	E						三	=		7,		∄		$z \equiv$	\equiv	= ;;	o
							Œ,	\equiv				\equiv	\equiv	\equiv		==1	-
	1.5						\equiv			=		丰				\exists	
•	Ė		9. 7	6 B	ed C	par	410		20	Ø		4	_4	Jo/	/c	Σ=	
	E			20	D.	ام		<u> </u>			=	_				\equiv	
	þ							J	<u>tu</u>	-24	3	4	~0	- -			
	咔										\exists		11.		_		
	1		1.5	2	2.5	. 3		4	-	5	i	6	7	8	9	10)
							€	٤									