DOE/MC/28202-3535 (DE94000061)

Environmental Report for the Gasification Product Improvement Facility (GPIF)

Topical Report

R.S. Sadowski W.H. Skinner E.S. Norris R.R. Duck R.B. Hass M.E. Morgan J.J. Helble S.A. Johnson

January 1993

Work Performed Under Contract No.: DE-AC21-92MC28202

For U.S. Department of Energy Office of Fossil Energy Morgantown Energy Technology Center Morgantown, West Virginia

By

CRS Sirrine Engineers, Inc. Greenville, South Carolina

Environmental Report for the Gasification Product Improvement Facility (GPIF)

Topical Report

R.S. Sadowski W.H. Skinner E.S. Norris R.R. Duck R.B. Hass M.E. Morgan J.J. Helble S.A. Johnson

Work Performed Under Contract No.: DE-AC21-92MC28202

For

U.S. Department of Energy Office of Fossil Energy Morgantown Energy Technology Center P.O. Box 880 Morgantown, West Virginia 26507-0880

By CRS Sirrine Engineers, Inc. 1041 East Butler Road Greenville, South Carolina 29606-5456

January 1993

TASK 1 - NEPA SUPPORT DOCUMENT TABLE OF CONTENTS

Section

1.	INTRODUCTION	1
2.	PROJECT OBJECTIVES	1 2 2 3 3 3 3 22
3.	SCHEDULE OF MILESTONES	1
4.	SUMMARY OF TEST PLANS	2
5.	TECHNICAL SUMMARY	2
6.	TECHNICAL APPROACH	3
7.	EXISTING FACILITY DESCRIPTION	3
8.	TEST FACILITY MAJOR EQUIP. CAP. & TIES TO FT MARTIN	3
9.	FUNCTIONAL DESCRIPTIONS OF TEST FACILITY - PHASE I	22
10.	CONTROL SYSTEM DESCRIPTION	32
11.	ELECTRICAL SYSTEM ASSESSMENT	37
12.	FUNCTIONAL DESCRIPTIONS OF TEST FACILITY- PHASE II	44
13.	PROJECT ENVIRONMENTAL ASPECTS	49
14.	EMISSION REDUCTION OF NOx	49
15.	GREENHOUSE GASES AND AIR TOXICS	49
	PRODUCTION AND HANDLING OF OTHER EFFLUENTS	50
	EHSS COMPLIANCE	51
	PLAN FOR EHSS RISKS AND IMPACTS	52
	VIABILITY OF THE GASIFICATION CONCEPT	53
20.	OVERVIEW OF THE PyGas [™] PROCESS	57
21.	THE PYROLYZER	58
22.	UPPER ZONE OF THE GASIFIER	60
23.	UPPER BED GASIFICATION	60
24.	LOWER BED GASIFICATION	62
25.	MATH MODEL PREDICTIONS	62
26.	CONCLUSIONS	64
27.	DESCRIPTION OF THE PyGas™ GASIFIER	64
28.	UNIQUE FEATURES OF THE PyGas™ GASIFIER	65
-0.	28.1 RUN OF MINE COAL	65
	28.2 AIR BLOWN	65
	28.3 CAKING COALS	65
	28.4 TAR CRACKING	66
	28.5 VOLATILIZED ALKALI CONTROL	66
	28.6 MINIMIZED AMMONIA PRODUCTION	66
••		
29.	EMISSIONS CHARACTERISTICS	66

29. EMISSIONS CHARACTERISTICS

LIST OF FIGURES

Figure		Page
1	Schedule of Milestones	1
2	GPIF General Arrangement Drawing	4
3	GPIF Project Site Plan	5
4	Photo Showing GPIF Facility Proposed Site Alternates	7
5	The GPIF - PyGas [™] Process Flow Sheets	8
6	Proposed Ties Between GPIF and Ft. Martin	21
7	Hydration by Submerged Combustion	24

Missing Pages: P.2, P.104 and P. 105

LIST OF TABLES

,

<u>.</u>

Figu		Page
1	Fort Martin Tour Route Stop Identification & Locations	6
2	Mass Balance	9 - 20
3	Process Water Consumption	28
4	Test Facility Motor Horsepower Consumption	30
5	Control Room Equipment	33
6	Control Systems and Equipment	34
7	Electrical Equipment	38
8	Effect of Repowering on Effluents	50
9	Trace Elements Present in Coal Ash	52
10	Predicted Gas Compositions	63

NEPA DOCUMENTATION TABLE OF CONTENTS PSIT SUPPORT

Section	on	Page
1.	INTRODUCTION	69
1.1	Trace Elements in Coal	69
1.2	Emission from Fort Martin Plant Under Normal Operation	74
1.3	Trace Element Behavior in GPIF System	85
1.4	Significance of Trace Metal Emission from GPIF	96
2.	CRITERIA POLLUTANTS	100
2.1	SO ₂ Emissions	100
2.2	NO _x Emissions	100
2.3	CO Emissions	103
3.	NEPA ASSESSMENT OF PSIT FACILITIES	103
3.1	Brief Description of PSIT Laboratory Facilities to be Used in this Project	103
3.2	Anticipated Emission from PSIT Laboratory Facilities	104
3.3	Permits Required	106
3.4	Agency Contacts	106
4.	REFERENCES	107

NEPA DOCUMENTATION TABLE OF CONTENTS PSIT SUPPORT LIST OF FIGURES

Figure		Page
1	Process flow diagram for Fort Martin	75
2	Boiler mass balance calculation results	77
3	Balance around convective section	81
4	Electrostatic precipitator mass balance	83
5	Overall balance at GPIF facility	86
6	Balance around CaS oxidation unit	93
7	Conversion of ammonia to NO_x in a turbulent diffusion flame	102
8	PSIT Facility Location Map	105

NEPA DOCUMENTATION TABLE OF CONTENTS PSIT SUPPORT LIST OF TABLES

Table		Page
1	Fort Martin Coal Analyses (As-Fired Basis)	71
2	Trace Element Concentrations in Pulverized Coals	72
3	Common Forms of Trace Elements in Coals	73
4	Field Measurements of Trace Element Partitioning in Coal-Fired Combustion Boilers	78
5	Balance of Trace Element Concentrations Around the Boilers	80
6	Balance Around Air Heater and Economizer Hoppers	82
7	Trace Metal Balance Around the ESP	84
8	Trace Element Concentration - GPIF Inlet Streams	88
9	Trace Element Partitioning in Gasifier - Ratio of Elemental Concentrations in Fly Ash to Bottom Ash	89
10	Trace Element Partitioning in the Gasifier - Average Partitioning Values Used	91
11	Trace Element Partitioning in the Gasifier - Maximum Partitioning Values Used	92
12	Trace Element Leachability as f(pH)	94
13	Partitioning of GPIF Fly Ash by the ESP	95
14	Effect of GPIF Facility	97
15	Conversion of Coal Nitrogen to Ammonia in a 2-ft Diam Wellman-Galusha Gasifier	101

Task 1 Gasification Product Improvement Facility (GPIF) Environmental, Safety, & Health (ES&H) Information National Environmental Policy Act (NEPA)

1. Introduction

The Department of Energy (DOE) Fossil Energy Program has a mission to develop energy systems that utilize national coal resources in power systems with increased efficiency and environmental compatibility. Coal gasification technology is a versatile candidate that meets this goal.

Optimized air-blown fixed-bed gasification power generation systems at a cost of about \$1000 per kilowatt (KW) are possible if gasifier subsystem process components can be reduced or eliminated.

This two phased project consists primarily of the design, construction and operation of a 5-foot inside diameter (minimum) fixed-bed gasifier called PyGas[™] and supporting infrastructure (Phase I), and an additional follow on phase consisting of the design, construction and operation of a hot fuel gas cleanup unit (Phase II).

2. Project Objectives

The main goal of the GPIF project is to develop systems and subsystems to resolve technological issues that surround the simplified IGCC concept. Issues expected to be successfully overcome by $PyGas^{TM}$ through its application in this test facility include the processing of high-swelling coals, which causes agglomeration in conventional fixed-bed gasifiers. Such coals comprise 87% of all eastern coals. Other issues expected to be eliminated or significantly reduced include: production of ash clinkers, production of ammonia, the presence of significant tars and fines, and the volatilization of alkalinity in the product fuel gas.

3. Schedule of Milestones

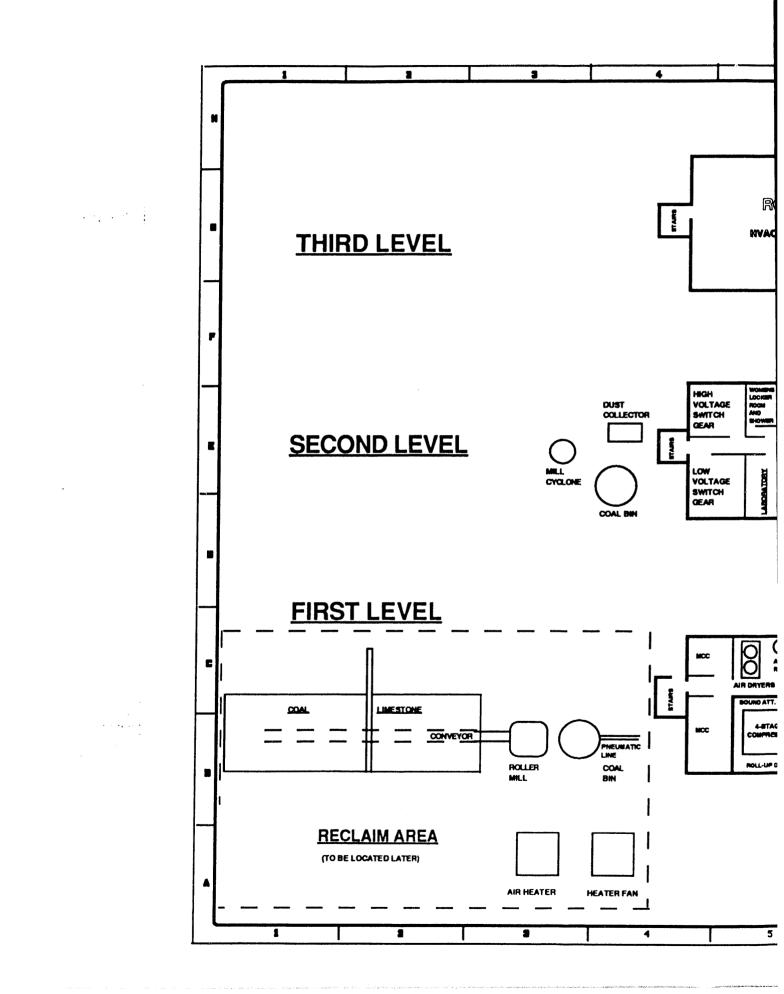
				dule	-	Mil	esto ched							
Environmental Analysis Work Plan Permit Information Conceptual Design Bench-Scale Tech Detailed Design Construction	S 	0	N	D	1	F	M	A	M]	1	A	S	

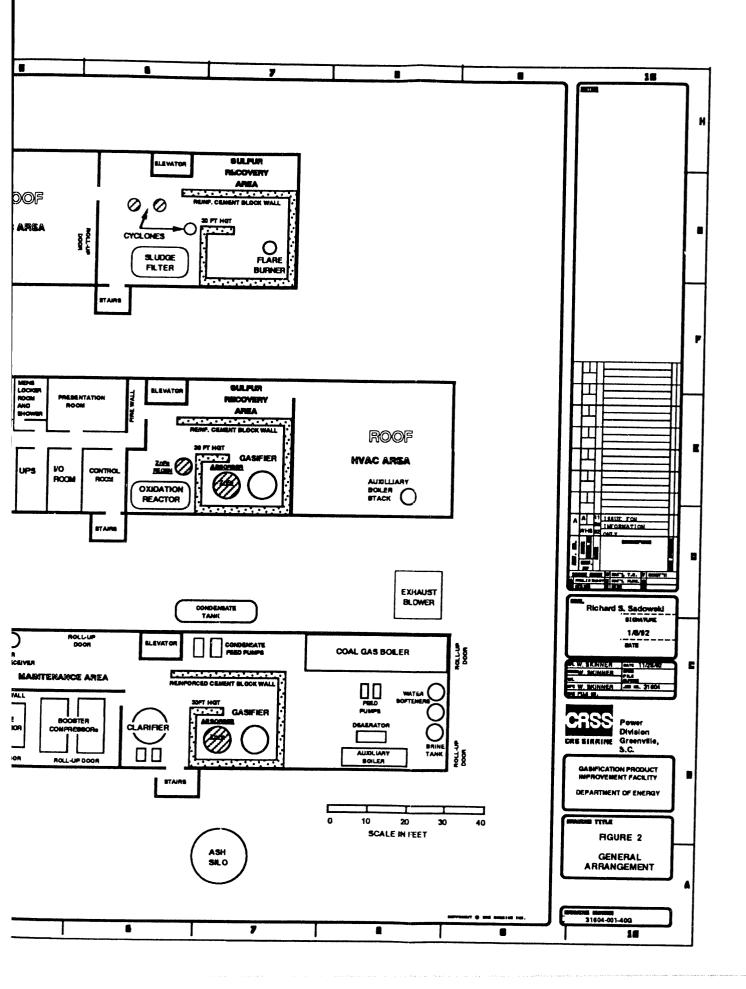
6. Technical Approach

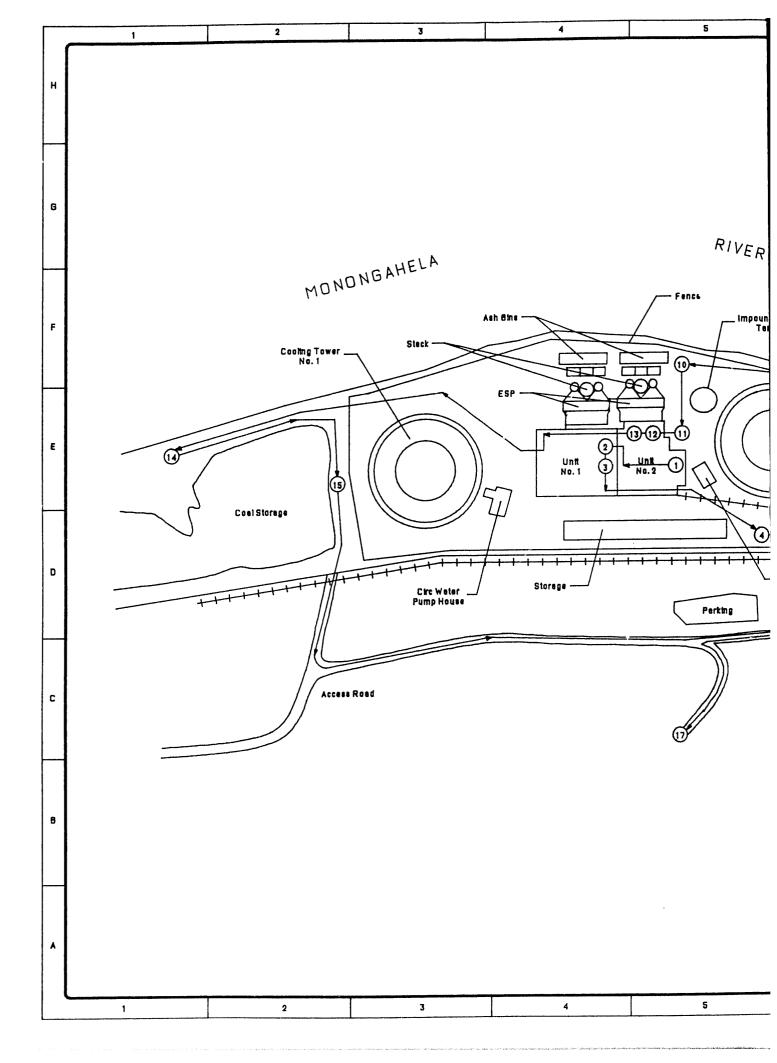
The gasifier test facility general arrangement drawing (Figure 2) utilizes the CRS Sirrine Engineers, Inc. proprietary gasification invention nominally rated (for materials handling purposes) at 6 tons per hour coal throughput. Its capacity is therefore anticipated to be approximately six times the capacity of the existing 42 inch diameter METC test gasifier. The operating pressure is 600 psi, and the gasifier is expected to be 5 feet (minimum) in diameter, and some 34 feet in height. It is designed to operate at a maximum coal firing rate of 150-MBtu/hr. Since it will be located at an existing utility site, it is anticipated that the products of combustion from the coal derived gas will be returned to the existing stack.

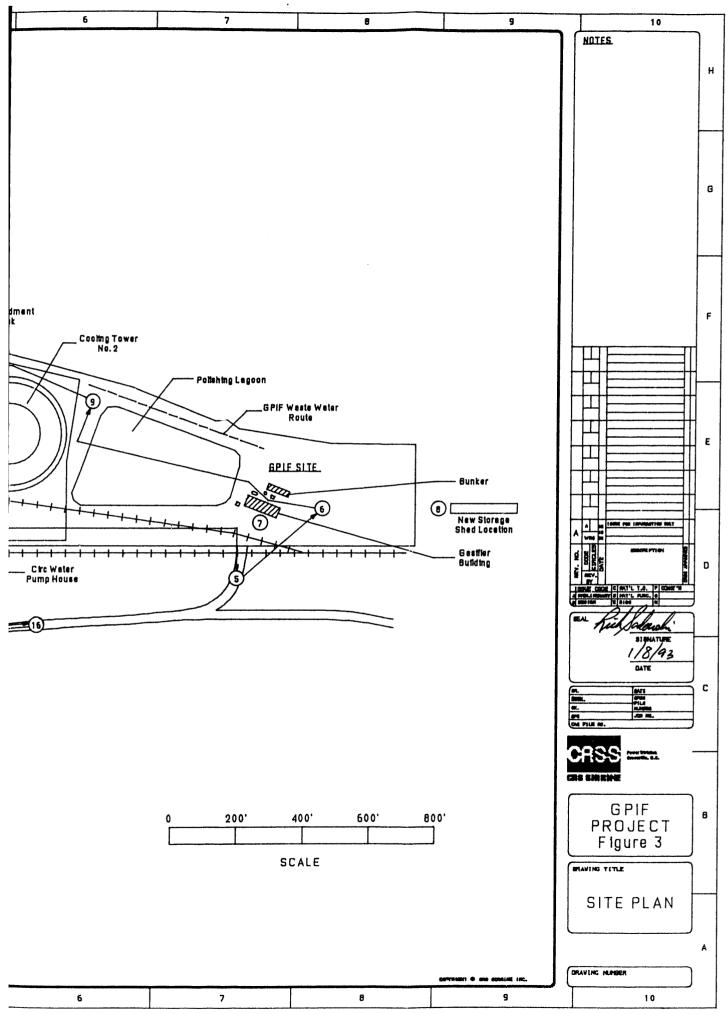
7. Existing Facility Description

Fort Martin Generating Station (Figure 3 & Table 1) is a 1000 MWe pulverized coal fired electric utility power plant located in Point Marion, West Virginia, some two miles down the Monongahela River from the Morgantown Energy Technology Center. It is operated by Monongahela Power Co., an Allegheny Power System company. High and low sulfur coals are currently blended to meet current sulfur emission limits. Coal is received by barge, conveyed to an enclosed breaker house, and loaded out to either long term or active open coal piles, and reclaimed in a manner that allows the utility to control feed quantities of the low and high sulfur coal feed stocks. Steam turbine condenser heat of condensation is rejected via conventional cooling towers to the atmosphere. Coal ash is pneumatically conveyed to ash silos and subsequently is trucked to a permitted coal ash landfill area on the premises. Care and due diligence is practiced to avoid excessive dusting using water sprays during ash loading onto the ash trucks. and wind screens are in place as a deterrent to wind blown ash from the landfill. Sulfur is currently the only criteria pollutant requiring controlled emission limits. Figure 4 shows a photograph of the existing site with alternate GPIF locations identified.

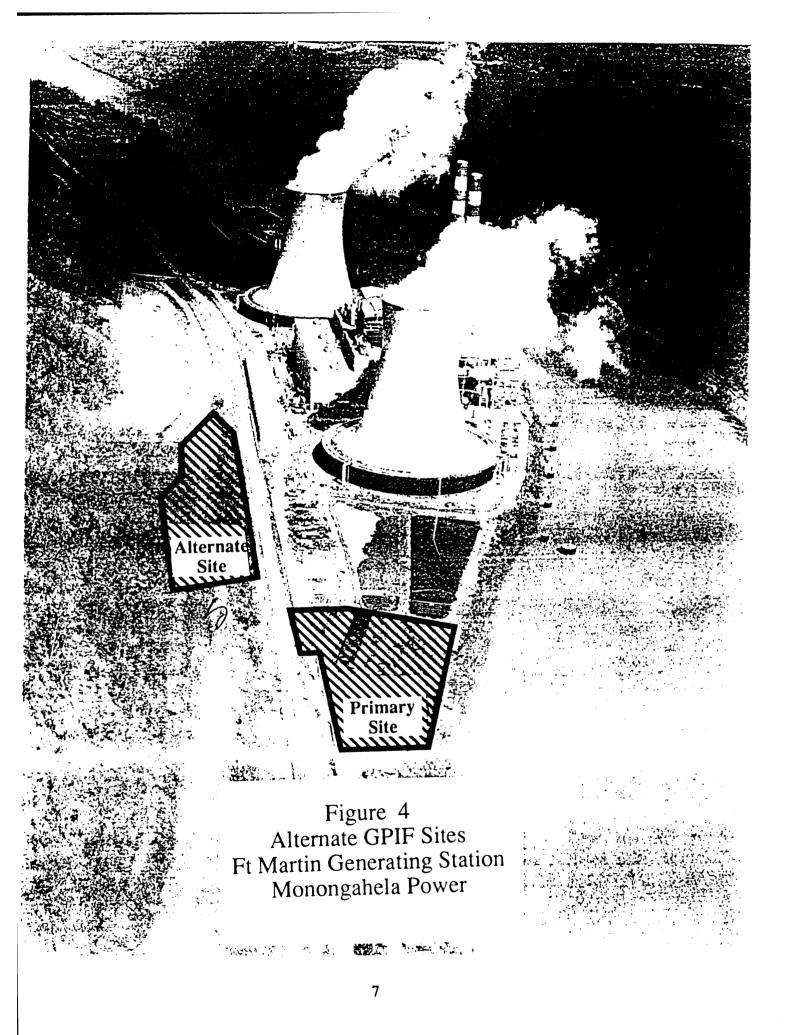

8. Test Facility Major Equipment Capacities and Ties to Ft. Martin

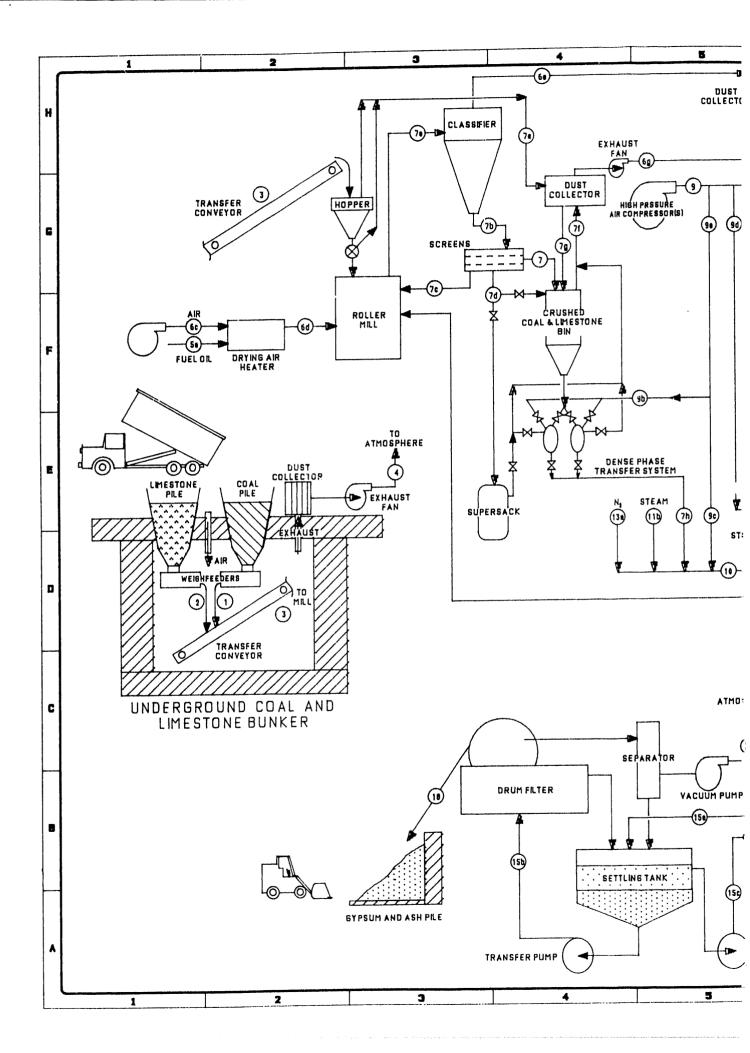

Included herewith are the process flow sheet (Figure 5) and typical mass balances (Table 2) for the existing Fort Martin Generating Station along with a mass balance predicted for the Gasification Product Improvement Facility (GPIF) under Phases I & II. The numbered columns match the circled numbers identified in the preliminary process flow diagram. Proposed ties to Ft. Martin are identified in Figure 6.

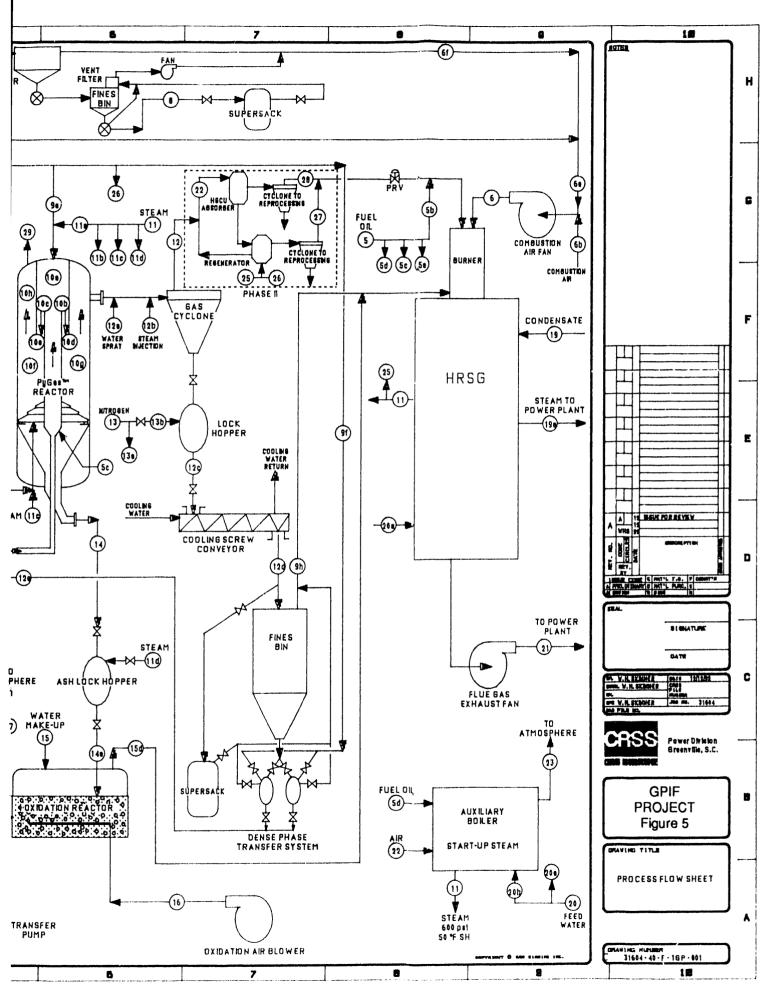

The concept is to fire coal gas in a closely coupled packaged auxiliary steam generator located within the GPIF. The products of combustion will then be ducted back to the existing flue gas duct of Fort Martin Unit #2 upstream of the existing stack. The heat released within the packaged fired auxiliary steam generator will be returned to the existing Fort Martin Unit #2 in the form of steam. As contemplated, the GPIF represents only approximately 1.5% of the full load rated station firing rate, an aliquot side stream of feedwater will be fed to and returned from the GPIF as auxiliary or high pressure steam for the utility company. The new boiler will have a capacity of approximately 90,000 lbs per hour of steam.


In addition to the light oil ignited coal gas fired heat recovery steam generator (HRSG), either a smaller 10,000 lbs per hour steam light oil fired packaged boiler, or equivalent steam from Ft Martin, vented to atmosphere is contemplated for space heating and gasification process steam.

The limestone feed capability to the PyGas[™] coal gasifier may be sufficient in concert with coal gas combustion and steam generation to reduce Fort Martin sulfur emissions from currently


.


· · · · ·


Table 1

FORT MARTIN TOUR ROUTE

- Stop 1 Training Room at the Fort Martin Power Station. Tour groups will be formed and introduced to the utility tour guides.
- Stop 2 Connection point for Filtered Water. Available at quantities up to 200 gpm for steam generation and general use. Anticipated pressure at connection point is 150 psig.
- Stop 3 Connection point for Service Water. Available for fire protection at quantities up to 1200 gpm. Anticipated pressure at the connection point is 85 psig.
- Stop 4 Connection point for Potable Water. Plant storage consists of a 20,000 gal tank. Conveyed (by gravity) to plant through a 3-inch PVC line at 15 gpm. Anticipated pressure at connection point is 120 psig.
- Stop 5 Approximate location of railroad crossing required for access to the GPIF.
- Stop 6 Approximate location of the GPIF, as shown by surveyors stakes. Access during construction and test operations will be via Stop 15 & 5. Approximately four acres.
- Stop 7 Existing storage shed to be relocated area near Stop 8.
- Stop 8 New location of storage shed presently located on the GPIF site.
- Stop 9 Anticipated route of buried GPIF process waste water pipes from the GPIF to the Plant ash settling basins. Plant will provide treatment and discharge.
- Stop 10 Plant ash settling basins.
- Stop 11 Approximate locale for GPIF fuel gas to enter the Plant for combustion in the coal-fired boiler
- Stop 12 Unit #2 coal-fired boiler
- Stop 13 Unit #2 Control Room.
- Stop 14 Coal storage pile for Plant operations. Low-sulfur coal will be made available for GPIF operations.
- Stop 15 Truck weigh station for ash trucks.
- Stop 16 Unimproved roadway leading to the railroad crossing and the GPIF site.
- Stop 17 Paved road leading to the ash disposal pit, contractors' entrance and exit.

DOE - GPIF - CRSS Col NEPA Support Document, Mass E		Jaing FW Data (High Steam		Table 2.2
Biream No. Identification From To Ges	Moi Wi	6 Combustion Air Total HRSG Bumer Ib/hr	6a Combustion Air Exhaust Vents HRSG Burner	6b Combustion A Ambient HRSG Burner
ω				•••••••••••
H2	28.010 2.016	0	0	
CO2	44.010	49	922	
H20	18.015	652	426	
CH4	16.042	0	0	
C2H6	30.068	0	0	
H28	34.076	0	0	
005	60.070	0	0	
NZ	28.013	76923	11,458	6
Ar	39.948	1347	201	
HCI	36.461	0	0	
HON	27.026	0	0	
NH3 CS2	17.030	0	0	
502	76.131 64.059	0	0	
ND	30.006	0	3	
8	31.999	23559	3,270	2
NaCl	58.497	0	0	-
KCI	74.596	0	o	
CaSO4	136.142	0	o	
Ca(OH)2	74.095	0	o	
C12	35.500	0	0	
Total Gas (Ib/hr)		102529	16,329	8
c		•••••••••••••••••••••••••••••••••••••••	••••••	• • • • • • • • • • • • • • • •
H	12.011 1.008		1	
0	16.000			
N N	14.007			
8	32.060		ĺ	
CaO	56.079			
H2O	18.016			
NaCl	58.497			
KCI	74.596			
C#504	136.142			
Ca	40.080			
CaS ASH Inode (ash)	72.140			
ASH, Inerts (pph) Total Solids (pph)				
Total Flow (pph)		156499	16329	81
			10328	
Total Flow (pps)		43	5	
Pressure (psia)		15	15	
Temperature (F)		90	90	

02|

• • • • • • • •					
haust lector	6g Dust Collector Ex Hopper Dust Coll Forced Drait Fan	61 Dust Collector Exhaust lassifier Dust Collector Forced Draft Fan Intake @ 99% Removal Effic.	6e Classifier Air Classifier & Filter Coal Gas Burner @0 .01% Solida	6d Heated Drying Air Dr;ing Air Heater Crusher Mill	6c Air Almosphere Coal Dryer 1.25 Ib/Ib Coal
0		0	0	0	0
0		0	0	0	0
1		96	922 425	922 425	7 96
ŏ		0	0	420	0
0		0	0	0	o
0		0	0	0	0
0		0	0	0	0
84 1		11,336 198	11,336	11,336	11,336
, o			198	198	198
Ō		0	ő	ő	0
0		0	ō	0	0
0		0	0	0	0
0		0	3	3	0
0 26		0 3,472	0	0	0
0		3,4/2	3,233	3,233	3,472
Ő		ol	ő	0	0
0		0	Ō	0	o
0		0	0	0	0
0		0	0	0	0
112		16,217	16,217	16,117	15,110
6.43E-04		0.017	1.69		1
		0.001	0.11		
1.08E-04		0.003	0.28		
1.16E-05 9.01E-06		0.0003	0.03		
9.012-00		0.0002	0.02		
1 76E-05		0.0005	0.05		
2.81E-05		0.001	0.07		
1.42E-04		0.004	0.97		1
1.00E-03		0.004 0.03	0.37 2.63		
16117		16217	16220	16117	15,110
	• • • • • • • • • • • • • • • • • • • •				
4 14.7		5 14.7	5 14.7	4	4.20 14.7
14.7		14.7	14.7	14.7	14.7
367		367	150	500	80

0 15,110 16117

2 3	Mass & Energy Balance	5 fl Dia Test Size		COD) Reference Coal - For RSS Predicted Output	
4 5				••••••••••••••••••••••••••••••••••••••	
1	Identification		Cost/Limestone Fines	Compressed Air	l
i		1	Classifier Dust Collector	High Pressure Compressor	
i			R Martin Coal Pile	Total	l
i	Ges	Moi Wi	lb/hr	lb/hr	l
İ	•••••		•••••••••••••••••••••••••••••••••••••••		ŀ
	00	28.010		0	
ļ	H2	2.016			
ļ		44.010		24	
!		18.015	<u> </u>	321	l
ļ	CH4	16.042	£1	o	
!	C2H6	30.068	!!]	0	
1	H2S	34.076	1ª 1	0	ļ
	006 N2	60.070 28.013	21	37924	
	Ar	39.948		664	
	Ha	36.461	1:1	0	
	HON	27.026			
	NHG	17.030		ő	
	C82	76.131		0	
	SO 2	64.059	li I	0	
	ND	30.006	li f	o	
	02	31.999		11615	
	NeCl	58.497	li l	ol	
	KCI	74.596	li f	ol	
	CaSO4	136.142	li l	0	
	Ca(OH)2	74.095		0	
	CaO	56.079	li l	0	
	Total Gas (ib/hr)			50548	
	•••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	•
	C	12 01 1	4 67441		•
	-	12.011 1.008	1.6741	7	
	H O	16.000	0.1072 0.2799	36	
	N	14.007	0.0302	11918 37924	
	8	32.060	0.0235	3/924	
	CL.2	35.500	0.00001	49884	
	H2O	18.016	0.04571	- *004	
	NaCi	58.497	5.040/[[]		
	KCI	74.596	11		
	CaSO4	136.142			
	Ca	40.080	61	1	
	CaO	56.079	61	1	
	ASH, Inerts (pph)		0.3694		
	Total Solids (pph)		2.5300	o	
	Total Flow (pph)		13	50548	
	••••••	•••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	
	Total Flow (pps)		0.004	9	
	Pressure (psia)		151	600	
	Temperature (F)	1	80	200	

.

.

•

n - Low Sullur - 11/13/92 - MGAS Kinelics ng FW Data (High Sleam - Low Blu) Case			able 2.4	3/10/93 17:19 CONTRACT NO. DE-AC21-92MC28202			
	9a		% Theo. Air	96 /	9c		
Compressed Air@ Pressure Compressor Pyrolyzer	2.27 A	C	26.57%	Coal/Lm*sin Convey Air High Pressure Compressor Pyrolyzer	Compressed Air High Pressure Compressor Pyrolyzer		
lb/hr	mol wgt	wt %	mol%	lb/hr			
0	0.00	0.00	0.00	0	• • • • • • • • • • • • • • • • • • • •		
0	0.00	0.00	0.00	0			
15	0.01	0.05	0.03	3	1		
196	0.18	0.64	1.02	37	15		
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
Ō	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
23186	21.65	75.03	77.28	4397	1873		
406	0.38	1.31	0.95	77	32		
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
7101	6.63	22.98	20.72	1347	575		
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
0	0.00	0.00	0.00	0			
30904	28.86	100.00	100.00	5860	2504		
		····					
4	1	i		7608			
22	•	i		487			
7286	•	i		1272			
23186	•	i		137			
••••••	ĺ	i		107			
30498	Total	i	1	0			
	•	i i		100			
		1		0			
		i		0			
		i		0			
		Í		332			
		i		0			
		Í		1679			
0		1		11721			
30904	29693	i		17581	2504		
8.58		•••••••		5	• • • • • • • • • • • • • • • • • • • •		
600		1		600	60		
150		l t		200	20		
190		1	1	200	200		

.

2		al Gasification Process (Kinetically	Ising FW Data (High S	leam - Low Blut
3 4	NEPA Support Document, Mass B		using rw usia (riigh 5	
6	Siream No.	1 9		
6	Identification	Compressed Air@	0.83 N	c
7	From	High Pressure Compressor		-
8	То	Gasilier Grate		5/A
91	Gas	lb/hr	lb-mol/hr	wt %
10	••••••			
111	8	0	0.00	0.00
121	H2	0	0.00	0.00
13	COS	5	0.01	0.05
14	H2O	64	0.18	0.64
15	CH4	0	0.00	0.00
16	C2H6	0	0.00	0.00
17	H25	0	0.00	0.00
18	008	0	0.00	0.00
19	N2	7527	21.65	75.03
20	Ar	132	0.38	1.31
21	HCI	0	0.00	0.00
22	HON	0	0.00	0.00
23	NH3	0	0.00	0.00
24	CS2	0	0.00	0.00
25	SO2	0	0.00	0.00
26	ND COL	0	0.00	0.00
27	02	2305	6.63	22.98
28 29	NaCi Kci	0	0.00	0.00
301	CaSO4	0	0.00 0.00	0.00
31	Ca(OH)2	0	0.00	0.00 0.00
32	CI2	ů o	0.00	0.00
33	Total Gas (ib/hr)	10033	28.86	100.00
34				
56				
57	С	1 1		
58	Ĥ	7		
59	0	2365		
60	N	7527		
61	S			
62	CaO	9901 JT	stal .	
63	H2O	••••••		
64	NaCl			
65	KCI			
66	CaSO4			
67	Ca			
68	CaS			
69	ASH, Inerts (pph)			
70	Total Solids (pph)	9728		
71	Total Flow (pph)	9728		
72		·····	•••••	•••••
73	Total Flow (pps)	2.70		
74	Pressure (psia)	600		
75	Temperature (F)	225		

.... 3/10/93 17:19

.5				1	3/10/93 17:19	1
).560	Compressed Air@ H	9e 0.82 A/C Igh Pressure Compress Gasilier Top	; sor		91 Compressed Air High Pressure Air Compressor Cyclone Fines Conveying	
	lb/hr	lb-mol/hr	wi %	mol%	ib/hr	
0.00	0	0.00	0.00	0.00	0	!
.00	ů 0	0.00	0.00	0.00	0	
.03	5	0.01	0.05	0.03	Ŏ	ĺ
.02	61	0.18	0.64	1.02	ů –	ļ
.00	0	0.00	0.00	0.00	0	i
.00	0	0.00	0.00	0.00	Ŏ	i
.00	0	0.00	0.00	0.00	Ŏ	i
.00	0	0.00	0.00	0.00	0	i
.28	7211	21.65	75.03	77.28	38	i
.95	126	0.38	1.31	0.95	1	i
.00	0	0.00	0.00	0.00	0	i
.00	0	0.00	0.00	0.00	0	i
00	0	0.00	0.00	0.00	0	Í
.00	0	0.00	0.00	0.00	0	İ
00	0	0.00	0.00	0.00	0	Ì
.00	0	0.00	0.00	0.00	0	1
.72	2208	6.63	22.98	20.72	11	1
.00	0	0.00	0.00	0.00	0	l l
.00	0	0.00	0.00	0.00	0	1
.00	0	0.00	0.00	0.00	0	1
0.00	0	0.00	0.00	0.00	0	1
0.00	0	0.00	0.00	0.00	0	
.00	9611	28.86	100.00	100.00	50	
••••j		••••••				i
	1 7			1		
i	2266			i		i
i	7211			i		i
i.				i		i
i	9485 jT	otal		i		i
1.	•••••••••••••			i		i
1				1		i
1				1		Ì
1				1		i
I				1		Í
I				ł		1
1				1		1
1	9611			l	0	- 1
	9611				50	
1	2.67	••••			0.01	
i	600			i	600	i
i i	225			i	225	i

4	•		10	1 10		•••••	• • • • • • • • • • • •	
6	Identification		Feed to Pyrolyzer	Products of Pyrolysi	-			
7	From	1	Coal, Air, Steam	Pyrolyzer Section		N in coal to NH3	in cas	
8	То		• •	Upper Area of Gasil		90.00% Conversion		
9	Ges		lb/hr		ib-mol/hr	w %	mol%	
10	1							
11	00	28.010	0	4859	173.48	13.29	12.	
12	H2	2.016	0	264	130.74	0.72	9.	
13	002	44.010	15	5741	130.45	15.70	9.	
14	•	18.015	197	1460	81.02	3.99	5.	
15	•	16.042	0	256	15.96	0.70	1.	
6	•	30.068	0	0	0.00	0.00	0.	
7		34.076	0	113	3.33	0.31	0.:	
8	•	60.070	0		0.00	0.00	0.0	
9	-	28.013	23186	23274	830.84	63.66	59.9	
0		39.948	406	442	11.06	1.21	0.4	
1		36.461	0		0.00	0.00	0.0	
2		27.026	0		0.00	0.00	0.0	
31		17.030	0	150	8.81	0.41	0.0	
4		76.131	0		0.00	0.00	0.(
5		64.059	0		0.00	0.00	0.0	
6		30.006	0		0.00	0.00	0.0	
7		31.999	7101		0.00	0.00	0.0	
8		58,497	0		0.00	0.00	0.0	
9		74.596	0		0.00	0.00	0.0	
0		136.142	0		0.00	0.00	0.0	
1 2	Ca(OH)2 Cl2	74.095	0		0.00	0.00	0.0	
3	Total Gas (lb/hr)	56.079	0		0.00	0.00	0.0	
	ional Gas (lovin)		30904	36715	1385.68	100.00	100.0	
6						• • • • • • • • • • • • • • • • • • • •	•••••	
7	C	12.011	7612		•••••	•••••		
51	н	1.008	509	,	3846	3842	-0.109	
91	0	16.000	8558		520	525	0.79	
	N	14.007	23323		8646	8711	0.75	
	S	32.060	107		2332 3 107	23398	0.32%	
21	CaO	35.500	30498		107	107	0.01	
si.	H2O	18.016		Carbon Utilized		50.55% (
	NaCI				•••••••••••			
si.	KCI					••••••		
i.	CaSO4							
i.	Ca		332					
i.	CaS							
١Ì.	ASH, Inerts (pph)		1679					
ij.	Total Solids (pph)	ł	11721	36715				
1	Total Flow (pph)		42625	36715				
1	•••••			····				
1	Total Flow (pps)		11.84	10.20				
1	Pressure (psia)		600		Heat Loss.	Reduce Air Flow to	Control Te	
1	Temperature (F)		150			iab. temp(F)= 305		

. . .

Table 2.6

. . .

..... 3/10/93 17:19

106		10c			10d		
oducts of Pyrolysis - Solids prolyzer Section oper Area of Gasilier	Gases - Upper Portion of (Pyrolyzer Section Fixed Bod	3esifier			Solids - Upper portion of Pyrolyzer Section	Gasifier Bed Voldage 12.00%	
Ib/hr wt%	lb/hr	lb-mol/hr	wt %	mol%	Ib/hr	wi %	
	4537	161.98	9.83	9.63		•••••	
	137	68.06	0.30	4.05			
	6955	158.02	15.06	9.40			
	3225	179.00	6.98	10.64			
	0	0.00	0.00	0.00	1		
	1	0.00	0.00	0.00			
	113	3.33	0.25	0.20			
	4	0.00	0.00	0.00			
	30485	1088.25	66.03	64.71	1		
	568	14.22	1.23	0.85			
		0.00	0.00	0.00			
		0.00	0.00	0.00			
	150	8.81	0.32	0.52			
		0.00	0.00	·0.00	1		
		0.00	0.00	0.00			
		0.00	0.00	0.00			
		0.00	0.00	0.00			
		0.00	0.00	0.00			
		0.00	0.00	0.00 0.00			
		0.00	0.00 0.00	0.00			
		0.00 0.00	0.00	0.00			
	46791	1681.66	100.00	100.00			
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		
3766 63.73		3843	3843		3766	69.17	
CarbonRemaining		531	531				
49.50%		10977	10512				
		30608	30608				
		107	107				
465							
	1						
1070 00 44					1679	30.83	
1679 28.40 5910 92.62					5445	100.00	
	46791				5445	100.00	
5910	40/91						
1.64	13.00				1.51		
600	600				600		
1652	2336	e	st. temp	2336	2336		

4 5 Stream No.		10e						
6 Identification	ł	Gases Evolved through Gasilication						
7 From	1	Down Through Fixed Char Bed						
8 To	1	Slowed Endothermic Reaction Point						
9 Gas	Mol Wt	lb/hr	lb-mol/hr	wt %	mol%			
10 11 00	28.010	9797	349.76	20.53	1			
12 H2	20.010	280	138.95	0.59	,			
3 CO2	44.010	4382	99.67	9.18				
4 H2O	18.015	1948	108.11	4.08				
5 CH4	16.042	0	0.00	0.00				
6 C2H6	30.068	Ŏ	0.00	0.00				
17 H2S	34.076	113	3.33	0.24				
8 006	60.070	0	0.00	0.00				
9 N2	28.013 (30485	1088.25	63.88	6			
10 Ar	39.948	568	14.22	1.19	-			
1 HCI	36.461	0	0.00	0.00				
2 HON	27.026	Ó	0.00	0.00				
3 NH3	17.030	150	8.81	0.31				
4 CS2	76.131	0	0.00	0.00				
5 502	64.059	0	0.00	0.00				
6 ND	30.006	0	0.00	0.00				
7 02	31.999	0	0.00	0.00				
8 NaCl	58.497	0	0.00	0.00				
9 KCI	74.596	0	0.00	0.00				
0 CaSO4	136.142	0	0.00	0.00	(
1 Ca(OH)2	74.095	0	0.00	0.00				
2 CaO	56.079	0	0.00	0.00	(
3 Total Gas (lb/hr)		47723	1810.99	100.00	100			
4		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • •			
7 C	12.011		5397	5397	*****			
8 H	1.008		531	531				
90	16.000		10512	10512				
0 N	14.007		30608	30608				
1 S	32.060		107	107				
2 CL2	35.500			107				
3 H2O	18.016 (
4 ZnFe204								
5 Zris								
6 FeS								
7 Fe2O3								
8 210	i							
9 ASH	i i							
0 Total Solids								
1 Total Flow (pph)	i	48345						
2		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • •			
3 Total Flow (pps)	1	13.43						
Pressure (psia)		600						
5 Temperalure (F)	1	1591						

.....

|

able 2.7			3/10/93 17:19				
	Uncomb		10g	Grate S/A 0.5	6	İ	
Ash & Carbon Gasilier	% of Cx 29.08%	Hol Gas@ Lower Bed		Overall A/C 3.9 Overall S/C 0.4	2 6		
Above Grate Ib/hr	с w % :	Exil Ib/hr	ib-moi/hr	N2 in coal NH3 Conv. 0.0 wi %	% moi %	1	
		3690	131.7	76 21.33	17.80		
		164	91.5		12.34	•	
		2284	51.8		7.01	•	
		3480	193.2		26.10		
		0	0.0		0.00		
	l	0	0.0		0.00	•	
	1	Ō	0.0		0.00		
		Ō	0.0		0.00		
		7527	268.7		36.30		
		132	3.3		0.45		
		0	0.0		0.00	•	
		ō	0.0		0.00		
		0	0.0		0.00		
		0	0.0		0.00		
		0	0.0		0.00		
		0	0.0		0.00 {		
		ů	0.0		0.00 (
		0	0.0		0.00 (
		0				·	
		0	0.0		0.00		
		0	0.0		0.00		
		0	0.0		0.00	· .	
		0 16988	0.0 740.1		إ 0.00 إ 100.00		
			/40.1			:	
2213	56,86		219	9 2206	-0.30% (
			57		0.00%		
			686		0.02%		
0	0.00		752		0.00%		
0	0.00		İ	0 0	0.00%	e	
	s	ub-Totals	1716	1 17166	-0.03%	6	
			+ Sum of	Sum of Gas	Mass	6	
			Streams	Const. balance check	Unbalance	6	
1679 3891	43.14 100.00	0			0.001		
3891		16988				7	
1.08		4.72	•••••••••••••••	• • • • • • • • • • • • • • • • • • • •		7	
600		600			i	7	
1591	Į į	1500				7	

NEPA Support Document, Masa		"Using FW Data (High	Sleam - Low Blu) Case		
Stream No.		•••••••••••••••••••••••••••••••••••••••	10h		
Identification From		Mixture of Gases from	Upper Bed and Lower E Gasilier	led 86 sci	/1b o1
To	i		Combustor		
Gas	į	lb/hr	ib-mol/hr	w %	m
 00	28.010	13487	481.52	20.74	•••••
H2	2.016	464	230.26	0.71	
CO2	44.010	6666	151.47	10.25	
H2O	18.015	5428	301.31	8.35	
CH4	16.042	0	0.00	0.00	
C2H6	30.068	0	••••	0.00	
H26	34.076	113		0.17	
006	60.070	0		0.00	
N2	28.013	38012		58.46	
Ar	39.948	700		1.08	
HCI	36.461	0	0.00	0.00	
HON	27.026	0	0.00	0.00	
NH3	17.030	150		0.23	
CS2	76.131	0	0.00	0.00	
SO2 NO	64.059	0	0.00	0.00	
	30.006 (U 0	0.00	0.00	
NaCl	31.999 58.497	0	0.00 0.00	0.00	
KCI	74.596	0	0.00	0.00	
CaSO4	136.142	0	0.00	0.00 0.00	
Ca(OH)2	74.095	0	0.00	0.00	
Cl2	56.079	0	0.00	0.00	
Total Gas (Ib/hr)	00.070	65021	2551.16	100.00	
		•••••			• • • • • • •
с	12.011	••••••		7602	•••••
Ĥ	1.008	1	1105	1105	
0	16.000	1	17372	17372	
Ň	14.007		38136	38136	
S	32.060		107	107	
CaO	35.500			•••	
H2O	18.016	Sub-Totals	64321	64321	
NaCl		+			.
KCI	i				
CaSO4	Ì				
Ca	1				
CaS	1				
ASH, Inerts (pph)	1	17			
Total Solids (pph)	1	17			
Total Flow (pph)		65333			
Total Flow (pps)		18.15		•••••	
Pressure (psia)	1	600			
Temperature (F)		1568			

۰.

			Table 2.8			*	******	
	11a Sleam HRSG Gasilier Top Ib/hr	H2O/cost 0.00000 S/C				oai 0.46 8/C	11d Sleam HRSG Ash Lock Ib/hr	11 Total Sleam HRSG GPIF Ib/hr
3.87 9.03 5.94								
.81 .00 .13 .00 .13 .00 .19 .69 .00 .35 .00	0.00		C		5062		169	523 I
.00 .00 .00 .00 .00 .00 .00	0.00		0		5062		169	5231
	· · · · · · · · · · · · · · · · · · ·	•••••					······	•••••
0%	0 0		0	'	506 4495			566 4495
0% 0%		Total		Total	5062		ŀ	5062
0%				· .				
	0		0		5062		169	0 5231
	0.00	• • • • • • • • • • • •	0.00			·····	0.05	1.45
	600		600		600		600	600
	700	1	486	I	700	Į	700	700

Mass & Energy Balance		*Using FW Data (Hi	yh Sleam - L	ow Blu) Case		
Stream No.		12.		126		
Identification		Water Spray		Steam Injection		
From		Gasilier Oullet		Gastlier Outlet	1	
То		Combustor/HGCU		Combustor/HGCU	1	
Ges	Mol WI	lb/hr	wt %	ib/hr	w1%	lb/hr
00	28.010	4	· • • • • • • • • • • • • • • • • • • •	••••••••••••••••••••••••••••••••••••••		134
H2	2.016				1	4
CO2	44.010	•				66
H20	18.015	1	100.00	0	100.00	83
CH4	16.042			-		
C2H6	30.068					
H2S	34.076					1
CO6	60.070		1			
N2	28.013				1	380
Ar	39.948				1	7
на	36.461				1	
HON	27.026					
NHG	17.030					1
C62	76.131					
802	64.059					
ND	30.006					
02	31.999					
NaCl	58.497					
KCI	74.596	1				
CaSO4	136.142					
Ca(OH)2	74.095					
CeO	56.079					
Total Gas (lb/hr)	1	2,900	100.00	0	100.00	679
•••••••••••••••••••••••••••••••••••••••		••••••••••••••••	••••••	•••••••••••	••••••	
С	12.011					
н	1.008				1	
0	16.000					
N	14.007					
S	32.060					
C12	35.500					
H2O	18.016					
NaCl	58.497					
KCI	74.596					
CaSO4	136.142					
Ca	40.080					
CeO	56.079					
ASH, Inerts (pph)						
Total Solids (pph)						
Total Flow (pph)		2,900		0		6823
	•••••••••••••••••••••••••••••••••••••••	••••••	••••••	••••••••••••	• • • • • • • • • • • • •	• • • • • • • • •
Total Flow (pps)		0.81		0.00		18.9
Pressure (psia)	1	600		600		60
Temperature (F)		80		700		135

ł.

Table 2.9

Ga	w Gas Outlet Nitrogen Inerting siller Outlet Nitrogen Tanks		Nitrogen Tanks	14 Ash & Carbon Gasilier	Uncomb % of C 0.20%	14a Ash Lock Hopper
Combusior (Pt mol/hr	wi%	(Phase II) mol% :	PyGas™ Gasilier & Locks Ib/hr	Ash Removal Ib/hr	w %	Oxidation Reactor Ib/hr
481.52						
230.26	0.68	8.49				
151.47	9.81	5.58				
462.30	12.26	17.05				
0.00	0.00	0.00				
0.00	0.00	0.00				
3.33	0.17	0.12			1	
0.00	0.00	0.00				
1356.96	65.97	50.03			1	
17.52	1.03	0.65				
0.00	0.00	0.00				
0.00	0.00	0.00				
8.81	0.22	0.32				
0.00	0.00	0.00				
0.00	0.00	0.00				
0.00	0.00	0.00				
0.00	0.00	0.00				
0.00	0.00	0.00				
0.00	0.00	0.00				
0.00	0.00	0.00				
0.00	0.00	0.00				
0.00	0.00	0.00				
2712	100	100				
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
				15	0.88	15
						89
				0	0.00	
				0	0.00	60
			1		1	
		1				
						1218
						222
				1679	99.12	460
			1	1693	100.00	2064
		1		1693	100.00	2064
		}				2V04
		l		0.47		0.57
				15		14.7
		1	1			1 7 1 7

	DOE - GPIF - CRSS	S Coal Gasilication			
4	Mass & Energy Balance		*Using FW Data (High Stea	m - Low Blu) Case	
5	•	1	16	16a I	166
6	Identification		Make-up Water	Overflow	Thickened
7	From		Service Water	Oxidation Reactor	Settling
8	To	i	Oxidation Reactor	Settling Tank	Drum
9	Gas	Mol Wi	lb/hr j	lb/hr j	lb/h
10	••••••				
11	•	28.01	1	I	
12	•	2.016 (1	1	
13	•	44.01	1	1	
14		18.015	1	1	
16		16.042	1	1	
16		30.068 (1	1	
17		34.076	1	1	
18		60.07	1	1	
19		28.013	1	1	
201		39.948	1	1	
21		36.461	I	1	
22		27.026	l I	1	
23		17.03		ł	
24		76.131		1	
25		64.059	1	1	
26		30.006	1	1	
27		31.999	1	l I	
28 29	NaCi KCi	58.497	1	1	
30	CaSO4	74.596	1	1	
31		136.1416	1	1	
321	CI2	74.09474	1	1	
33	Total Gas (ib/hr)	35.5			
34		1		1	
56				••••••	••••
57	C	10 0105	••••••	••••••	••••
58	Ĥ	12.0105	1		
59	0	1.008		1	
60	Ň	15.9995			
61	8	14.0065 32.06			
62	CaO	56.0794			
63	H2O	18.0155	A R C I	10005	
64	NaCl	58.497	856 (12835	
65	KCI	74.596	1	I	
66	CaSO4	136.1416	ļ		
67	Ca	40.08		1827	
68	CaS	72.14		1	
69	ASH, Inerts (pph)	/2.14			
70	Total Solids (pph)		9.5.C. 1	690	
71	Total Flow (pph)		856	15353	
72			856	15353	
73	Total Flow (pps)		0.24		•••••••••
74	Pressure (psia)	1	14.7	4.26	•
75	Temperature (F)	1		14.7	
• • •		1	80	90	

Table 2.10

3/10/93 17:19

				3/10/33 1/.13				
	15c Overflow Bettling Tank Oxidution Reactor Ib/hr	15d Vent Oxidation Reactor HRSG Burner Ib/hr	16 Air Oxidation Air Blower Oxidation Reactor Ib/hr	17 Drum Filter Vent Vacuum Pump Atmosphere Ib/hr	18 Gypsum & Ash Drum Alter Pi Marlin Land All Ib/hr			
		0.43 446	 0.43 5.84	0.23 9.41				
		 688.66 12.06 	688.66 12.06 	358.85 6.28				
	 	42.16 	210.92	109.91				
	1	 1189	918	484.68				
•			•••••		•••••			
	1				 68 			
	8985				406			
	183				1354 222			
	69	i	i		460			
	9236 9236	1189 1189 	918 918 	485 485	2531 2531 			
	2.57	0.330	0.25	0.135	0.70			
	14.7	14.7	15	14.7	14.7			
	90	90	90	90	90			

| 2 |

Siream No.	· · · · · · · · · · · · · · · · · · ·	19	19a	20	20a	206
Identification	l l	Condensate	Steam	Feedwater	Feedwater	Feedwate
From	i	R Martin	HIPSG	Water Treatment	Water Treatment	Water Treate
To	i	GPIF	R Martin	GPIF	HP90	Start-up Bo
Gas	Mol WI	lb/hr	lb/hr	ib/hr	lb/hr	lb/hr
00	28.010					
H2	2.016					
002	44.010					
H2O	18.015		14507			
I CH4	16.042					
C2H6	30.068					
H2S	34.076					
	60.070					
N2	28.013					
Ar	39.948 36.461					
HC HON	27.026	1				
NH3	17.030					
CS2	76.131					
1 802	64.059					
NO	30.006					
02	31.999					
NaCI	58.497					
KCI	74.596					
CaSO4	136.142					
Ca(OH)2	74.095					
C12	35.500					
Total Gas (lb/hr)	i		14507			
				•••••		
•••••	••••••			•••••••••••••••••••••••••		• • • • • • • • • • • • • •
C	12.011					
I H	1.008					
0	16.000					
N	14.007		1			
S	32.060					
CaO	56.079					-
H2O	18.016 (84157		10000	10000	1
NaCl	58.497			1		
KCI	74.596					
CaSO4	136.142					
Ca Cas	40.080 72.140					
ASH Inerte (nob)	72.140					
ASH, Inerts (pph) Total Solids (pph)	1	1				
Total Flow (pph)	1	84157	14507	10000	10000	1
Total Flow (ppri)						•
Total Flow (pps)		23	4	3	3	
Pressure (psia)	i	200	600	600	600	
Temperature (F)	i	382	700	80	80	

••.			•••••	•••••	•••••		NEPA Suppor	t Document, Ma	3/10/93 17:1 Iss Balance	
nt		21 Rue Gas OPIF			GPIF	29 Emergency Flare Gasilier		Criteria Polluta Fl. Martin Stat Stack (Norma	ion Ft. Martin Station i) Stack (GPIF Operating	FI. Martin Station Change Due To GPIF
	R Martin Ib/hr Ib-mol/hr	w %	specvo mol%scim	Almosphere Ib/hr		lb/hr	l lb/hr	*		
	20.10	••••			• • • • • • •		802			
	0.00	0.7 0.0		0.01 0.00	5	13467	NDx Particulates		43 5,44 53 62	
1	31609		17.49				and the second second second second second second second second second second second second second second second		No.2 Oil Fired Startup	
ł	14,953	830.0		13.26	6679				0.	
l		0.0					NOx			3
l		0.0	0.00	0.00	0		Particulates			1
L	1	0.0			0	113				
		0.0			0					
	120489	4301.2			26996	38012		Criteria Polluta		Criteria Pollutanta
	2144	53.7	1.19		1369	700		Fl. Martin Stati	on Fl. Martin Station	Ft. Martin Station
		0.0 0.0		0.00 0.00	0			black (Normal Ib/hr	i) black (GPIP Operating Ib/hr	%
I		0.0		0.00	ŏ	160				
l		0.0	0.00	0.00	0		802	24,9		
	227	3.6		0.06	22		NOx			
	23	0.8	0.01	0.01	5		Particulates		54 -68	
	11297	353.1	6.25	5.64	2225				No.2 Oil Fired Startup	Boiler
		0.0	0.00	0.00	0		SO 2		0.	6
		0.0		0.00	0		NOx			4
		0.0	0.00	0.00	0		Particulates		<u> </u>	1
		0.0	0.00	0.00	0					
	180744	0.0 6261	0.00	0.00 100	41804	65021				
	•••••						••••	••••••		
	180744					17 17 65333				
	50 14.7			••••		18 600 1568	• • • • • • • • • • • • • •	••••••		

•

1	1 a	N 00 0P	<u> </u>	CPR	CS
2	1 2	Mass & Energy Balance		DOE - GPIF - CRSS C	o.Gasification
3		Estimated Trace Metals Emissions for N	IEPA Benod	Typical Expected Case	Gasincation
4	1i a			I specied case	1 18
8]i 6	Identification	Trace Elements	Trace Elements	Trace Elemen
-		From	Normal PL Martin Ash		GPIF Ash
1		ITO	R. Martin Ash Landill		FL. Martin Ash L
		·] ·]-···	lb/hr	lb/hr	Ib/hr
	1 10	•	•	N CARRIED OUT TO SUFFICIENT SI	
Contraction in the	1 1			ING MEASUREMENTS, BUT DO REI	
12	1 12	21		1	1
And in case of the local division of the loc	13	•			
	14	•			
		i Antimony	0.742	0.004	
		/ Arsenic	14.672		
		Barium	105.361		
10	19	Beryllium	1.36		
		Beron	27.2290	3.051	0.
		Cadmium	0.290	5 0.0019	0.
		Chromium	9.2404		
		Coball Copper	3.780		
		Copper Lead	9.894		
		(Manganese	26.625		
		Mercury	0.0125		
28	28	Molybdenum	2.0337		
		Nicket	3.6516		
	•	Selenium	1.5642	1	0.
	•	Vanadium	13.5963		
		Uranium Thorium	1.3015		
	•	TOTAL TRACE METALS	1.9833		
35			235.10	4.77	
36	36	Normal Criteria Particulates	92729	331	;
		(Ash, Limesione, Carbon Loss)		551	· ·
			1		1
					1
39	39	TOTALS (Particulates & Trace Metals)	92964		
40	39 40	TOTALS (Particulates & Trace Metals) Estimated Trace M	92964 Aetais Emissions for NEPA (Worst Expected C
39 40 41	39 40 41	TOTALS (Particulates & Trace Metals) I Estimated Trace M Stream No.	Aetals Emissions for NEPA (Report	Worst Expected C
9	39 40 41 42	TOTALS (Particulates & Trace Metals) Estimated Trace M	Aetais Emissions for NEPA (Trace Elements	Report Trace Elements	Worst Expected C. Trace Element
39 60 61 12 13	39 40 41 42 43 44	TOTALS (Particulates & Trace Metals) I Estimated Trace & Stream No. Identification From	Aetals Emissions for NEPA (Report Trace Elements Normal R. Martin Rue Gas	Worst Expected C. Trace Element GPIF Ash
10 11 12 13 14	39 40 41 42 43 44 45	TOTALS (Particulates & Trace Metais) Estimated Trace & Stream No. Identification From To	Aetais Emissions for NEPA (Trace Elements Normal R. Martin Ash	Report Trace Elements Normal R. Martin Rue Gas	Worst Expected C. Trace Element GPIF Ash
39 10 11 12 13 14 15 16	39 40 41 42 43 44 45 45	TOTALS (Particulates & Trace Metals) Estimated Trace & Siream No. Identification From To	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil	Report Trace Elements Normal R. Martin Flue Gas R. Martin Stack	Worst Expected C. Trace Element GPIF Ash Fl. Martin Ash La
39 40 41 42 43 43 44 45 45 45 45 45	39 40 41 42 43 44 45 46 47	TOTALS (Particulates & Trace Metals) Estimated Trace & Stream No. Identification From To	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil	Report Trace Elements Normal R. Martin Flue Gas R. Martin Stack	Worst Expected C. Trace Element GPIF Ash Ft. Martin Ash La
39 40 41 12 13 14 15 16 17 18	39 40 41 42 43 44 45 46 45 46 47 48	TOTALS (Particulates & Trace Metals) Estimated Trace & Stream No. Identification From To	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil	Report Trace Elements Normal R. Martin Flue Gas R. Martin Stack	Worst Expected C. Trace Element GPIF Ash Ft. Martin Ash La
9 10 11 2 3 4 5 6 7 8 9	39 40 41 42 43 44 45 45 45 45 45 45 45 45 45 45 45 45	TOTALS (Particulates & Trace Metals) Stream No. Identification From To	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil	Report Trace Elements Normal R. Martin Flue Gas R. Martin Stack	Worst Expected C. Trace Element GPIF Ash Fl. Martin Ash La
9 10 11 12 13 4 5 6 7 8 9 0	39 40 41 42 43 44 45 46 45 46 47 48 49 50	TOTALS (Particulates & Trace Metais) Estimated Trace A Siream No. Identification From To	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil	Report Trace Elements Normal R. Martin Flue Gas R. Martin Stack	Worst Expected C. Trace Element GPIF Ash F1. Martin Ash La
39 40 41 42 43 43 44 45 46 15 16 17 18 19 10 1	39 40 41 42 43 44 45 46 45 45 45 45 50 51	TOTALS (Particulates & Trace Metais) Estimated Trace A Siream No. Identification From To	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil	Report Trace Elements Normal R. Martin Flue Gas R. Martin Stack	Worst Expected C. Trace Element GPIF Ash Fl. Martin Ash La
39 10 11 12 13 14 15 16 16 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1	39 40 41 42 43 44 45 45 45 45 45 50 50 51 52 53	TOTALS (Particulates & Trace Metals) Estimated Trace A Stream No. Identification From To Anlimony	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil	Report Trace Elements Normal R. Martin Flue Gas R. Martin Stack	Worst Expected C Trace Element GPIFAsh Fl. Martin Ash La Ib/hr
39 40 11 12 13 14 15 16 17 1 8 16 17 1 8 1 9 1 1 1 2 1 3 1 4	39 40 41 42 43 44 45 46 45 46 45 50 50 51 52 53 53	TOTALS (Particulates & Trace Metals) Siream No. Identification From To Antimony Arsenic	Aetals Emissions for NEPA (Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 0.7421 14.6723	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr	Worsi Expected C Trace Element GPIF Ash Fi, Marlin Ash La Ib/hr
19 10 11 12 13 14 15 1 6 1 7 1 8 9 1 1 1 2 1 3 1 4 5 1	39 40 41 42 43 44 45 46 47 48 49 50 51 51 53 53 55 55	TOTALS (Particulates & Trace Metais) Estimated Trace A Stream No. Identification From To Antimony Arsenic Barium	Artais Emissions for NEPA f Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 0.7421 14.6723 105.3615	Report Trace Elements Normal Pi Martin Flue Gas Pi. Martin Stack Ib/hr 0.0042 0.2557 0.3785	Worst Expected C Trace Element GPIF Ash Fl. Martin Ash La Ib/hr 0.0 0.2 2.0
19 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	39 40 41 42 43 44 45 46 47 48 49 50 55 1 52 53 54 55 55 56	TOTALS (Particulates & Trace Metais) Estimated Trace A Stream No. Identification From To Antimony Arsenic Barium Beryllium	Aetals Emissions for NEPA f Trace Elements Normal R. Martin Ash R. Martin Ash Landiël Ib/hr 0.7421 14.6723 105.3615 1.3620	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064	Worsi Expected C Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0
19 10 11 12 13 14 15 16 1 15 16 1 12 3 14 15 1 1 2 3 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	39 40 41 42 43 44 45 46 47 48 47 48 47 50 51 52 53 55 55 55 55 56 57	TOTALS (Particulates & Trace Metais) Estimated Trace A Stream No. Identification From To 	Artals Emissions for NEPA I Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 1b/hr 0.7421 14.6723 105.3615 1.3620 27.2296	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064 3.0518	Worst Expected C Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.0
19 10 11 12 13 14 15 16 17 18 9 0 1 2 3 4 5 6 7 8	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 55 55 56 55 55 55	TOTALS (Particulates & Trace Metais) Estimated Trace A Stream No. Identification From To 	Aetals Emissions for NEPA I Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 1b/hr 14.6723 105.3615 1.3620 27.2296 0.2905	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064 3.0518 0.0019	Worst Expected C Trace Element GPIF Ash Fi. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.0 0.0
9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 9	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 55 55 55 55 55 55 55 55	TOTALS (Particulates & Trace Metais) Estimated Trace A Stream No. Identification From To 	Aetals Emissions for NEPA f Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 1b/hr 14.6723 105.3615 1.3620 27.2296 0.2905 9.2404	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896	Worsi Expected C Trace Element GPIF Ash Fi. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.6 0.0 0.1
19 11 12 13 14 15 6 7 8 9 0 1 12 3 4 5 6 7 8 9 0 0	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 55 55 55 55 55 55 55 55 55 56 57 58 50 50	TOTALS (Particulates & Trace Metals) Estimated Trace A Stream No. Identification From To 	Aetals Emissions for NEPA I Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 1b/hr 14.6723 105.3615 1.3620 27.2296 0.2905	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136	Worst Expected C Trace Element GPIF Ash Fl. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0.0 0.0 0.0
19 10 11 12 13 15 16 7 8 9 0 1 2 3 4 1 5 6 7 8 9 0 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1	39 40 41 42 43 44 45 46 47 48 49 50 51 55 55 56 55 56 56 57 58 57 58 50 60 61 62	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	Aetals Emissions for NEPA f Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 1b/hr 14.6723 105.3615 1.3620 27.2296 0.2905 9.2404 3.7605	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896	Worsi Expected C Trace Element GPIF Ash Fl. Martin Ash La Ib/hr 0.0 2.0 0.0 0.2 2.0 0.0 0.0 0.0 0.0 0.0
39 40 41 12 13 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 155 55 55 55 55 55 55 55 55 55 55 55	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobatt Copper Lead Manganese	Aetals Emissions for NEPA I Trace Elements Normal R. Martin Ash R. Martin Ash Landiil Ib/hr 16/hr 13.3620 27.2296 0.2905 9.2404 3.7605 9.8940 6.7590 26.6250	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0136 0.0581	Worst Expected C Trace Element GPIF Ash Fl. Martin Ash La Ib/hr 0.0 2.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0
9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 1 8 9 1 2 1 2 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 155 55 55 55 55 55 55 55 55 55 55 55	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Boryllium Boron Cadmium Cromium Cobalt Copper Lead Manganese Mercury	Actals Emissions for NEPA I Trace Elements Normal R. Martin Ash R. Martin Ash Landili Ib/hr 0.7421 14.6723 105.3615 1.3620 27.2296 0.2905 9.2404 3.7805 9.8940 6.7590 26.6250 0.0125	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0830 0.1210 0.1863	Worst Expected C Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.6 0.0 0.1 0.1 0.1 0.1 0.5
9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 2	39 40 41 42 43 44 45 46 47 48 49 50 51 51 53 55 55 55 55 55 55 55 55 55 60 61 55 57 55 60 61 55 60 61 55 57 55 60 61 55 60 60 61 65 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 5 10 5 10 5 5 10 5 10 5 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 1 5 1	TOTALS (Particulates & Trace Metais) Estimated Trace A Stream No. Identification From To To Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Mercury Molybdenum	Actals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash B. Martin Ash Image: State Sta	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0830 0.1210 0.1863 0.0190	Worsi Expected C Trace Element GPIF Ash Fi. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0.1 0.1 0.1 0.1 0.5 0.0 0.0 0.1 0.1 0.1 0.5 0.0 0.0 0.1 0.1 0.1 0.5 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1
9 10 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1	39 40 41 42 43 44 45 46 47 48 49 50 51 51 53 55 55 55 55 55 55 57 55 57 55 60 61 55 60 61 55 60 61 55 60 60 61 55 60 60 60 60 60 60 60 60 60 60 60 60 60	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barlum Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Mercury Molybdenum Nickel	Actals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash B. Martin Ash In International R. Martin Ib/hr Ib/hr Ib/hr 105.3615 1.3620 27.2296 0.2905 9.2404 3.7805 9.2404 3.7805 9.8940 6.7590 26.6250 0.0125 2.0337 8.6615 1.6515	Report Trace Elements Normal P. Martin Fue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064 3.0518 0.0019 0.0836 0.0136 0.0581 0.0830 0.1210 0.1863 0.0190 0.0565	Worsi Expected C Trace Element GPIF Ash Fi. Marlin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0.1 0.1 0.1 0.5 0.0 0.0 0.1
9 0 1 1 1 1 1 1 1 1	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 55 55 55 55 55 55 55 55 56 1 55 56 1 55 56 1 55 57 56 1 55 57 56 1 55 57 1 55 1 55	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chromium Cobait Copper Lead Manganese Mercury Molybdenum Nickel Selenium	Actals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash In Ash Landial Ib/hr Ib/hr 14.6723 105.3615 1.3620 27.2296 0.2905 9.2404 3.7605 9.8940 6.7590 26.6250 0.0125 2.0337 8.6515 1.5642	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0896 0.0136 0.0581 0.0896 0.0136 0.0581 0.0896 0.0136 0.0581 0.0830 0.0136 0.0581 0.0830 0.0136 0.0581 0.0830 0.0136 0.0581 0.0190 0.0582 0.0190 0.0581 0.0190 0.0581 0.0190 0.0581 0.0190 0.0585 0.0190 0.03472 0.0	Worsi Expected C Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
9 1 1 1 1 1 1 1 1	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 55 55 55 55 55 55 55 55 55 55 55	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barlum Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Mercury Molybdenum Nickel	Artals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash B. Martin Ash Ib/hr Ib/hr 1b/hr 14.6723 105.36116 1.3620 27.2296 0.2905 9.2404 3.7605 9.8940 6.7590 26.6250 0.0125 2.0337 8.6515 1.5642 13.5963	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2557 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0830 0.1210 0.1863 0.0190 0.0565 0.3472 0.0877	Worst Expected C Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0.1 0.1 0.1 0.1 0.5 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0
39 10 11 12 13 14 15 16 7 8 9 12 34 56 7 8 9 12 34 56 7 8 9 12 34 56 7 8 9 01 12 34 56 7 8 9 01 12 34 56 7 8 9 01 12 34 56 7 8 9 12 34 56 7 8 9 12 34 56 7 8 9 12 13 14 15 15	39 40 41 42 43 44 45 56 57 55 55 55 55 55 55 55 55 55 55 55 55	TOTALS (Particulates & Trace Metais) Stream No. Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Cobalt Copper Lead Manganese Mercury Molybdenum Nickel Selenium Vanadium	Actals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash In Ash Landial Ib/hr Ib/hr 0.7421 14.6723 105.3615 1.3620 27.2296 0.2905 9.2404 3.7605 9.8940 6.7580 26.6250 0.0125 2.0337 8.6515 1.5642 13.5963 1.3015 1.3015	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0830 0.1210 0.1863 0.0190 0.3472 0.3472 0.077 0.0047	Worsi Expected C Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.1 0.1 0.1 0.1 0.5 0.0 0.0 0.1 0.1 0.5 0.0 0.0 0.0 0.1 0.1 0.5 0.0 0.0 0.0 0.1 0.1 0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
$\begin{array}{c} 3 \\ 9 \\ 4 \\ 0 \\ 4 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	39 40 41 42 43 44 45 46 45 50 51 52 53 53 55 55 55 55 55 55 55 55 55 55 55	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Mercury Molybdenum Nickel Selenium Vanadium Uranium	Artals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash B. Martin Ash Ib/hr Ib/hr 1b/hr 14.6723 105.36116 1.3620 27.2296 0.2905 9.2404 3.7605 9.8940 6.7590 26.6250 0.0125 2.0337 8.6515 1.5642 13.5963	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0830 0.1210 0.1863 0.0190 0.0565 0.3472 0.0677 0.0047 0.0047 0.0047	Worst Expected C. Trace Element GPIF Ash FI. Marlin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0.1 0.1 0.1 0.1 0.5 0.0 0.1 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0
$\begin{array}{c} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 45 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46$	39 40 41 42 43 44 45 46 47 48 47 48 47 48 49 50 52 52 53 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 1 55 55	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Stromium Cobalt Copper Lead Marganese Mercury Molybdenum Nickel Selenium Vanadium Uranium Thorium Torium Torium Torium	Artals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash B. Martin Ash Ib In Ash 14.6723 105.3615 1.3620 27.2296 0.2905 9.2404 3.7805 9.8940 6.7590 26.6250 0.0125 2.0337 8.6515 1.5642 13.5963 1.3016 1.9833 1.3015	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0830 0.1210 0.1863 0.0190 0.3472 0.3472 0.077 0.0047	Worst Expected C. Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.6 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
$\begin{array}{c} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 45 \\ 46 \\ 17 \\ 40 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	39 40 41 42 43 44 45 46 47 48 45 57 53 57 55 57 55 57 55 57 55 57 55 57 57 57	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Chronium Chronium Cobait Copper Lead Marganese Mercury Molybdenum Nickel Selenium Vanadium Uranium Thorium ToTAL TRACE METALS Vormal Criteria Particulates	Artals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash B. Martin Ash Ib In Ash 14.6723 105.3615 1.3620 27.2296 0.2905 9.2404 3.7805 9.8940 6.7590 26.6250 0.0125 2.0337 8.6515 1.5642 13.5963 1.3016 1.9833 1.3015	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0830 0.1210 0.1863 0.0190 0.0565 0.3472 0.0677 0.0047 0.0047 0.0047	Worsi Expected C. Trace Element GPIF Ash Fl. Marlin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0
$\begin{array}{c} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 43 \\ 45 \\ 46 \\ 17 \\ 18 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	39 40 41 42 43 44 45 46 47 48 44 50 51 52 53 53 54 55 56 56 57 56 56 57 56 57 56 1 57 56 1 57 57 58 59 10 57 11 77 71 17 73 17 74 44 44 44 55 57 57 57 57 57 57 57 57 57 57 57 57	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Stromium Cobalt Copper Lead Marganese Mercury Molybdenum Nickel Selenium Vanadium Uranium Thorium Torium Torium Torium	Artals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash B. Martin Ash Ib/hr Ib/hr 105.3615 1.3620 27.2296 0.2905 9.2404 3.7605 9.8940 6.7590 26.6250 0.0125 2.0337 8.6515 1.5642 13.5963 1.3016 1.9833 235.10 235.10	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0896 0.0136 0.0581 0.0830 0.1210 0.1265 0.3472 0.0677 0.0047 0.0047 0.0047 0.0047	Worst Expected C. Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{c} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 43 \\ 45 \\ 46 \\ 17 \\ 18 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	39 40 41 42 43 44 45 46 47 48 46 47 48 47 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 57 57 57 57 57 57 57 57	TOTALS (Particulates & Trace Metais) Stream No. Identification From To Antimony Arsenic Barium Beryllium Boron Cadmium Chronium Chronium Cobait Copper Lead Marganese Mercury Molybdenum Nickel Selenium Vanadium Uranium Thorium ToTAL TRACE METALS Vormal Criteria Particulates	Artals Emissions for NEPA Trace Elements Normal R. Martin Ash R. Martin Ash R. Martin Ash B. Martin Ash Ib/hr Ib/hr 105.3615 1.3620 27.2296 0.2905 9.2404 3.7605 9.8940 6.7590 26.6250 0.0125 2.0337 8.6515 1.5642 13.5963 1.3016 1.9833 235.10 235.10	Report Trace Elements Normal P. Martin Flue Gas P. Martin Stack Ib/hr 0.0042 0.2567 0.3785 0.0064 3.0518 0.0019 0.0896 0.0136 0.0581 0.0896 0.0136 0.0581 0.0830 0.1210 0.1265 0.3472 0.0677 0.0047 0.0047 0.0047 0.0047	Worst Expected C. Trace Element GPIF Ash FI. Martin Ash La Ib/hr 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0

,

۲

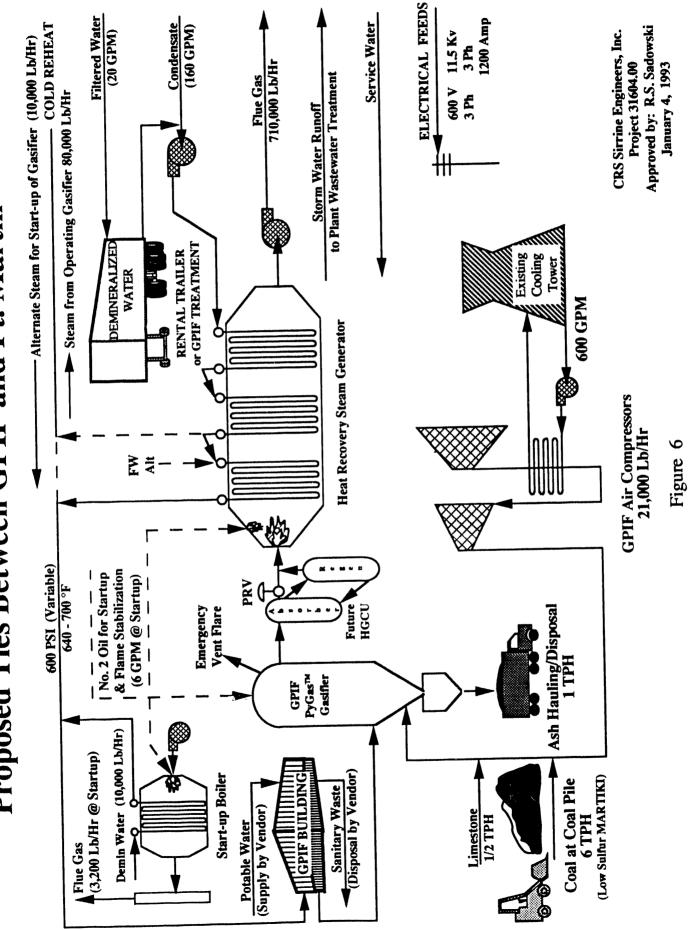
	at	au	GV	GW	<u>OX</u>	GY I
ro	C088	Table 2.12		3/10/93 16:43		1
	2 1 Trace Elements GPIF Flue Gas	Trace Elements Combined Ash	Trace Elements Combined Flue Gas	Trace Elements Change Due To GPIF	Trace Elements Change Due To GPIF	
Hill	Pi. Marlin Stack Ib/hr	Fl. Martin Ash Landiil Ib/hr	Fl. Martin Stack Ib/hr	R. Martin Ash Landili %	Pl. Martin Stack %	7
- - • A	ATHMETICALLY COMPUTE		••••••	••••••		
		UBLICATIONS IN THE LITER	NTURE.			į 1
						1:
						1-
50	0.000043		0.00416		-0.905	11
	0.001220 0.00051		0.25199 0.37171	0.047 0.007	- 1,452 - 1,795	
0	0.000012		0.00629	0.053	-1.742	11
20	0.00815		3.00107	0.355	-1.662	2
0	0.0000080 0.000204		0.00187 0.08808	0.212 0.030	-1,508 -1,702	21 21
10	0.000020	3.78156	0.01336	0.028	-1.782	22
0	0.000114 0.000237		0.05709 0.08164	0.102 0.053	-1.733 -1.644	24
0	0.000176		0.11884	0.148	-1.784	21
1	0.000901		0.18361	6.871	-1.446	27
0	0.000037 0.000128		0.01867 0.05554	0.283 0.013	-1.735 -1.703	20
5	0.000779	1.56882	0.34128	0.296	-1.705	30
3	0.000166 0.0000050	I CONTRACTOR INCONTRACTOR INCONTRACTOR IN CONTRACTOR INCONTRACTOR IN CONTRACTOR IN CONTRACTOR IN CONTRACTOR INCONTRACTOR INTENTO ON INTENTO INCONTRACTOR INTENTO ON INTENTO INCONTRACTOR INTENTO INCONTRACTOR INTENTO INCONTRACTOR INCONTRACTOR INTENTO ON INTENTO INTENTO INTENTO ON INTENTO INTENTO INTENTO ON INTENTO INTENTO INTENTO ON INTENTO INTENTO INTENTO INTENTO INTENTO INTENTO INTENTO ON INTENTO INTENTO INTENTO INTENTO INTENTO INTENTO INTENTO INTENTO INTENTO INTE	0.08617 0.00461	0.079 0.168	-1.740 -1.823	31
õ	0.000010		0.00697	0.037	-1.768	33
3	0.01	235.31	4.69	0.009	-1.795	34
6	0.437	92557	325			36 36
						37 38
+	0.45	92792.48	329.97	0,58	-1.795	39
	Trace Elements	Trace Elements	Trace Elements	Trace Elements	Trace Elements	41 42
	GPIF Flue Gas	Combined Ash	Combined Flue Gas	Change Due To GPIF	Change Due To GPIF	43
80	FI, Martin Stack Ib/hr	Ft. Martin Ash Landfill	Pl. Martin Slack Ib/hr	R. Martin Ash Landfill	R. Martin Stack	44
	10/ nr	10/nr	10/11	70	749 	i 45 •••••• 46
						47
						48 49
						50
						51 52
5	0.000043	0.75665	0.00418	1.96	-0.52	53
	0.001220	14.73585	0.25297	0.43	-1.07	53 54
				0.43 0.39 0.44		53
	0.001220 0.000510 0.000012 0.008150	14.73585 105.77534 1.36798 27.43134	0.25297 0.37317 0.00631 3.01285	0.43 0.39 0.44 0.74	-1.07 -1.41 -1.36 -1.28	53 54 55 56 57 57
	0.001220 0.000510 0.000012 0.008150 0.000080	14.73585 105.77534 1.36798 27.43134 0.29224	0.25297 0.37317 0.00631 3.01285 0.00188	0.43 0.39 0.44 0.74 0.60	-1.07 -1.41 -1.36 -1.28 -1.12	53 54 56 56 57 58
	0.001220 0.000510 0.000012 0.008150 0.000080 0.000080 0.000204 0.000204	14.73585 106.77534 1.36798 27.43134 0.29224 9.27878 3.79615	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341	0.43 0.39 0.44 0.74 0.60 0.42 0.41	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40	53 54 55 56 57 68 59 60
	0.001220 0.000510 0.000012 0.008150 0.000080 0.000204 0.000204 0.000214	14.73585 106.77534 1.36798 27.43134 0.29224 9.27678 3.79615 9.93430	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35	53 54 56 56 57 58 59 60 61
	0.001220 0.000510 0.00012 0.008150 0.000080 0.000204 0.000204 0.000114 0.000237 0.000176	14.73585 106.77534 1.36798 27.43134 0.29224 9.27878 3.79615 9.93430 6.78868 26.76707	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.08342	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.44 0.53	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35 -1.26 -1.40	53 54 55 56 57 68 59 60
	0.001220 0.000510 0.00012 0.008150 0.000080 0.000204 0.000204 0.000114 0.000237 0.000176 0.000901	14.73585 105.77534 1.36798 27.43134 0.29224 9.27678 3.79615 9.93430 6.78668 26.76707 0.01341	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732 0.08196 0.11931 0.18433	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.44 0.53 7.26	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35 -1.26 -1.40 -1.06	53 54 55 56 57 58 59 60 61 62 63 64
	0.001220 0.000510 0.000012 0.008150 0.000080 0.000204 0.000204 0.000214 0.000237 0.000176 0.000901 0.000901 0.000937	14.73585 106.77534 1.36798 27.43134 0.29224 9.27878 3.79615 9.93430 6.78868 26.76707 0.01341 2.04731	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732 0.08196 0.11931	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.44 0.53	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35 -1.26 -1.40 -1.06 -1.35	53 54 55 56 57 58 59 60 61 62 63 64 65
	0.001220 0.000510 0.00012 0.008150 0.000204 0.000204 0.000204 0.000214 0.000237 0.000176 0.000901 0.000901 0.000928 0.000779	14.73585 105.77534 1.36798 27.43134 9.27878 3.79615 9.93430 6.78868 26.76707 0.01341 2.04731 8.68597 1.57356	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732 0.08196 0.11931 0.18433 0.01874 0.05576 0.34262	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.44 0.53 7.26 0.67 0.40 0.60	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35 -1.26 -1.40 -1.35 -1.35 -1.32 -1.32 -1.32	53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	0.001220 0.000510 0.00012 0.008150 0.000204 0.000204 0.000204 0.000214 0.000237 0.000176 0.000176 0.000037 0.000128 0.000779 0.000166	14.73585 106.77534 1.36798 27.43134 9.2783 3.79615 9.93430 6.78868 26.76707 0.01341 2.04731 8.68597 1.57356 13.65945	0.25297 0.37317 0.00631 3.01285 0.00188 0.08422 0.01341 0.05732 0.08196 0.11931 0.18433 0.01874 0.05576 0.34262 0.08651	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.41 0.44 0.53 7.26 0.67 0.40 0.60 0.46	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.36 -1.26 -1.40 -1.36 -1.36 -1.36 -1.32 -1.32 -1.32 -1.35	53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
	0.001220 0.000510 0.00012 0.008150 0.000204 0.000204 0.000204 0.000214 0.000237 0.000176 0.000901 0.000901 0.000928 0.000779	14.73585 105.77534 1.36798 27.43134 9.27878 3.79615 9.93430 6.78868 26.76707 0.01341 2.04731 8.68597 1.57356	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732 0.08196 0.11931 0.18433 0.01874 0.05576 0.34262	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.44 0.53 7.26 0.67 0.40 0.60	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35 -1.26 -1.40 -1.06 -1.35 -1.32 -1.32 -1.35 -1.35 -1.44	53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	0.001220 0.000510 0.00012 0.008150 0.000080 0.000204 0.000204 0.000214 0.000237 0.000114 0.000237 0.000176 0.000037 0.000128 0.000779 0.000166 0.000050	14.73585 106.77534 1.36798 27.43134 0.29224 9.27678 3.79615 9.93430 6.78868 26.76707 0.01341 2.04731 8.68597 1.57366 13.65945 1.30871	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732 0.08196 0.11931 0.18433 0.01874 0.05651 0.34262 0.08651 0.00463	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.41 0.43 7.26 0.63 7.26 0.67 0.40 0.60 0.40	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.36 -1.26 -1.40 -1.36 -1.36 -1.36 -1.32 -1.32 -1.32 -1.35	53 54 55 56 57 68 60 61 62 63 64 65 66 67 68 69 70 70 71
	0.001220 0.000510 0.000120 0.000160 0.000080 0.000204 0.000204 0.000277 0.000176 0.000901 0.000901 0.000050 0.000166 0.000050 <u>0.00010</u> 0.01	14.73585 106.77534 1.36798 27.43134 0.29224 9.27878 3.79615 9.93430 6.78668 26.76670 0.01341 2.04731 8.68597 1.57356 13.65945 1.30871 1.99169 236.20	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732 0.08196 0.11931 0.18433 0.01874 0.05576 0.34262 0.08651 0.00463 <u>0.00700</u> 4.71	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.41 0.44 0.63 7.26 0.67 0.40 0.60 0.46 0.55 0.42	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35 -1.26 -1.40 -1.06 -1.35 -1.32 -1.32 -1.35 -1.35 -1.44	53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
	0.001220 0.000510 0.000012 0.008150 0.000080 0.000204 0.000204 0.000114 0.000237 0.000176 0.000176 0.000128 0.000128 0.000128 0.000166 0.000050 0.00010	14.73585 105.77534 1.36798 27.43134 0.29224 9.27678 3.79615 9.93430 6.78868 26.76707 0.01341 2.04731 8.68597 1.57366 13.66945 1.30871 1.99169	0.25297 0.37317 0.00631 3.01285 0.00188 0.08842 0.01341 0.05732 0.08196 0.11931 0.18433 0.01874 0.05576 0.34262 0.08651 0.00463 0.00463 0.00700	0.43 0.39 0.44 0.74 0.60 0.42 0.41 0.41 0.41 0.41 0.44 0.63 7.26 0.67 0.40 0.60 0.46 0.55 0.42	-1.07 -1.41 -1.36 -1.28 -1.12 -1.32 -1.40 -1.35 -1.26 -1.40 -1.06 -1.35 -1.32 -1.32 -1.35 -1.35 -1.44	53 54 55 56 57 68 60 61 62 63 64 65 66 67 68 69 70 70 71

4 · 5 i	Siream No.	1	22		23	24
	Identification	i	Hot Raw Coal Gas	Hot Raw Coal Gas	•	Solid Was
•	From	i	РуСавти	PyGes ^m	(or Zinc Ferrite) Makeup	HGCU Cycle
۰.	То	1	HGCU Absorber	spec vol	HOCU	Disposal
	Ges	I.	lb/hr	scim	ib/hr	lb/hr
) - (ω	28.010	13487	3036		
2 1		2.016	464			
	CO2	44.010	6666			
	H20	18.015	8328		1	
•	CH4	16.042	0			
51 F	C2H6	30.068	ð		· ·	
-	H25	34.076	113	21	1	
	2006	60.070		0	1 1	
11		28.013	38012		· ·	
		39.948	700			
11		36.461		0		
	HON	27.026		0	1	
•	NH3	17.030	150	01	1	
	C82	76.131		01	1	
•	SO2	64.059		0	1 !	
		30.006 (01	1	
		31.999		0	1	
	NaCl	58.497		vi vi	1	
		74.596		9	1	
	CaSO4	136.142			1	
	Ca(OH)2 Cl2	74.095		Š	1	
•	ciz Tolal Gas (Ib/hr)	35.500	67921	1.1.4.2	1	
	10(a) Gas (10/nr)		0/761	18142	1	
	•••••••••••••••••••••••••••••••••••••••		••••••••••••		·····	············
ic		12.011	7602		1	• • •
I H		1.008	1430	1	i	
0		16.000	19947	ł		
i N		14.007	38836	1	· · ·	
is		32.060	107		i i	
	a 0	56.079				
(H		18.016	67922		. 1	
•	Zinc Titanate or Zinc Ferrite	e	••••	1	68	
K		74.596			1	
•	CaSO4	136.142			1	
		40.080			1	
		72.140			1	
	ASH, Inerts (pph)	1	311	1	1	
	fotal Solids (pph)	I	311	1	68	
	fotal Flow (pph)	1	68233	1	68	
	 atal Baw (asa)	•••••••••••••••••••••••••••••••••••••••				
	otal Flow (pps)	1	19	1	0.02	0
	Pressure (psia)	1	600	1	14.7	
1 10	emperature (F)	1	1350	1	80	1

Table 2.13

3/10/93 17:19

1		Desulfurized Gas HGCU Absorber		28 Desulturized Gas HGCU Absorber	n Gas or	27 @ SO2voix Regeneration Regenerat	26 Air Compressor Dryers :	25 Steam HP93
	mol%	spec vol scim	lb-mol/hr	HR93 Ib/hr	spec vol scim	HAGG Ib/hr	HGCU Regenerator : Ib/hr	HGCU Ib/hr
 6	17.76	3037	481.76	13494	0	•••••		
	8.49	1452	230.26	464	o		1	i i
	5.58	950	151.47	6666	0	3	3	i
	17.04	3720	462.30	8328	0.7	41	41	oj
•	0.00	0	0.00		0			i
	0.00	0	0.00		0			i
o i	0.00	0	0.03	1	0			1
	0.00	0	0.00		o			1
	50.03	8517	1356.96	38012	1090	4865	4865	i
	0.65	447	17.52	700	54	85	85	i
	0.00	0	0.00		0			1
	0.00	0	0.00		Ó			i
•	0.32	0	8.81	150	o			i
	0.00	0	0.00		o		1	1
•	0.00	0	0.00		20	213		i
) į :	0.00	0	0.00		o			i
	0.12	21	3.33	107	273	1384	1490	1
) į	0.00	0	0.00		o		1	i i
) į	0.00	0	0.00		0			1
	0.00	0	0.00		0			Í
	0.00	0	0.00		0			1
) į :	0.00	0	0.00		0			i
	100	18144	2712	67923	1438	6591	6485	0
-								••••••
11	-0.04%	7602		7605	1	1	1	0
11	0.46%	1430		1423	1	5	5	0
. 4	-0.55%	19947		20058		1614	1614	0
10	0.00%	38836		38836		4865	4865	0 [
10		0		1		107		0
	-0.16%	67815		67923		6592	6485	0
10		·····	•••••••		· ·	••••		[
10					1			1
16					1			l
16								1
16								1
17								1
17				67923		6591	6485	0
17				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·		······
17				18.87	1	1.83	1.80	0.00
17				600	1	600	600	600
17				1350	1	1350	200	700


| 2 |

.

2 3			S Coal Gasification Pr Mass Balance		etically Balanc (High Steam - Low		Table 2.1	
4 5	Stream No.		1 1		Sorb/Coal	2	3	
6 I			Raw Coal		10.088 Li	mestone	Coal & Lm'sine	D
7	From		R. Martin Pile		GPIF	Covered Pile	GPIF Rec'g Hopper	1
5 1			GPIF Receiving Hopper	wt %	GPIF Re	ceiving Hoppe	Crusher/Dryer	1 /
Pi	Ges	Mol W1	1		2.50 °Ca/8	Note Ratio		
0 1	ω	28.010	1					Ì
2	H2	2.016	1		1	1		1
3	CC22	44.010	1		1	1		1
41	H2O	18.015	1		1			1
5	CH4	16.042		• • • • • • • • • • • • •	I	1		
6	C2H6		Proximate Analysis		1	1		1
7	H2S	34.076	 • • - • • • • • • • • • • • • • • • • 		1	1		1
5	006		Vol Matter	28.92%	1	1		1
91	N2	28.013	Fixed Carbon	54.86%	1	1		I .
)	Ar	39.948	Moisture	1.81%	1			
11	HCI	36.461	Ash	14.41%	1			ļ
•	HON	27.026	•	•••••	1	ļ		ļ
3	NH3	17.030	•		1	ļ		!
11		76.131			1	1		1
•	SO2	64.059	•		l	1		
5		30.006			1	1		
	02	31.999			1			1
•	NaCi	58.497			1	1		!
•	KCI	74.596			1			1
•	CaSO4	136.142			1	1		1
	Ca(OH)2	74.095			1	1		1
		35.500			1	1		; ;
	Total Gas (lb/hr)				 			
			Ultimate Analysis		 			
		12.011		8344	1	111	8455	1
		1.008		542			542	•
	0	16.000		971		443	1414	•
•	N	14.007		152		1	152	
•		32.060		118		ĺ	118	
	CaO	56.079		0	•	i	0	•
	H2O	18.016		219		12	231	
•	NaCl	58.497			Moisture	1	1	I
•	KCI	74.596			1	1		I
i.	CaSO4	136.142					1	
1	Ca	40.080		ļ		370	370	
1	CaS	72.140		l		1	I	t
1	ASH, Inerts (pph)	14.41%	1742		124	1866	
1	Total Solids (pph) (12088		1061	13148	l
I.	Total Flow (pph)	1		12088		1061	13149	
		• • • • • • • •		· · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • •	••••
	Total Flow (pps)	ł		3.36		0.29	3.65	
I	Pressure (psia)	1		14.7		14.7	14.7	
i.	Temperature (F)	1		80		80	80 (

.

	Reference Co 5 & Dia Test Size	bai - Fort Martin	- Low Sullur - 11/1 CRSS Predicted C	3/92 - MGAS Kinetics Dutput		3/10/93 17:19
	r Exhausi @0.01 ib/iulBiu @100acim ib/hr		5b Fuel Oil Slorage Tank Burner Support Ib/hr	5c Fuel Oil Storage Tank PyGas™ Preheat Ib/hr	5d Fuel Oil Storage Tank Starl-up Boller Ib/hr	5 Fuel Oil Stor age Tank Total Us age @ Startup Ib/hr
0.00	0.00	• • • • • • • • • • • • • • • • • • • •		••••••••••••••••••••••••	••••••	••••••
0.00	0.00		1	1		
0.03	0.21		1	ł		
1.02	2.86		1	1	1	
0.00	0.00		1	1		
0.00	0.00		1	1	l	
0.00	0.00			1	1	
0.00	0.00			1	1	
77.28	337.61		ļ	1	ļ	
0.95	5.91			1	l	
0.00	0.00		1			
0.00	0.00		1		l	
0.00 0.00	0.00				1	
0.00			1		8	
0.00	0.00		1	1	1	
20.72	103.40			1	1	
0.00	0.00			i i	1	
0.00	0.00				1	
0.00	0.00			1	1	
0,00	0.00		1	1	1	
0.00	0.00			· ·		
00,00	450.00					
•••••						
	0.11 86.65% 0.00 12.78%		1,015 (150 (1,015 150	444	2,724
	0.44	3/	1001	190	65	402
	0.00 0.05%	0	1	1	0	2
	0.00 0.53%	2	6	6	31	17
	0.00	-			51	17
	0.01		1		1	
	0.37		1			
	0.12		!	1	1	
	1.06		1	1	1	
	1 100.009	% 288	1,172	1,172	512	3,144
	0.0003	0.08	0.33	0.33	0.14	0.87
	14.7	35	35	35	35	35
	80	80	80	80	80	80

Proposed Ties Between GPIF and Ft. Martin

permitted levels. However, the need for the Phase II hot gas cleanup system is potentially of much greater significance to future emission limitations either legislated or required for future fuel cell combined cycle application. To insure that the GPIF does not add to the current sulfur emission levels of the Fort Martin Station. it is proposed that only low sulfur coal will be gasified until such time that the GPIF can be shown to be capable of achieving no net sulfur emissions increase on high sulfur coal. This can only be demonstrated after startup and demonstration on low sulfur coal.

One (1) by approximately 5 ft diameter PyGas[™] test sized gasifier is expected to generate sufficient coal gas to test the gasification process while firing the fuel gas (approximately 150-million Btu/hr coal feed rate) in a fired Heat Recovery Steam Generator (HRSG) (Phase 1).

The PyGas[™] test gasifier will be designed to utilize approximately 12,000 lb/hr of coal at 600 psi operating pressure.

A zinc ferrite type (or zinc titanate) hot gas cleanup process is contemplated for high efficiency sulfur removal and sorbent regeneration under Phase 2, and a conventional sulfur recovery process may be planned for the production of this valuable by-product of sulfur capture. The initial plan, however, is to return the captured sulfur oxides back to the HRSG as sulfur oxides and hence to the Fort Martin Unit #2 breeching to the electrostatic precipitator. Therefore, secondary firing with coal gas will be carried out in the HRSG, and the resulting products of combustion will be injected directly into the inlet side of the existing Fort Martin Unit #2 electrostatic precipitators. In the event of boiler shutdown or failure during gasifier operation, the coal gas must be directed to an emergency flare.

During normal operations, to the extent practical, all process vents and reliefs shall be directed to the auxiliary steam boiler for combustion. If the auxiliary boiler trips, then vents shall be bypassed to the emergency flare.

9. Functional Descriptions of Test Facility - Phase 1

Conceptual Design of the Gasification Product Improvement Facility

Coal Receiving & Storage

Coal will be dumptruck delivered from the existing nearby Fort Martin low sulfur coal storage facility to a covered, live day bin. Provisions shall be made to collect all rainwater runoff, and pump it to the existing Fort Martin waste water treatment system. The required front end loader for loading from the utility coal pile as well as coal (also limestone and ash) trucks are expected to be subcontracted to a local trucking company familiar with current ash disposal requirements.

Coal Reclaim

Live coal pile management is expected to be by front loader. Reclaim is accomplished via a weigh belt feeder capable of 0 to 12,000 lbs /Hr coal feed rate directly onto a continuous conveyor belt. The conveyor belt deposits coal continuously into a crusher/dryer (drying heat to come from a tubular type air heater located downstream of the fired auxiliary steam generator), thence to an inlet coal (and limestone) lock hopper of sufficient capacity for coal and limestone inventory discharge from the weigh belt feeder to the continuous conveyor belt discharge. Therefore all load change and accurate metering is accomplished by the weigh belt feeder. Provisions shall be made to collect all rainwater runoff, and pump it to the existing Fort Martin waste water treatment system. The feeding and conveying systems shall be properly ventilated, and the vented air shall be filtered before being released to the atmosphere.

Limestone Receiving & Storage

Limestone is received by dumptruck (by others) from an existing nearby rail unloading or quarry facility and dumped directly into a covered, live day bin. Provisions shall be made to collect all rainwater runoff, and pump it to the existing Fort Martin waste water treatment system. The feeding and conveying systems shall be properly ventilated, and the vented air shall be filtered before being released to the atmosphere.

The current plan is to operate the pyrolyzer tube in the slug-flow region at approximately 3.5 fps because Charlie Lowell (ref: DOE DE-AC21-78MC10484) was successfull at that point. This is effectively the same velocity as what Foster Wheeler calls "jetting". Therefore, the same 1/8 inch minus dolomite and 16 x 200 mesh limestone size gradation which Foster Wheeler (ref: DOE DE-AC21-86MC21023) was successfull with will initially be utilized at the GPIF.

Since milling is complicated by the differences in grindability or "work index" between limestone and coal (limestone is usually harder), we plan to receive presized limestone or dolomite at 16 x 200 mesh and 1/8 inch minus respectively.

While this will lead to a smaller size fraction entering the gasifier, the tortuous path and co-current flow regime serve to assure calcination without unreacted limestone carryover. In turn, there will be less likelihood of "blinding" calcium sulfide crystals with an outside layer of larger gypsum crystals because of the greater surface to volume ratio of the smaller sized limestone. This is really something which we need to test to verify anyway, so these comments merely reflect our logic for a starting point. These comments have been added to the report.

Limestone Reclaim

Limestone pile management is expected to be by front loader. Reclaim is accomplished via a weigh belt feeder capable of 0 to 4,000 lbs /Hr limestone feed rate directly onto the coal conveyor belt thereby assuring homogeniety between coal and limestone with a minimum of solids attrition. The conveyor belt deposits the mixture of coal and limestone continuously into a crusher/dryer, thence to an inlet coal (and limestone) lock hopper of sufficient capacity for coal and limestone inventory discharge from the weigh belt feeder to the continuous conveyor belt discharge. Therefore all load change and accurate metering is accomplished by the weigh belt feeder.

Ash Handling & Storage

Ash sources include mainly the gasifier bottom ash along with a minor source from the gasifier outlet cyclone. Gasifier bottom ash will be pneumatically

conveyed into a 100 ton ash silo. Gasifier outlet cyclone solids will also be pneumatically conveyed into the same ash silo. Since the $PyGas^{TM}$ process provides an oxidation zone immediately above the rotating grate, it is expected that retained sulfur in the ash will be predominently in the fully sulfated form.

In the event the ash contains unsulfated forms of sulfur, it will be first fed to a submerged combustion reactor to complete the sulfation reaction prior to disposal in the permitted Fort Martin existing coal ash landfill. While the quantity of GPIF ash to be added to the existing ash landfill is extremely small relative to current fill rates, it is likely to contain some unreacted alkali which should serve to provide some neutralization benefit in the ash pile.

Ash Conditioning & Disposal

The ash is removed from the ash silo conical bottom via a water cooled ash conditioning screw into an ash disposal truck. During periods of limestone utilization, care must be exercised to minimize the use of any water spray for dust control to avoid heat increase by chemical reaction with unreacted but calcined lime. An ash removal truck fitted with bag filter vents is preferred followed by Water conditioning or the current method used at the permitted Fort Martin solid waste land fill site may be considered to minimize dusting. The PyGas[™] coal gasification process is designed to produce sulfated ash product which is expected to be free of sulfides. However, provisions shall be made to oxidize all ash generated in the process in a submerged combustion reactor. The exhaust from this reactor shall be vented to the auxiliary steam boiler for additional combustion. The treated ash is then dewatered through mechanical filtration equipment, temporarily stored in the ash silo, and transported by truck to the existing ash pond area of the Fort Martin power plant. Fort Martin has an air permeable dust screen at their landfill site. While some air can pass through it, it does provide a good buffer on windy days resulting in less particulate becoming air-borne. We anticipate approximately 15% free moisture per Page 92 Figure 6. The anticipated properties are moist but dry handling granular solids, and conventional ash hauling trucks will be able to handle it.

The ash silo is sized for 100 tons. This is about four days of ash at full load and should accommodate weekends and holidays. We do plan to normally have daily ash hauls.

Air Compressor

A four-stage centrifugal compressor will be used in conjunction with (2) reciprocating compressors to boost ambient air to 650 psia for injection into the gasifier. The centrifugal air compressor will incorporate two intercoolers and one aftercooler to control inlet air temperatures to stages 2 and 3 and the reciprocating compressor, respectively. The total air compressor package will consume 1.66 MWe. Cooling water needed for the intercoolers will be minimized by allowing larger temperature rises in the cooling water, if practical. Although this will increase power consumption and decrease compressor efficiency, it may allow the intercoolers to be used as economizers to preheat the necessary water for the cycle while at the same time decreasing water consumption from the host utility.

In addition to providing compressed air for the gasifier, the air compression system will be designed to allow instrument air bleed after the aftercooler which is placed in between the centrifugal and reciprocating air compressors. The instrument air will be extracted at 205 psia, 100°F and the pressure reduced to the instrument requirements.

Proprietary CRS Sirrine Engineers, Inc. PyGas[™] Gasifier

The gasifier will be a shop fabricated water cooled vessel with three flanges, capable of operation at up to 600 psig. It will include a pressure lock upstream of its pneumatic crushed coal conveying pipe, and an ash pressure lock at the bottom of the gasifier vessel. A rotating grate similar to any conventional fixed-bed gasifier will be furnished complete with its motor drive assembly. Metered air, steam, and water spray nozzles will be furnished at three critical points within the gasifier vessel. The pressure locking valves will operate such that a continuous pressure seal is maintained constantly. A suitable purge and vent system and media will be incorporated into the design to avert reverse flow of hot coal gas into the coal feed system. An emergency (only) vent and flare stack will also be incorporated to automatically operate in the event of GPIF overpressure or a rare unrelated Ft Martin Unit 2 master fuel trip since the GPIF flue gas flow to it should be discontinued during such an upset condition.

Hot Coal Gas Piping

The test gasifier includes four (4) inch insulated and lagged stainless steel hot gas piping.

The hot low Btu gas produced by the gasifier shall be discharged to the primary gas cyclone via four (4) inch stainless steel piping insulated with calcium silicate insulation of seven (7) inch thickness and lagged.

Hot Cyclone

The gasifier outlet cyclone is an insulated stainless steel device intended to capture solids which carryover from the gasifier with the coal gas. It is anticipated that since it has performed well previously, the current GE cyclone will be scaled up to the size required for the gas throughput requirement (approximately a 12 to 1 scale up). The cyclone's captured fines stream discharge by gravity and requires a pressure locking chamber to partially depressurize the fines stream for pneumatic conveyance to the ash silo, separate sampling, or for reinjection back to the gasifier. The hot cyclone is approximately 13 ft tall by 2 ft diameter

The gasifier gas outlet cyclone may alternatively be a carbon steel device with 12" thick refractory liner, intended to separate solids carryover from the gasifier in the hot gas by centrifugal force. It is expected that the primary cyclone shall separate up to 600 lbs per hour of solids (char). As the gas stream and the cyclone shall operate at approximately 600 psig and 1120°F, the fines from the cyclone collection chamber shall be discharged via lock hopper and auto valves operated in sequence.

These locks shall initially be pressurized with inert gas up to the cyclone's operating pressure to prevent coal gas escape when the upper value is opened to

ų,

admit solids. Before the fines are discharged via the pneumatic conveying system to ash storage silo, the lock hopper may be depressurized to near atmospheric pressure, or the inert media at pressure may be used to convey fines.

Vent Pipe, Rupture Disc, Detonation Arrester and Emergency Flare

A rupture disc, detonation flame arrester and vent stack with emergency flare are anticipated to be required in the gas line between the gasifier and primary gas cyclone for emergency pressure relief. These devises are specifically designed to relieve and arrest the high velocity and pressure flame fronts that may accidentally develop in the gas piping from gasifier, and to carry any deflagration front from the gasifier, away from personnel and out the top of the building for combustion prior to release to the atmosphere.

The Protectoseal model F25006, 6" bi-directional detonation flame arrester in 316 SS housing is included.

Vortex Type Burner

A single vortex type coal gas burner (Coen or equal) shall be utilized to add sufficient air to the coal gas to completely combust the gaseous fuel product of the gasifier. The coal gas burner nozzle is rated at 154-million Btu/hr coal gas firing rate (including sensible heat in the coal gas). The coal gas firing rate is consistent with an excess air of approximately 10% at MCR which is normal for gas fired burners. While past experience has shown the ability to completely combust hot coal gas without support fuel requirements above 50% gasifier load, provisions shall be made to provide for flame stabilization support using light oil fuel using an NFPA Class I ignitor flame. Therefore, under any operating load, whenever the main flame scanner indicates the need for support flame, the ignitor shall be capable of being automatically placed in flame support service. It is anticipated that the coal gas will be utilized to produce gasification process steam as well as for auxiliary steam generator duty for return to Fort Martin Station. This will allow the GPIF facility to operate at full capacity while the existing utility boiler operates at anywhere from half to full load. The intent is to render the effect of GPIF operation on the existing utility station to the insignificant level.

Water Spray Injection

It is anticipated that water mist and steam will be sprayed into the hot raw gas from the GPIF such that the coal gas pipe temperature to the fired heat recovery steam generator (HRSG), and eventually in Phase II to the hot gas cleanup system does not exceed approximately 1100 -1400 degrees F. In this manner the coal gas piping is protected from excessive temperature at the 600 psig operating pressure. The heat of evaporation minimizes water requirements.

Gasifier Water Jacket Steam Generator

The GPIF gasifier test unit includes steam generation heat recovery intended to provide a significant portion of the necessary steam for gasifier steam injection

requirements. In this manner, the test facility may be steam self sufficient after startup. This then may allow the packaged boiler steam supply source to be required only during test startup. It has been determined that sufficient heat is available from the compressor intercooler, gasifier water jacket, and gasifier carbonizer tube cooling to generate the entire gasifier steam demand.

Water/Steam Loop

A pump forced "once through" water cooled intercool loop is contemplated to control compressor temperatures up to 600 psia air compression. The same water cooling intercooler loop may then be circuited to the gasifier water jacket, possibly the gasifier carbonizer tube, and subsequently back into the gasifier grate air blast. The alternative is a circuit to the existing Ft Martin cooling tower.

Feed Water Pump

The feed water pump must be sized to provide sufficient water for steam generation for gasifier grate air blast injection. Cooling water for air compressor intercooler will necessitate pump operating pressule significantly greater than the ultimate 600 psia needed for the gasifier. A 750 psia operating pressure is neither inconceivable nor particularly difficult to obtain from a number of suppliers. The cost estimate includes a 50 gpm feedwater pump for cooling and coal gas sprays, plus a 25 gpm feedwater pump booster for steam generation. If acceptable to the host utility, a feedwater bleed from the feedwater heater loop may be utilized in lieu of the above pumps.

An alternative under consideration is to receive feed water from Ft Martin using a booster pump, and make intermediate steam (600 psia/ 700°F) in the HRSG for use in the gasification system with all excess steam going back to the utility's cold reheat system. This alternative provides Ft Martin with more efficient use of steam generated in the GPIF system.

Water/Steam Considerations

The proprietary $PyGas^{TM}$ test gasifier requires up to 10,080 lb/hr of steam for the gasification of caking coal. There are several heat sinks within the cycle that will be used to generate the needed saturated steam at gasifier pressure. The statement of work indicates that the 650 psia steam is required at 640 F. This is well above the saturation temperature of 495 F associated with the above pressure. It is contemplated that the heat sinks within the process provide enough heat to generate saturated steam at the gasifier pressure. The last heat sink would be the gasifier water jacket and carbonizer tube. Once the saturated steam leaves the gasifier water jacket, the steam is mixed with the compressed air. Since the air leaving the compressor is approximately 700 F, the steam mixed with the air will stay well above the saturation point and remain in a dry state.

To generate 10,080 lb/hr of 650 psia saturated steam, 11.85 million Btu/hr of heat must be absorbed by incoming water at 60 F. The heat sinks within the system are the intercoolers and aftercoolers in the air compression system, the gasifier water-cooled carbonizer tube, and the water/steam jacket on the gasifier. The water/steam jacket absorbs 8.47 million Btu/hr and the gasifier carbonizer tube absorbs 1.97 million Btu/hr for a total of 10.44 million Btu/hr of the needed 11.85 million Btu/hr. The remaining 1.41 million Btu/hr of heat can be absorbed from the air compressor intercoolers.

The information above indicates that the needed steam can be generated from the heat sinks within the process thus integrating the process as desired.

Process Water Distribution System

The process water shall be distributed from the main process water line main near Monongahela Power's Unit No. 2 as shown on Exhibit 2 of the site tour of June 18, 1991.

The total process water consumption at the pressure 70 psig is estimated as:

		•
1.	GPIF feed water	25 gpm
2.	Coal gas cooling	5 gpm
3.	Ash conditioning	1 gpm
4.	Cooling Water Consumption	<u>500 gpm</u>
	Total	531 gpm

Table 3 Process Water Consumption

A 2 inch main is included to supply this quantity of process water for the facility.

Cooling Water Distribution

The cooling water distribution to the gasifier jacket, coal gas cooling and carbonizer tube cooling is estimated at 25 gpm. Cooling water from the GPIF will be returned to the existing Fort Martin Unit #2 cooling tower. There will not be a separate GPIF cooling tower.

Packaged Boiler, Fired Heat Recovery Steam Generator (HRSG), & Induced Draft Fan

A small light oil fired packaged boiler is contemplated for space heating and gasification process steam raising during startup. In addition, a coal gas fired HRSG and tubular type coal dryer air heater followed by an induced draft fan shall provide the heat recovery system for returning the Btu's from the gasification of coal to the host utility. If necessary, the startup and space heating packaged boiler flue gas may be vented into the induced draft fan along with the coal gas fired auxiliary steam generator flue gas for removal back to the existing Fort Martin Unit #2 stack.

Gasifier Integrated Steam Source

The test gasifier will require up to 0.84 lb of steam per lb of coal gasified. With the test gasifier consuming 12,000 lb of coal per hour, this equates to 10,080 lb/hr of steam. A small packaged boiler will be used for startup. Since, the air discharged from the compressor is at 700°F, saturated steam at gasifier pressure produced in the water/steam jacket can be mixed with the air to insure that the steam will remain dry. This prevents condensation in the pipes. Some 11.8 MMBtu/hr of heat must be absorbed to generate 10,080 lb/hr of saturated steam at 650 psia. Therefore, 8.5 MMBtu/hr is transmitted to the steam jacket of the gasifier. The remaining 3.4 MMBtu/hr of heat needed to make the saturated steam will be absorbed by the water through the heat sinks in the cycle. This heat will be absorbed by the water through the use of carbonizer tube cooling and intercoolers/aftercoolers of the compressor as economizers.

Boiler Chemical Treatment

All water makeup to the auxiliary boiler and reactor cooling jacket shall be softened and injected with environmentally acceptable oxygen scavengers and corrosion inhibitor chemicals.

Desulfurization

Provisions have been made for limestone feed to the proprietary PyGas[™] coal gasifier. Based upon the results of other pyrolyzer tube testing, approximately 20% to 95% sulfur retention may be possible within the gasifier itself. This retained sulfur will be removed from the gasifier and disposed of in the Fort Martin Generating Station permitted coal ash landfill along with the gasifier bottom ash. It is expected that this solid waste product will contain some unsulfated alkali such that some beneficial neutralization of the currently slightly acidic coal ash contained within the landfill may occur. The expected range of calcium to sulfur mole ratios anticipated for testing is 1.0 to 3.0. Depending on sulfur content in the coal, this results in up to approximately a half ton of limestone per hour.

Potable Water

A one inch potable water line and reservoir tank is included from the utility interface point to the GPIF for lavatory and shower consumption.

Test Facility Horsepower Requirements

The following table serves to identify the anticipated motor horsepower requirements of the conceptualized test facility.

Table 4Test Facility Motor Horsepower Consumption

The following is a list of motor and horsepowers associated with the test facility.

Equipment Description		Horsepower	KW
Gasifier Rotary Coal Metering Drive Grate Drive	es (2)	10.0 15.0	7.45 11.18
Air Compressor Centrifugal Compressor Reciprocating Compressor	(2)	1750.0 700.0	1305.0 522.2
Coal Receiving/Storage/Reclai Pile Runoff Collection Sum Gravimetric Feeder Drive Transfer Conveyor Drive Vent Fan Drive(Pit Ventilati Sample Cutter Drive Coal Crusher/Dryer Drive	p Pump	1.0 3.0 10.0 7.5 1.0 20.0	0.74 2.24 7.45 5.59 0.74 14.90
Limestone Receiving/Storage/I Gravimetric Feeder Drive Sample Cutter Drive	Reclaim	3.0 1.0	2.24 0.74
Coal Gas Combustion/Heat Ro Forced Draft Fan Motor Feedwater Pumps Induced Draft Fan Motor	ecovery	125 10.0 400	93 7.5 298
Wet Oxidation System Vacuum Filter Pump Motor Transfer Pumps (2) Oxidation Air Blower Motor		N/A N/A N/A	N/A N/A N/A
Ash Handling System Ash Blower		<u>50.0</u>	<u>37.29</u>
	Totals:	2,857	2,131

Process Building

The building shell erected shall be : 30'W X 100'L X 50'H

The LRF envelope frame with 0.5:12 slope and BR-II roof panels has a clearspan double slope profile with tapered sidewall columns. It offers almost total flexibility in sizes within the limits of the LRF envelope. The wall panels shall have 2" insulation in each. Two (2) 3' X 7" personnel doors, one (1) 10'

X 10' overhead door, one (1) 25' X 17'-6" removable wall panel, gutters and downspouts over entrance area only, exhaust fan (75,000 CF/hr air exchange), intake louvers are included in the building design.

The building foundation and 6" concrete slab, with 4' X 4' X 6' sump and three (3) 4" floor drains to the storm runoff collection pit.

One sump pump, capacity 30 gpm, 52 HTDH, 2 HP

Steel stairs outside to 12' high elevation, with steel treads, landings and handrails per code.

For the heat protection in the winter to maintain 50°F ambient temperature at 0° exterior temperature, the steam-fired or electric unit heaters are included using existing 600 psi steam or electricity from Ft Martin Station.

Control room inside process building area 12' X 12', with 3' X 7' personnel door with half glass.

On the top of control room, second floor testing room $12' \times 12'$ area, one $3' \times 7'$ personnel door with half glass, entrance from the inter platforms. Heat and air conditioning are included, with 2-1/2'' concrete floor over steel form deck.

A lavatory facility, to include separate male & female showers, two toilet stalls (each for handicapped persons), two wash basins (one for handicapped persons), complete with standard fixtures will be provided. A pumping and storage tank for waste disposal by portable tank truck will also be furnished.

A furnished combination meeting and break room complete with dry erase marker board, sink and microwave oven, and with coffeemaking, snack and soda machine provisions will be provided. Furniture will consist of two 4 ft x 8 ft folding type tables and twelve (12) straight back chairs.

All process runoff shall be collected in a sump and pumped to the existing Fort Martin Generating Station waste water treatment system.

Ash and Other Process Waste Particulate Handling Storage And Disposal

Ash handling from gasifier bottom and process fines from the outlet of the hot cyclone shall be pneumatically conveyed periodically on a timed basis into a 100 ton ash storage silo, dimensions 14' dia X 28'H.

It is expected that the total solids collection from all above mentioning source shall be in the range of 4007 lbs per hour. The ash shall be discharged periodically from the bottom of gasifier to bottom ash lock hopper by way of airlocks operating in sequence. This cycle proceeds automatically on a timed sequence before accumulated fines shall be discharged to the pneumatic system. The lock hoppers shall be depressurized to an atmospheric pressure. Similar discharge lock hoppers shall be employed after the gas cleaning cyclone.

The ash and other waste solids (spent sorbent) shall be unloaded in the disposal truck by telescopic spout when limestone is fed to the gasifier, or by water cooled ash conditioner. (No limestone utilization). The filter-separator bag

shall be periodically cleaned by pressure air. The sequence shall be set by timer. Care must be exercised with ash conditioning water admixing whenever unreacted lime may be present, as heat of reaction and skin burns have been reported in industrial applications using lime. The ash silo shall be vented to the atmosphere by way of a bag filter or electrostatic precipitator.

10. Control and Instrumentation System Description

General

The test gasifier facility will be equipped with a state-of-the-art control and instrumentation system designed in accordance with the existing engineering practice for this type and size of equipment, with the scope sufficient to ensure a high level of facility's availability and reliability. Taking into account the experimental character of this facility, we have added a certain degree of redundancy, where exact process characteristics were unclear or required special attention to the process.

Process control and monitoring functions will be performed in a central control room (CCR) utilizing a microprocessor-based distributed control system (DCS) along with several dedicated control subsystems.

Conceptual design of the proposed system is illustrated in the system block diagram (Fig.1). From the control point of view, the overall plant equipment will be divided into several functional groups (FG), some of them will be equipped with their own, dedicated (possibly PLC-based) vendor supplied control systems, others will be controlled directly by DCS from CCR. Control systems of individual FG's will provide control interface and necessary inputs to DCS for centralized data acquisition, monitoring and reporting. These dedicated control systems may be based on PLC or DCS technology. Main requirements to their suppliers should be compatibility with the host DCS (i.e. the ability to communicate via a common data highway) and uniformity of their hardware basis (e.g. use of the same make of the PLCs).

The following FG's are expected to be controlled by their dedicated specialized control systems and/or PLC 's via remote I/O racks:

- Coal/Limestone Loading System;
- Steam Generation Coal Gas Flare, Boiler, Water Treatment;
- Existing Boiler Burner Interlock System;
- Compressed Air and Instrument Air Systems;
- Continuous Emission Monitoring (CEM) System;
- Ash Handling System;
- Balance of Plant Systems;

The following FG's are expected to be controlled directly by the DCS:

- Coal Gasifier with Primary Cyclone;
- Hot Gas Clean-up with Secondary Cyclone and Sulfur Recovery System;

Standards

The C&I system shall conform to the applicable industry standards, such as:

- National Fire Protection Association (NFPA)
- National Electric Code (NEC)
- National Electrical Manufacturers Association (NEMA)
- Instrument Society of America (ISA)
- Institute of Electrical and Electronics Engineers (IEEE)
- American National Standards Institute (ANSI)

Controls Equipment Scope of Supply

Control Room Equipment

We anticipate that the following operator interface equipment will be located in the CCR:

	Table 5 Room Equipme	nt	
Equipment	Phase I	Phase II	Phase III
Operator Stations (CRT with keyboard)	3	4	5
Printers 2 Plant Paging & Talanhang Suptom	3	3	1
Plant Paging & Telephone System Fire Protection System 1	1	1	1
Main Control Room Panel	1	1	1
Sequence of Event Recorder	1	1	1
Emission Monitoring (CEM) and		•	•
Reporting System Logging Station w/printer	1	1	1
Video Copier	1	1	1
The following will be included with the D	CS and located	next to the CCF	R:
Engineering Station w/keyboard	1	1	1
Historical Data Storage	ī	ī	ī
Printers	1	1	1

Control Systems and Equipment

The following FG control systems will be required and implemented for the two phases of the project outlined as follows:

Table 6 Control Systems & Equipment

Functional Group				
	Phase I	Phase II		
Coal/Limestone Loading	Yes	Yes		
Coal Gasifier	Yes	Yes		
HGCU/Sulfur Recovery	No	Yes		
Steam Generation - Flare/Boiler	Yes	Yes		
Existing Boiler Burner Interlock System	Yes	Yes		
Cont. Emission Monitoring (CEM)	Yes	Yes		
Ash Handling	Yes	Yes		
Compressed Air	Yes	Yes		
Instrument Air	Yes	Yes		

Control of Individual Functional Groups

Coal/Limestone Loading System

Coal and Limestone Loading System which includes coal and pebble limestone bunkers, gravimetric feeders, a common belt conveyor c/w the corresponding drives will be operated and controlled by a PLC-based local control system via remote I/O rack. A configured operator interface screen will be supplied for a window into the operation. The DCS will monitor and act as a data acquisition system via a data interface link between the DCS and PLC data highways.

Coal Gasifier System

The overall coal gasifier system, including the gasifier itself, coal feeding, air and steam supplies to the gasifier and coal gas system with the primary cyclone and (possibly) flare, will be controlled from the DCS via a dedicated redundant processor.

In order to monitor and control the position and intensity of the gasification zone in the coal gasifier, we are proposing to install 3 infrared (IR) monitors (scanners) on the sides of the gasifier. Each of these instruments will measure two parameters: intensity and frequency of the IR radiation, which, as we expect, will characterize the intensity and position of the zone of max heat generation. These parameter measurements will allow the operators, during the initial testing and commissioning period, to establish patterns of normal operation and to recognize patterns of abnormal situations. By applying methods of pattern recognition, IR monitors in combination with temperature measurements and gas analyzers will allow development of methods of positioning of the gasification zone and of optimizing the overall gasification process.

The gasifier system will also include a multipoint gas analyzer system to continuously monitor concentration of H2S and other gaseous components at

the gasifier, primary cyclone outputs and within the process area. The gas analyzers will be located in the common chemical analysis room.

Our preliminary evaluation of the system control requirements indicates that the processor should be capable to support (approximately) the following number of I/O's:

Analog Inputs (TC's, RTD's, 4-20mA):	100
Analog Outputs:	25
Digital (on/off) Inputs:	75
Digital (relay) Outputs:	50

This system is based on the above I/O count and vendor quotations for control systems of a similar size and configuration.

Hot Gas Clean-up and Sulphur Recovery Systems

Control requirements for these systems include a substantial number of control functions, mostly sequential logic operations. These systems will be controlled directly by DCS via a dedicated redundant processor.

The HGCU will be served by the multipoint gas analyzer system to continuously monitor concentration of H2S and other gaseous components in the hot coal gas upstream and downstream of the absorber and also will monitor oxygen in the regenerator system.

The latest GE RDC report of June 1980 and 50% contingency for the sulphur recovery system, we estimate that the system should be capable to support the following number of I/Os:

Analog Inputs (T/Cs and RTDs)	75
Analog Inputs (4-20 mA)	75
Analog Outputs	40
Digital (on-off) Inputs	120
Digital (relay) Outputs	100

Our estimate is based on this I/O count and a number of vendor quotations for similar size control systems.

This gas analyzer will be common for the gasifier and will be incorporated into one common gas monitoring system.

Steam Generation System

The Gasifier Steam Generation System will be operated and controlled by a PLC-based local control system via remote I/O rack. The system will execute all necessary water treatment, feedwater, steam temperature and combustion control functions required to meet the load demand and to maintain boiler parameters.

Coal Gas Combustion

The coal gas burners are expected to be equipped with a vendor supplied (possibly PLC-based) burner management system (BMS) containing complete package of instruments, valves, flame scanners, etc., to comply with the NFPA recommendations for coal-fired burners. The BMS will be connected to the DCS via hardwired connections and will be controlled from the CRT operator stations. Interlocks and permissives consistent with the safety shutdown philosopy of the existing Fort Martin Station utility boiler's burner management system will be provided. A remote indication of coal gas combustion and steam generation status will be provided and located in the existing Fort Martin Station utility control room.

Continuous Emission Monitoring System (CEM)

Emission monitoring equipment shall include stack analyzers to continuously monitor the flue gas exhaust for NOx, SO2, O2, CO, H2S and Opacity. The analyzers will be housed in a special environmentally controlled analyzer shelter adjacent to the exhaust duct of the auxiliary boiler. The analyzer housing will be shared with the bulk of the analyzer equipment which has to provide thorough monitoring of numerous gas components and solid particulates in the gasifier exhaust, primary and secondary cyclone outlets and HGCU outlet. The equipment will monitor facility compliance for all applicable Federal and State emission requirements. The system will be monitored by the DCS for alarms and critical measurements.

A stand alone personal computer located in the control room and software dedicated to the emission monitoring system will be included with the system. The equipment vendor will provide system certification, start-up assistance, installation supervision, personnel training and maintenance program.

Ash Handling System

Bottom Ash Removal, Handling and Storage System will be controlled with a PLC-based local control system via remote I/O. System design, scope of supply, functions and interface with the DCS will be similar to the Coal/Limestone Loading System.

Compressed Air and Instrument Air Systems (From Process Air Compressors)

These systems which include centrifugal and displacement type compressors, filters, dryers, and pressure regulators will be controlled by a PLC-based local control system via remote I/O racks.

DCS Capabilities and Controls

The DCS will include dynamic controllers, I/O racks, communication devices, and operator stations. The operator interface to the system will be through color

CRT's and operator keyboards which will be preprogrammed for easy access to color graphic displays and specialized operator functions.

The DCS will provide soft A/M stations for remote control of the various field devices and control loops. This control will be accomplished via the operator's CRT console.and keyboard. The logic control functions, such as motor control and discrete monitoring, will be accomplished in the DCS using key selection and dynamic displays on the operator console. The configuration of function codes and control strategies will reside in the non-volatile memory and will be maintained in the event of a power failure.

The control schemes will be hardware and software configured with consideration for redundancy as applicable. In the event of any single failure of power supply, processor / controller or highway / communication link / data multiplexers, it will alert the operator while continuing to keep the process under uninterrupted automatic control from the CRT.

If the primary control processor should fail, a secondary processor (operating in the "hot stand-by " mode) will assume control responsibility with bumpless transfer. In the event of a failure of both processors, the system will be configured such that analog and digital outputs will go to pre-determined fail safe positions.

Communication to the individual dedicated PLC-based control systems will be accomplished via one common data interface link between the DCS and PLC data highways. A Performance Assessment package will be configured in the DCS. This software application will gather information for each system and will provide real time displays to the operator.

Power supplies will be redundant, so that in case of a power supply failure, a back-up power supply will assume responsibility. The Operator interface will provide a user friendly environment for control and data acquisition functions. This interface will provide access to plant wide operations allowing the operator to monitor and take corrective action as required. The displays will provide dynamic information by updating information and status displayed to the operator.

An Engineering workstation will allow personnel to configure operator consoles and control hardware. The software package will enable the engineer to design, configure, monitor, trend, tune, modify and document process activities. Graphic symbols and function codes will be used to build the process logic control drawings on the CRT screen. The Engineering workstation will be used during start-up and de-bugging stage of commissioning. It will also be used as a tool to maintain, troubleshoot, operate and re-configure the system if required once the plant is operating.

The DCS will be field maintainable and configurable by the owners personnel after appropriate training.

11. Electrical System Assessment

General Requirements

Load Profile - New Gasification Plant

4160 V. Load	2.85 MVA.
Total Load	3.4 MVA.

Project Concept

The Project concept is to supply existing Fort Martin Generating Station with steam from the proposed gasification plant. This plant is to be a stand alone satellite facility to be located in the vicinity of the generating station. All utilities are to be provided to the plant's battery limits. The 13.8 kV utilization voltage will require that the utility company furnish and install the required feeder to the plant's electrical system primary.

Codes and Standards

Except where noted, all electrical systems shall be designed, fabricated and installed in accordance with the latest edition of the National Electrical Code, and applicable ANSI, ICEA, NEMA, NESC, IEEE Standards as defined in the RFP (exceptions taken will be defined). Components that are UL listed and labeled shall be provided if required by local authorities.

Electrical Equipment

Selection and design of all electrical components and systems shall be in accordance with the applicable codes and standards. Reliability of operation shall be the primary consideration in the facility design. The Preliminary single line diagram will serve as a typical basis of supply (CRSS Drawing SK-E-001).

The electrical equipment shall include the following, located in the facility building:

Table 7

MEDIUM VOLTAGE SWITCH GEAR HV-1 LOW VOLTAGE SWITCHGEAR LVSWG-1 1750 HP STARTER WYE DELTA 2 (400HP) COMPESSOR WYE DELTA 1200A NON-SEGREGATED BUS MCC-001-GPIF STATION BATTERY AND CHARGERS "UPS" UNINTERRUPTABLE POWER SUPPLY

15 kV Pole Line (by utility company)

A 15 kV ploe line feeder with parallel overhead ACSR conductors will interconnect the GPIF with the existing facility's 13.8 kV switchgear. This feeder line will be used to cold start the GPIF.

Plant's Primary Transformer

The plant's primary transformer "T1" will be 5 MVA, outdoor, oil filled, 13.8 kV delta to 4.16 kV resistance-grounded wye, standard impedance, equipped with special winding and cooling fans to permit temporary overloading and allow for future growth.

BUS DUCT.

The bus ducts shall be 5 kV, 1200 A, 3-phase, 3-wire plus ground, nonsegregated phase type, rated to accommodate maximum design operating voltage. The rated momentary current will be based on the maximum threephase fault current to which the bus can be subjected.

Coal Gasification Electric Power System (parasitic loads)

The electrical power system will perform the following functions:

Provide a reliable source of electrical power for plant auxiliaries during all operating conditions.

Provide rapid isolation of any faulted equipment without unnecessary loss of supply to other equipment.

Provide satisfactory motor starting and bus voltage regulation.

Medium Voltage Distribution Switchgear HVSWG-1 (4.16 KV, Vacuum Type, 350 MVA).

The circuit breaker and metering portions of the medium voltage switchgear will be a non-drawout, metal-clad, dead front, with each breaker cubicle isolated from the adjacent cubicle by a metal barrier. The interrupting ratings will be selected in accordance with ANSI Standard C37.010 making full allowances for asymmetrical symmetrical current ratios. Incoming breaker and internal bus continuous current ratings will be chosen to be greater than the maximum expected loading.

Medium Voltage Motor Controllers:

Motor controllers portion of the medium voltage switchgearwill be of the draw-out full-voltage across-the-line or reduced vacuum type (as indicated on the single line diagram), rated a minimum of 400 MVA, double-stacked wherever possible.

The controller and the bus will be adequately rated for the voltage class, the continuous current and the available short circuit level.

The protective fuses will be ANSI Class "R" for motor starting duty, and class "E" for transformer feeder duty. Single-phase protection will be provided to open contactors whenever any fuse blows.

Overload, under-voltage, single-phasing and ground fault protection will be provided.

Control voltage will be 120 V AC.

Each controller will have an ammeter and an ammeter switch.

All motors shall have motor circuit protection.

The switchgear lineup will include provisions for future bus extension on one end.

Switchgear rooms will be mechanically cooled and pressurized with filtered air to prevent the entrance of dust and dirt. Switchgear rooms will have at least two exits to assure safe personnel egress.

Secondary Unit Substations.

The 480 volt systems will be 4-wire, 3-phase, wye connected, and solidly grounded at the transformer neutral.

Transformer "T2" shall be an indoor dry-type, cast-coil, standard impedance, rated 1000 kVA.

For ease of maintenance, the 480 volt switchgear will be located indoors in pressurized switchgear rooms or other clean areas. Cast-coil, dry type transformers will be used indoors.

Transformer cooling fans will be provided to allow for future load growth and permit temporary overloading. The unit substations will be physically arranged to allow future switchgear additions, and to allow for transformer removal and replacement.

Main circuit breakers will be fully-rated, manually-operated withdrawable, air-break, stored energy spring operated, dead-front type, complete with solid-state overcurrent and ground fault trip devices.

Bus shall be fully rated to supply a continuous load of 1600 A.

Loads supplied directly from unit substations will include motor control centers, and other 480 volt loads larger than 100 amperes.

Motor Control Centers and AC Distribution Panels.

MCC's will have NEMA Type 1A enclosures with gaskets on doors and filler plates, or NEMA Type 12 in Water Treatment Area. Locations will be chosen with care to avoid damp, dirty, or hot areas and to allow adequate front and rear access.

Motor control centers will utilize standard modules factory assembled in suitable shipping lengths.

Motor control centers will be rated 65,000 A.S.C. and have NEMA Class I, Type B wiring rated 600 volts for 480 volt service. The upper limit of motor size supplied from MCC starters will be 200 hp where application is continuous duty with infrequent starting. Larger motors may be controlled by MCC starters where the application involves intermittent duty. Dual mounted molded case circuit breaker feeder units will also be provided in MCC's to supply 480 volt unit-related loads that do not require remote control.

Bus shall be fully rated to supply a continuous load as shown on the drawings and specifications.

Each fully rated combination starter unit will be complete with a molded case circuit breaker having adjustable magnetic trips only, magnetic contactor, three bimetallic overloads, auxiliary contacts, control power transformer, and control wiring terminal block. Control power transformers will be adequately sized to power the motor starter as well as the auxiliary control devices. Starter controls will be 120 volt AC with a coil seal-in contact.

The breakers will have 65,000 A interrupting capacity adequate for the available short circuit current.

All motor starters will be of the same manufacturer to ensure interchangeability of parts and to minimize stocking of spare parts. In addition, circuit breaker distribution panels will be provided at selected locations, as required, to serve small loads.

A minimum of 20% fully equipped space shall be provided in the motor control center for future additions.

DC Battery Powered Systems (breaker control).

125 VDC battery system with an energy storage capacity of four (4) hour minimum will include a lead-calcium, solid state rectifier-battery chargers, and main DC distribution panels.

The battery capacities will be adequate to supply all associated loads for the required sequence, duration, and combinations that occur when each breaker unit must be operated with no other power sources available.

The battery nominal voltage, float voltage and end of discharge voltage will allow operation over a voltage range acceptable to standard NEMA equipment with only occasional need for recharging.

The battery chargers will be sized to supply those DC loads that exist continuously during normal unit operation while simultaneously recharging a fully discharged battery. The maximum battery recharge period will be 12 hours. Chargers must be capable of operation without the battery.

A circuit breaker DC distribution panel will be provided adjacent to the batteries to minimize the length and maximize the security of the battery feeder cables. The circuit breakers will have thermal-magnetic overload trips, except for circuits feeding emergency auxiliary motors, which will have magnetic trips only. DC battery powered emergency lighting system shall be furnished similar to the above in all respects.

Grounding System.

In general, grounding system will be in accordance with the National Electrical Code and IEEE recommendations.

Instrument Grounding System.

A separate insulated grounding system will be provided for the computer and other noise sensitive electronic equipment. This will be a radial system, without loops and will be connected to the plant ground grid at one point only.

Instrument cable shields will be grounded at the load side only, leaving the sensor end ungrounded and insulated with the exception of thermocouples which are to be grounded at the instrument end.

Lightning Protection.

The lightning protection system will be designed in accordance with the National Fire Protection Association Lightning Protection Code (NFPA 78) Class I or Class II systems, UL96A, the National Electrical Code, IEEE Standards and the Lightning Protection Institute - Installation Code (LPI-175).

Electrical Heat Tracing.

Freeze protection and process heating systems will be provided for outdoor pipes, pumps, vessels and instrument sensing lines requiring process heating or freeze protection. The freeze protection system will automatically operate whenever the ambient falls below 40°F and will provide sufficient heat to prevent water freezing when the ambient temperature falls to 5°F less than the lowest ambient temperature recorded at the site. Control and monitoring systems for freeze protection will be centralized.

Lighting Systems.

Plant lighting will consist of normal lighting and self contained DC operated emergency lights.

Normal lighting will provide illumination during normal operating conditions.

Facility indoor lighting distribution will be three-phase, four-wire. A 480/277 volt system will be used. Facility outdoor lighting distribution will be 480 volt, three-phase, three-wire with phase-to-phase connected loads.

Indoor lighting circuits will be distributed through three-phase. four-wire lighting panels, which will be located centered to and near their respective loads to minimize voltage drops.

Distribution will be designed so that failure of any single lighting panel will not totally black out any floor or single large area.

Lighting equipment selection will be based on the requirements of specific areas. Incandescent, fluorescent, and high pressure sodium sources with appropriate luminaries will be used depending on the application and the needs of each location. High pressure sodium lighting will be used for outdoor installations.

Generally, the illumination levels for facility areas will be those recommended by the Illuminating Engineering Society.

Lighting circuits will be switched at their distribution panels. Rooms and small buildings will have light switches at each doorway. Outdoor lighting will be photoelectrically controlled with provisions for manual override.

Loop road lighting will be in accordance with recommendations of the National Illuminating Engineers Society. These fixtures shall be suspended from building structural walls or members.

Emergency AC and lighting system will be provided for purposes of personnel egress and continuation of critical activities during emergency conditions.

Design illumination levels for egress lighting will be those required by applicable Federal, state, or local fire codes.

Communication Systems.

Telephones will be provided in the control room, in the offices and electrical switchgear room.

A facility paging and two-party communication system, complete with amplifying equipment, handset stations and speakers will be provided.

UPS System.

UPS System shall be 30 KVA with two 200 A, 3 ph., 4W outputs plus isolated ground for process controls and system architecture power supplies, with 15 minute ride-through and lead-acid battery racks as required.

Emergency Process Equipment.

The compressed air, auxiliary boiler and gasifier jacket cooling water feed systems shall be capable of automatic switchover to the auxiliary DC power

source in the event of AC power source failure for equipment protection against overheating.

Life Safety System (fire alarms).

The zone panel shall be stand alone and report to a central command station located in the Engineer's Office. Total number of zones shall be at least 8 active with four spares.

Fire Protection System.

As separate electric source from Fort Martin Generating Station shall be utilized to power a dedicated fire pump serving the GPIF area in the event of fire.

12. Functional Descriptions - Phase 2

Conceptual Design for Coal Gasifier Test Facility

Hot Gas Cleanup Unit & Sulfur Recovery

This area will be added under Phase II of the Coal Gasifier Test Facility.

Fluid Bed Absorber

The fluid bed absorber follows the ground rules suggested by METC to furnish a two stage bed. Given the reaction kinetics for the sulfidation of zinc ferrite, we feel that a single bed might be adequate to get the desired H₂S removal. We assume a 2-stage bed is desirable for alternative research studies, and perhaps to produce ultra high sulfur capture, a landable goal.

Sorbent Regenerator

We have also used a riser tube sorbent regenerator as suggested by METC. If that arrangement is insufficient, we have allowed some space to install a moderately sized regenerator (fluid bed reactor) to obtain more residence time.

The revised arrangement could require the regenerator to be located above the absorber to permit gravity flow of regenerated sorbent into the absorber bed. That would raise the profile of the HGCU above the building roof thereby adding to the cost.

We have placed an airfin cooler to reduce the recycle gas to about 250-300°F as the recycle blower suction to allow standard materials (CS) in the blower.

Generally we are following the regenerator cooling cycle used by GE on their Schenectady pilot plant. It is believed that the system offers METC a flexible means to test various diluent circulating regimes to optimize the sulfur recovery feed gas.

Sulfur Recovery Unit

There are a variety of ways to convert the sulfur values in the off-gas to salable products.

The recovery of sulfur as sulfuric acid or liquid SO₂ are available as tested commercial processes so pilot plant study of such processes would be redundant.

The alternative of converting to elemental sulfur is supported by proven commercial processes such as the Allied/Davy Powergas SO2 Reduction Process.

Sodium/alumina catalysts (RTI bench scale work)

The tail gas from sulfur recovery should have the capability to be recycled to the process to eliminate final treatment to meet air emission standards.

Disposal of the recovered sulfur may present a problem. Because the sulfur is produced on an intermittent basis according to the pilot plant schedule, it may be difficult to find a user who would accept it. Also, at this point we are not certain of the quality of sulfur produced.

Those factors indicate that disposal to a solid waste dump appears to be a likely method of disposal. Solid sulfur is relatively insoluble, but it is combustible giving off hazardous products of combustion. Therefore, it may not be acceptable in landfills. The disposal of the sulfur will have to be investigated when a specific site is selected during the detailed design phase.

Liquid or solid sulfur produced from the test facility is expected to be either sold or properly disposed of in a disposal facility permitted for this type of material.

As an alternate, regenerated sulfur dioxide may be piped back to the gasifier or auxiliary packaged steam generator for ultimate ducting back into the breeching of Fort Martin Unit #2 upstream of the electrostatic precipitators.

HGCU Description of Operation

Coal Gas Cycle:

The purpose of the HGCU is to remove the H₂S and sulfur compounds to a suitable level (<10 PPMV) from the coal gas stream. This unit also supplies the SO₂ rich feed gas to the direct sulfur recovery unit (DSRU).

The HGCU receives coal gas from the fines cyclone located in the gasifier area. The gas (which includes tars) is fed into the bottom of the HGCU absorber. The feed gas is at 600 psia and 1100°F.

The sorbent reagent is zinc ferrite with a binding agent to make a fluidizable grade catalyst. The zinc ferrite absorbs the sulfur bearing materials in the coal gas by converting the zinc and iron oxide components to zinc and iron sulfide. The sulfidation reaction is exothermic which raises the gas temperature to about 1200°F.

The coal gas passes through the perforated plate in the bottom of the absorber vessel. The gas fluidized sorbent bed allows intimate gas and sorbent contact.

The fluidizing coal gas then passes through a second perforated plate to a second fluidized sorbent bed. The final bed removes the last traces of sulfur bearing materials in the gas to a point less than 10 ppmv.

The cleaned coal gas passes out top of the absorber vessel through the internal cyclone which removes the larger particles from the gas and returns them to the upper bed through the cyclone dip leg.

The gas then passes through the sorbent fines cyclone to remove the sorbent fines from the coal gas before leaving the HGCU for delivery to the flare. The sorbent fines are removed to a tote bin through the cyclone lock hopper. The fines tote bin is either returned to the sorbent manufacturer or its contents are wasted to landfill depending upon sorbent economics.

Sorbent Cycle

3

The sorbent treats the coal gas in two fluidizer beds in the HGCU Absorber. In this process, the zinc ferrite is converted to zinc and iron sulfide. This action is known as "sulfidation".

The sulfidation reactions are as follows:

 $3 Z_n Fe_{204} + H_2 --> 3 Z_n 0 + 2 Fe_{204} + H_{20}$ $Z_n 0 + H_{2S} --> Z_n S + H_{20}$ Fe_3 04 + 3 H_{2S} + H_2 --> 3 Fe S + 4 H_{20}

It is necessary to continuously remove the sulfidated sorbent from the fluid beds and reactivate it to zinc and iron oxides. This process id known as "regeneration". The sorbent is withdrawn from the lower bed by gravity into the spent sorbent receiver through a pipe. The inlet of the pipe is located near the top of the lower bed to catch the overflow of the bed. The rate of flow is controlled by a slide gate or other type of valve.

The sorbent in the spent sorbent receiver is in turn fluidized by the recycle gas stream entering the bottom of the spent sorbent receiver. Air is fed into the fluidized stream to provide oxygen to oxidize the sorbent according to the following reactions:

 $Z_nS + 2 Fe S + 02 --> Z_n Fe_20_4 + 3 SO_2$ $Z_nS + 20_2 --> Z_nS0_4$ $Z_nS0_4 --> Z_n 0 + SO_3 + 1/2 0_2$

The zinc sulfate reaction tends to occur at temperatures below 1200°F. Therefore, the regeneration temperature should be between 1250 and 1500°F.

The gas velocity in the riser tube is sufficient to transfer the sorbent up the tube to discharge into the regenerated sorbent cyclone. The cyclone drops out the sorbent into the body of the cyclone. The regeneration gas bearing the SO₂ gas leaves the top of the cyclone.

The regenerated sorbent is then fed by gravity into the upper fluid bed of the HGCU absorber. The flow rate of sorbent is controlled by a slide gate or other type of valve. The flow rate in the sorbent regeneration loop is controlled to prevent the break through of H₂S in the coal gas discharge. Break through would be any level above 10 ppmv of H₂S in the clean gas stream.

The sorbent passes from the upper bed to the lower bed through an internal standpipe to complete the sorbent cycle.

As the sorbent circulates, it wears and generates fines which are removed from the sorbent cycle. These losses are made up by feeding fresh sorbent through the fresh sorbent lock hopper. Fresh sorbent is received in tote bins from the sorbent manufacturer. Fresh sorbent batches are transferred through the fresh sorbent feeder and a dense phase pneumatic transfer system to the fresh sorbent lock hopper.

The fresh sorbent and fines lock hoppers must be vented and purged through the plant vent system to remove any coal gas in the vessels. This action is necessary from a safety and pollution control standpoint.

Regeneration Gas Cycle

The carrier gas for the regeneration reaction in the riser tube is handled in the regeneration gas loop. The purpose of this system is to provide diluent gas for diluting the oxygen fed into the riser tube (regenerator). Dilution and distribution of the oxygen feed is necessary to prevent overheating of the sorbent. The sorbent breaks down when heated over 1500°F.

After the recirculation gas leaves the top of the regenerated sorbent cyclone, it passes through a fines removal cyclone to remove entrained sorbent fines. The fines are removed through a lock hopper to a fines tote bin for disposal.

The gas then passes through a porous metal or ceramic medium filter to remove any fine dust that passes through the fines cyclone. This piece of equipment was added to ensure a clean gas stream to avoid fouling the downstream shell and tube heat exchangers. This may be an optional piece of equipment for the pilot plant depending upon the dusting characteristics of the new fluid bed sorbents being developed.

Because the sorbent regeneration reaction was exothermic, it is necessary to remove the heat of reactions from the system. It is also necessary to cool the recirculating gas to ca. 300°F at the recirculation blower inlet to avoid overheating and the requirement of exotic materials. The recirculating gas heat exchanger accomplishes the cooling by reheating the cool recirculating gas before it is fed to the regenerator. Cold gas feed is likely to thermally shock the hot sorbent.

The SO₂ rich offgas is removed from the recirculating gas stream at either side of the recirc gas heat exchanger. This allows the offgas stream to be taken off at either 400°F or 1100°F as desired. The SO₂ rich offgas is bled off the system through a flow meter and flow control valve to feed the sulfur recovery system or to atmosphere through the dry lime quench system to suit pilot plant operating plans.

The still hot recirc gas then passes through the air preheater to heat up the regeneration system air supply. The regeneration air is supplied from the gasifier compressed air system.

It may also be desirable to dry the regeneration air supply to keep moisture out of the recirc gas system. Moisture in the air could combine with the SO₂ gas in the system to form H₂SO₄ which, in turn could cause corrosion in the equipment.

The recirc gas then passes through an airfin cooling coil to trim out any residual heat to reduce the gas temperature to 300°F. The cooled recirc gas enters the recirculation blower which increases the gas pressure back to 600 psia to pump it around the system. The blower serves to overcome the system pressure drops such as the riser tube, cyclones, filter, heat exchangers, etc., required by the system.

The blower discharges through the shell side of the recirculating gas heat exchanger into the bottom of the spent sorbent receiver to complete the cycle.

The regeneration air supply is distributed to the air inlets on the regenerator riser tube to burn off the sulfur. The air flow is controlled by a temperature control system to prevent overheating in the riser tube.

A electrically powered start-up heater is provided at the discharge of the blower to heat up the system by circulating hot nitrogen. This would be done for a cold system start-up.