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EXECUTIVE SUMMARY 

The overall objective of this program was the development of a predictive capability for the design, 
scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This 
technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock 
whose variable and often unexpected behavior presents a significant challenge. This program merged 
significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively 
describing the mechanisms in coal conversion behavior, with technology developed at Brigham Young 
University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. 
Additional capabilities in predicting pollutant formation were implemented and the technology was 
expanded to fixed-bed reactors. 

The foundation to describe coal-specific conversion behavior was AFR's Functional Group (FG) 
and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going 
METC sponsored programs. These models have demonstrated the capability to describe the time 
dependent evolution of individual gas species, and the amount and characteristics of tar and char. The 
combined FG-DVC model was integrated with BYU's comprehensive two-dimensional reactor model for 
combustion and gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. The 
program included: i) validation of the submodels by comparison with laboratory data obtained in this 
program, ii) extensive validation of the modified comprehensive codes by comparison of predicted results 
with data from bench-scale and process scale investigations of gasification, mild gasification and 
combustion of coal or coal-derived products, and iii) development of well documented user friendly 
software applicable to a "workstation" environment. 

The progress during the program is summarized below. 

For Subtask 2.a., the processes described were: 1) tar formation mechanisms and kinetics; 2) 
gas formation mechanisms and kinetics; 3) sulfur and nitrogen evolution mechanisms and kinetics; 4) 
coal and char fluidity (viscosity); 5) char swelling; 6) optical properties of coal and char; 7) the behavior 
of polymethylenes; 8) crosslinking; 9) char reactivity. These processes were embodied in the Functional 
Group - Depolymedzation, Vaporization, Crosslinking (FG-DVC) model for coal conversion behavior. To 
provide the data for model development and for model parameters, several experimental methods were 
developed. These included: TG-FTIR (Thermogravimetric Analysis with analysis of evolved products by 
Fourier Transform Infrared spectroscopy) to determine coal composition, volatile evolutions, kinetics, and 
char reactivity and a transparent wall reactor (TWR) with in-situ FT-IR diagnostics to study rapid pyrolysis 
and combustion phenomenon. In addition, experiments were performed where coal was pyrolyzed in the 
inlet of a Field ionization Mass Spectrometer (FIMS) apparatus. 

The work has resulted in a successful method to characterize coal in the laboratory and 
predict its behavior over a wide variety of temperatures (100 to 1500°C), heating rates 
(10"/million years to 10S'/sec), and pressures (vacuum to 10 atm). The work is described in a number 
of publications which were written as a result of this contract. 

For Subtask 2.b., a high pressure facility (HPCP) was designed and constructed and char 
oxidation experiments were conducted at both atmospheric and elevated pressures. Approximately 100 
oxidation experiments were performed with two sizes of Utah and Pitt. bituminous coal chars at 1, 5, 10, 
and 15 atm total pressure. Reactor temperatures were varied between 1000 and 1500 K and bulk gas 
compositions ranged from 5 to 21%, resulting in average particle temperatures ranged from 1400 to 2100 
K with burnouts from 15 to 96%. Individual particle temperature, size and velocity were determined for 
approximately 75 particles at each test condition and overall reaction rates were independently determined 
from mass loss measurements. 

The major findings of the study are as follows: 1) in spite of careful size classification and char 
preparation, the resulting particle population exhibited substantial variations in combustion behavior; 2) 
increasing total pressure in an environment of constant gas composition leads to modest increases in the 



reaction rate and particle temperature; 3) significant kinetic control of the char oxidation process is 
exhibited at elevated pressures; 4) the global model kinetic parameters were found to be strongly 
dependent on the total pressure; 5) C02 formation must ba accounted for at particle temperatures below 
about 1700 K; 6) independent particte temperature and mass loss measurements are both experimental 
necessities to fully describe combustion behavior. 

For Subtask 2.c., studies of ignition, soot formation, and char burnout were performed in a 
Transparent Wall Reactor (TWR) which included in-situ FT-IR diagnostics. Experiments were done with 
several coal and char samples and the flame characteristics were compared to TGA measurements on 
the same samples. A comparison of the ignition of several samples suggested that the rate of ignition in 
the laminar flame correlated with the initial rate of weight loss in air in a TGA experiment at lower 
temperatures. Ignition of chars was heterogeneous; ignition of the high rank coals was homogeneous; but 
low rank coals exhibited both homogenous and heterogeneous contributions to ignition. Soot formation 
in combustion correlated well with tar yields in pyrolysis, suggesting that tar is the chief precursor to soot. 

For a Montana Rosebud flame, tomographic reconstruction techniques were applied to line-of-sight 
FT-IR Emission/Transmission (E/T) measurements to derive spectra that correspond to small voTumes 
within a coal flame. From these spectra, spatially resofvcd point values for species temperatures and 
relative concentrations can be determined. The spectroscopic data are in good agreement with visual 
observations and thermocouple measurements. The data present a picture of the coal burning in a 
shrinking annulus which collapses to the center at the tip of the flame. It has been found that the 
preheated air velocity has a significant effect on the shape of the flame. Two cases were done for the 
Montana Rosebud coal (low velocity and high velocity) and a Icy., velocity case for the Pittsburgh Seam 
coal was completed. The three flames showed both coal and flow dependent phenomena. Simulations 
of these results were done at BYU, as discussed under subtask 3.a. In addition, submodels for ignition, 
soot formation, and soot radiation were formulated. 

For Subtask 2.d., work was performed in four areas: 1) laboratory studies of mineral-matter 
transformations; 2) laboratory studies of catalytic effects of minerals on char reactivity; 3) modeting of 
mineral effects on char reactivity; 4) literature review of mineral-matter transformations. The results for 
each of these areas are summarized below. 

1) Argonne premium coal samples were characterized using a Scanning Electron Microscope (SEM) 
with dispersive energy ;<-ray analysis. In most cases, good agreement with elemental analysis data was 
obtained. Sampling of cherry ash and subsequent TGA and SEM analyses were also performed. It was 
found that ash spheres present on the char surface were rich in Ca, moderately rich in AI and Si, and had 
varying amounts of Fe, K, and Mg. Many of the pure mineral particles were found to be of the same size 
as the starting coal particles. 

2) The reactivity of chars prepared from raw and demineralized coals was measured. Above 10% 
o,'oTgen, the mineral matter dominates the char reactivity through the catalytic effect of alkali metals, 
especially Ca. 

3) The modeling of mineral effects on char reactivity was integrated into the overall char-reactivity 
model. 

4) The relevant literature on mineral matter in coal as well as ash formation and deposition was 
reviewed. Emphasis was placed on research carried out at EERC, MIT and PSI. Several key areas have 
been identified and discussed. Application of advanced mineral-matter characterization techniques, such 
as CCSEM and chemical fractionation, is advocated. The review also includes modeling of ash formation 
and deposition. 

For Subtask 2.e., a literature review of heat and mass transport effects in coal pyrolysis was 
completed. In addition, calculations were done to define regimes of internal and external heat and mass 
transport control for conditions of interest. This was done to define the boundary regions where such 
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considerations become important. 

A single particle FG-DVC model was developed for use in the fixed bed reactor code. This version 
of the model is based on an ordinary differential equation (ODE) version of the 2-0" percolation FG-DVC 
model. The code was delivered to BYU for integration into the FBED-1 Model. 

A model for the destruction of tar in fixed bed gasifiers was developed in order to account for the 
relatively low yield of tar from these systems. According to the predictions of the FBED-1 model, the tar 
evolution occurs in a relatively small region near the top of the reactor where the gas and particle 
temperatures are changing rapidly. While the coal particles are entering at room temperature, the exit gas 
temperature is close to 1000 K and is 1300 K in the region where tar evolves. Some experiments were 
done to assess the relative importance of tar gasification and tar cracking reactions. It was found that, 
while the thermal cracking effects were significant, the addition of CO 2 did not have much effect on the 
yield or composition of tar. Consequently, it was concluded that the tar destruction in the top part of a 
fixed-bed gasifier can probably be attributed primarily to thermal cracking rather than gasification 
reactions. 

For Subtask 2.f., atmospheric char oxidation runs in platinum and porcelain crucibles were made. 
Char particles were prepared and oxidized from Utah bituminous, North Dakota lignite, Wyoming 
subbituminous, Illinois #6, Pittsburgh #8, and Colorado bituminous coals. In these tests, large particles 
(0.5-1 cm) were oxidized, one at a time, over 5-15 minutes for time periods up to two hours, in incremental 
steps. The cube root of particle mass declined linearly with time during the first 80-90% burnout. Ash 
layers formed and usually remained in place around the decreasing volume of carbon. Average mass 
reactivities increased with decreasing initial char particle mass. These observations are consistent with 
oxidation being controlled by diffusion of oxygen. However, some chemical kinetic control is indicated at 
lower temperatures. 

The extension of the experimental char oxidation tests to include the variable of pressure was 
accomplished with the design and construction of a cantilever beam balance unit which was attached to 
the HPCP reactor of Subtask 2b. The mass loss of a reacting coal particle was followed continuously by 
the changing response of a force transducer connected to the reacting particles with a long-small-bore 
ceramic tube. Here also the cube root of particle mass declined linearly with time during the first 80-90% 
of char burnout. A significant influence of pressure was observed between one and five atmospheres but 
the burning characteristics at 5 and 7.5 atmospheres were about the same. 

For Subtask 2.g., The fuel NO x submodel in an existing 2-D comprehensive model for pulverized 
coal gasification and combustion (PCGC-2) was revised and extended to include thermal NO and to be 
applicable to fuel-rich systems. The effect of two different expressions for oxygen atom concentration was 
investigated. The fuel NO mechanism was revised to include parallel reaction paths through HCN or NH3. 
An alternative global mechanism from the literature involving NH3 was also investigated. The resulting 
model was evaluated by comparing model predictions with experimental data. 

For Subtask 2.h., The cross-flow injection and mixing of sorbent were studied in a cold-flow 
facility, and the results were used to modify an existing entrained-flow gasifier for sorbent injection. Sulfur- 
capture studies were then carded out at pressure with limestone and four coals of varying sulfur content. 
Three methods were used to investigate the sorbent mixing in cold-flow. The results at relatively low jet- 
to-free-stream momentum ratios showed that such flows are slower to mix with the free stream than flows 
with sufficient energy to impinge on the opposite wall. In such cases, increasing the number of cross-flow 
injectors was found to enhance the mixing. Sight windows were installed to permit optical access, and FT- 
IR temperature data were obtained with the assistance of AFR. There was no significant sulfur capture 
for three of the coals, and only a small effect with the highest-sulfur coal. The major cause of the low 
capture is believed to be the high temperature in the gasifier. 
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For Subtask 3.a., a 2-D comprehensive model for pulverized coal gasification and combustion (87- 
PCGC-2) was extended to include the FG-DVC model as an option for predicting weight loss and volatiles 
enthalpy. Other improvements in the code include laminar flow effects, gas buoyancy, a user-friendly and 
reliable energy equation option, and a condensed-phase equilibrium algorithm. The improved modal was 
extensively evaluated by comparing model predictions with experimental data from several reactors. A 
clear advantage of the FG-DVC submodel was shown to be coal generality. Needed model improvements 
were identified. User-friendly graphics options were developed for code input and output. A users manual 
was prepared, documenting code theory and use. Under a closely reIated, but independent study, 
improvements were made to the radiation submodel and enthalpy balance cIosure was realized. 

For Subtask 3.b,, the principal objective was to develop, evaluate and apply an advanced, 
steady-state, one-dimensional model of countercurrent, fixed-bed coal combustion and gasification. 
Improvements included advanced treatment of devolatilization, separate gas and coal temperatures, axially 
vadable solid and gas flow rates, variable bed void fraction, generalized treatment of gas phase chemistry, 
and SO×/NO x pollutants. The initial fixed-bed model, MBED-1, was evaluated through sensitivity analysis 
and comparisons to experimental data. The predicted temperature and pressure profiles were found to 
agree reasonably well with the measured values, in MBED-1, gas evolution rates are determined by the 
functional group (FG) submodel and the tar evolution rate is determined by the semi-empirical tar (SET) 
correlation. The MBED-1 results brought out the significant effect of tar yield on predictions and the need 
for a more rigorous devolatilization model. 

The most important improvement in the final version of the fixed-bed model, FBED-1, is the 
inclusion of the advanced devolatilization submodel, FG-DVC. In this submodel, gas evolution ra~es are 
determined by the functional group (FG) submodel and the tar evolution rate by the depo;ymedzation- 
vaporization-crosslinking (DVC) submodel. The final version of the fixed-bed code, FBED-1, provides also: 
improved predictions of product gas composition and temperature; improved prediction of tar production; 
modifications in the iteration scheme to satisfy the gas phase boundary conditions at the bottom of the 
gasifier; improved modularity, code structure, and use friendliness; and improved graphics output. The 
final fixed-bed model, FBED-1, was also evaluated through sensitivity analysis and comparisons to 
experimental data. The predicted effIuent composition and temperature as well as the predicted 
temperature and pressure profiles were found to agree very weU with the measured values. 

For Subtask 3.¢., the fuels feedstock submodel in PCGC-2 was generalized to feed particles in 
any inlet, and to feed sorbent particles as well as coal particles. The generalized feedstock submodel was 
tested with the sorbent reactions submodel developed under Subtask 2.g. 

For Subtask 4.a., the applicability of 93-PCGC-2 to practical-scale processes of commercial 
interest was demonstrated by simulating two such reactors. One is the Coal Tech Corp. advanced, air- 
cooled cyclone combustor, and the other is the Solar Turbines, Inc. combustor. The latter simulation was 
performed under an independent study and is reported separately. The code was shown to be ~ useful 
tool for reactor design and simulation. A user's manual was prepared, the final code was instalted at 
METC and a short course was given. 

For Subtask 4.b., the fixed-bed coal combustion, gasification, and devolatilization codes, MBED-1 
and FBED-1, developed in Subtask 3.b, were successfully demonstrated by simulating the four dr/-ash, 
fixed-bed gasifiers of interest to METC: the high-pressure,~ oxygen-blown Lurgi gasifier, the medium- 
pressure, air-blown METC gasifier, the atmospheric-pressure, air-blown We[lman-Galusha gasifier, and 
the high-pressure, air-blow, PyGas TM staged gasifier. The most comprehensive test data, including the 
temperature and the pressure profiles, were available for the atmospheric-pressure Wel]man-Galusha 
gasifier. The Wellman-Galusha test data were used to validate the fixed-bed codes and the corresponding 
simulations were presented in Subtask 3.b. The simulations of the high-pressure Lurgi gasifier, the 
medium-pressure METC gasifier, and the high-pressure, air-blow, PyGas TM staged gasifier were presented 
as part of this subtask. 
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The user's manual was prepared for the FBED-1 code. The code was ported to a Silicon Graphics 
workstation and the sample case was successfully executed. The code, the user's manual, and the 
installation instructions were sent to METC. A short course on the use of the FBED-1 code was conducted 
at METC. 
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SECTION I. INTRODUCTION 

I.A. Program Back qround and Descrip.ti,on 

During the past several years, significant advances have been made at Brigham Young University 
(BYU) in comprehensive two-dimensional computer codes for mechanistic modeling of entrained-bed 
gasification and pulverized coal combustion. During the same time period, significant advances have been 
made at Advanced Fuel Research, Inc. (AFR) in the mechanisms and kinetics of coal pyrolysis and 
secondary reactions of pyrolysis products. This program provided an opportunity to merge the technology 
developed by each organization in order to provide a detailed predictive capability for advanced coal 
characterization techniques in conjunction with comprehensive computer models to provide accurate 
process simulations. 

The program streamlined submodels existing or under development for coal pyrolysis chemistry, 
volatile secondary reactions, tar formation, soot formation, char reactivity, and SO.-NO. pollutant formation. 
Submodels for coal viscosity, agglomeration, tar/char secondary reactions, sulfur capture, and ash physics 
and chemistry were developed or adapted. The submodels ~;,ere first incorporated into the BYU entrained- 
bed gasification code and subsequently, into a fixed-bed gasification code, which was developed at 8YU. 
These codes were validated by comparison with small scale laboratory and PDU-scale experiments. The 
validated codes can now be employed to simulate and to develop advanced coal conversion reactors of 
interest to METC. 

I.B. Ob,iectives 

The objectives of this study were to establish the m~.chanisms and rates of basic steps in coal 
conversion processes, to integrate and incorporate this information into comprehensive computer models 
for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification 
and combustion in heat engines. 

l.C. Approach 

This program was a closely integrated, cooperative effort between AFR and BYU. The program 
consisted of four tasks: 1) Preparation of Research Plans, 2) Submodel Development and Evaluation, 3) 
Comprehensive Model Development and Evaluation, and 4) Applications and Implementation. 

I.D. Critical Technical Issues 

To achieve the goals of the program, the computer models must provide accurate and re.liable 
descriptions of coal conversion processes. This required the reduction of very complicated and interrelated 
physical and chemical phenomena to mathematical descriptions and, subsequently, to operational 
computer codes. To accomplish this objective, a number of technical issues were addressed as noted 
below. 

Separation of Rates for Chemical Reaction, Heat Transfer, and Mass Transfer 
Particle Temperature Measurements Using FT-IR E/T Spectroscopy 
Functional Group Descriptions of Coal, Char and Tar 
Tar Formation Mechanisms 
Char Formation Mechanisms 
Viscosity/Swelting 
Intrapartic/e Transport 
Pyrolysis of Volatiles and Soot Formation 
Secondary Reaction of Tar 
Particle Ignition 
Char Reactivity 
Ash Chemistry and Physics 



Particle Optical Properties 
Coupling of Submodels with Comprehensive Codes 
Comprehensive Code Efficiency 
Turbulence 
SO x and NO x 
Generalized Fuels Models 
Fixed-Bed Model 

These technical issues were addressed in three main tasks as described in Sections II-IV. 

I.E. Summary 

Subtask 2.a. Coal to Char Chemistry Submodel Development and Evaluation 

The processes described in this work were: 1) tar formation mechanisms and kinetics; 2) gas 
formation mechanisms and kinetics; 3) sulfur and nitrogen evolution mechanisms and kinetics; 4) coal 
and char fluidity (viscosity); 5) char swelling; 6) optical properties of coal and char; 7) the behavior of 
polymethylenes; 8) crosslinking; 9) char reactivity. These processes were embodied in the Functional 
Group - Depolymerization, Vaporization, Crosslinking (FG-DVC) model for coal conversion behavior. To 
provide the data for model development and for model parameters, several experimental methods were 
developed. These included: TG-FTIR (Thermogravimetric Analysis with analysis of evolved 
products by Fourier Transform Infrared spectroscopy) to determine coal composition, volatile 
evolutions, kinetics, and char reactivity and a transparent wall reactor (TWR) with in-situ 
FT-IR diagnostics to study rapid pyrolysis and combustion phenomenon. In addition, 
experiments were performed where coal was pyrolyzed in the inlet of a Field Ionization Mass 
Spectrometer (FIMS) apparatus. 

The work has resulted in a successful method to characterize coal in the laboratory and 
predict its behavior over a wide variety of temperatures (100 to 1500 °C), heating rates 
(10"/million years to 10S'/sec), and pressures (vacuum to 10 arm). The work is described in a number 
of publications which were written as a result of this contract. 

Subtask 2.b. Fundamental Hi,qh-Pressure Reaction Rate Data 

A high pressure facility was designed and constructed and char oxidation experiments were 
conducted at both atmospheric and elevated pressures. Approximately 100 oxidation experiments were 
performed with two sizes of Utah and Pitt. bituminous coal chars at 1, 5, 10, and 15 atm total pressure. 
Reactor temperatures were varied between 1000 and 1500 K and bulk gas compositions ranged from 5 
to 21%, resulting in average particle temperatures ranged from 1400 to 2100 K with burnouts from 15 to 
96%. Individual particle temperature, size and velocity were determined for approximately 75 particles at 
each test condition and overall reaction rates were independently determined from mass loss 
measurements. The results from the 1 atm Utah char oxidation results were shown to be consistent with 
results obtained by other researchers using the same coal. The chars were found to be burning mainly 
in a reducing density mode in a regime intermediate between the kinetic and pore diffusion zones, 
irrespective of total pressure. While the global model was used to correlate the results of the study, the 
extrapolation of the n th order rate equation to pressures higher than atmospheric was found to be invalid. 

The effect of increasing total pressure on char oxidation at a constant gas composition can be 
summarized as follows. Raising total pressure also necessarily increases the bulk gas 02 pressure, 
leading to an increase in the reaction rate. However, this increase is tempered by the decrease in oxygen 
diffusivity that also accompanies increases in pressure. The overall result is a slight increase in rate with 
increasing total pressure. Most of this change occurred by 10 atm and further increases in total pressure 
produce little effect on the rate. 
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The major findings of the study are as follows: 

. In spite of careful size classification and char preparation, the resulting particle population 
exhibited substantial variations in combustion behavior. 

. Increasing total pressure in an environment of constant gas composition leads to modest increases 
in the reaction rate and particle temperature. 

3. Significant kinetic control of the char oxidation process is exhibited at elevated pressures. 

. 

. 

The global model kinetic parameters were found to be strongly dependent on the total pressure. 
This indicates that the empirical n th order equation is not completely valid over the range of 
pressures covered in the experiments. 

CO 2 formation must be accounted for at particle temperatures below about 1700 K. This is true 
regardless of the pressure. 

. Independent particle temperature and mass loss measurements are both experimental necessities 
to fully describe combustion behavior. 

Subtask 2.c. Secondary  Reaction of  Pyrolysis Product, s a n d  Char  Burnout  

Studies of ignition, soot formation and char burnout were performed in a Transparent Wall Reactor 
(TWR) which included in-situ FT-IR diagnostics. Experiments were done with several coal and char 
samples and the flame characteristics were compared to TGA measurements on the same samples. A 
comparison of the ignition of several samples suggested that the rate of ignition in the laminar flame 
correlated with the initial rate of weight loss in air in a TGA experiment at lower temperatures. Ignition of 
chars was heterogeneous; ignition of the high rank coals was homogeneous; but low rank coals exhibited 
both homogenous and heterogeneous contributions to ignition. Soot formation in combustion correlated 
well with tar yields in pyrolysis, suggesting that tar is the chief precursor to soot. 

A series of pyrolysis experiments was also done with Zap lignite and Pittsburgh seam bituminous 
coal in the TWR. These experiments included FT-IR gas and particle temperature measurements, 
thermocouple measurements of the gas temperature and collection of char samples with a probe at six 
different heights. The particle temperature measurements were used to reconstruct the particle time- 
temperature history. The pyrolysis yields were then simulated with the FG-DVC model and the results 
were consistent with kinetic rates measured previously at AFR and Sandia for experiments where particle 
temperature measurements were made. 

For a Montana Rosebud flame, tomographic reconstruction techniques were applied to line-of-sight 
FT-IR Emission/Transmission (E/T) measurements to derive spectra that correspond to small volumes 
within a coal flame. From these spectra, spatially resolved point values for species temperatures and 
relative concentrations can be determined. The spectroscopic data are in good agreement with visual 
observations and thermocouple measurements. The data present a picture of the coal burning in a 
shrinking annulus which collapses to the center at the tip of the flame. It has been found that the 
preheated air velocity has a significant effect on the shape of the flame. Two cases were done for the 
Montana Rosebud coal (low velocity and high velocity) and a tow velocity case for the Pittsburgh Seam 
coal was completed. The three flames showed both coal and flow dependent phenomena. Simulations 
of these results were done at BYU, as discussed under subtask 3.a. 

In addition, submodels for ignition and soot formation were formulated. Work was also done on 
developing a radiative model for soot as part of the soot submodel. The inputs are the volume fraction 
of soot and the temperature. The output is the average soot emissivity. The main difficulty is to correct 
for the presence of CO2 and H20. This work was done jointly with BYU since the radiation mod~l is an 



integral part of PCGC-2. 

Subtask 2.d. Ash Physics and Chemistry Submodel 

Under this subtask, work was performed in four areas: 

1) 
2) 
3) 
4) 

laboratory studies of mineral-matter transformations 
laboratory studies of catalytic effects of minerals on char reactivity 
modeling of mineral effects on char reactivity 
literature review of mineral-matter transformations 

The results are summarized below. 

1) Argonne premium coal samples were characterized using a Scanning Electron Microscope (SEM) 
with dispersive energy x-ray analysis. In most cases, good agreement with elemental analysis data was 
obtained. Sampling of char/fly ash and subsequent TGA and SEM analyses were also performed. It was 
found that ash spheres present on char surface were rich in Ca, moderately rich in AI and Si, and had 
varying amounts of Fe, K, and Mg. Many of the pure mineral particles were found to be of the same size 
as the starting coal particles. Small-particle shedding (< 10pm was also observed. Sodium was nearly 
completely lost from the char, while magnesium was retained up to 30-50% burn-off. Sulfur was 
progressively lost as bum-off increased. 

2) The reactivity of chars prepared from raw and demineralized coals was measured. For the raw- 
coal samples, an increase in reactivity with increasing coal-oxygen content was observed. Above 10% 
oxygen, the mineral matter dominates the char reactivity through the catalytic effect of alkali metals, 
especially Ca. This was confirmed by lower reactivities observed for demineralized samples. Loading 
demineralized samples with Ca and Mg ions restored the originally high reactivity. 

3) The modeling of mineral effects on char reactivity was integrated into the overall char-reactivity 
model and is reported in section II.A.10 

4) The relevant literature on mineral matter in coal as well as ash formation and deposition was 
reviewed. Emphasis was placed on research carried out at EERC, MIT and PSI. The following key areas 
have been identified and discussed: 1) the chemical and physical characterization of inorganic matter in 
coal; 2) the mechanisms of mineral-matter transformation into inorganic vapors, liquids and solids; 3) the 
physical properties of the intermediate ash species as a function of temperature, atmosphere, and 
residence time; 4) The mechanisms of ash transport to heat-transfer surfaces as a function of particle size 
and flow patterns in the combustor; 5) the heat-transfer characteristics coupled, with the reactivity and 
melting behavior of the deposited ash material; 6) the characteristics of the liquid components in the 
deposit with respect to deposit growth and strength development; and 7) the physical characteristics of 
the deposit that' influence its ability to be removed by conventional processes (e.g., by soot blowing). 
Application of advanced mineral-matter characterization techniques, such as CCSEM and chemical 
fractionation, is advocated. The review also includes modeling of ash formation and deposition. 

Subtask 2.e. Large Particlerrhick Bed S ubmod.e!s 

A literature review of heat and mass transport effects in coal pyrolysis was completed. In addition, 
calculations were done to define regimes of internal and external heat and mass transport control for 
conditions of interest. This was done to define the boundary regions where such considerations become 
important. 

A single particle FG-DVC model was developed for use in the fixed bed reactor code. This version 
of the model is based on an ordinary differential equation (ODE) version of the 2-0- percolation FG-DVC 
model. The code was delivered to BYU for integration into the FBED-1 Model. 
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Under this subtask, a model for the destruction of tar in fixed bed gasifiers was developed in order 
to account for the relatively tow yield of tar from these systems. A compilation was made of literature data 
from laboratory reactors and full-scale moving bed gasifiers to help validate the model. The focu; was on 
data for the Pittsburgh seam coal which shows the i;hange in tar yield and/or compostion with variations 
in heating rate, bed depth, flow rate, pressure, particle size, and reactor type. 

According to the predictions of the FBED-1 model, the tar evolution occurs in a relatively small 
region near the top of the reactor where the gas and particle temperatures are changing rapidly. While 
the coal particles are entering at room temperature, the exit gas temperature is close to 1000 K and is 
1300 K in the region where tar evolves. Consequently, the contribution of tar cracking and tar gasification 
(by CO2) must also be accounted for and could be the dominant mode of tar loss under some conditions. 
Some experiments were done to assess the relative importance of tar gasification and tar cracking 
reactions. It was found that, while the thermal cracking effects were significant, the addition of CO 2 did 
not have much effect on the yield or composition of tar. Consequently, it was concluded that ~he tar 
destruction in the top part of a fixed-bed gasifier can probably be attributed primarily to thermal cracking 
rather than gasification reactions. A recommendation was made to assume that the rates of tar pyrolysis 
and gasification were the same as that for the coal and this feature was incorporated into the FBED-t 
model. 

Subtask 2.f. Large Char Particle Oxidation at High Pressure 

Atmospheric Char Oxidation in Simple Devices - Atmospheric char oxidation runs in pI~tinum 
and porcelain crucibles were made. Char particles were prepared and oxidized from Utah bituminous, 
North Dakota lignite, Wyoming subbituminous, Illinois #8, Pittsburgh #8, and Colorado bituminous coals. 

Approximately 150 tests were made at atmospheric pressure in two different simple experimental 
devices using heat from Meker burners or a muffle furnace. In these tests, large particles (0.5-1 cm) were 
oxidized, one at a time, over 5-15 minutes for time periods up to two hours, in incremental steps. The 
cube root of particle mass declined linearly with time during the first 80-90% burnout. Ash layers formed 
and usually remained in place around the decreasing volume of carbon. Average mass reactivities 
increased with decreasing initial char particle mass. These observations are consistent with oxidation 
being controlled by diffusion of oxygen. However, some chemical kinetic control is indicated at lower 
temperatures. 

Oxidation at Elevated Pressures in the HPCP Reactor - The extension of the experimental char 
oxidation tests to include the variable of pressure was accomplished with the design and construction of 
a cantilever beam balance unit which was attached to the HPCP reactor of Subtask 2b. The mass loss 
of a reacting coal particle was followed continuously by the changing response of a force transducer 
connected to the reacting particles with a long-small-bore ceramic tube. Here also the cube root of partioIe 
mass declined linearly with time during the first 80-90% of char burnout. A significant influence of pressure 
was observed between one and five atmospheres but the burning characteristics at 5 and 7.5 atmospheres 
were about the same. 

Subtask 2.g. SQ, - NO~ Submod.el..D.evelopment 

NOv Submodel - The fuel NO~ submodel in an existing 2-D comprehensive model for pulverized 
coal gasification and combustion (PCGC-2) was revised and'extended to include thermal NO and to be 
applicable to fuel-rich systems. The effect of two different expressions for oxygen atom concentration was 
investigated. The fuel NO mechanism was revised to inctude paraitel reaction paths through HCN or NH 3. 
An alternative global mechanism from the literature involving NH 3 was also investigated. The resulting 
model was evaluated by comparing model predictions with experimental data. 
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SO~/S.orbent Submodel- An existing sulfation submodel was integrated into PCGC-2 and used 
to predict the reaction of injected sorbents with SO 2 and H2S. The equilibrium approach for predicting 
sulfur species was evaluated. The use of the submodel was demonstrated by simulating a fuel-lean and 
a fuel-rich case. A sensitivity analysis of the sulfation submodel was performed. 

Subtask 2.h. SOJNO, Submodel Evaluation 

The cross-flow injection and mixing of sorbent were studied in a cold-flow facility, and the results 
were used to modify an existing entrained-flow gasifier for sorbent injection. Sulfur-capture studies were 
then carried out at pressure with limestone and four coals of varying sulfur content. Three methods were 
used to investigate the sorbent mixing in cold-flow: 1) Smoke injection for visualization, 2) tracer gas 
injection and sampling, and 3) laser-Doppler anemometry (LDA). The results at relatively low jet-to-free- 
stream momentum ratios showed that such flows are slower to mix with the free stream than flows with 
sufficient energy to impinge on the opposite wall. In such cases, increasing the number of cross-flow 
injectors was found to enhance the mixing. Three injection ports were therefore used in the gasifier. Sight 
windows were installed to permit optical access, and FT-IR data were obtained with the assistance of AFRo 
There was no significant sulfur capture for three of the coals, and only a small effect with the highest-sulfur 
coal. The major cause of the low capture is believed to be the high temperature in the gasifier. 
Temperature determined by FT-IR ranged from approximately 1510 to 2480 K. Also, slag samples taken 
at various axial locations indicated that interactions between the slag, sulfur, and sorbent were occurring, 
probably reducing the amount of sorbent available for sulfur capture. 

Subtask 3.a. Integration of Advanced Submodels into Entrained-Flow Code, with Evaluation and 
Documentation 

A 2-D comprehensive model for pulverized coal gasification and combustion (87-PCGC-2) was 
extended to include the FG-DVC model as an option for predicting weight loss and volatUes enthalpy. 
Other improvements in the code include laminar flow effects, gas buoyancy, a user-friendly and reliable 
energy equation option, and a condensed-phase equilibrium algorithm. The improved model was 
extensively evaluated by comparing model predictions with experimental data from several reactors. A 
clear advantage of the FG-DVC submodel was shown to be coal generality. Needed model improvements 
were identified. User-friendly graphics options were developed for code input and output. A user's manual 
was prepared, documenting code theory and use. Under a closely related, but independent study, 
improvements were made to the radiation submodel and enthalpy balance closure was realized. 

Subtask 3.b. Comprehensive Fixed-Bed Modeling Review, Development, Evaluation, and 
Implementation 

The principal objective of this project was to develop, evaluate and apply an advanced, steady- 
state, one-dimensional model of countercurrent, fixed-bed coal combustion and gasification. Improvements 
included advanced treatment of devolatilization, separate gas and coal temperatures, axially variable solid 
and gas flow rates, variable bed void fraction, generalized treatment of gas phase chemistry, and SOx/NO x 
pollutants. The initial fixed-bed model, MBED-1, was evaluated through sensitivity analysis and 
comparisons to experimental data. The predicted temperature and pressure profiles were found to agree 
reasonably well with the measured values. In MBED-1, gas evolution rates are determined by the 
functional group (FG) submodel and the tar evolution rate is determined by the semi-empirical tar (SET) 
correlation. The MBED-1 results brought out the significant effect of tar yield on predictions and the need 
for a more rigorous devolatilization model. 

The most important improvement in the final version of the fixed-bed model, FBED-1, is the 
inclusion of the advanced devolatilization submodel, FG-DVC. In this submodel, gas evolution rates are 
determined by the functional group (FG) submodel and the tar evolution rate by the depolymerization- 
vaporization-crosslinking (DVC)submodel. The final version of the fixed-bed code, FBED-1, provides also: 
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improved predictions of product gas composition and temperature; improved prediction of tar production; 
modifications in the iteration scheme to satisfy] the gas phase boundary conditions at the bottom of the 
gasifier; improved modularity, code structure, and use friendliness; and improved graphics output. The 
final fixed-bed model, FBED-1, was also evaluated through sensitivity analysis and comparisons to 
experimental data. The predicted effluent composition and temperature as well as the predicted 
temperature and pressure profiles were found to ~gree very well with the measured values. 

Subtask 3.c. Generalized Fuels Feedstock Submodel 

The fuels feedstock submodel in PCGC-2 was generalized to feed particles in any inlet, and to 
feed sorbent particles as well as coal particles. The generalized feedstock submodel was tested with the 
sorbent reactions submodel developed under Subtask 2.g. 

Subtask 4.a. Application of Gene.ralized Pulverized Coal Comprehensive Code 

The applicability of 93-PCGC-2 to practical-scale processes of commercial interest was 
demonstrated by simulating two such reactors. One is the Coal Tech Corp• advanced, air-cooled cyclone 

• combustor, and the other is the Solar Turbines, Inc. combustor. The latter simulation was performed under 
an independent study and is reported separately• The code was shown to be a useful tool for reactor 
design and simulation. A user's manual was prepared, the final code was installed at METC and a short 
course was given on June 29-30, 1993. 

Subtask 4.b. Application of Fixed-Bed ,Code 

The fixed-bed coal combustion, gasification, and devolatilization codes, MBED-I and FBED-t, 
developed in Subtask 3.b, were successfully demonstrated by simulating the four dry-ash, fi×ed-bed 
gasifiers of interest to METC: the high-pressure, oxygen-blown Lurgi gasifier, the medium-pressure, air- 
blown METC gasifier, the atmospheric-pressure, air-blown Weltman-Galusha gasifier, and the high- 
pressure, air-blow, PyGas TM staged gasifier. The most comprehensive test data, including the temperature 
and the pressure profiles, were available for the atmospheric-pressure WeHman-GaIusha gasifier• The 
Wellman-Galusha test data were used to validate the fi×ed-bed codes and the corresponding simulations 
were presented in Subtask 3.b. The simulations of the high-pressure Lurgi gasifier, the medium-pressure 
METC gasifier, and the high-pressure, air-blow, PyGas TM staged gasifier were presented as part of this 
subtask. 

The user's manual was prepared for the FBED-1 code. The code was ported to a Silicon Graphics 
workstation and the sample case was successfully executed. The code, the users manuat, ~.nd the 
installation instructions were sent to METC. A short course on the use of the FBED-1 code was conducted 
at METC. 
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SECTION !1. TASK 2. SUBMODEL DEVELOPMENT AND EVALUATION 

Obiectives 

The objectives of this task were to develop or adapt advanced physics and chemistry submodels 
for the reactions of coal in an entrained-bed and a fixed-bed reactor and to validate the submodels by 
comparison with laboratory scale experiments. 

Task Outline 

The development of advanced submodels for the entrained~bed and fixed-bed reactor models was 
organized into the following categories: a) Coal Chemistry (including coal pyrolysis chemistry, char 
formation, particle mass transfer, particle thermal properties, and particle physical behavior); b) Char 
Reaction Chemistry at high pressure; c) Secondary Reactions of Pyrolysis Products (including gas-phase 
cracking, soot formation, ignition, and char burnout); d) Ash Physics and Chemistry (including mineral 
characterization, evolution of volatile, molten and dry particle components, and ash fusion behavior); e) 
Large Coal Particle Effects (including secondary reactions within the particle and in multiple particle layers; 
f) Large Char Particle Effects (including oxidation); g) SOx-NO x Submodel Development (including the 
evolution and oxidation of sulfur and nitrogen species); and h) SO x and NO x Model Evaluation. 
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II.A. SUBTASK 2.a. - COAL TO CHAR CHEMISTRY SUBMODEL 
DEVELOPMENT AND EVALUATION 

Senior Investigators - David G. Hamblen, Michael A. Serio and Peter R. Solomon 
Advanced Fuel Research, Inc. 

87 Church Street, East Hartford, CT 06108 
(203) 528-9806 

Objective 

The objective of this subtask is to develop and evaluate, by comparison with laboratory 
experiments, an integrated and compatible submodel to describe the organic chemistry and physical 
changes occurring during the transformation from coal to char in coal conversion processes. 

Accomplishments 

The processes described in this work were: 

U 

tar formation mechanisms and kinetics 
gas formation mechanisms and kinetics 
sulfur and nitrogen evolution mechanisms and kinetics 
coal and char fluidity (viscosity) 
char swelling 
optical properties of coal and char 
the behavior of polymethylene 
crosslinking 
char reactivity 

These processes were embodied in the Functional Group - Depolymedzation, Vaporization, Corsslinking 
(FG-DVC) model for coal conversion behavior. 

To provide the data for model development and for model parameters, several experimental 
methods were developed. These included: 

I I  TG-FTIR (Thermogravimetric Analysis with analysis of evolved products by 
Fourier Transform Infrared spectroscopy) to determine coal composition, volatile 
evolutions, kinetics, and char reactivity. 

,, Transparent wail reactor (TWR) with in-situ FT-IR diagnostics to study rapid 
pyrolysis and combustion phenomenon. 

• Pyrolysis of coal in a Field Ionization Mass Spectrometer (FIMS) apparatus. 

The work has resulted in a successful method to characterize coal in the laboratory and predict is b~havior 
over a wide variety of temperatures (100 to 1500°C), heating rates (10°/million years to 10~'°ls~c), and 
pressures (vacuum to 10 atm). 

The work is described in a number of publications which were written for this contract. 

Serio, M.A., Solomon, P.R., and Carangelo, R.M., pyrolysis of the Ar.qonne Premium Coals under 
.Slow Heat{ng Cendi.tions, ACS Div of Fuel Chem. Preprints 33, (2), 295, (1988). 

Serio, M.A., SolOmon, P.R., Yu, Z.Z., Desphande, G.V., and Hamblen, D.G., Pyrolysis Modelincl 
of Ar.qonne Premium Coals, ACS Div. of Fuel Chem. Preprints, 33, (3), 91, (1988). 
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Solomon, P.R. and Carangelo, R.M., FT-IR Analysis of Coal 2. Aliphatic and Aromatic Hydro qen 
Concentration, Fuel, 67, 949, (1988). 

Solomon, P.R., Chien, P.L., Carangelo, R.M., Best, P.E., and Markham, J.R., Application of FT-IR 
Emission/Transmission (E/T) Spectroscopy to Study Coal Combustion Phenomena, The 22nd 
Symposium (Int) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 211, (1988). 

Solomon, P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A. and Deshpande, G.V., Models of Tar 
Formation Durin,q Coal Devolatilization, Combustion and Flame, 71, 137, (1988). 

Solomon, P.R., Hamblen, D.G., Carangeio, R.M., Serio, M.A., and Deshpande, G.V., A General 
Model of Coal Devolatilization, Energy and Fuel, 2, 405, (1988). 

Serio, M.A., Solomon, P.R., Bassilakis, R., and Suuberg, E.M., The Effects of Minerals and 
..P.yrolysis Conditions on Char Gasification Rates, ACS Div. of Fuel Chem. Preprints, 34, (1), 9, 
(1989). 

Serio, M.A., Solomon, P.R., Yu, Z.Z., Bassilakis, R., The Effect of Rank on Coal Pyrolysis Kinetics, 
ACS Div. of Fuel Chem. Preprints, 34, (4), 1324, (1989). 

Khan, M.R., Serio, M.A., Malhotra, R., and Solomon, P.R., A Comparison of Liquids Produced 
from Coal by Rapid and Slow Heatin.q Pyrolysis Experiments, ACS Div. of Fuel Chem. Preprints, 
34, (4), 1054, (1989). 

Solomon, P.R., Serio, M.A., and Markham, J.R., Kinetics of Coal Pyrolysis, Int. Conference on 
Coal Science Proceedings, lEA, Tokyo, Japan, p. 575, (October 23-27, 1989). 

Solomon, P.R., Best, P.E., Markham, J.R., and Klapheke, J., The.S.tudy of Coal Flames using FT- 
IR Emissioq/Transmission Tomo.qraphy, Int. Conference on Coal Science Proceedings, lEA, 
Tokyo, Japan, p. 329, (October 23-27, 1989). 

Solomon, P.R., Serio, M.A., and Carangelo, R.M., Coal Analysis by TG-FTIR, Int. Conference on 
Coal Science Proceedings, lEA, Tokyo, Japan, p. 67, (October 23-27, 1989). 

Serio, M.A., Solomon, P.R., Bassilakis, R., and Suuberg, E.M., The Effects of Minerals on Coal 
Reactivity, Int. Conference on Coal Science Proceedings, lEA, Tokyo, Japan, p. 341, (October 23- 
27, 1989). 

Serio, M.A., Solomon, P.R., Yu, Z.Z., and Deshpande, G.V., An Improved Model of Coal 
Devolatilization, Int. Conference on Coal Science Proceedings, lEA, Tokyo, Japan, p. 209, 
(October 23-27, 1989). 

Solomon, P.R., Hamblen, D.G., Yu, Z.Z., and Serio, M.A., Network Models of Coal Thermal 
Decomposition, Fuel, 69, 754, (1990). 

Solomon, P.R., "On-Line Fourier Transform Infrared Spectroscopy in Coal Research", in Advances 
in Coal Spectroscopy, (H.L.C. Meuzelaar, Ed.), Plenum Publishing Corp., pp 341 - 371, (1992). 

Solomon, P.R., Serio, M.A., Deshpande, G.V., and Kroo, E., Crosslinkin.q Reactions Durinq Coal 
Conversion, Energy & Fuels, 4, (1), 42, (1990). 

Solomon, P.R. and Best, P.E., "Fourier Transform Infrared Emission/Transmission Spectroscopy 
in Flames", in Combustion Measurements, (N. Chigier, Ed.), Hemisphere Publishing Corp., pp. 
385-344, (1991). 
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These topics are discussed in the sections that follow. 

il.A.I. Coal Characterization 

Characterization of the coal samples for this program was performed by quantitative FT-IR 
analysis, pyrolysis, and char reactivity. Analyses were run on ampoules of Argonne samples 1-7 and 9, 
listed in Tables ii.A.1-1 and I1.A.1-2. Also, six jars containing bulk samples of coal were received from the 
Argonne National Laboratory for coals 1, 2, and 4-7. Due to the broad particle distribution, each jar was 
well mixed and a small representative sample was removed, handground and sieved to obtain the 200 x 
325 mesh fractions. Additional samples of these six coals were obtained from BYU after grinding. For 
Rosebud subbituminous coal, samples have been obtained from METC. Bulk samples of the Beulah lignite 
were obtained from UNDERC. Bulk samples of Illinois #6 have been ordered from the Illinois State 
Geological Survey. Measurements have been made on raw coals and coals demineralized in HCI and HF. 

Quantitative FT-IR Analysis 

The coal samples were subjected to FT-IR analysis using approximately 1 mg of dry ground 
sample in approximately 300 mg of alkali halide. To obtain optical properties for the coals, Csl pellets 
were prepared in addition to the KBr pellets. Figures II.A.l-la and lb to II.A.1-9a and 9b show the dry 
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Table H~k.l-l.  AFRfBYU Program Coal Samples. 

Coal  N a m e  R a n k  Mine/Locat ion  Source  

I. Upper Freeport Medium Volatile Pennsylvania ANL 
B i t u m i n o u s  

2. Wyodak Subbituminous Wyoming ANL 

3. Illinois #6 High Volatile Macoupin, Illinois ANL 
Bituminous 

4. Pittsburgh #8 High Volatile Washington, Penn ~.~/L 
Bituminous 

5. Pocahontas #3 Low Volatile Virginia _~'L 
Bituminous 

6. Utah Blind Canyon High Volatile Utah ~kNL 
Bituminous 

7. Utah Blind Canyon Medium Volatile Eastern, WV ANL 
Bituminous 

8. Zap Lignite Mercer, N. Dakota UND 

9. Rosebud Subbituminous Montana ~¢fETC 
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COAL NAME 

Table 11£1-2. 

ELEMENTAL COMPOSITION (MAF) 

C H 0 S* ASH* 

I .  Upper Freeport (UF) 

2. Wyodak (WY) 

3. l l l i n o i s  #6 ( I I I .  #6) 

4. Pit tsburgh #8 (P i t t  #8) 

5. Pocahontas #3 (Poc #3) 

6. Utah Blind Canyon (UT) 

7. Upper Knawha (WV) 

9. North Dakota (Zap) 

i0.  Rosebud 

87 5.5 4 

74 5.1 19 

77 5.7 10 

83 5.8 8 

91 4.7 3 

79 6.0 13 

81 5.5 11 

73 5.3 21 

72.1 4.7 20.3 

2.8 

0.5 

5.4 

1.6 

0.9 

0.5 

0.6 

0.8 

1.2 

13 

8 

16 

9 

5 

5 

20 

6 

10 

* Dry Basis 
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Figure H.A.I-I. FT-IR Spectra of Bulk Upper Freeport Bituminous Coal. 
a) KBr, b) CSI, and c) KBr Pellet, l~neral Matter Corrected. 
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Figure ILA.1-2. FT-IR Spectra of Bulk Wyoclak Subbituminous Coal. 
a) KBr, b) CSI, and c) KBr Pellet, Mineral Matter Corrected. 
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Figu re  H.A.1-5. FT-IR Spectra of Bulk Pocahontas Bituminous Coal. 
a) KBr, b) CSI, and c) KBr Pellet, Mineral Matter Corrected. 
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uncorrected KBr and Csl pellet spectra for the nine coals. Seven of the spectra are for bulk samples and 
two are for amouple samples. In general, the bulk and ampoule samples are quite similar as shown in 
Figs. I1.A.1-10 to II.A.1-16. The exception is the Upper Knawha which was a much higher mineral 
concentration in the bulk sample. 

To obtain quantitative functional group and mineral matter data, a spectral synthesis routine was 
applied to the dry mineral matter and baseline corrected spectra (see Figs. II.A.l-lc to II.A.1-9c). The 
organic functional group data are shown in Tables I1.A.1-3 and II.A.1-4 for bulk and ampoule samples, 
respectively. Tables II.A.1-5 and II.A.1-6 list the mineral matter data for the bulk and ampoule samples, 
respectively. The two sets of samples are similar except for the Upper Freeport and Pittsburgh No. 8 
where the bulk samples are poorer in hydrogen and the Upper Knawha in which the bulk sample has a 
higher clay and quartz content. 

Pyrolysis in Thermogravimetric Analyzer (TGA) 

Pyrolysis experiments on the ampoule and bulk samples were performed using the TGA. With a 
N 2 flow of 400 cc/min and a N 2 purge flow of 20 cc/min, the coal particle temperatures reached 900°C with 
heating rates of 30°C/min. Plots of the TGA pyrolysis runs are shown in Figs. I1.A.1-17 to I!.A.1-21. The 
bulk samples and ampoules are similar except for some differences in moisture and mineral content for 
Wyodak, Upper Knawha, and North Dakota (Zap) lignite. 

Char Reactivity ,in TGA 

The reactions in chars prepared from both raw and demineralized coals were measured. The 
chars were prepared by pyrolysis as described above. The char reactivity measurements were made by 
employing a non-isothermal technique using the TGA. With an air flow of 40 cc/min and a N 2 purge flow 
of 40 cc/min, the samples were heated at a rate of 30°C/min until 900°C was reached. The resulting 
critical temperatures (defined as the temperature at which the derivative of the weight loss reaches 0.11 
weight fraction/min) are listed in Table I1.A.1-7 and are also plotted in Fig. II.A.1-22 as functions of oxygen 
in the parent coal. 

Figure II.A.1-22a compares the bulk and ampoule sample. There is a good agreement between 
the two and the trend is an increase in reactivity (decreasing Tcr ) with increasing oxygen. 

Figure ll.A. 1-22b compares the raw bulk samples with the demineralized samples. The reactivities 
show interesting trends. Above 15% 02 , the ash content of the coal dominates the char reactivity, 
increasing the char's reactivity (lower T=) compared to the demineralized samples. The reason for this 
increase appears to be the catalytic activity of the organically bound alkali metals as will be discussed in 
Section ll.D. Below 10% 02, ,the raw coals have a lower reactivity (higher Tcr ) than the demineralized 
samples. The reason for this is not known and is being investigated. 

Determination of Percent Ash 

Ash percent values ascertained through three different analytical techniques are listed in Table 
I1.A.1-8. The values are in good agreement for the Argonne ampoule samples. These samples (excluding 
Montana sample) which were from amber borosilicate glass ampoules flame sealed under nitrogen were 
subjected to x-ray analysis, TGA analysis and Argonne's proximate analysis. There is more scatter for 
the bulk samples and the Montana Rosebud subbituminous which were not as well homogenized as the 
Argonne ampoule samples. The ash in the bulk sample of the Upper Knawha coal is much higher than 
in the ampoules. 

,Pyrolysis in Entrained Flow Reactor (EFR) 

The 200 x 325 mesh sieved fractions of 6 of the Argonne coals were pyrolyzed in the entrained 
flow reactor. The coals were vacuum dried at 105°C for I hour prior to the pyrolysis runs. The coal was 
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Table  II.A.1-3. 

Da t a  on  B u l k  Coals (we igh t  P e r c e n t  d ram0*  

O 

~ m  ai, la.,Hv(h=o_g~e~ ear!~n .Carbonx! 

Sample Ha 1 Hoh Ha r Htotal Har/Htotal 1Adj 2Adj 3 or C Units -1 Ooh Oether h~ore al (Abs. x cm ) 
I I l l  I I I l l  I I I I  I I I  I I I  I I I l l  I I I I I  I I I I I I I I I I I I  I I I I  I I I I  I l l  I I I I I l ~ l I  I l J l  I l l  I I I I I I I J I  I l l  10 ~ l  I I I  I I111  I I I I l l  I I I I  I I I  I I I  I I I E l l l  I l t $  I I I$  I I i I  I I I  I I I I I I l l I I I t I I  I I I  I I I i I i l l l  I t I I I I  I f  I$  I t I I I I I  I f  I t t  I I I  I t  I I !  I I I  I I I I I I I I  I l I  I I l l I  I I I I  I I I~ I I I I I I l l  I I I  I I I I I  I I I I I l I l ¢ I  I I l l l i I l I l ~ i I t l l I  I I l l  I f  a* t i I  I I t  I I t I O I I t*~ ~ t l  I I *  ~* S I t I D I  m*I I I I I I I  t I I I I t l m l t I ( ~  I ~ I I  I t I  I I I l l *  n l ~ i i t  i t l i f t  i t t t l  i l l  t i i I  i i I t  I 

UF 2.84 0.14 1.59 4.57 0.35 0.50 0.59 0.50 18.93 1.69 2.23 1.11 

WY 3.10 0.34 1.74 5,18 0.34 0.54 0.78 0.42 20.67 26.65 5.50 4.53 

PITt#8 3.02 0.11 1.57 4.70 0.33 0.54 0.63 0.40 20.13 8.38 1.75 1.44 

POC#3 1.96 0.13 2.19 4.28 0.51 0.68 0.75 0.76 13.0G 1.09 2.06 0.40 

UT 4.65 0.20 1.96 6.81 0.29 0.52 0.89 0.55 31.09 11.17 3.25 4.00 

WV 3.77 0.19 1.59 5.55 0.29 
25.13 7.35 3.09 2.48 

ZAP 2.31 0,33 1.66 4.30 0.39 0.50 0.69 0.46 15.40 25,59 5.25 5.5 

ROSEBUD 2.79 0.45 1.62 4.86 0.33 0.48 0,71 0.43 18.60 26.64 7.22 6,31 

:" Exe*~pL C~t~'bonyl: Ilelafiv~ Pe~k Area 



Table  II.A.1-4. 

D a t a  o n A m p o u l e  Samples  (weight  P e r c e n t  dmmf)*  

~Ivqlrogen Ar0matieHvdrogen Carbor~ Carbonvl 

Sample Hal  Hoh H a t  Htota 1 Har/Htotal 1Adj 2Adj More3Or C al (AbsoUnitSx cm -1 ) Ooh Oether  
~!~|!~!!~!!~!~!s~¢~!!¢e!!!e~¢|~!!~¢~!~!!!¢¢~¢~!!~|!~!~!~!~!~!!~!Du!~!!~¢~|~!!~!~¢!¢s~¢~!!~$!~!~!¢!~!!¢!!!~¢!~¢~¢~!!!!!!~¢!!~¢¢|!¢~e!~!~!¢!!!!~!~!~|~!!~|¢~!~!~!~*~!¢~¢!w¢!~!~!¢¢¢~¢~!~¢¢~$~m!!~!~$!!$!!;~¢~!¢!~¢~!~|!~;|¢¢¢ 

UF 3.43 0.11 2.08 5.62 0.37 0.66 0.71 0.71 22.87 0.63 1.75 0.75 

~ = ~  WY 3.03 0.33 1.73 5.09 " 0.34 0.52 0.78 0.43 20.20 23.86 5.25 5.0 

ILL#6 3.41 0.23 2.07 5.71 0.36 0.69 0.78 0.60 22.73 4.48 3.75 2.25 

PITT#8 3.60 0.16 2.07 5.83 0.36 0.67 0.80 0.60 24.00 0.86 2.5 1.88 

POC#3 1.97 0.06 2.19 4.22 "0.52 0.60 0.73 0.86 13.93 1.92 1.0 1.25 

UT 4.79 0.16 1.90 6.85 0.28 0.51 0.80 0.58 31.93 8.70 2.5 4.0 

WV 3.48 0.23 2.12 5.83 0.36 0.67 0.67 0.79 23.20 3.59 3.75 1.75 

ZAP 2.02 0.34 1.58 3.94 0.40 0.46 0.74 0.37 13.47 24.67 5.5 5.0 
| i n |  | s | !  i |1  m| | | I! | i | l ~ l !  | I! I! I f ! I¢!!1 I ! | | l !  | s# ! !  Im| I | l !  ! I! !!!1 ~! |~ |# ! !15 | |1 |  I! m !1 ! ! ! ! S ! S l l ! l l c s l ! l ! | ! l | !  ! l , i I  i !  D! |1 I¢! ! ¢ l l l l ! ! l !  o$|8| |1 i |¢ !sa  |1 iQt i l l J l l  ! ! !  ¢ ! l l ~ l ,  I!1¢a!¢| !!11!~1! ¢!1! !1 ¢! I!!  ! ¢¢11 i !  ! | ! !  !#1! ! l  | ! l l l l l ~ ! l l l  $ 0! I ! ! l ! ¢ l J !  !l!$aK! I |  ! i |  ! I~1 ! l  ! 0 I¢¢|!1¢| i | ¢ |  m | !  o¢¢!1 II I! ! I I!1 I o ! l ! !  |1 ! l l  ! !~le!  ! ! s |¢ !  wwe| |¢!~!1¢|s1¢$~! | !  ! ! 0$¢1¢1|! | !!1 | |  1¢! |~1 ! ! |  |¢¢w11¢1 $1 !~! 

* Except Carbonyh Relative Peak Area 



Table  H~a_l-5. 

D a t a  o n  B u l k  Coa l s  (d~y w e i g h t  p e r c e n t )  

M i n e r . s  

Sample Mixed Quartz Calcite Kaoli~ Total 
Clay 

UF 9.06 0.86 1.93 2.63 14.53 

WY 3.52 1.34 0.59 2.00 7.45 

PITT#8 5.65 0.64 1.49 2.90 10.68 

POC#3 4.91 0.53 8.88 0.45 9.76 

UT 3.31 0.48 2.23 0.24 6.26 

WV 21.40 4.79 1.08 8.44 35.71 

ZAP 

ROSEBUD 3.42 1.00 1.92 2.51 8.86 
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Table H.A.1-6. 

Data on Ampoule S3~nples (dry weight pex~ent) 

Minerals  

Sample Mixed Quartz Calcite ~ a o ] ~  Total 
Clay 

iu~t~8~Iton~ues~as~o~s~osu~ocuuuuiot~os~un~e~eu~Iouno~mouIuju~o~sats~osonougo~I~¢~l~eusIssss~m~msousssHnsso~s~nu¢s~u$oa~q~sus~n~u~as~t~ssssssss~o~sHusu~ses~m~sa¢~uns~osqs~suu~o~a~au 

UF 10.40 0.93 2.97 3.60 17.90 

WY 2.57 0.76 1.04 2.11 6.48 

ILL#6 8.50 2.26 3.98 2.29 17.02 

PITT#8 7.74 1.00 2.01 2.72 13.47 

POC#3 4.28 0 4.83 0.99 10.11 

UT 2.90 0.12 2.40 0.17 6.59 

WV 15.50 1.24 1,46 7.74 25,95 

ZAP 2.36 0.73 1.38 0.71 5.18 
ii~a~I~oo~G~saoasIomo~o~a~oos¢~ooansoossa~tt¢~eesss~¢e~seeoi~sss~oiani~oa~it~It~eseIe~s~t1~esseaa~sasn~i~iscsn~eo~sa~seeoassos~o~s~toI~ne~o¢ttm~a¢~eI~o~oao~oaI~to~sasoeeutelpiI~et~iuiI~se~Ioa~tauta~aa~ss~osIsso~on~osioo 
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T a b l e  I I .A .1 -7 .  

D a t a  o n  C h a r  Reac t i~d ty  

O- 900°C N 2 Char  
I a I I I I I I I I I * I I $ I I, I I I I I I I I I I I I I I I I I i I I I I I I I I ¢ ~ I l, I e I I I i i ~ ~ I I I I I I i I I I ] I I ¢ I I, I I I i I I ~ I I I e I I I I * I I $ I I I I I I I I I I I g I I I I I I I e I t I I I I I I I I I I i I I s * I I I g i I i i I i I I, 

De~e~d~ed 
Wt. % Oxygen in Ampoules Bulk Sample Bulk Sample 

Coal Name Abb~eviation l ~ k  Original Coal Sample 
by Difference (Dli~VIF) Ter  %Ash Tcr  %Ash T cr %Ash 

z! I i i i i I i I I I II IllS1 I I I I I I I I I I sui I i i i I i | ! i cIII I I I* Ill I IlI I I If i Ill| i iiiiiItiII I I I I i iI ~31 i I i i i ill If I I I I I If I I I If I I I I I I I t i ci I iCIlIIII i i Ill I II I II t I ItI I¢o¢IIIl I I I [ II I I I ! I U l I I I I I I I¢II I IIIII I I I I I I I I I I I I I I Ill I I If I ¢IIII I gI I I I II l I I I I I I I I* | I I IItII I I It I I If I I I iII?I I I I I IS I till If I II I| I ~ I I l I I I l I*~IIII I I Sl t I | I I I g~l l If I $I I~l I I I lilt l I I I I I I llI I I S l I I g IS I I I It t I If 

1. Upper Freeport UF Medium Volatile 4 644 13.81 641 11.63 513 1.93 
Bituminous 

2. Wyodak WY Subbituminous 19 436 8.07 440 11.13 503 0.40 

3. Illinois #6 ILL High Volatile 10 519 15.02 . . . . . . . . . . .  
Bi tuminous 

4. Pittsburgh #8 PITT High Volatile 8 586 9.61 600 9.01 5-12 1.44 
Bituminous 

5. Pocahontas #3 PO0 Low Volatile 3 ~07 5.10 611 4.83 5~t. 
Bituminous 

6. Utah Blind Canyon UT High Volatile 13 527 4.45 528 4.68 516 0.80 
Bituminous 

7. Upper Knawha WV Medium Volatile 11 529 19.49 544 26A4 498 1.24 
Bituminous 

9. North Dakota ZAP Lignite 21 443 8.98 434 7.54 550 0.26 

10. Rosebud Subbituminous 20 . . . . . .  478 14.72 608 3.47 

*HF/HCL demineralized. 



Table  II.A.1-8. Ash  in  Dry  Weigh~ Percent; 

f.D 
Lr~ 

! !  ! !  ! ! l !  ! ! ! ! !  ! ! s ! ! t  ! ! !  ! ! !  e ! !  ! i ! s s !  ! !  ! l ! l ! ! 0 ! s a ! !  !¢0! | |  ! ! t  |¢0! 0!$1! 1!! ! ! !  ! ! !  ! !  ~! ! !  ! o l ! a ! l ! l !  ! !0! !  $ ! ! i !  ! I ! l ! !  c! t  s ! !  a ! ! | 0 !  ! i~ ! !  ! !  ! ! l !  ! ! ! ! s ! ! l ! !  ! !  f ! ~¢!!!  !~t ! !  ! !  ! !  ! !  ! ! s l !  t ! ! s l  ! ! !  ! ! t  ! !  ! ! t  ! ! ! ! e ! ! l !~ l e$** l ! !~ ! !  a t ! !  ! ! t  ! ! ! ! ! 1 ! !  re! !  ! ! !  ! s !  01! e ! ! l a !¢ !  ! ! !  ! !  ! ! !  ! t  ! !0 ! ! !  ! !  !e ! !  ! !  ! !  ! s ! ¢ ! ! !  t ! !  ! ! !  * ! e ! l ! a t  | !  0!1! e! ! ! ! ! ! ! ~ ( !  ! !  ! ! ! l ! i  ! | ! s ! ! ! s ! s t  !1!$$0!~!o! ! ! ! !  ~ |!!!1o a |~  ! ! t ! ~  ! ! ! ! !  OlO! ! !  ! !  ! !  

.Analysis Upper Wyodak nlinols Pittsburgh Pocohontas Utah Blind Upper North Dakota Montana 
Type Freeport; No.6 No.8 No.3 Canyon Knawlm Lignite Rosebud 

!!~!~e¢~j~!~!~|s!e~!!!|~*!!!~|$!!s~!!~!~!!!s!¢!~D~es~||~!~e~!!!~!!~!!1!!!~|t!~D!1~!!!~!~!!!~!~$!~!~!~|~|!~!~!~s!!!~1|~|$~$~!~!!!~!!!!¢|D!!!|!!~1~!~!~s!~s!!~1||1D~|~1~!|~!¢!!!!|!!~!~|~|¢|~!~ss~¢~!¢~t~¢!~!~!!~!s!~!!!~!~!s 

TGA Ampoule 13.81 8.07 15.02 9.61 5.00 4.45 19.49 8.98 --- 

TGA Bulk 11.63 11.13 -- 9.01 4.83 4.68 26.44 7.54 14.72 

X-Ray 12.49 9.02 16.14 8.51 4.40 3.41 21.48 9.60 12.33 
Ampoule 

Argonne 13.16 8.95 17.76 9.44 4.90 4.68 19.81 6.53 -- 
Proximate 
(ampoule) 
!~¢!!s!|!R!~e!!|!!~t!!~!!!~!!!|!!!~!!!!!!t!~!~!!t!~1!~tt!!!!~!t!!!!!!!~!!!!!!!!~!!*!~I!!!!~!~!~!!!!~!~!![!!!!|!!|!I|!~!!t!!!~!~!!!~!~|!|||!|~!!~!!e!!!!s~!c!~!a!s!!l!1!~!!!!~!!~!!~!!!|!!!!~!~!i~!1~|!!!~!e~!!~t!!!!!~s!!!! 
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Figure II.A.l-11. Dry Uncorrected FT-IR Spectra of Wyodak 
Subbimminous Coal. a) Bulk Sample and b) Ampoule Sample. 
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Figure II.A.I.12. Dry Uncorrected FT-IR Spectra of Pittsburgh Seam #8 
Bituminous Coal. a) Bulk Sample and b) Ampoule Sample. 
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Figure II.A.1-13. Dry Uncorrected FT-IR Spectra of Pocahontas #3 
Bituminous Coal. a) Bulk Sample and b) Ampoule Sample. 
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Figure II.A.1-14. Dry Uncorrected FT-IR Spectra of Utah Blind C~r~yon 
Bituminous Coal. a) Bulk Sample and b) Ampoule Sample. 
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Figure II.A.I-15. Dry Uncorrected FT-IR Spectra of Upper K.nawha 
Bituminous Coal. a) Bulk Sample and b) Ampoule Sample. 
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F i g u r e  II.A.l-16. Dry  Uncor rec ted  FT-IR Spectra  of  Beulah  Zap Lignite.  
a) Bulk Sample  and b) Ampoule  Sample. 
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Figure II.A.l-17. Pyrolysis of a) Upper Freeport Bituminous Coal and 
b) Wyodak Subbituminous Coal in TGA at 30°C/rain in N2. Solid, Dashed, 
and Dotted Lines Represent Bulk, Ampoule and Demineralized Samples, 
Respectively. 
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Figure II.A.I-18. Pyrolysis of a) Illinois #6 Bituminous Coal ~nd 
b) Pittsburgh Seam Bituminous Coal in TGA at 30°C/rain in N2. Solid, 
Dashed, and Dotted Lines Represent Bulk, Ampoule and Demineralized 
Samples, Respectively. 
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Figure II.A.l-19. Pyrolysis of a) Pocahontas #3 Bituminous Coal and 
b) Utah Blind Canyon Bituminous Coal in TGA at 30°C/min in N2. Solid, 
Dashed, and Dotted Lines Represent Bulk, Ampoule and Demineralized 
Samples, Respectively. 
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Figure II..~l-20. Pyrolysis of a) Upper Knawha Bituminous Coal and 
b) Zap North Dakota Lignite in TGA at 30°C/rain in N2. Solid, Dashed, and 
Dotted Lines Represent Bulk, Ampoule and DemineraIized Samples, 
Respectively. 
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Figure II.A.1-21. Pyrolysis of Upper Montana Rosebud Subbituminous 
Coal in TGA at 30°C/min in N2. Solid, Dashed, and Dotted Lkues Represent 
Bulk, Ampoule and Demineralized Samples, Respectively. 
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fed at rates of 1½ to 2 g/min with a N= carrier. Particle residence time was approximately 0.66 seconds 
with the injector height position adjusted to 24" and the furnace operated at 1400°C. 1100°C, and 700°C. 
The gas analyses were performed using two analytical techniques: 1) FT-IR calibration program and 2) 
Gas Chromatograph. 

The data are presented in Tables 11.A.1-9 to !1.A.1-11. The data are plotted for each coal as a 
function of temperature in Figs. I1.A.1-23 to I1.A.1-28. The yields show the expected dependence on 
temperature. These data, as well as data from the TG-FTIR will be modeled using the FG/DVC model 
during the next year. 

II.A.2. FG-DVC Model 

The FG-DVC model has been developed as a stand alone PC-based predictive model as well as 
a submodel for comprehensive combustion and gasification codes. FG-DVC is a general model for coal 
pyrolysis which predicts the coal's decomposition into tar, char, and gas, given the ambient pressure and 
the time-temperature history of an isothermal coal particle. The model predicts the amount, functional 
group composition, elemental composition, and molecular weight distribution of tar and char and the 
amount and composition of the gas. 

The FG model considers certain functional groups in the coal which decompose to form the light 
gas species. At the same time, the DVC model describes the overall depolymerization of the 
macromolecular network which combines bridge breaking and crosslinking to produce fragments of the 
coal macromolecule. These fragments are then subjected to transport behavior, specifically the 
vaporization of the tightest fragments to form tar. The tar fragmentation process provides a second 
mechanism for the removal of functional groups from the coal. The model, whose parameters are 
determined in the laboratory at moderate temperatures and one atmosphere, can then be used to 
extrapolate away from the laboratory conditions to predict pyrolysis and combustion in high temperature 
reactions, or liquefaction at high pressure. Recently, we have explored extrapolation of the kinetics and 
reactions to low temperature geological transformations in coal beds. 

The model for coal thermal decomposition has six basic concepts. 

n 

Functional Groups (decompose to produce light gases) 
Macromolecular Network (decomposes to produce tar and metaplast) 
Network Coordination Number (possible number of attachments per cluster) 
Bridge Breaking (limited by hydrogen availability) 
Crosslinking (related to gas evolution) 
Mass Transport of Tar (evaporation of light network fragments into light gases) 

The first concept is that light gases are formed by the decomposition of certain functional groups 
in the coal. For example, methyl groups can lead to the formation of methane, carboxyl groups can lead 
to the formation of CO2, etc. The second concept is that coal consists of a macromolecular network. This 
network is made up of fused aromatic ring clusters (which are described by their molecular weight) linked 
by bridges, some of which are relatively weak. There are some unattached parts of the network which can 
be extracted. Sometimes, there is also a second component of high polymethylene content. When 
heated, this network decomposes to produce smaller fragments. The lightest of the fragments evaporate 
to produce tar and the heavier fragments form the metaplast. These heavier molecules are the primary 
liquid fragments in liquefaction or the fragments that make coal fluid. 

The third concept is that one of the most important properties of the network is its coordination 
number (1 + o-). The coordination number describes the geometry of the network, and specifies how many 
possible attachments there are per aromatic ring cluster. For example, a linear polymer chain has a 
coordination number of 2, because each fused aromatic ring has two possible attachments to link it in the 
chain. On the other hand, a square "fish net" has a coordination number of 4, because there are four 
possible attachments at each dng cluster. The coordination number controls the molecular weight 
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O1 
O 

T a b l e  II .A.1-9.  

Pyro lys i s  i n  t h e  E n t r a i n e d  F l o w  R e a c t o r  i n  N i t r o g e n  a t  700°C, 24" 

V a l u e s  i n  A s h  F r e e  Weigh t  P e r c e n t .  

A_FR/BYU Run # 19 20 21 22 23 24 
Species Upper Freeport Upper Knawha Pittsburgh #8 Wyodak Pocahontas #3 Utah Blind Canyon 

Char  64.88 66.95 57A9 59.56 80.64 54.8 

Tar & Soot 22.07 17.22 30.5 13.09 10.29 25.8 
Gas 5.85 6.95 7.44 13.46 3.83 13.62 

H2 O 6.68 3.62 5.96 2.27 2.71 .95 

Missing .53 5.27 -1.4 11.62 2.52 4.83 
CH 4 .92 .678 1.1 .696 .784 1.25 
CO .122 .449 .506 2.44 .118 1.04 

H2 o o o o o o 
CO 2 .403 1.16 .331 4.82 .81 3.47 

C2H2 .021 .002 .006 .007 1.4 x 10"4 0.1 

C2 H4 .372 .271 .433 .452 .095 .623 

C2H6 .373 .169 .393 .198 .201 .66 
C3 H6 .305 .591 .589 .703 .106 .83 

C6H 6 .002 .609 .217 .406 .338 .24 

CS 2 .145 .107 .103 .134 .074 .07 

SO 2 .024 0 .014 .01 0 .01 

I:ICN* .094 0 0 0 0 .12 

Paraff'ms 1.93 2.17 2.46 1.73 1.09 3.54 

Olefins 1.57 .744 1.32 1.77 .208 1.77 

* I-ICI~ wlues no~ included in gas totals or missing totals. 



T a b l e  II.A.I-10. 

Pyrolys is  in  t he  E n t r a i n e d  F l o w  R e a c t o r  in  N i t rogen  a t  ll00°C, 24': 

Va lues  in  Ash  F r e e  Weight  Pe rcen t .  

o l  

~o~o~a~z|~s~wI!oso~ttoooo~¢~o~oe~¢~a|jI~¢I~!|!~!~q~|o~o~oo~!|~!g~|~!o~o~t!~oo#~o~o~|~z!o~ts|~!a~¢~!~!~|~a~|a~|~o~o~a~o~oso~o~o~o~Io~I~|~|!~o~o~o!~!~o~o!o~oo~ooo~oooo~o~osooz|~!~o|o|||~|~|~oo~|!!s~otoa~a~oo~|a~|~o~!~ooo~ 

AFR/BYU Run # 10 11 12 13 ,14 15 16 

Species Upper Freeport Wyodak Upper Freeport UpperIC~awha UtahBlind Canyon Pittsburgh #8 Pocahontas #3 

Char 52.50 43.16 52.14 56.52 40.94 47.91 73.50 

Tar & Soot 21.65 7.71 16.59 14.35 13.40 21.84 11.69 

Gas 25.99 40.14 24.94 21.49 39.28 28.62 14.17 

H20 1.73 2.85 3.40 5.64 7.02 4.58 3.58 

Missing -1.88 6.14 2.93. 2.60 -.64 -2.95 -2.94 

CH4 4.37 1.86 4.01 3.80 5.34 5.55 3.23 

CO 5.46 12.27 5.40 4.16 8.85 6.04 1.82 

H2 1.38 .99 1.22 .77 1.5 1.21 1.04 

CO2 1.91 9.29 2.02 1.02 6.07 1.62 1.03 

C2H 2 1.49 2.09 1.21 .73 2.01 1.06 1.23 

C 2H 4 1.95 2.27 1.76 1.84 2.84 2.29 .96 

C2H 6 .005 .006 ,009 .15 .05 .08 .08 

C3 H 6 .15 .24 .15 .20 .24 .25 .06 

C6H 6 3.32 5.26 3.45 3.23 3.97 3.98 2.08 

CS 2 .18 .24 .25 .14 .164 .16 0.097 

SO2 .03 .012 .029 -- .002 .018 "-- 

HCN * 2.16 1.49 1.93 1.36 2.98 2.07 .70 

Paratrms .56 .44 .59 .83 .55 .61 .33 

Olefins 3.05 3.66 2.89 3.26 4.68 3.68 1.51 

| ! ! i s ;  I ~ I | ! . I  o ! i i ~ | i | ~ I o I I o o I Q o o | o o o a I | i I i i  n | ¢ 11 o i ;  ! o s ! o I n o I i o a a o o o I I ! t i | o o m i I o I o I o ~ o I i o i ! o q i | o I o o o o I o o | o | i t o ! I ! t I t o.  ¢. I o o i I I I | ,  o i ! o ~ | i m a | | i u.  m ! ! I ,  | ~,  11 ! v o I o o o o o o o o J t i I a o o o o | o i o t o a i I ! z I o ,  ! o a I ,  i o o I o o | ,  i , ,  I I o | o i i Q i i | J o ! I e ! o o | n | t | i | i i | | | | o I t  a z | t o ! I a D t o ~ o h e o , ,  t I o I I ~ ! I .  I t i a I ¢ o I o o I o I I I o o o o | t i o o u i u ,  I ~ o I I i ,  ! e | o ! ;  ~ o o o ! ! o I I o | oo o | ! I o ~ o o o o o lo  o o o o I o o I o o o | ~ ~ ¢ o | ~ i | i i i | 

* HCN values not included in gas totals or missing totals. 



¢ j 1  

t , J  

T a b l e  I I . A . I - l l .  

P y r o l y s i s  i n  t h e  E n t r a i n e d  F l o w  R e a c t o r  in  N i t r o g e n  a t  1400°C, 24': 

• V a l u e s  i n  A s h  F r e e  W e i g h t  P e r c e n t  

AFR/BYU R u n  # 1 2 3 4 ~ 6 8 9 
Species Pocahontas #3 Pocahontas #3 Upper  I ~ a w h a  Wyodak Upper Freeport  UtahBl lnd  Wyodak Pi t tsburgh #~ 

Re-run of R u n  #1 Canyon Re.run of Rtm #4 

70.19 51.22 44.82 46.64 35.24 42.82 37.38 Char  70.03 

Tar&Soot  13.54 13.22 20.05 15.54 25.85 28.52 13.44 29.75 

Gas 14.22 15.34 22.28 43.0 21.91 33.49 45.18 30.64 

H20 .58 2.23 1.37 2.40 .64 .85 1.46 1.80 

Missing 1.23 -.99 5.08 -3.36 4.94 1.90 -2.90 .43 

CH 4 .24 .19 .16 .16 .14 .28 .41 .19 

CO 7.21 8.27 15.80 30.25 12.95 22.72 31.12 18.92 

H 2 4.38 4.11 4.22 4.17 4.55 5.19 4.0 4.82 

CO 2 ~ .49 .70 1.80 5.75 1.28 1.42 6.74 1.96 

C2H 2 1.83 1.87 .03 2.36 2.59 3.72 2.59 4.33 

C 2 H 4 .56 .04 .06 .04 .05 .12 .054 .10 

C2H 6 1.73 x 10 -5 .02 4.86 x 10 "6 .01 .01 6.34 x 10 .4 .001 2.91 x 10 -3 

C 3 H 6 .03 .01 .02 .04 .03 .03 .01 -1.14 x 10 "2 

C 6 t t  6 .01 .01 .01 .01 .01 .01 .006 1.25 x 10 -2 

CS 2 .08 .17 .17 .20 .26 .11 .183 .23 

S02 .00 .01 .01 .01 .01 .Ol .009 1.11 x 10 "2 

t tCN * 2.22 2.20 3.96 3.30 4.36 5.65 3.56 5.54 

Paraffins 0 .109 0 0 0 0 .0~ .00 

Olef'ms 0 0 0 0 0 .03 0 -.07 

~ . ~ . ~ , ~ , ~  . . . . . . . . .  ~ ~ :~: ~ : : : : : : : : : : : ~ - ~ : : ~  ~ ~ : ~ o  ~ ~ ~ j ~ ~  ~ z ~ z ~ l ~ s ~ ~ ~ ~ ~ ~ ~ j z ~  

* HCN values not included in gas totals or missing totals. 



O 

.e,4 

1 0 0  

8 0 -  

60 

40 

20 

0 
401 

4 . 9  

4 .1 -  

3.3" 

2.4 

1.6 

oCh~ a 

0 

0 

6bo s~o i~oo ~oo 1~oo 1~oo 

100 , 

80- 

60- 

0 G a s  
× T a r  a n d  S o o t  

4•w 

2O" X 
O 

°4~o 6'o0 sbo 

X 

1()00 1200 14:OO 1600 

b 

.8' 

0 
400 

4.9. 

0 P a r a f f ' m  C 
X O l e f i n  

0 

X 

X 

0 

~oo doo 1~oo ~oo 14oo 1~oo 

4 . I "  

3.3" 

2 . 4  

1.6 

.8 

0400 

÷ 

x 

e 

÷ 

@ 

~oo ~;oo ~oo~ ~oo ~ ' I 1400 "1600 

4.9 

4.1- 

3.3" 

2.4" 

1.6" 

.8" 

o )o 

24 

o c ~  4 

0 

600 800 

0 

iooo £~oo 14oo i6oo 

o H2 o 
2O X CO 

c o 2  

16 

12 

8 
0 

4 

0 ~ . 
4oo 6bo soo 

X 

X 
0 

1~oo ~oo 1~oo 16oo 

Pyrolysis Temperature (°C) 

d 

f 

F i g u r e  HJ~.l-23. Pyrolysis Results for Upper Freeport Bituminous Coal, 
200 x 325 Mesh, in the Er~trained Flow Reactor at  a Reaction Distance of 
24". The Coal was Fed at  Rates of 1-1/2 - 2 g/rain with an N2 Carrier. 
Particle Residence Time was Approximately 0.66 Seconds. 

53 



0 

0 

100 

80. 

60. 

4O 

2O 

O4~o 
12 

10. 

8- 

6- 

4- 

2" 

0 
~0~ 

4.9 

4 . 1 -  + 

3.3 

2.4 

1.6 

.8 

04~ 

o Char a 

C} 

0 0 

6bo s~o 16oo ~oo i~oo i~oo 

P a r a f f i n  C 
O l e f i n  

× 

0 

66o s~o i~oo goo ~' 1400 1~oo 

100 

60-  

40 -  

20- 

2.4 

0 Gas 
x Tar and Soot b 

0 0 

X 

6~o s6o 16oo ~oo I~oo i~oo 

2 . 0  • 

1.6, 

1.2- 

.4- 

0 
4OO 

o c ~  4 

0 

0 

660 860 zdoo ~oo z,koo z,soo 

d 

x+ 

e 
~o 

! 

30 "~ 

o ~ o  f 
+ C O  

C O  2 

2O 3 

;< 
,+ 

÷ 

6~o 8c;o lo'oo ~,'oo 14oo i~oo 
P y r o l y s i s  T e m p e r a t u r e  (°C) 

F i g u r e  II.A,1-24. Pyrolysis Results for Wyodak Subbituminous Coal, 
2 0 0  x 39,5 Mesh, in the Entrained Flow Reactor at a Reaction Distance of 
24". The Coal was Fed at Rates of" 1-1/2 - 2 g/rain with an N2 Carrier. 
Particle Residence Time was Appro,~[mately 0.66 Seconds. 
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F i g u r e  H~A.1-25. Pyrolysis Results for Pi t tsburgh Seam Bituminous Coal, 
200 x 325 Mesh, in  the Entrained Flow Reactor at a Reaction Distance of 
24". The Coal was Fed at Rates of 1-1/2 - 2 g/min with an  N2 Carrier. 
Particle Residence Time was Approximately 0.66 Seconds. 
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Figure II.A.1-2G. Pyrolysis Results for Pocahontas Bittuninous Coal, 
200 x 325 Mesh, in the Entrained Flow Reactor at a Reaction Distance of 
24". The Coal was Fed at Rates of i-!/2 - 2 ~min with an N2 C~er. 
Particle Residence Time was Appro:dmately 0.66 Seconds. 
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F i g u r e  I I ~ I - 2 7 .  Pyrolysis Results for Utah Blind Canyon Bituminous 
Coal, 200 x 325 Mesh, in the Entrained Flow Reactor at a Reaction Distance 
of 24". The Coal was Fed at Rates of 1-1/2 - 2 g/rain with an  N2 Carrier. 
Particle Residence Time was Approximately 0.66 Seconds. 
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F i g u r e  ILA~l-28. Pyrolysis Results  for Upper  K n a w h a  Bi tuminous  Coal, 
200 x 825 Mesh, in  the En t ra ined  Flow Reactor at  a React ion Distance of 
24". The Coal was Fed at  Ra te s  of 1-1/2 - 2 g/min wi th  a n  N2 Carrier .  
Par t ic le  Residence Time was  Approximately 0.66 Seconds. 
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