APPENDIX B

"COORDINATE TRANSFORMATIONS FOR COUDEY SIMULATIONS"

The transformations consisted of two rotations and one ranslation from the actual x, y, z coordinates of the Goudey reactor to the ρ and ξ used by PCGC-2. The firsi rotation around the z axis by the 49 degrees of the bumer oriertation is around the resulting y axis and corresponds to the tilt of the bumer. That is:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}=z
\end{array}\right) \xrightarrow{x^{\prime \prime}} \begin{aligned}
& y^{\prime \prime} \\
& y^{\prime} \\
& x^{\prime \prime}
\end{aligned}
$$

with $\Phi=90+\alpha$

$$
\left(\begin{array}{l}
x \\
y^{\prime \prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
-\sin \alpha & 0 & -\cos \alpha \\
0 & 1 & 0 \\
\cos \alpha & 0 & -\sin \alpha
\end{array}\right)\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
p \\
-c
\end{array}\right)
$$

where:
α is the tilt angle (degrees)
Φ is the bu-ner orientation (degrees)
p is the distanced from the reactor wall to the probe (m)
c is the distance from the inlet to the probe in the z direction (m)
q is the radius of the secondary (m)
that is:

$$
\begin{aligned}
& x "=-\sin \alpha(x \cos \Phi+p \sin \Phi)+z \cos \alpha \\
& y^{\prime \prime}=-\sin \Phi+p \cos \Phi \\
& z^{\prime \prime}=\cos \alpha(x \cos \Phi+p \sin \Phi+c \sin \alpha
\end{aligned}
$$

with the translation ${ }^{\prime \prime}=z^{\prime \prime}-\mathrm{q}$ and using cylindrical coordinates ${ }^{\rho}=\left(\mathrm{x}^{\prime \prime}\right)^{2}+\left(\mathrm{y}^{\prime \prime}\right)^{2}$ the following equations represent the final transformation used:

$$
\begin{aligned}
& \xi=\cos \alpha(x \cos \Phi+p \sin \Phi)+c \sin \alpha-q \\
& \rho=(\sin \alpha(x \cos \Phi+p \sin \Phi)+c \cos \alpha)^{2}+(-\sin \Phi+p \cos \Phi)^{2}
\end{aligned}
$$

