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SECTION IV. TASK 4. APPLICATION OF INTEGRATED CODES
@bjective

The objectives of this task are to evaluate the integrated comprehensive
codes for pulverized coal and fixed-bed reactors and to apply the cedes to
selected cases of interest to METC.

Task Outline

This task will be accomplished in two subtasks, one for the entrained-bed
lasting 45 months and one for the fixed-bed lasting 36 months. Each of these
subtasks will consists of three components: 1) Simulation of demonstration
cases on BYU computers; 2) Implementation on a work statien at AFR; and 3)
Simulation of demonstration cases on the workstaticn.
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IV.A. SUBTASK 4.A. - APPLICATION OF GENERALIZED, PULVERIZED-COAL
COMPREHENSIVE CODE

Senior Investigators - B. Scott Brewster and L. Douglas Smoot
Brigham Young lniversity
Provo. UT 84602
(801) 378-6240 and 4326

Obiect

The otjectives of this subtask are 1) to simulate reactors of interest
to METC and 2) to implement the compreherisive entrained-bed code at METC.

Accomplispments

This subtask has net been initiated.

Plans

No work is planned on this subtask during the next quarter.
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IV.B. SUBTASK 4.B. - APPLICATION OF FIXED-BED CODE

Senior Investigators - Predrag T. Radulovic and L. Douglas Smoot
Brigham Young University
Provo, Utah 84602
(801) 378-3097 and (801)378-4326

Graduate Research Assistant - Michael L. Hobbs
Objecti

The objective of this subtask is to apply the advanced fixed-bed code
developed in Subtask 3.b. to simulate fixed-bed gasifiers of interest to METC.

Accomplishments

During the last quarter, work continued on collecting fixed-bed design
and test data from organizations and individuals involved in fixed- or moving-
bed gasification or combustion research or in research on non-reacting fixed-
or moving-beds. Work also continued on collecting fixed-bed experimental data
from the open literature.

Fixed- 11 ion

The advinced fixed-bed code, developed, tested and validated under
Subtask III.B, was applied to seven new test cases under this subtask. The
test caées included the dry-ash Lurgi gasifier, the Wellman-Galusha gasifier,
the METC gasifier, and the slagging BGC-Lurgi gasifier. A presentation was
given at the joint METC/AFR/BYU project review meeting and discussions were
held with AFR concerning the 1-D fixed-bed code development.

Lurgi Dry Ash Gasifier - Predicted temperature, pressure drop, gas
concentration, carbon consumption, burnout, and particlie diameter for
gasification of I1lirois #5, Pittsburgh #8, and Rosebud conals in a high-
pressure, oxygen-fired Lurgi gasifier at Westfield, Scotland are shown in
Figures IV.B-1 through 3. Complete input files for these cases are presented
in Hobbs (1990).

The sensitivity analysis was presented previously fer a low-pressure,
air-fired Wellman-Galusha gasifier. The most obvious differences between the
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Figure IV.B-1 Predicied temperature, pressure drop, gas concentration, carbon consumption due 1o

oxidation and gasification, burnout, and particle diameter for gasification of Illinois #5
bituminous coal in high pressure gasifier with oxygen (Elgin and Perks, 1974):

sol'd and gas temperature profile, B) pressure drop, C) major species comuanon
proiile, D) minor gas species concentration profiie, E) volumetric solid carbon
consumption rate due o oxidation and gasification resctions, and F) burnout, overall

and unreacted particle diameter throughow: reactor. Inpui conditions can be found in
Hobbs (1990).
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burnout

pressure drop, gas concentration, carbon consumption due 1o
ion, burnout, and particle diameter for gasification of Pittsburgh

#8 bituminous coal in high pressure gasifier with oxygen (Elgin and Perks, 1974): A)
solid and gas temperature profile, B) pressure drop, C) major species concentration
profile, D) minor gas species concentration profile, E) volumetric solid carbon
consumption rate due 1o oxidation and gasification reactions, and F) burnout and
overall and unreacted particle diameter throughout reactor. Input conditions can be

found in Hobbs (1990).
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Figure IV.B-3 Predicted temperature, pressure drop, gas concentration, carbon consumption due to

oxidation and gasification, burnout, and particle diameter for gasification of Rosebud
subbiruminous coal in a kigh pressure gasifier with oxygen (Elgin and Perks, 1974): A)
solid and gas temperature profile, B) pressure drop, C) major species concentration
profile, D) minor gas species concentration profile, E) volumetric sclid carbon
consumption rate due to oxidation and gasification reactions, and F) bumout, overall

and unreacted particle diameter throughout reactor. Input conditions can be found in
Hobos (1990).
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Wellman-Galusha cases and the Westfield cases are the absence of the carbon
dioxide peak during high pressure gasification and the appearance of dual
temperature peaks in the Pittsburgh and Rosebud Westfield simulations as shown
in Figure IV.B-2 and IV.B-3. The dual peaks may be attributed to high
pressure operation as discussed in-detail in Section III.B.

The simulations of I1linois #5 bituminous, Pittsburgh #8 bituminous, and
Rosebud subbituminous coals in the Lurgi gasifier are shown in Figures IV.B-1
through IV.B-3, respectively. No experimental temperature or pressure
profiles were reported for these cases. The predicted profiies seem
reasonable and similar to the I11inois #6 bituminous case, which has been
discussed in Section II1.B.

11man-Galusha Dry Ash ifier - Predicted temperature, pressure drop,
gas concentration., carbon consumption, burnout, and particle diameter for
gasification of I1linois #6 bituminous and Rosebud subbituminous (weathered)
coals in an atmospheric, air-fired Wellman-Galusha gasifier (Thimsen et al.,
1984) are shown in Figures IV.B-4 and IV.B-5. Complete input Tiles for these
cases can also be found in (Hobbs. 1990).

Experimental data from runs that gasified poorly were difficult to
simulate. Poor gasification refers to significant distribution problems such
as channeling or clinker formation which leads to questionable reported
operational conditions. The one-dimensional code is very sensitive to input
conditions as discussed in the sensitivity analysis. For example, if the
selected values for the bed void fraction were significantly in error, the
devoiatilization zone could potentialiy exist throughout the entire rezctor
with no gasification or oxidation taking place. The I11inois #6 bituminous
case was easy to simulate while the weathered Rosebud subbituminous case was
difficult. The low-rank coal cases required more adjustment of parameters
such &s the bed void fraction. the solid-to-gas heat transfer coefficient, and
the effective diffusivity. to match experimental data.

The simulation of I1linois #6 bituminous coal in the Weliman-Galusha
gasifier is shown in Figure IV.B-4. No experimental temperature profiles or
pressure profiles were reported for this case. The predicted profiles seem
reasonable and similar to the Jetson bituminous coal case, which has
experimental data and has been discussed in Chapter III.B.
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Figure IV.B-4 Predicted temperature, pressure drop, gas concentration, carbon consumption due to
oxidation and gasification, burnout, and particle diameter for gasificarion of Minois #6
bituminous coal in an atmospheric gasifier with air (Thimson et al,, 1984; Vol 8, pa,
68): A) predicied gas and solid temperature profile, B) predicted pressure drop, C)
predicted major species concentration profile, D) predicted minor gas species
concentration profile, E) predicted volumetric solid carbon consumption rate due 10
oxidation and gasification reactions F) predicted burnout, overall and unreacied particle
diameter throughout reactor. Inpui conditions can be found in Hobbs (1999).
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Figure IV.B-5 Predicted temperamre, pressure drop, gas concentration, carbon consumption due 10
oxidarion aund gasification, bumout, and particle diameter for gasification of Roschud
subbituminous coal in an ammospheric gasifier with air (Thimson et al., 1585: Vol 3,
page 63): A) predicted gas and solid temperature profiie, B) predicted pressure drop,
C) predicted major species concentration profile, D) predicted minor gas species
concentration profile, E) predicted volumetric solid carbon consumption rate due to
oxidation and gasification reactions F) predicted burnout, overall and unreacted particle
diameter throughout reactor. Jnput conditions can be found in Hobbs (1990C).
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The simulation of the weathered Roseoud subbituminous coal in the
Wellman-Gaiusha gasifier is shown in Figure IV.B-5. This simulation was
similar to the fresh Rosebud case, which has experimental data (Hobbs. 1980).

METC Gasifier - A comparison of solid and gas temperature profiles and
selected gas species profiles for gasification of Arkwright bituminous coal in
the air-fired, METC gasifier operated at 6.4 atmospheres (absolute) is shown
in Figure IV.B-6. The input conditions for this case were found in Desai and
Wen (1878). The solid and gas temperature profiles predicted by Desai and Wen
are indistinguishable. Desai and Wen believed that the prediction was the
average of the gas and sclid temperature. However, the sample calculation in
the Appendix of Desai and Wen (1978) indicates that the solid and gas
temperatures were indeed equal. It is assumed that Desai and Wen did not
account for the difference between the nonreacting solid-to-gas heat transfer
coefficients and the reacting solid-to-gas heat transfer coefficients. In
other words, they assumed that £ was equal to 1, which would give egual solid
and gas temperatures as indicated by the sensitivity analysis on . The
concentration profiles show the instantaneous devolatilization azsumption made
by Desai and Wen. Also the lack of a peak in the CO, profile indicates

simplified assumptions regarding the gas-phase chemistry.

~ 3 -

- Predicted temperature, pressure drop, gas
concentration, carbon consumption, burnout, and particle diameter for
gasification of Pittsburgh #8 bituminous coal in a high-pressure, slagging
gasifier with oxygen (Scott, 1981) are shown in Figure IV.B-7. The cozl flow
rate is 2-3 times larger than for dry-ash gasifiers. The temperature is
higher to promote slagging of the ash. The predicted temperature of the ash
zone is low. A possible explanation could be inadeguacy of the plug flow
assumption for the ash flow rate. The BGC-iurgi slagging case is presented to
show the possihility of simulating the slagging gasifier.

PBlans

During the next quarter. work will continue on collecting fixed-bed
design and test catz. The fixed-bed design and test data will be colliected
both from the open literature and from organizations and individuals involved
in fixed- or moving-bed gasification or combusticn research or .n research on
non-reacting fixed- or moving-beds. Efforts will continue to identify

additional test cases for simulation. The code will be applied to these
additional test cases.
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Figure IVB-6 Comparison of A) solid and gas temperature profiles, and B)
selected gas species profiles for gasification from this study and
C) Desai and Wen (1978) of Ariwright bituminous coal in the
air-fired METC gasifier operated at 6.4 atrcospheres (absolute).
Input conditions and model predictions from Desai and Wen
(1978). Input file for MBED-1D can be found in Hobbs (1990).
Coal, air, and steam mass flow rate are 0.138, 0.518, and 0.0631
kgfs, respectively.
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Figure IV.B-7 Predicted temperature, pressure drop, gas concentration, carbon ccnsumption due 10
oxidation and gamﬁcanon, burnout, particle diameter for gasification of Pittsburgh
#8 bitzminous coal in a high-pressure slagging gasifier with oxygen (Scott, 1981;
page E-50): A) predicted solid and gas temperature profile, B) predicted pressure
drop, C) predicted major species concentration profile, D) predicted minor gas
specie concentration profile, E) predicted volumetric solid carbon consumption rate
due 10 oxidation and gasification reactions, and F) predicted bumont, overall and
uareacted particle diameter throughout the reactor. Reactor geometry is the same as
the Westfield Lurgi cases. Coal, oxidizer and steam mass flow rates are 2.793,

gigg’%s;. and 0.9464 kgks, respectively. Complete input file can be found in Hobbs
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