APPENDIX A

"CORRECTION OF $T_{\rm cr}$ MEASUREMENTS FOR ASH CONTENT"

CORRECTION OF Ton MEASUREMENTS FOR ASH CONTENT

The original T_a measurements were done on chars from coals which originally had about 10% ash. Consequently, the chars had about 20% ash content (assuming 50% weight loss and no ash loss). In order to apply the method to coals which have significantly different ash content, a correction needs to be applied as described below.

 W_{o} = Initial sample weight W_{a} = Ash content in the sample plus moisture W = Sample weight during sample oxidation

$$\Phi = W/W_0$$
, $\Phi_1 = W_a/W_0$

 $\Phi = \Phi(T)$ and $d\Phi/dT$ are obtained from TGA experiment (balance and first derivative curves)

Let * = fraction (daf) unoxidized char, then

$$\Psi = \frac{\Phi - \Phi_a}{\Phi_0 - \Phi_a} = \frac{\Phi - \Phi_a}{1 - \Phi_a} = \frac{W - W_a}{W_0 - W_a}$$

$$\frac{d\Psi}{dt} = \frac{(d\Phi/dt) - 0}{1 - \Phi_{\bullet}} = \frac{d\Phi/dt}{1 - \Phi_{\bullet}}$$

the definition of
$$T_{cr}$$
 is $\frac{d\Phi}{dt} = -0.11$ wt. fraction/min

Solving for d\(\frac{1}{2} / dt \)

$$\frac{d\Phi}{dt} = (1 - \Phi_{\mathbf{g}}) \frac{d\Psi}{dt} = -0.11 \text{ min}^{-1}$$

or
$$\frac{d\Phi}{dT}$$
 • $\frac{dT}{dt}$ = -0.11 min^{-1}

but
$$\frac{dT}{dt} = 30^{\circ}C/min$$

S87 14th Tables 5/90

$$\frac{d\Phi}{dT} = -0.11/30 \, ^{\circ}C^{-1}$$

$$= -3.67 \times 10^{-3} \, ^{\circ}C^{-1}$$
or $T_{cr} = T$ where $d\Phi/dT = -3.67 \times 10^{-3} \, ^{\circ}C^{-1}$

When
$$\Phi_n = 0$$
, $d\Phi/dT = d\Psi/dT$

For the previous chars, the value of $\Phi_{\bf a}$ was ~ 0.2. Consequently, in order to convert to an ash free basis:

$$\frac{d\Psi}{dT} = \frac{1}{(1 - \Phi_s)} \frac{d\Phi}{dt}$$

$$= \frac{1}{(1 - 0.2)} 3.67 \times 10^{-3} \text{ C}^{-1}$$

$$= 4.6 \times 10^{-3} \text{ C}^{-1} \text{ (ash free)}$$

In order to obtain T_{cr} measurements on higher or lower ash chars, the number of units on the derivative curve must be modified accordingly. For example, if the original measurement was $d\Phi/dT=3$ units for $\Phi_a=0.2$, then a char with X% ash would adjust the numbers of units as follows (for the equivalent $d\Psi/dT$)

$$\frac{3 \text{ units}}{(1-0.2)} = \frac{n \text{ units}}{(1-X)}$$

if
$$X = 0.1$$
, $n = 3.4$ units if $X = 0.5$, $n = 1.9$ units

Additional Note

Because of a difference in the scale factors in our TGA for the balance curves versus the derivative curves, the value of $\mathrm{d}\Phi/\mathrm{d}t$ used for our T_{cr} measurements was actually .06 wt. fraction per minute rather than 0.11 wt. fraction per minute. For a typical char (with a 20% ash content), the difference in T_{cr} by these different criteria is about 25°C.