TRI-STATE SYNFUELS COMPANY Indirect Coal Liquefaction Plant Western Kentucky

...

4

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

.

August 25, 1981

• •

.

muninenite

PROCESS DEVELOPMENT STUDY NO. 15A

ETHANE/ETHYLENE TO SALES

TABLE OF CONTENTS

- I. INTRODUCTION
- II. SUMMARY
- III. PROCESS DESCRIPTION
- IV. COMPARATIVE DATA FOR SALE OF MIXED C₂ STREAM AND ETHYLENE
 - V. CONCLUSION
- VI. APPENDIX I SCOPE OF STUDY

L'SE OR GISCLOSURE OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

PROCESS DEVELOPMENT STUDY NO. 15 ETHANE/ETHYLENE TO SALES

I. Introduction

In the feasibility study, the mixed C_2 gas stream (Ethane-ethylene mixture) recovered from the processing of the Synthol plant tail gas was treated in an Ethylene Plant to produce polymer-grade ethylene. The present study considers the sale of the mixed C_2 stream without additional processing.

The process description for the production and supply of the mixed C_2 stream is given in this report. The capital and operating cost estimates for the sale of mixed C_2 stream compared to the sale of polymer-grade ethylene are also reported.

II. Summary

(

Two cases are considered and compared for evaluation. Case 1 - In this case, ethylene is made in the plant from the mixed

C₂ stream.

This case was used for the feasibility study. Polymer grade ethylene is produced in the Ethylene Plant (Unit 24) by processing the mixed C_2 gas recovered in the C_2 recovery plant (Unit 23).

-1-

A 1.000 a.1 4

USE OF DISCLOSURE OF THE POINT GATA IS SMALLET TO THE BESTINGTION ON THE INSTEE MISE AT THE POINT OF THE OFFICE

- ----

Case 1 is shown schematically below:

Synthol plant
$$C_2$$
 recovery plant
(Unit 23)
H₂ rich gas
+
Methane rich gas
+
Mixed C₂ stream \longrightarrow Ethylene Plant
(Unit 24)
C₃+ product
+
C₃+ product
+
H₂ / CH₄ gas

Case 2 - For this case the Ethylene Plant (Unit 24) is deleted. The remaining units are similar to Case 1. The C_2 recovery unit (Unit 23) will produce a mixed C_2 stream (ethylene/ethane) along with the other products: methane rich gas, H_2 rich gas, and C_3 + product. The mixed C_2 stream will be marketed from the plant as such, probably to an existing ethylene producer.

Case 2 is shown schematically below:

Synthol plant tail gas $\longrightarrow C_2$ recovery plant (Unit 23) H₂ rich gas + Methane rich gas + Mixed C_2 stream \longrightarrow To Sales C₃+ product

-2-

USE OR DISCLOSURE OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE NRCE PAGE AT THE FRONT OF THES REPORT The flow schemes for the two cases show that the processing is identical for the treatment of the Synthol plant tail gas. The only difference lies in the further processing of the mixed C_2 stream. In Case 2, the mixed C_2 stream is sold without upgrading, while for Case 1 this stream is upgraded and sold as polymer-grade ethylene. This report indicates the outlines of the process for the recovery of mixed C_2 stream and emphasizes the incremental costs needed for Case 1 over Case 2.

III. Process Description

The recovery of the mixed C₂ stream from the Synthol plant tail gas is common to both Case 1 and Case 2 and the process is briefly outlined below.

The Synthol plant tail gas is first treated for the removal of CO_2 . This may be done by scrubbing the gas in a CO_2 absorber with activated potassium carbonate solution or any other suitable solvent. The removal of CO_2 is necessary to avoid any CO_2 freezing at the low temperatures at which the gas is treated later in the process. The CO_2 -free gas is compressed and chilled to a temperature above the hydrate formation temperature. The separated water will be removed and the condensed hydrocarbon stream will be fed to the oil workup facilities. The gas is then dried by passing it through a desiccant dryer.

The dry gas will be treated in the C₂ recovery section to produce the various products: Methane rich gas, hydrogen rich gas, C₃+ liquid product, and mixed C₂ gas.

-3-

USE OF OUSCLASSING & REPORT BALA IS DUBLECT TO THE RESITIENT OF THE WRITE MEE AS THE FRONT OF THE OFFENS The dew point for the mixed C_2 gas is -15° at 200 psig. As the pressure increases, the dew point will rise. At 380 psig, the dew point is 23°F. The pipeline supply pressure must be carefully studied to assure no condensation of C_2 's in the line. The design of the mixed C_2 delivery system can be done only in consideration of the conditions of supply and the location where the supply is to be effected.

The process design of the Ethylene Plant used for Case 1 will be based on a conventional ethylene recovery system with steam cracking the ethane. The process description for the Ethylene Plant was included in the feasibility study.

IV. Comparative data for Sale of Mixed C, Stream and Ethylene

A. Product

Table 1 shows the product quantity and battery limit conditions for both cases.

TABLE 1

PRODUCT QUANTITY AND CONDITIONS

	Case 1	Case 2
Product	Ethylene	Mixed C ₂ Stream
Quantity	40,055 lbs/hr.	51,606 lbs/hr.
Pressure	435 psig	350 psig
Temperature	85° F	Saturation

-4-

USE OR DISCLOSURE OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE NUTCE PAGE AT THE FRONT OF THIS REPORT

B. By-Products

The by-products and other products obtained from C_2 recovery unit (Unit 23) are the same for both Case 1 and Case 2. For Case 1, additional by-products will be obtained from the ethylene plant, the quantities are shown in Table 2. These by-products will be added to the feed to the oil workup units. Table 3 gives a listing of saleable products and their production rates for both cases.

TABLE 2

BY-PRODUCTS FROM ETHYLENE PLANT

Product	Quantity, lb/hr	Disposition
Propane	263	LPG
Propylene	3,315	Converted to Jet Fuel
C ₄ 's	112	Added to Gasoline
с ₅ +	38	Added to Gasoline
H_2/CE_A gas	1,956	SNG

USE OF OUSCLODINE OF REPORT DATA

-5-

IS SUBJECT TO THE RESIDENCES ON THE INFICE PAGE AT THE FRONT OF THIS REPORT

TABLE 3					
TOTAL	PRODUCTS	FROM	THE	PLANT	WITH

CASE 1 AND CASE 2

PRODUCT	CASE 1, 1b/hr.	CASE 2, 1b/hr.
Ethylene*	40,055	-
Mixed C ₂ Gas*	-	51,606
LPG*	8,900	8,637
Gasoline*	178,003	177,853
Jet Fuel*	52,289	48,974
Diesel (Grade 1-D)	39,087	39,087
Diesel (Grade 2-D)	3,259	3,259
Medium Fuel Oil	6,598	6,598
SNG*	156 MM SCFD	155 MM SCFD
Annonia	18,125	18,125
Sulfur	47,125	47,125
Heavy Creosote	14,678	14,678
Medium Creosote	18,995	18,995
Phenol	3,709	3,709
Cresols	4,534	4,534
Ethanol	10,704	10,704
Propanol	3,087	3,087
Butanol	1,605	1,605
Pentanol and Eigher Alcohols	1,530	1,530
Acetone	4,749	4,749
Methyl Ethyl Ketone	1,551	1,551
Higher Ketones	60	60

Notes:

 *Indicates product rates that are different for Case 1 and Case 2.
 Yields are shown on a stream day basis. To convert to calendar day basis, multiply by 340/365.

-6-

USE OR DISCUSSIONE OF REPORT DATA TO REALIZED TO THE DESTRICTION OF THE ROUGE FROM AN THE PROOF OF THE DEFORM **≧** "

۰.

2

114

••

C. Utilities Consumption and Generation

The deletion of the ethylene plant has a minor effect on the facility utility costs. The consumption and production of utilities are shown on Tables 4 and 5. The dollar values assigned to these utilities are current estimates made for the Tri-State project.

-7-

VIE DE OVELANNE, & ACTOR DAIN 16 SURVET VO THE RESTRECTION ON THE MITCE PAGE AT THE PROVE OF THUS ACTOR

APPROX. I AND A TANK

UTILITIES CONSUMED IN ETHYLENE PLANT

		•	Annual Cost, * S
1.	Fuel Gas**	```	\$ 6,813,600
	167 MM Btu/br. @ \$5/MM Btu	(HHV)	
2.	HP BFW		58,929
	61,410 lbs/hr. @ \$0.98/M gal.		
з.	Cooling Water	circulated)	546,637
	21066 gpm @ \$0.53/M gal.		
4.	HP Steam (600 p	sig)	173,839
	6555 lbs/hr. @ \$3.25/M lb.		
5.	LP Steam (120 p	psig)	7,317
	366 lbs/hr. @ \$2.45/M lb.		
6.	Electric Power		403,920
	900 KW @ \$0.055/Kwh		
		Total Utility Cost	\$ 8,004,242

* @ 340 days full production annually

**Internally produced in the Ethylene Plant and not obtained from an outside source (see also Table 5).

LINE OR GISCUSSION OF REPORT DATA 15 SUBJECT TO THE RESERVETION ON THE DURICE PAGE AT THE FIGHT OF THES REPORT

> : []

Annual Cost, * (\$)

 Fuel Gas (produced and consummed** in cracking furnace) 		\$ 6,813,600
	HHV 167 MM Btu/Hr. @ 5/MM Btu	

HP Steam (600 psig)
 56339 lbs/hr.
 \$3.25/M lbs.

\$ 8,307,710

\$ 1,494,110

* @340 days full production annually

** Consumed in Ethylene Plant (See Table 4)

USE OF DESCLOSURE OF REPERT DATA IS SUBJECT TO THE RESTRICTION ON THE THETCE PAGE AT THE FRONT OF THEM REPORT

-9-

D. Capital Cost (Plant Sales Price)

The estimated capital cost (plant sales price) of the Ethylene Plant (Unit 24) is 112.5 million dollars (Jan. 1980 dollars). This is the incremental capital cost (plant sales price) needed for Case 1 with ethylene production over Case 2 for sale of the mixed C₂ stream.

E. Plant Operating Cost

The annual operating cost, excluding the cost of feed gas for the Ethylene Plant, is given in Table 6. The gross operating cost has been estimated to be 3.57 million dollars.

This is the incremental operating cost for Case 1 (Ethylene) over Case 2 (Mixed C₂ Stream).

The comparative data between Case 1 and Case 2 are summarized in Table 7.

V. Conclusion

With the sale of Mixed C₂ stream (Case 2), the Ethylene Plant would be deleted with a saving in plant capital cost (plant sales price) of 112.5 million dollars (Jan. '80 cost).

The marketability and price of the mixed C_2 stream at the specific plant site compared to those of the polymer-grade ethylene will determine the cost economics for sale of the mixed C_2 stream in comparison with the production and sale of ethylene.

-10-

USE OR DISCUSSING OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE NUMBER PAGE AT THE FIDNET OF THIS REPORT

OPERATING COST FOR ETHYLENE PLANT

(Excluding Cost of Feed)

Annual Cost, (\$)

; ; ;

ł

: :

:

Labor:	
Process Operating Labor (10 persons @ \$29K avg. per year)	\$ 290,000
Supervision (@ 20% of process operating labor)	58,000
Operating Supplies (@ 30% of process operating labor)	87,000
Catalysts and Chemicals	65,000
Utilities Consumed	(303,468)*
Maintenance Cost (@ 3% of capital cost)	 3,375,000
Gross Operating Cost	\$ 3,571,532

* Credit for utilities produced in Ethylene Plant over utilities consumed (Tables 4 5 5).

-11-

USE OR OFSCHRUNG OF REPORT DATA IN DURALET TO THE RESTRICTION ON THE MODEL PAGE AN THE FUMILY OF THE REPORT

.

COMPARISON OF DATA FOR CASE 1 AND CASE 2

Products: Case 1 - 40,055 lbs/hr. of ethylene

ı

Case 2 - 51,606 lbs/hr. of mixed C₂ stream

	<u>Case 1</u>	Case 2
	(Ethylene)	(Mixed C ₂ Stream)
Incremental Capital Cost	\$ 112.5MM	Base
Incremental Annual Operating Cost (Gross)	\$ 3 .6 MM	Base
Incremental Annual Yield of Other Products:		
LPG	1073 Tons	Base
Jet Fuel	13525 Tons	Base
Gasoline	612 Tons	Base
SNG	1MM SCFD	Base

Note:

1) Data for Case 2 are taken as base, and incremental values of Case 1 are given.

-12-

USE OR DISCLOSURE OF REPORT DATA IS SUBJECT TO THE RESIDENTION ON THE INSTREE PAGE AT THE FRONT OF DOLS REPORT

...

APPENDIX I

•

ĺ

i

.

SCOPE OF STUDY

LIE OR WILLIOUNE OF ALTON ON THE IN SUBJECT TO THE ALLOWINGTON ON THE MITTLE FROM AT THE FRONT OF THE ALTON TRI-STATE SYNFUELS COM Indirect Coal Liquefaction Plant Western Kentucky

••

FLUOR INEERS AND CONSTRUCTORS, INC. Contract 835504 April 15, 1981

PROCESS STUDY

PRODUCTION OF ETHYLENE/ETHANE CRUDE STREAM FOR DIRECT MARKETING

1.0 GENERAL

This study will provide economics for production of an ethylene/ethane stream for direct marketing.

- 2.0 WORK DEFINITION
 - 2.1 Delete ethylene plant from the feasibility study.
 - 2.2 Add storage for ethylene/ethane crude stream in the tank farm area.
 - 2.3 Tri-State Synfuels to provide Fluor with requirements for storage volumes for the ethylene/ethane stream.
 - 2.4 Redo plant mass balances.
 - 2.5 Adjust capital cost astimate.
 - 2.6 Redo the operating costs.

3.0 DELIVERABLE TO TRI-STATE

A formal report that contains the following:

- 3.1 Operating cost estimate.
- 3.2 Capital cost estimate.
- 3.3 Block Flow Diagram, material balance and process description.

4.0 SCHEDULE

It is estimated that the above work will be completed 8 weeks after the work is started by Fluor.

USE OR GASCLOCINE OF ACTORY DATA IS SURFECT TO THE RESERVICTION ON THE SOUTCE PAGE AT THE FRONT OF THIS REPORT