
.

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

COMPARISON OF MECHANICAL

AND NATURAL DRAFT

COOLING TOWERS

FOR

TRI-STATE SYNFUELS COMPANY

AUGUST 1981

ENGINEERING DEVELOPMENT STUDY NO. 6

USE OR DISCLOSURE OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE NUTICE PAGE AT THE FEORT OF THIS REPORT Prepared by: Chris Doyle Associate Mechanical Engineer Contract 835504

:

.

and a second second

.

(

{

×

FLUOR ENGINEERS AND CONSTRUCTORS, INC.

· · ···

Contract 835504

TABLE OF CONTENTS

			PAGE
1.0	SCOL	PE	1
	1.1	UTILITY PLANT	1
	1.2	PROCESS PLANT	1
2.0	DESI	IGN CRITERIA	2
	2.1	UTILITY PLANT DATA	2
		A. COOLING TOWERS	2
		B. TURBINES	4
		C. SURFACE CONDENSERS	4
		D. HEAT EXCHANGERS	4
		E. PUMPS	4
		F. CONNECTING PIPING	5
		G. OPERATING COSTS	5
	2.2	PROCESS PLANT DATA	5
	2.3	SITE DATA	5
	2.4	ECONOMIC EVALUATION DATA	5
3.0	RESU	LTS	6
	3.1	UTILITY PLANT	6
		A. TURBINES	6
		B. CONDENSERS AND HEAT EXCHANGERS	6
		C. POMPS	6
		D. COOLING TOWERS	6
		E. PIPING	6
		F. OPERATING COSTS	9
		G. TOTAL EVALUATED COSTS	9
	3.2	PROCESS PLANT	10
4.0	ANAL	YSIS	11
	4.1	UTILITY PLANT	11
		A. OPTIMIZATION OF THE COOLING TOWER TEMPERATURE APPROACH	11
		B. OPTIMIZATION OF THE COOLING WATER RANGE	11
		C. OPTIMIZATION OF THE TURBINE BACK PRESSURE	16
		D. COMPARISON BETWEEN MECHANICAL AND NATURAL DRAFT COOLING TOWERS	16
	4.2	PROCESS PLANT	21
5.0	RECO	MMENDATIONS	22
	5.1	UTILITY PLANT	22
	5.2	PROCESS PLANT	22

6.0 ATTACHMENTS

6.1 APPENDIX 1 - SCOPE OF STUDY 6.2 APPENDIX 2 - STUDY CRITERIA

USE OR DISCUSSIVE OF REPORT DATA IS SUBJECT TO THE RESTRUCTION ON THE NUTICE PAGE AT THE FRONT OF THIS REPORT

.

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

ہر

PAGE

LIST OF TABLES FOR THE UTILITY PLANT ANALYSIS PAGE 3 - Listing of Study Cases Table I 7 Table II - Breakdown of Evaluated Costs 8 - Comparative Tower Sizes Table III Comparison of Optimum Mechanical 19 Table IV and Natural Draft Cooling Towers

FOR THE UTILITY PLANT ANALYSIS

Graph	I	-	Tower Temperature Approach vs. Evaluated Cost Using Mechanical Draft Towers	12
Graph	II	-	Tower Temperature Approach vs. Evaluated Cost Using Natural Draft Towers	13
Graph	III	-	Tower Cooling Range vs. Evaluated Cost Using Mechanical Draft Towers	14
Graph	IV	-	Tower Cooling Range vs. Evaluated Cost Using Natural Draft Towers	15
Graph	V	-	Turbine Back Pressure vs. Evaluated Cost Using Mehanical Draft Tower	17
Graph	VI	-	Turbine Back Pressure vs. Evaluated Cost Using Natural Draft Tower	18

USE OR DISCUSSIVE OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

.

.

Deputy provision and a service of

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

1.0 SCOPE

(

The purpose of this study is to provide an economic and physical comparison of mechanical and natural draft cooling towers for the Tri-State Synfuels Project. The utility cooling towers and the process cooling towers were evaluated on a separate basis as follows:

1.1 UTILITY PLANT

and a second second

In order to make a fair comparison between mechanical and natural draft cooling towers for the Utility Plant, the Utility System conditions were optimized by evaluating the costs for the turbines, surface condensers, pumps and heat exchangers, as well as the cooling towers. The primary activities consisted of the following:

- A. Optimization of the cooling water temperature approach.
- B. Optimization of the cooling water temperature range.
- C. Optimization of the turbine back pressure.
- D. Economic comparison between mechanical and natural draft cooling towers.

1.2 PROCESS PLANT

The Process Plant was not optimized like the Utility Plant since optimization would require extensive plant redesign. The main activity consisted of ecnomically comparing mechanical and natural draft towers for two sets of cooling water conditions.

USE OR DISCUSSIVE OF REPORT DATA IS SUBJECT TO THE RESTRICTLES ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

TRI-STATE SYNFUELS COMPANY Indirect Coal Liquefaction Plant Western Kentucky

2.0 DESIGN CRITERIA

2.1 UTILITY PLANT DATA

The detailed optimization of the Utility Plant involved the cooling towers, turbines, surface condensers, heat exchangers, pumps, connecting piping and operating costs. The following criteria were used.

A. Cooling Towers

Mechanical and natural draft concrete cooling towers were considered for the Utility Plant. For each type of tower, the cooling water approach and range were varied in order to optimize the entire system. Refer to Table I for the definition of the specific cases used in the evaluation.

(1) - Approach

In the cooling tower design, the temperature approach is the difference between the cold water temperature leaving the cooling tower and the measured wet bulb temperature at the inlet. Generally, the size and price of cooling towers will decrease with larger temperature approaches for a constant heat load. Using a design wet bulb temperature of 78°F, temperature approaches of 5°F, 7°F, 13°F, and 20°F were evaluated. The 5°F approach was the minimum approach guaranteed by cooling tower vendors. The 20°F approach represented the maximum feasible approach based on a 78°F design wet bulb and the turbine back pressures used in the evaluation.

(2) Cooling Range

The cooling range is the difference between the cooling water inlet and outlet temperatures to the tower. The range is inversely proportional to the cooling water flowrate. Thus, with increasing range, the flowrates will decrease and thus the pumps and pump horsepower required will decrease. The cooling range was varied between 13°F and 30°F. A maximum limit on the cooling water temperature was set at 130°F to avoid corrosion problems.

> USE OR DISCUSSURE OF REPORT DATA IS SUBJECT TO THE RESTORTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

TRI-STATE SYNFUELS COMPANY

يويونيا الجاهيم مرتدينا الالا

~ · · · · · ·

(

(

(

FLUOR ENGINEERS AND CONSTRUCTORS, INC.

Contract 835504

and the second s

Indirect Coal Liquefaction Plant Western Kentucky

	TABLE I - LISTING OF STUDY CASES FOR THE UTILITY PLANT							
CASE	TYPE OF TOWER	FLOWRATE (GPM)	HWT(°F)	<u>CWT(°F</u>)	DUTY (10 ⁹ BTU/HR)	APPROACH (*F)	RANGE (°F)	TURBINE BACK PRESS. (IN. HG)
02-1M	MDT	355,000	96	83	2.31	5	13	2.5
*U2-2M	MDT	231,000	103	83	2.31	5	20	2.5
02-3M	MDT	355,000	98	85	2.31	7	13	2.5
U2-4M	MDT	243,000	104	85	2.31	7	19	2.5
U2-5M	MDT	355,000	104	91	2.31	13	13	2.5
U4-1M	MDT	377,000	96	83	2.45	5	13	4.0
.04-2M	MDT	245,000	103	83	2.45	5	20	4.0
04-3M	MDT	377,000	98	85	2.45	7	13	4.0
U4-4M	MDT	258 ,00 0	104	85	2.45	7	19	4.0
U4-5M	MDT	377,000	104	91	2.45	13	13	4.0
U46 M	MDT	245,000	111	91	2.45	13	20	4.0
04 -7м	MDT	169,000	120	91	2.45	13	29	4.0
U4-8 M	MDT	245,000	118	98	2.45	20	20	4.0
U5-IM	MDT	389,000	96	83	2.53	5	13	5.5
-05-2M	MDT	253,000	103	83	2.53	5	20	5.5
Ю 5-ЗМ	MDT	389,000	98	85	2.53	7	13	5.5
05-4M	MDT	266,000	104	85	2.53	7	19	5.5
05-5M	MDT	389,000	104	91	2.53	13	13	5.5
U5-6M	MDT	253,000	111	91	2.53	13	20	5.5
U5-7M	MDT	174,000	120	91	2.53	13	2 9	5.5
U5-8M	MDT	253,000	118	98	2.53	20	20	5.5
05-9M	MDT	169,000	128	98	2.53	20	30	5.5
02-5N	NDT	355,000	104	91	2.31	13	13	2.5
U4-5 N	NDT	377,000	104	91	2.45	13	13	4.0
U4-6 N	NDT	245,000	111	91	2.45	13	20	4.0
**04-7N	NDT	169, 00 0	120	91	2.45	13	29	4.0
U4-8 N	NDT	245,000	118	98	2.45	20	20	4.0
บ5-5N	NDT	389,000	104	91	2.53	13	13	5.5
U5-6N	NDT	253 ,00 0	111	91	2.53	13	20	5.5
U5-7N	NDT	174,000	120	91	2.53	13	29	5.5
U5-8N	NDT	253,000	118	98	2.53	20	20	5.5
US-9N	NDT	169,000	128	98	2.53	20	30	5.5

* Optimum Mechanical Draft

** Optimum Natural Draft

NDT = Mechanical Draft Tower

NDT = Natural Draft Tower

USE OR CISCLOSURE OF REPORT DATA IS CURLET TO THE RESTRICTION ON THE NETICE PAGE AT THE FRONT OF THIS REPORT

2.0 DESIGN CRITERIA

- 2.1 UTILITY PLANT DATA (continued)
 - B. Turbines

A total of seven (7) condensing turbines were evaluated in the Utility Plant. One (1) was used to drive a 55-Megawatt generator with 120 psig, 438°F steam. Two (2) were used to drive two 15000 hp oxygen compressors using 600 psig, 750°F steam. Four (4) were used to drive four 45000 hp oxygen compressors using 600 psig, 750°F steam. Three different turbine back pressures were evaluated; they were 2.5" Hg, 4" Hg, and 5.5" Hg. Steam rates were calculated for each size turbine at each back pressure assuming a 75 percent efficiency and a constant power output. Combinations of different turbine back pressures were not considered. Spare turbines were not used in the economic evaluation.

C. Surface Condensers

Each condensing turbine has a steam surface condenser. For each turbine back pressure (2.5" Hg, 4" Hg, and 5.5" Hg), there is a corresponding steam saturation temperature (109°F, 125°F, and 137°F). The approach in the condenser is the difference between the steam saturation temperature and the hot water temperature at the condenser outlet. The approach in the condenser was limited to minimum of 5°F because of the thermal guarantees of vendors. Thus in deciding upon the case to be evaluated, Fluor was limited to a S°F approach between the hot water temperature and the steam saturation temperature in the condenser and a 5°F approach between the cold water temperature and the design wet bulb temperature in the cooling tower (Refer to Sheet I in Appendix 2). The duties for each condenser were calculated from the turbine steam rates at the various back pressures. The metallurgy was assumed to be carbon steel.

D. Heat Exchangers

Fluor assumed that cooling water was also utilized in four (4) air aftercoolers. with duties of 19 X 10⁶ Btu/Hr each. These were assumed to be carbon steel shell and tube units.

E. Pumps

Vertical turbine centrifugal pumps were used as a basis for the estimates. A total pumphead of 115 feet was assumed for each case. Fluor assumed a nominal pump efficiency of 85% and a nominal motor efficiency of 94%. One spare pump was included for every four operating pumps.

> USE OR DISCUSSIVE OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE RETICE PAGE AT THE FOONT OF THIS REPORT

1

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

and the second second second

2.0 DESIGN CRITERIA

Ĺ

- 2.1 UTILITY PLANT DATA (continued)
 - F. Connecting Piping

Carbon steel piping was assumed for the estimate. A design study line was chosen to figure the differential piping costs from the main water lines to the cooling towers for each case.

and the state of the second second

G. Operating Costs

Operating costs used in the evaluation included pumping costs, fan power costs (for mechanical draft only), and steam differential costs. Refer to Sheet II in Appendix 2 for the formulas used to calculate the operating costs. Fluor assumed that the evaporation rates for each tower were equal since the duties were similar, therefore the differential costs for make-up water were not included. The analysis was based on 100 percent operation during summer conditions. An annualized cost factor of 5.0 was used.

2.2 PROCESS PLANT DATA

Mechanical and natural draft towers were evaluated for two sets of conditions in the Process Plant. The first set of conditions (case P-IM and P-IN) represent the base conditions used for the initial plant design. Since the base conditions had such a low temperature approach (7°F), an alternate case with a 13°F approach was studied (cases P=2M and P=2N). Both sets of conditions evaluated for the Process Cooling Towers are listed below.

Case:	P-1M,P-1N	P-2M, P-2N
Design Duty (10 ⁷ Btu/hr):	4.06	4.96
Tower Inlet Temperature (°F):	106	112
Tower Outlet Temperature (°F):	85	91
Cooling Water Flowrate (gpm):	387,000	387,000
Cooling Range (°F):	21	21
Temperature Approach (°F):	7	13

2.3 SITE DATA

Location: Henderson County, Kentucky Temperature °F Design Wet Bulb Temperature: 78°F Design Dry Bulb Temperature: 96°F Maximum Wind Velocity: 110 MPH Plant Elevation: 600 feet above sea level

2.4 ECONOMIC EVALUATION DATA

Power Cost: \$0.055/KWH Evaluation Period: 25 years Steam Cost: 120 psig, 438°F \$2.45/Mlb 600 psig, 750°F \$3.25/Mlb USE OR DISCUSSION OF REPORT DATA IS MUBICONTS THE RESTRICTION ON THE NOTICE PAGE AT THE LEENT OF THES MERCRY

Annualized cost factor (25 years, 20% minimum return on investment): 5.0

Page 5

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

3.0 RESULTS

a man to instant whether a think there are a start

1

3.1 UTILITY PLANT

Table II lists the breakdown of the estimated costs obtained for the evaluation of the Utility Plant. The cost figures represent the following:

A. Turbines

Estimates were received from a turbine vendor for the three (3) sizes of turbines at each of the different back pressures. A total of nine (9) estimates were received. As anticipated, the total cost of the turbines was higher for the lower back pressures because an efficient turbine was required.

B. Condensers and Heat Exchangers

Estimates were done in house at Fluor for the surface condensers and heat exchangers. As shown in Table II, the total price of the condensers and heat exchangers increased as the range and approach in the cooling tower was increased. This was due to the small mean temperature difference (MTD) in the condensers and heat exchangers as a result of the larger approaches and cooling ranges in the cooling tower.

 $\hat{}$

C. Pumps

Pump estimates were received from a vendor. As illustrated in Table II, the pump costs increased with larger flowrates and smaller cooling ranges.

D. Cooling Towers

Estimates were received from a cooling tower vendor for concrete mechanical and natural draft towers. The cooling tower vendor optimized each selection using the project's economic evaluation data. The mechanical draft tower estimates were based on octagonal counterflow designs of dimensions shown in Table III. The vendor did not provide estimates for natural draft towers with approaches of 5°F and 7°F because they would be very uneconomical and impractical. As Table II shows, the cost of the towers decreased as the approach and range increased.

E. Piping

Plot layouts were made for selected cooling towers in order to arrive at an estimate of the difference in the costs for the connecting piping. Drawings I and II are for the mechanical draft towers. Drawing III is for the natural draft towers. As shown in Table II, the price increased for larger flowrates. Also, the price was more when two towers were required versus one tower.

> USE OR DISCLOSURE OF REPORT DATA IS CUBICCT TO THE RESTRICTION ON THE NOTICE PAGE AT THE FICHT OF THIS REPORT

TRI-STATE SYNFUELS COMPANY

Indirect Coal Liquefaction Plant Western Kentucky

a da ante de la comunicación de la

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

		Ţ	ABLE II	- BREAKD	OWN OF E	VALUATED	COSTS (\$	MM)		
		CONDENSER		FOR TH	E UTILI	Y PLANT				
•		AND HEAT		COOLING	TOTAL		PUMP	FAN	STEAM	TOTAL
	TURETNE	EXCHANGER	PUMP	TOWER	EOUIP.	PIPING	OPERAT.	OPERAT.	DIFF.	EVALUAT.
CASE	COST	COST	COST	COST	COST	COST	COST	COST	COST	COST
U2-1M	15.100	6.148	2.695	10.730	34.673	1.450	21.591	9.910	(17.935)	49.689
U2-2M	15.100	7.666	1.960	8.664	33.390	1.070	14.049	7.433	(17.935)	38.007*
U2-3M	15.100	6.706	2.695	9.414	33.917	1.450	21.591	8.892	(17.935)	47.915
U24M	15.100	8.423	1.960	7.788	33.271	1.100	14.779	7.031	(17.935)	38.246
U2-5M	15.100	9.513	2.695	6.764	34.072	1.150	21.591	4.955	(17.935)	43.833
114-1 M	13 700	4 662	2 940	10 730	32 032	1.510	27.929	9,910	D	66.381
TIA-2M	13 700	5 041	1 960	8 664	29 365	1 110	14 901	7 433	ő	52.809
04-2M	13.700	1 993	2 940	9 414	30 947	1 510	27 929	8.892	õ	64 278
114-4M	13.700	-1.095 E 171	1 040	7 799	20.547	1 150	15 601	7 031	Ő	52 491
114-5M	13.700	5 200	2 040	6 764	28.019	1 230	17.091 77 979	A 955	õ	57 816
04-5M	13,700	5,290	1 940	5 365	28.702	1.230	14 901	4.955	ő	47 381
U4-0M	13.700	0.200	1 225	J. 30J	27.303	0.520	10 270	בני. אול ג	0	47.301
114 - OM	13.700	0.005	1.225	4.351	27.301	0.930	14 901	3 080	õ	27 914
04-0M	13.700	0.9/4	1.960	4.4/7	29.113	0.820	14.301	3.000	Ŭ	
U5-1M	13.500	4.238	2.940	10.730	31.408	1.550	23.659	9.910	9.637	76.1 64
U5-2M	13.500	4.771	1.960	8.664	28.8 9 5	1 .130	15.387	7.433	9.637	62.482
U5-3M	13.500	4.401	2.940	9.414	30.255	1.550	23.659	8.892	9.637	73 .99 3
U 54 M	13.500	4.487	1.960	7.788	27.735	1.170	16.179	7.031	9.637	61.752
₩ 5-5 M	13.500	4.487	2.940	6.764	27.691	1.270	23.659	4.955	9.637	67.212
-6M	13.500	5.729	1.960	5.365	26.554	0.840	15.387	4.955	9.637	57.373
M7−د_	13.500	5.855	1.225	4.551	25.131	0.600	10.583	3.716	9.637	49.667
U5-8M	13.500	6.807	1.960	4.479	26.752	0-840	15.387	3.080	9.637	55.6 9 6
U5-9M	13.500	8.134	1.225	3.638	26.497	0.580	10.279	2.692	9.637	49.685
U2-5N	15.100	9.513	2.695	15.822	43.130	1.150	21 .591	-	(17.935)	47.936
U4-5 N	13.700	5.298	2.940	15.822	37.760	1.230	22.929	-	0	61.919
U4-6 N	13.700	6.280	1.960	12.750	34.690	0.820	14.901	-	0	50.411
U4-7N	13.700	8.085	1.225	10.493	33.503	0.580	10.279	-	0	44.362*
U4-8N	13.700	8.974	1.960	9.927	34.561	0.820	14.901	-	0	50.282
5- 50	1 3 -500	4.487	2,940	15,822	36.749	1.270	23.659	-	9.637	71.315
05-6N	13.500	5.729	1.960	12.750	33.939	0.840	15.387	-	9.637	59.803
אר-7ט	13.500	5-855	1.225	10.493	31-073	0.600	10.583	-	9.637	51.893
115-8N	13.500	6.807	1_960	9,927	32.194	0_840	15.387	· _	9.637	58.058
115-91	13-500	8-134	1,225	8,235	31.094	0.580	10.279	-	9_637	51.590
	20.000	~~~~	~~~~							

Optimum Mechanical Draft

** Optimum Natural Draft

USE OR CISCUTSURE OF REPORT DATA IS DUDUCT TO THE RESTRUCTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

TRI-STATE SYNFUELS COMPANY Indirect Coal Liquefaction Plant

Western Kentucky

1

1

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

		FOR THE UTILI	TY PLANT	
		NO. OF	DIAMETER	HEIGHT
CASE	TYPE	TOWERS	(FT)	(FT)
U2-1M	MDT	2	232	74
*U2-2M	MDT	2	204	70
U2-3M	MDT	2	211	71
U2-4M	MDT	2	189	69
U2-5M	MDT	1	264	72
U4-1 M	MDT	2	232	74
U4-2M	MDT	2	204	70
U4-3M	MDT	2	211	71
U4-4M	MDT	2	189	69
U4-5M .	MDT	l	264	70
04-61	MDT	1	224	72
04-7m	MDT	1	202	69
U4-8M	MDT	1	208	66
05-1M	MDT	2	232	74
05-2M	MDT	2	204	70
US-3M	MDT	2	211	71
U5-4M	MDT	2	189	69
US-5M	MDT	1	264	70
U5-6M	MDT	1	224	72
U5-7M	MDT	1	202	69
U5-8M	MDT	1	208	66
U59M	MDT	l	184	64
U2-5N	NDT	l	394	550
U4-5N	NDT	1	394	550
U4-6 N	NDT	l	333	500
U4-7N	NDT	1	288	450
U4-8 N	NDT	l	278	400
U5-5N	NDT	1	394	550
U5-6N	NDT	l	333	500 '
บ5 –7N	NDT	l	288	450
U5-8N	NDT	1	278	400
U5-9N	NDT	1	234	360

TABLE III - COMPARATIVE TOWER SIZES

Optimum Mechanical Draft

** Optimum Natural Draft

USE OR DISCLOSURE OF REPORT DATA IS CUBIECT TO THE RESTRICTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

1413

RESULTS

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

3.0

3.1 UTILITY PLANT (Continued)

F. Operating Costs

As illustrated in Appendix 2, Sheet II, the pump operating cost is a linear function of the cooling water flow rate since a constant pump head of 115 feet was assumed for all cases. As noted previously, the cooling water flow rate is inversely proportional to the cooling range for constant head loads. Therefore, as illustrated in Table II, the pump operating costs decreased as the cooling range was increased.

Also, as illustrated in Appendix 2, Sheet II, the fan operating cost is a linear function of the fan horsepower required. The fan horsepower required decreased as the approach and the cooling range were increased because the cooling tower could operate more efficiently. Therefore, as illustrated in Table II, the fan operating costs decreased as the approach and cooling range were increased.

Finally, as illustrated in Appendix 2, Sheet II, the steam differential cost is a linear function of the differential steam flow rate. The steam flow rate required increases with higher turbine back pressures. Therefore, as illustrated in Table II, the steam differential cost increased as the turbine back pressures were increased. Two different pressures of steam were required, so they were evaluated separately and added in order to arrive at the total steam differential cost. Also, note that the steam flow rate required for 4.0" Hg turbine back pressure was used for the base in calculating the steam differential costs.

G. Total Evaluated Costs

Each yearly operating cost was multiplied by the Annualized Cost Factor of 5.0 and added to the equipment costs in order to arrive at the total evaluated cost. As illustrated in Table II, the lowest evaluated cost was case U2-2M using two (2) 204 foot diameter, 70 foot high octagonal mechanical draft counterflow cooling towers. The optimum conditions included a 5°F temperature approach, 20°F cooling range, 231,000 gpm flow rate, and a 2.5" Hg turbine back pressure.

> USE OR DISCUSSIONE OF REPORT DATA IS SUBJECT TO THE RESTRICTION ON THE NOTICE PAGE AT THE FROMT OF THIS FERTIRE

3

÷.

3.0 RESULTS

3.2 PROCESS PLANT

Cooling tower estimates were received for mechanical (MDT) and natural draft (NDT) selections for the base and alternate conditions. The results are listed below:

	BAS	E	ALTE	RNATE
Case	P-1M	P-1N	P-2M	P-2N
Tower Type	MDT	NDT	MDT	NDT
Number Required	2	2	2	2
Tower Diameter (ft.)	249	458	200	292
Tower Height (ft.)	61	525	60	500
Tower D&E Cost (\$MM)	15.400	38.00	9.200	21.600
Fan Operating Cost (\$MM)	7.910	-0-	7.600	-0-
Total Evaluated Cost (\$MM)	23.310	38.00	16.800	21.600

The mechanical draft selections (case P-LM and P-2M) are concrete round counterflow cooling towers. The fan operating costs for the mechanical draft selections were calculated per Appendix 2 and added to the delivered and erected (D&E) costs to arrive at evaluated costs to compare with the natural draft selections. The natural draft selection for case P-LN is extremely large due to the small temperature approach (7°F). The cooling tower vendor noted that the natural draft towers selected for case P-LN are larger than they have ever constructed.

In both cases, the mechanical draft towers were more economical than the natural draft selections. Both types of towers had lower costs for the alternate case with the higher temperature approach.

> USE GR CISCL^OSURE OF REPORT DATA IS CUBICCI TO THE RESTRUCTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

ł

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

4.0 ANALYSIS

4.1 UTILITY PLANT

A. Optimization of the Cooling Tower Temperature Approach

Graph I is a plot of the temperature approach versus the evaluated cost of the system using mechanical draft towers. Note that there are constant turbine back pressure and cooling range lines. The lowest evaluated cost is for Case U2-2M with a 5°F approach, 20°F range, and 2.5" Hg turbine back pressure. Because of the limiting steam saturation temperature of 109°F, no higher approaches were evaluated at the turbine back pressure of 2.5° Hg and a range of 20°F. For the higher turbine back pressures of 4.0" Hg and 5.5" Hg, the optimum temperature approaches were projected at around 18°F, but the effect of the approach on the evaluated cost is minimal after 12°F. For the larger back pressures, the fan operating cost and the cooling tower cost were the determining factors encouraging larger approaches.

Graph II is a similar plot but it is for natural draft towers. The optimum utility system with natural draft towers is Case U4-7N with an approach $c\bar{c}$ 13°F, range of 29°F, and turbine back pressure of 4° Hg. As Graph II shows, the approach did not have a major effect on the evaluated cost of the system. Also, as noted before, natural draft towers with approaches of 5°F and 7°F were not considered because of their large comparable expense.

B. Optimization of Cooling Water Range

Graph III is a plot of the cooling range versus the evaluated cost of the system using mechanical draft towers. Note that there are constant turbine back pressure and approach lines. As the graph illustrates, the total evaluated cost decreases with increasing cooling ranges. This is primarily due to the lower pump operating costs which are a function of the cooling water flowrates. The optimum (Case U2-2M), as mentioned before, had a cooling range of 20°F; this was the highest range evaluated at 2.5" Hg of turbine back pressure because of the approach limitations. For the higher back pressures of 4.0" Hg and 5.5" Hg, the effect of the cooling range on and evaluated cost is minimal after 28°F.

Graph IV is a similar graph except it is for natural draft towers. The conclusion is quite similar to the mechanical draft towers. The evaluated cost decreases as the range increases. The lowest cost natural draft system (Case U4-7N) utilized a cooling range of 29°F. However, the effect of the cooling range on the evaluated cost is minimal after 27°F.

> USE OR CHECKING OF REPORT DATA IS LUGICO: TO THE RESTRUCTION OF THE METAGE PAGE AT THE FADAT OF VIOLS REPORT

Page 11

والمتاج متوامير بيا متبع ورور بمنصوف الماج متحاج المراجع

ų

.

----.

-i,

A COLUMN STATES AND A COLU

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

4.0 ANALYSIS

4.1 Utility Plant

C. Optimization of the Turbine Back Pressure

Graph V is a plot of the turbine back pressure versus the evaluated cost of the system using mechanical draft towers. Note that there are constant approach and constant range lines. As the graph illustrates, the evaluated cost of the system decreases with the smaller turbine back pressures. This is primarily due to the differential cost of steam. The lowest cost system (Case U2-2M) utilized a turbine with a back pressure of 2.5" Hg.

Graph VI is a similar plot but it is for natural draft towers. The results, however, are the same. The evaluated cost of the system decreases with smaller turbine back pressure.

D. Comparison Between Mechanical and Natural Draft Cooling Towers

As illustrated in this study, mechanical draft towers are economically more attractive. Table IV compares the optimum mechanical draft tower (Case U2-2M) with the optimum natural draft tower (Case U4-7N). The overall evaluated cost of Case U4-7N is 17% more than Case U2-2M. In fact, there are three other mechanical draft cases (U2-4M, U4-7M, and U2-5M) which provided economically more feasible than the optimum natural draft case according to Table II. So, economically, the mechanical draft towers proved to be the clear cut choice.

Bowever, final selection of the cooling tower design also depends upon factors other than economics such as plot size, height, plume, and hydrocarbon emissions.

(1) Plot Size

As noted in Table IV, the optimum mechanical draft case employs two (2) 204 foot diameter towers while the optimum natural draft case employs one (1) 288 foot diameter tower. The optimum mechanical draft tower will therefore occupy twice as much plot space as the optimum natural draft tower. However, in Fluor's opinion, plot space will not limit the size of the cooling tower. If plot space becomes a major concern, there are other mechanical draft cases (U4-7M and U2-5M) which occupy less plot space and are more economical than the optimum natural draft case U4-7N.

(2) Height

Height is also a consideration. As Table IV illustrates, the optimum natural draft tower is 450 feet high compared to 70 feet high for the optimum mechanical draft tower. From both a visual and air traffic obstacle standpoint, the lower mechanical draft towers would be preferred over the higher natural draft designs.

Page 16

USE OR EISCLOSURE OF REFERT DATA IS SUBJECT TO THE RESTRICT.CO ON THE MOTICE PAGE AT THE FRONT OF THIS REPORT

د. الاین دادهای از مصفح الفرد از معامله بر این معاصفهای مستقیمیتین وقار همه این و معطف ما این ماها می ماند. از ای

..~ .

(

(

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

TABLE IV

COMPARISON OF OPTIMUM MECHANICAL AND

NATURAL DRAFT COOLING TOWERS

FOR THE UTILITY PLANT

	OPTIMEM MECHANICAL DRAFT TOWER	OPTINUM NATURAL DRAFT TOMER
CASE	U2-2M	U4-7 N
FLOWRATE (gpm)	231,000	169,000
HOT WATER TEMPERATURE (°F)	103	120
COLD WATER TEMPERATURE (*F)	83	91
DUTY (10 ⁹ Btu/Hr)	2.31	2 .4 5
APPROACH (°F)	5	13
RANGE (*F)	20	29
TURBINE BACK PRESSURE (IN. Hg)	2.5	4.0
EVALUATED COST OF SYSTEM (\$MM)	38.007	44.362
COOLING TOWER COST (\$MM)	8.664	10 .493
NUMBER OF COOLING TOWERS	2	1
DIAMETER OF EACH TOWER (ft.)	204	288
HEIGHT OF EACH TOWER (ft.)	70	450

USE OR DISCLOSURE OF REPORT DATA IS LUDICET TO THE RESTRUCTION THE MELICE PAGE AT THE FROMT OF THIS REPORT

۰.

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

4.0 ANALYSIS

D. Comparison Between Mechanical and Natural Draft Cooling Towers

(3) Plume

The visible plume is an important consideration. The exhaust air or plume from the cooling tower will produce a visible fog condition when the ambient air temperature is low and the relative humidity is high such that a supersaturated condition is introduced. Visible plume is more likely to occur during the winter months and in the early morning hours and will usually last a few hours. The path that the fog takes is dependent upon the wind conditions and will rise vertically if no winds are present. Under the same conditions, mechanical and natural draft towers will produce the same amount of visible plume. Natural draft towers have a slight advantage under fogging conditions since the discharge is at a much higher altitude and thus the fog sometimes will spread out more depending on wind conditions and inversion layers. However, the difference would not be substantial enough to justify the cost difference between natural and mechanical draft towers. If fogging became a problem, there are a variety of plume abatement systems which could be used.

As a matter of reference, Fluor Power Services is constructing two power plants in the area of Tri-State Synfuels Plant. In both cases, mechanical draft towers were economically more feasible. However, one of the plants was surrounded by 400 foot bluffs, so natural draft towers were used to ensure that the plume would get over the bluffs. The other plant was on level ground so mechanical draft towers were used. Since the Tri-State Plant is to be constructed on relatively level ground and not subject to restrictions of minimum plume height, the mechanical draft towers are the recommended choice.

(4) Hydrocarbon Emissions

Since make-up to the cooling system will be treated process effluent water, there is a possibility that dissolved hydrocarbons could be released to the atmosphere in the cooling tower plume. To ensure against this, the treatment process includes steam stripping in the ammonia plant followed by biotreatment in large settling ponds. Both mechanical and natural draft towers would be equipped with drift eliminators to further reduce emissions. In this area, both types of towers perform equally well.

> USE OR DISCUSSURE OF REFORM DATA IS CUBICCT TO THE RESTRICTION ON THE ROTICE PAGE AT THE FRONT OF THIS REPORT

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

4.0 ANALYSIS

F

4.2 PROCESS PLANT

The mechanical draft towers were more economical than the natural draft towers for both sets of conditions evaluated. For the base case (7°F approach), the natural draft tower cost is \$14.7 million or 63% more than the evaluated cost of the mechanical draft towers. For the alternate case (13°F approach), the natural draft tower cost is \$4.8 million or 28% more than the evaluated cost of the mechanical draft tower. For both cases, the plot size required for the natural draft towers is substantially more than that required for mechanical draft towers. In regards to height, plume, and hydrocarbon emissions, the general conclusions concerning the utility towers would also be applicable to the process tower. Thus, the mechanical draft towers are the most economical and most feasible selection for the Process Plant.

Also it should be noted that the base case should not be compared to the alternate case without taking into consideration the process heat exchangers. When the temperature approach in the cooling tower is increased, the mean temperature difference in the process - cooling water exchangers decreases and therefore the size and price of these heat exchangers will increase. A redesign of the Process Plant would be necessary in order to project the increased cost of the heat exchangers for the higher approach temperatures. A Process Plant redesign is not within the scope of this study but the information generated is sufficient to compare mechanical and natural draft towers for each set of conditions.

> USE OF DISCUSSING OF BEPORY DATA IS SUBJECT TO THE PESTALETICY OF THE NOTICE PAGE AT THE FRONT OF THIS FEPCAF

.

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

5.0 RECOMMENDATIONS

in a second second second

5.1 Utility Plant

On the basis of the assumptions made in this study, Fluor recommends the use of mechanical draft cooling towers for the Utility Plant. This recommendation is based on a 17% cost difference between the optimum mechanical draft selection and the optimum natural draft selection. Furthermore, this recommendation is based on using the following optimum conditions as used in case U2-2M:

> 2.5" Eg Turbine Back Pressure 20°F Cooling Range 5°F Temperature Approach

A preliminary cooling tower data sheet for the utility tower is attached in Appendix 2.

5.2 Process Plant

On the basis of the assumptions made and the process conditions used in this study, Fluor recommends the use of mechanical draft cooling towers for the Process Flant. This recommendation is based on a 63% cost difference between the mechanical and natural draft selections for the base case. A preliminary cooling tower data sheet for the process tower is attached in Appendix 2.

> USE OR DISCLISURE OF REPORT DATA IS LUBJECT TO THE RESTRUCTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT

TRI-STATE SYNFUELS COMPANY

Indirect Coal Liquefaction Plant Western Kentucky

APPENDIX 1 MECHANICAL STUDY

Comparison of Mechanical and Natural Draft Cooling Towers.

TRI-STATE SYNFUELS PROJECT

1.0 GENZRAL

This study will provide an economic and physical comparison between mechanical and natural draft cooling towers for the Tri-State Synfuels Company project. The study will be divided into the two parts-one for the Process cooling towers and the other for the Utility Cooling towers.

2.0 WORK DEFINITION

- 2.1 Process Cooling Towers
 - A. Determine the size and price for mechanical and natural draft cooling towers based on the design conditions.
 - B. Layout Process towers and connecting piping.
 - C. Estimate total installed costs.

2.2 Utility Cooling Towers

- A. Evaluate the plant design by varying the turbine back pressures, the cooling water temperature and flowrates. Obtain size and price of turbines and surface condensers as well as the cooling towers in order to optimize the plant design. Choose the most economical mechanical and natural draft cooling towers.
- B. Layout Utility towers and connecting piping.
- C. Estimate total installed costs.

3.0 DELIVERABLE TO TRI-STATE

A formal report that contains the following:

- 3.1 Preliminary Cooling Tower Data Sheets
- 3.2 Plot layouts including tower, connecting piping, and structural supports.
- 3.3 Cost comparisons between the mechanical and natural draft cooling towers for both the process and utility plants including capital costs, operating costs, piping costs, and installation costs.

4.0 SCHEDULE

It is estimated that the above work will be completed in no more than 20 weeks.

USE OR DISCUSSIVE OF REPORT DATA IS DUBLET TO THE RESTRUTION ON THE NOTICE PAGE AT THE FRONT OF THIS REPORT
> TRI-STATE SYNFUELS COMPANY Indirect Coal Liquefaction Plant Western Kentucky

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504 à

÷

APPENDIX 2 STUDY CRITERIA

Temperature - Duty Sketch Sheet I -Operating Cost Equations (2 pages) Sheet II -Drawing I - . Plot Layouts for Selected Drawing II . Mechanical Draft Towers Drawing III - Plot Layouts for Selected Natural Draft Towers Preliminary Data Sheet For Data Sheet I _ Utility Cooling Tower Preliminary Data Sheet For Data Sheet II -Process Cooling Tower

> USE OR DISCLOSURE OF REPORT DATA IS CUBLICT TO THE RESTRICTION ON THE NOTICE PAGE AT THE FRONT OF HALT REPORT

TRI-STATE SYNFUELS COMPANY

FLUOR ENGINEERS AND CONSTRUCTORS, INC. Contract 835504

Indirect Coal Liquefaction Plant Western Kentucky

(

(

......

APPENDIX 2 SHEET I - TEMPERATURE - DUTY SKETCH

CONDENSER

COOLING TOWER

551 =	Steam Saturation Temperature
HWT =	Hot Water Temperature
CWT =	Cold Water Temperature
WBT =	Wet Bulb Temperature (Inlet)

- .

Min. 5°F

SCA = Surface Condenser Approach = SST-HWT CTA = Cooling Tower Approach = CWT-WBT

> USE OR DISTUBLIE OF REPORT DATA IS SUBJECT TO THE RESTRUCTUR ON SHE NUTLIE PARE AT THE FROM OF THIS REPORT

:

- i -

:

14-10

.ş.

APPENDIX 2 - DATA SHEET I

•

.

FLUOR SPECIFICATION SHEET COOLING TOWER

··· · -· ·

CONTRACT_835504
ITEM NO
BEV O DATE 8-23-51
HTE CEO
PROCESS
SHEET and an OF and an and a second s

CLIENT	TRI-ST	<u>ATE S</u>	INFUELS	VENDOR	
FLANT	UTILIT	Y	MODEL NO	TOWER TYPE MECHANICAL	c
	PERFOR	MANCE OF O			
CIACUI	ATING WATER	FLOW	3PM 231,000	MOTOR SUPPLIED BY	
HOT (II	ILET) WATER	<u>remp</u>	F 103	ELECTRIC POWER AVAILABLE	
COLD (OUTLET) WAT	ER TEMP	°F 83	RATED HORSEPOWER	
DESIG	I INLET WET B	ULB TEMP	<u>°F 78</u>	ONE SPEED/TWO SPEED]
DESIG	HEAT DUTY	MM BTU	/HR 2,310	TYPE MOTOR (OPEN, TEFC, XP)	
ELEVA	TION ABOVE S	EA LEVEL	FT 600	MOTOR MANUFACTURER	
MINIM	JM ATMOSPHE	RIC TEMP	<u>°F 0</u>	NUMBER MOTORS REQUIRED	
		MATERIALS		FAN DATA	
LUMBO	R - STRUCTU	AL MEMBERS	; CONCRUTE	NUMBER PER CELL	
LUMBE	R - NON-STRU	CTURAL MEM	BERS	MANUFACTURER	
DRIFT	ELIMINATORS	SPACERS		BLADES PER FAN/DIAMETER /	
FILL				MODEL NUMBER	
FILLS	JPPORTS			ONE SPEED/TWO SPEED RPM	
SIDING				TIP SPEED(S) FPM	
INLET	LOUVERS			ACFM PER FAN ACFM	
HARDY	ARE/JOINT CO	NNECTORS		DESIGN EXIT AIR TEMP OF	
DRIVE	SHAFT/COUPL	ING		DESIGN STATIC PRESSURE IN H20	
DISTRI	BUTION HEAD	ER/NOZZLES		DESIGN VELOCITY PRESSURE IN H20	
MISCEL	LANEOUS CAS	TINGS		HP/FAN INCL GEAR LOSSES BHP	
ANCHO	R CASTINGS			TOTAL HORSEPOWER BHP	
MOTOP	AND GEAR SU	JPPOAT		STATIC EFFICIENCY	
FAN ST	ACK	<u></u>		TOTAL EFFICIENCY	
				· · · · · · · · · · · · · · · · · · ·	
		GEAR		COURTING	
TYPE				TYPE	
MODE	NO				
MANUE	ACTURER	····			
CREED	RATIO			PATEO HO/COM	
ACHA				HATED BP/HFM	
AGMA	SERVICE FACI	TOWER DATA			
		TOREN DATA	·		
NOOF	CELLS			DESCRIPTION, TYPE	
OVER/	LL DIMENSION	IS (LXWXH)	FT	LENGTH/WIDTH/HEIGHT FT	
REQ'D	BASIN DIMENS	IONS (LxW)	<u>.FT </u>	AIR TRAVEL (CROSSFLOW) FT	
BASIN	DEPTH (CURB	TO FLOOR)	<u>FT</u>	TOTAL VOLUME FT	
POST E	XTENSION BEI	.OW CURB	<u>.FT</u>	VERTICAL SPACING IN	
HTOF	FAN DECK ABO	VE CURB	<u>.FT</u>	HORIZONTAL SPACING IN	
HTOF	FAN STACK			MATERIAL DIMENSIONS	
STATIC	PUMP HD ABC	VE CURB	FT	LxWxTHICKNESS IN	
TOTAL	DYNAMIC HD	ABOVE CURB	<u> </u>	H20/UNIT AREA GPM/FT ²	
NO AN	SIZE OF RET	URN CONN		L/G (TOTAL) AT DESIGN	
DRIFT	LOSS, % CIRCU	LATING C	BPM.		
			l		
SHIPPI	G WEIGHT/CU	BAGE:			
			REVIS	NON LOG	
REV	NTE P	ROCESS		DESCRIPTION CONTRACTOR	
and the second				ungt 5:72 02 11 19 29 275	
$\overline{\mathbb{A}}$		The second s			
				L'SE CH TE INE REGIT OF SHIS RET	
				LISE EN LINE RESIDENT OF INIS SET	

PRINTED IN U.S.A.

.

í

FORM E-530 11/77

.

APPENDIX 2 - DATA SHATET I

* FLUOR

SPECIFICATION SHEET

CONTRACT_B355C4
ITEM NO
REV_O DATE 3-23-2.
HTE CEN
PROCESS
SHEET / OF /

REV

1		NT THI-	STATE	SYNF	المحالية المحالي	VENDOR			
2	PLANT					TOWER TYPE MECHANICAL			
3_									
4						FAN DRIVER			
۶Ļ	CIRCI	ULATING WA	TER FLOW	GPM	387,000	MOTOR SUPPLIED BY			
٩Ļ	HOT	INLET) WATE		⁰ F	106	ELECTRIC POWER AVAILABLE			
, L	COLD	OUTLET W	ATER TEMP	°F	65	RATED HORSEPOWER			
۰L	DESIC	IN INLET WE	T BULB TEMP	°F	78	ONE SPEED/TWO SPEED			
<u>ء</u> [DESIC	SN HEAT DUT	Y MM I	BTU/HR	4.000	TYPE MOTOR (OPEN, TEFC, XP)			
٥[ELEV	ATION ABOV	E SEA LEVEL	FT	600	MOTOR MANUFACTURER			
1	MINH	NUM ATMOSP	HERIC TEMP	°F	0	NUMBER MOTORS REQUIRED			
2	MATERIALS					FAN DATA			
3[WINNER - STRUCTURAL MEMBERS			ERS	CONCRETE	NUMBER PER CELL			
4	LUME	BER - NON-ST	RUCTURAL	EMBERS		MANUFACTURER			
<u>,</u> [DRIF	TELIMINATO	RS/SPACERS			BLADES PER FAN/DIAMETER		/	
<u>ן</u>	FILL					MODEL NUMBER			
;†	FILL	SUPPORTS				ONE SPEED/TWO SPEED	RPM		
į	SIDIN	IG				TIP SPEED(S)	FPM		
Į,	INLE	T LOUVERS				ACFM PER FAN	ACFM		
ו	HAR	WARE/JOINT	CONNECTOR	S		DESIGN EXIT AIR TEMP	0,		
	DRIV	E-SHAFT/COL	JPLING			DESIGN STATIC PRESSURE	IN HeQ		
	DIST	RIBUTION HE	ADER/NOZZL	ES		DESIGN VELOCITY PRESSURE	IN NeO		
2	MISC	ELLANEOUS	CASTINGS			HP/FAN INCL GEAR LOSSES	RHP		
3	ANCH	OR CASTING	S		·	TOTAL HORSEPOWER	BMP		
-	MOTO	R AND GEAP	SUPPORT			STATIC EFFICIENCY	••••		
<u></u>	FAN	STACK				TOTAL EFFICIENCY			
7									
	TYPE				1	TYPE			
	MODI					ANDEL NO			
0	MAN	LEACTURED	· · · · ·			MODEL NO			
	SPEED BATIO					NANUFACIURER			
						RATED HP/HPM			
		A SERVICE PA	TOWER D			511.04	74		
М	NOO				T	DESCRIPTION TYPE			
5	01/51	RALL BILLE			t	LENGTHANDSUUSIOUT			
6	DVE	D DACIN DUMENS	CHRICHES (LEWER	<u>, pt</u>	+		PT		
77	HEU"	U BASIN DIM	ENSIONS (LxW	<u>n FT</u>	<u> </u>	TOTAL NOLUNE	T4 8		
8	POST EXTENSION BELOW CURP			<u>) FT</u>	<u>+</u>	TOTAL VOLUME	FT		
	HT OF FAN DECK ABOVE CUBB			FT		VERTICAL SPACING	<u>IN</u> _		
ю	HT OF FAN STACK			<u> </u>	- <u> </u>	HOHIZONTAL SPACING	1N		
11	STATIC PUMP ND ABOVE CUIDE			P1	+	MATERIAL DIMENSIONS			
12	TOTAL DVNAMIC UD LADUR DUTC			FT	+	LXWXTHICKNESS	IN		
13	NO AND SITE OF OFTEN THE ABOVE CURB FT			HE FT	 	H20/UNIT AREA	GPM/FT ²		
4	NU AND SIZE OF RETURN CONN			N	+	L'G (TOTAL) AT DESIGN			
45	DRIFT LOSS, & CIRCULATING GPM				1	l			
46	-				<u> </u>	l		L	
47	SHIP	TING WEIGHT	CUBAGE:			AN 1 OC			
18	DEL.		tooster	·	REVISI				
10	╞╤┥	HTE	PROCESS			DESCRIPTION	1		
			-						

. .

PRINTED IN U.S.A.

(

ĺ

FORM E-530 11/77

-,-
