7. COST ESTIMATES

7.1 CAPITAL COST ESTIMATE

ρ[;]

· · .

; .

÷

.

÷.

The capital cost information included in this report was obtained from engineering-construction firms participating in the feasibility study. A major objective of the study was to obtain capital cost estimates of the highest degree of certainty. Given the level of engineering accomplished and construction experience in the project subsystems, it was possible to obtain lump sum, fixed price bids for portions of the work. Two major subsystems, gasification and gas treatment, were estimated due to lack of actual construction experience in the United States and application of processes. In the information that follows, capital investment costs are treated in two major parts; OSBL and ISBL, since two contractors were used and each used different scope of estimates.

7.1.1 Capital Cost Breakdown

Table 7-1 provides a capital cost summary. Appendix E provides a breakdown of cost of the OSBL major equipment. Cost estimate details for the ISBL major equipment are given in Appendix F.

7.1.1.1 <u>Land</u>. The land purchase price of \$600,000 is based upon a negotiated price and option to purchase in the amount of \$40,000 per acre for the 15-acre project site.

7.1.1.2 <u>Total Installed Cost</u>. Total installed cost of the process plant and offsites is \$46,985,206. Detail estimate is given below.

TAB	L	E	-7-	-1
	-	-	_	

CAPITAL COST ITEM Land	ESTIMATE 600,000	DOLLAR TOTAL	PERCENT TOTAL
Working Capital	500,000		0.90
		1,100,000	2.0
Total Installed Cost			
ISBL	8,850,000		16.1
OSBL	33,695,206		16.1
Project Contingency	4,440,000	<u>,</u>	8.1
		46,985,206	85.3
Initial Catalyst,			
Chemicals and			
Operating Supplies	250,000		0.45
· ·		250,000	
Start-Up			
ISBL	250,000		0.45
OSBL	250,000		0.45
		500,000	0.9
Owner's Cost			
Finance and Legal	300,000		0.55
Market Analysis	116,000		0.2
Environmental and			
Permits	225,794		0.4
Interest During			
Construction	5,647,000		10.2
		6,288,794	11.35
TOTAL CAPITAL COST		\$55,124,000	100.0

CAPITAL COST SUMMARY (1983)

7.1.1.3 <u>Paid-up Royalties</u>. Royalties for the gas processing is included in the gas treatment capital cost estimate and not identified separately. Agreement with the gasification process grantor is that there will be no royalties for the gasification process.

• .

.

۰.

.

•

.

۰.

.

.

. •

.

.

р . .

.

۰.

.

۰.

÷. .

۰.

. ·

•

.

:

7.1.1.4 Initial Catalysts, Chemicals, and Operating Supplies. Materials consumed in the processing operation is estimated to be \$250,000. When this category is not identified separately, it is included in operating or working capital.

7.1.1.5 <u>Working Capital</u>. Funds required for cash on hand, materials purchased, inventories, stocks of chemicals, catalysts, tools, spare parts, etc., is estimated to be \$500,000.

7.1.1.6 <u>Start-up Cost</u>. Operating costs necessary to bring the plant on-stream is estimated to be \$500,000. This figure includes operator training, equipment testing, and additional capital required to correct problems.

7.1.1.7 <u>Contractor's Home Office Cost and Fee</u>. When not identified separately, this item is included in the capital cost for the subsystem. It was not possible to fully identify all of these costs because firm price bids were provided by one contractor.

7.1.1.8 <u>Owner's Cost</u>. Owner's cost for market analysis, finance and legal, environmental studies, interest during construction, and obtaining construction permits is estimated to be \$6,288,794.

Other costs incurred for process selection, site selection, and feasibility studies were cost shared by this government grant or treated as sunk costs by the company, and not considered for recapture in the project economic analysis.

7.1.1.9 <u>Project Contingency</u>. Based on accuracy analysis of the cost estimates, a contingency of \$4,440,000 is added to cover uncertainties during project execution and price escalation.

7.1.1.10 <u>Process Contingency</u>. Due to process operating experience of the contractors and process guarantees, a process contingency is not considered appropriate.

7.1.2 ISBL Capital Cost Estimate

The ISBL capital cost estimate is of a preliminary or budget classification with a gross accuracy range of plus or minus 20 percent. The estimate is based upon:

- Equipment list
- Equipment motor list
- Preliminary plot plan and elevation
- Process flow diagrams
- P&ID's

ρ

- Vendor quotes
- Material take-offs

Table 7-2 gives a summary of the ISBL capital costs.

7.1.2.1 <u>ISBL Project Schedule</u>. The following project schedule was assumed, using historical information of projects of the same approximate magnitude.

TABLE 7-2

P

· ·

•

`•••

,. . . .

.

.` .

•

· .

•

•

· ·

۲

•

.

٠

.

.

•

·

•

. . . .

.

. . .

•. . •

. .

:

• •

•

۰.

•

•

ISBL COST SUMMARY

COST ITEM	DOLLAR VALUE	PERCENT TO ISBL T.I.C.
Equipment	\$ 1,950 M	17.0
Bulk Materials	1,490	12.9
S/C Materials	280	2.4
S/C Labor (26M-man-hours)	690	6.0
D/H Labor (74M-man-hours)	(26M-man-hours) 690 6 (74M-man-hours) <u>860</u> <u>7</u>	
SUBTOTAL DIRECT COSTS	5,270 M	45.8
Field Indirects	1,460 M	12.7
Professional Services	2,010	17.5
Insurance	110	0.9
Start-up	250	2.2
SUBTOTAL	9,100 M	.79.1
Escalation	1,390 M	12.1
Contingency	1,010	8.8
TOTAL INSTALLED COSTS	\$11,500 M	100.0

-

.

.

.

Duration

Engineering Start Engineering Completion	1/01/81 7/01/82	18 Months
Procurement Start Procurement Completion	8/01/81 11/01/82	15 Months
Construction Start Construction Completion	11/01/81 11/01/83	24 Months
TOTAL PROJECT		34 Months

7.1.2.2 ISBL Estimate and Procedure

Equipment

ρ

Equipment pricing for this project is based on single-source vendor quotations specifically obtained for this project and in-house pricing and factoring.

The major equipment pricing for this project is summarized as follows:

Single Vendor Quotes
In-House Pricing
Factored from In-House Data
TOTAL EQUIPMENT
100

Bulk Materials

Bulk material quantities were developed through semirigorous take-offs from the reference drawings and documents by the

take-off groups. The following techniques were employed by the individual disciplines.

• Piping (\$351M Direct Material)

ρ

.

٠.

. .

•

.

.

• .

.

.

.

· .

۰.

.

Linear footage of pipe was tabulated by size and metallurgy. Valves were counted and listed by size and metallurgy. Fittings, flanges, and shop fabrication costs were factored using relationships established from the plot plan and Davy McKee's historical experience. Specialty items (for example, orifice flanges, temporary strainers, monitors, etc.) were taken off sketches in detail based on the P&ID's. Preliminary estimating isometric sketches were made for stainless steel lines only. Pricing was based on in-house information.

Civil Structural (\$539M Direct and S/C Material)

Structural steel quantities for the pipe racks and structures were scaled from the plot plan and elevation drawing, based on a pounds per linear foot per member.

Concrete filled pipe piles (30 feet long, 10-inch diameter) were used for the reactor and truck loading structures, along with the pipe rack and conveyor bents.

Equipment, structures, pipe rack, and conveyor bents foundations were assigned required cubic yards of concrete based on size and weight.

Electrical control room was priced on a square foot basis.

Reactor structure siding was scaled off of the elevation drawings and priced on a square foot basis.

All civil/structural pricing was based on in-house information.

Electrical (\$102M Direct and S/C Material)

ρ

Major electrical equipment requirements were tabulated from motor horsepower and equipment list. Power and control devices, lighting fixtures, receptacles, and switches were tabulated from preliminary equipment layout plot plans and estimate sketches.

Instruments (\$563M Direct Material)

Instrument device quantities were tabulated from P&ID's and equipment list. Instrument bulk material quantities for instrument piping, tubing, mounting, and supports were determined from typical installation details and preliminary plot plan. Pricing was based on in-house information.

 Insulation/Fireproofing/Painting (\$25M Direct and S/C Material)

Piping insulation was derived on a lineal footage technique. The coal-feed bins (BN-102 A, B) were the only equipment items insulated and this price is included with equipment.

The first 16 feet of the reactor structure was fireproofed. This quantity was based on a square footage of fireproofing per linear foot of structural steel member. Piping painting was factored based on the linear footage of pipe. Equipment and structural steel painting were factored based on their weight. The settler tank (T-102), Coal-Feed Bins (BN-102 A, B) and the gasifiers (R-101 A, B) are the only equipment items painted.

All insulation, fireproofing, and painting prices were in-house.

Labor Direct Hire (74M-Man-hours, \$860M) Subcontract (25M-Man-hours, \$692M)

р

48

• •

.

•

. •

:

.

Generally all direct labor man-hours, both direct hire and subcontract, were developed in the same manner. The quantities determined from the adjusted/conditioned material takeoffs were man-houred using Davy McKee Base 1.0 units. The base 1.0 labor man-hours generated were then adjusted to "at-site" man-hours using a productivity factor of 1.40. This productivity factor was taken from an independently published survey for the Billings, Montana, area.

Direct hire labor was priced using a composite project wage rate that was developed using a historical craft mix from a similar type project. Subcontract labor was priced using a built-up S/C wage rate.

Miscellaneous direct hire labor man-hours were included in the estimates at seven percent of the total direct hire labor manhours for each phase. These man-hours were included for the following:

- Clean-up
- Show-up

- S/C assistance
- Scaffolding

Ρ

Equipment protection

Field Indirects (\$1460M)

The field indirects estimate includes construction supervision, field office labor, auxiliary labor, temporary construction, construction equipment, small tools, consumables, field office cost and related payroll burden.

The field indirects costs for this project was developed on a percent-to-direct-labor basis using historical data from completed projects.

Payroll burdens for direct hire labor, auxiliary labor and field office labor were included at 52 percent of direct labor which includes 14.8 percent for craft fringes and 37.2 percent to cover taxes and insurance for direct and indirect labor.

Professional Services

Professional services for this project were developed as a percentage of current direct cost by using historical information from completed projects.

Fringes and overhead were developed using current DCAA audited rates. Home office fee was established using government fee guidelines.

Insurance (\$110M)

Insurance coverages included in the estimate cover general liability, automobile liability, installation all risk, and bare rental coverage. The cost of insurance was included as a percentage of the "Total Installed Cost."

Taxes (0)

ρ

.

· ·

. .

۰.

.

. • •

<u>,</u> * •

.

.

. •

.

. •

There are no applicable sales or use taxes in Montana.

Royalties

As per agreement with Northern Resources Incorporated, no technology license fee is required on the Winkler gasifier.

Start-up

An allowance of \$250M was included based on providing 76 manweeks of start-up services and includes salaries, fringe benefits, overhead, fee, out-of-pockets, and escalation.

7.1.3 OBSL Capital Cost Estimate

The OBSL capital cost estimate is a combination of firm fixed price and budget-type estimate. The gas treatment system is of the budget estimate category. The remainder is firm fixed priced. The cost estimate is based upon:

- Preliminary designs
- Equipment lists
- Process flow diagrams
- Vendor quotes
- Material take-offs

Table 7-3 gives a summary of OSBL capital costs.

7.1.3.1 <u>OBSL Project Schedule</u>. The following project schedule was assumed, using historical data from projects of approximate scope and magnitude.

Engineering Start Engineering Completion	1/01/81 1/01/82	12 Months
Procurement Start	5/01/81	14 Months
Construction Start	5/01/82	
Construction Completion	12/31/83	20 Months
TOTAL PROJECT		30 Montena

7.1.3.2 OSBL Estimate and Procedure

Equipment

Equipment pricing for the project is based upon vendor quotation specifically written and obtained for this project. All of the major equipment pricing was obtained by written quotes.

Bulk Materials

Bulk material quantities were developed by rigorous take-offs from the project preliminary drawings. The following techniques and procedures were used by the various disciple takeoff groups.

• Earthwork and Concrete

Surface area of earthwork and roads were scaled from the plot plan drawings. Pricing was based on in-house data for similar work.

TABLE 7-3

ρ

:

:]

OSBL COST SUMMARY

TOTA	ESTIMATE	PERCENT To OSBL T.I.C.
TTEW		
Earthwork and Concrete	3,683,511	10.2
Electrical System	1,891,024	5.3
Structural Steel and Buildings	2,361,826	6.4
Instruments and Controls	1,096,749	3.0
Major Equipment	6,882,073	19.1
Insulation	530,575	1.5
Piping System	2,927,769	8.1
Painting	175,400	.5
Gas Transmission	6,624,100	18.4
Gas Treatment:	7,707,000	4
Refinery Gas 2,424,000 Coal Gas 5,283,000		
	33,835,273	93.9
Construction Fee	992,973	
	34,828,000	96.7 10.1
Engineering and Produrement		
	38,449,206	106.8
Contingency	2,040,000	
	40,489,206	112.5
Coal Handling Deduction Steam Generation Deduction	(2,319,000)	(6.4)
6++++-11D	35,735,206 250,000	.7
Start-up		100.0
	\$35,985,206	T00.0

Concrete volumes were calculated from the floor dimension, typical footings and foundations, and size and weight of equipment. Pricing was based upon in-house data.

• Structural Steel and Buildings

Quantities of structural steel for pipe racks and structures were scaled from the preliminary drawings. Pricing was based on pounds per linear foot and in-house and vendor data. Square footage of buildings were scaled from the preliminary drawings. Pricing was based upon the square footage of similar type buildings.

Piping System

ρ

Linear footage of pipe was scaled from drawings and tabulated by size and specification. Valves were counted and listed by specifications. Fittings, flanges, and fabrication costs were factored, based on company experience. Pricing was based on in-house and vendor data.

• Electrical Systems

Electrical material quantities were tabulated from motor horsepower, equipment list, and scaling from preliminary drawings. Power and control devices, lighting, receptacles, and switches were taken off the preliminary drawings and factored. Pricing was based upon vendor and in-house data.

Instrumentation and Controls

Quantities of instrument devices were tabulated from the preliminary drawings. Instrument piping, tubing, mounting and supports were obtained from typical installation details and scaling from the preliminary drawings. Pricing was based on vendor information.

Insulation

p'

Linear footage of piping insulation was obtained by scaling the preliminary drawings. Pricing was based on vendor and in-house data.

Painting

Quantities for painting were based on linear footage of piping and square footage of flat surface areas. Pricing was based on vendor data.

Transmission Pipeline

Quantities of pipe was determined by scaling maps. Road crossings were determined by counting. Pricing was based on in-house and vendor data.

Gas Treatment

A budget type estimate for gas treatment facilities was based upon gas characteristics and flow quantities. Pricing was based on in-house and vendor data. To permit definition of the refinery off-gas treatment cost, the estimate is divided into two parts: coal gas and refinery gas.

Labor

Labor quantities were developed from the material take-offs and adjusted for the project area.

Engineering, Procurement and Management

Engineering and procurement costs were developed based on a count of drawings required and percentage of direct costs by using in-house data from completed projects. Burdens and overhead were applied at current audited rates.

Construction Management and Supervision

Construction management costs were developed as a percentage of direct costs based on historical in-house data.

Construction Fee

The construction fee was developed as a percentage of force account direct costs.

7.1.3.3 <u>Capital Savings Adjustments</u>. Subsequent to the completion of the preliminary engineering and cost estimates a decision was made to reduce capital costs and improve project economics. Due to study cost constraints, the changes were reflected only on the most important drawings and documents. The cost estimate was revised to show a net deduction for each change.

Coal Handling

To reduce coal storage and handling facilities cost, a change was made to share the Montana Power Company, Corette Plant

coal receiving and storage facilities. By sharing these facilities the coal hopper, storage silo (13,000T), some conveyors and other auxiliaries could be eliminated. To complete the coal handling link, a conveyor would be required between the plants. This change resulted in a new deduction of \$2,435,000.

Steam Generation

p ·

٠.

To reduce steam generation and feedwater treatment costs, a change was made to purchase steam and condensate from the Corette Plant. The auxiliary boilers and associated equipment were eliminated. A pipeline was added to transport steam to the project site. This change resulted in a net deduction of \$2,319,000.

7.2 OPERATING COST ESTIMATE

The operating cost estimate is based upon a production rate of 10.0×10^9 Btu per day (5.6 x 10^9 Btu produced from coal and (4.4 x 10^9 Btu per day purchased off-gas). On-stream time was determined to be 365 days per year due to multiple trains, on-line spares, and turn-up capability of the systems. Table 7-4 provides a summary of operating and maintenance costs. Costs were based on current 1980 prices and escalated at 10 percent per year to 1984.

7.2.1 Feed Materials

Feed materials consist of coal, oxygen, and refinery gas. The quantity of coal was detemined from a supplier's quote. The quantity of oxygen was determined from the material balance. The oxygen price was obtained from a vendor based on over-thefence sale to the project. The quantity of refinery gas was

TABLE 7-4

ρ..

.

OPERATING COST ESTIMATE (1984)

ESTIMATE BASE

UNIT	QUANTITY	PRICE	ANNUAL COST
Ton 10 ⁶ Btu	155,125 1,606,000	17.57	2,725,422 4,278,544
Ton	66,000	49./8	_3,285,440
			10,289,406
1.s.	1.s.	1.s.	381,015
M gal	52,560	0.56	29,242
Ton	25,000	6.60	165,000
KwH	8,000,000	.06	440,000
M 1bs	350,400	1.67	585,640
			1,219,882
	01 56	10 000	400 750
	4.25	24,200	102,850
			523,600
	3.00	19,800	59,400
1.5.	1.5.	1.8.	022,100
			681,560
	1.00	44.400	44,400
	1.00	33,300	33,300
	1.00	13,200	13,200
1.8.	1.5.	1.s.	110,000
			200,900
(70.000	069		172 30/
0/3,900	20%		172,304
l.s.	1.s.		1,464,100
7-18			14,932,767
	UNIT Ton 10 ⁰ Btu Ton 1.s. M gal Ton KwH M 1bs 1.s. 1.s. 1.s. 673,900 1.s. 7-18	UNIT QUANTITY Ton 155,125 10° Btu 1,606,000 Ton 66,000 1.s. 1.s. M gal 52,560 Ton 25,000 KwH 8,000,000 M lbs 350,400 21.25 4.25 1.s. 1.s. 1.s. 1.s. 1.s. 1.o0 1.s. 1.s. 673,900 26% 1.s. 1.s. 7-18 1.s.	UNIT QUANTITY PRICE Ton Ton 155,125 1,606,000 56,000 17.57 2.66 2.66 49.78 1.s. 1.s. 1.s. M gal Ton KwH Bbs 52,560 25,000 350,400 0.56 6.60 8,000,000 .06 350,400 0.56 21.25 19,800 4.25 21.25 19,800 4.25 19,800 1.67 1.s. 1.s. 1.s. 1.s. 1.s. 1.s. 1.s. 1.s. 1.s. 673,900 26% 1.s. 1.s.

obtained by subtracting produced gas from estimated demand. Refinery gas price was estimated based on discussions with the potential supplier.

7.2.2 Catalysts and Chemicals

Catalysts and chemicals were determined by factored estimates based on size of using equipment and current prices.

7.2.3 Utilities

ρ

· `. ·

Quantities for water and sewage, nitrogen, electricity, and steam was derived from the material balance. Prices were obtained from suppliers in current 1980 prices and escalated to 1984 at 10 percent per year escalation.

7.2.4 Operating Labor

Operating labor was based upon an analysis of each shifts requirements. One operator is required for coal conveying, drying, dry coal storage, and feeding coal to the gasifier hoppers. One operator is required for gasifier operation, waste heat recovery, and char removal. One operator is required for gas treatment and compression. One helper is required for each shift. One operator is required for the control room. One supervisor is required for each shift. Annual shift requirements is 4.25 per position.

7.2.5 Maintenance

Analysis of maintenance requirements showed the need for one pipefitter, one electrical/instrument man and one helper. Maintenance materials was factored from plant cost.

7.2.6 Administration and Overhead

Analysis of overhead and administration functions indicated a requirement for a plant manager, process engineer, and clerk-typist. Miscellaneous administrative supplies, materials, and corporate burden was estimated.

7.2.7 Fringe Benefits

ρ

Fringe benefits and payroll taxes was estimated to be 26 percent. Sick leave and vacation is not included since salaries include these costs.

7.2.8 Local Taxes and Insurance

Local taxes and insurance were factored from plant cost.

7.2.9 Royalties

All royalties are paid-up and not applied to operations.

7.2.10 Waste Disposal

Sewage disposal is included with water cost. Solid waste disposal was not considered since ash, the major solid waste, is planned to be sold. No credit is taken for ash or sulfur, also to be sold.

8. ECONOMIC ANALYSIS

8.1 INTRODUCTION

This section of the report presents an analysis of the economic feasibility of the Billings MBG Project. The approach to determining economic feasibility was to determine the MBG selling price that would meet all expenses and recover all investments at an adequate rate of return. A life cycle cash flow model was structured and discounted cash flow analysis was utilitized to determine an internal rate of return on investment in the project. Several key financial parameters were tested through sensitivity studies and the competitive position of the MBG was assessed.

8.2 ECONOMIC ANALYSIS PARAMETERS

Table 8-1 summarizes the data used in the economic analysis of the Billings MBG Project.

8.2.1 Sponsor

۰.

The sponsor of the project is a group consisting of private commercial companies with government support in the form of an alternate fuels production program grant and loan guarantees.

8.2.2 Dollar Method

Then-current dollars are used in all financial analysis. Prices are escalated to the current year to account for inflation.

TABLE 8-1

ECONOMIC ANALYSIS DATA SUMMARY

Private SPONSOR

ρ

DOLLAR METHOD Then-current

BASE YEAR ESTIMATES

Dollar Year for all Base Data	1984
Estimated Construction Costs	\$55,124,000
Depreciable Plant Costs	\$53,658,000
Annual Operating Costs	\$14,932,767
Annual By-Product Revenue	None Taken
Annual MBG Output	3,650,000 x 10 ⁶ Btu

ANALYSIS PARAMETERS

Schedules		Dates	Years
Construction		11/81 - 12/83	2.17
Operation		1/84 - 12/03	20
Retirement:	Equity	1/84 - 12/03	20
	Debt .	12/84 - 12/03	20

Capital Expenditure Rates

1981 - 10% 1982 - 38% 1983 - 52%

Plant Start-Up Rate 100% - 1984

Discount Rates

Low Interest Equity Advance	58
Construction Loans	17%
Debt Financing	14%
Equity Financing	20%
Overall Project Rate	11.4%

TABLE 8-1 (Continued)

ECONOMIC ANALYSIS DATA SUMMARY

Financial Structure

Debt 75% Equity 25%

Escalation Rate

ρ

· .'

•. •

•

÷.'

.

•

,

.

General Rate 10% Refinery Gas 5%

Depreciation Method

Tax Life 20 years Method Straight Line

Tax Rate and Schedules

Effective Income Tax	50%
Federal Income Tax	43%
State Tax	7୫
Investment Tax Credit	20%
ITC Claim Schedule	1984 with 7 years carry forward
Other Tax Credits	None

8.2.3 Base Year Estimates

D

All base year figures are expressed in January, 1980 dollars. Estimated construction costs and depreciable plant costs were taken from Table 7-1. Depreciable plant costs were calculated by subtracting nondepreciable costs from total capital cost. Annual operating cost was taken from Table 7-5. By-product revenue was not considered although it is anticipated that elemental sulfur, ash, and char will be sold. Annual MBG output is 100 percent of design output.

8.2.4 Analysis Parameters

8.2.4.1 <u>Schedules</u>. The construction schedule was taken from Section 7 by combining the ISBL and OSBL construction schedules proposed by the contractors. The operations schedule was determined by assuming a twenty-year project life. Retirement of equity is treated as occurring at the end of the project life. Debt is amortized over the twenty-year project life.

8.2.4.2 <u>Capital Expenditure Rate</u>. Based on the project schedule, the following capital expenditures are anticipated: 1981 - 10 percent, 1982 - 38 percent, 1983 - 52 percent.

8.2.4.3 <u>Plant Start-Up Rate</u>. Plant start-up is scheduled for late 1983 with 100 percent production reached on January 1, 1984.

8.2.4.4 <u>Discount Rates</u>. The interest rate for the low interest equity advance will be 5 percent. The interest rate for the construction loan was assumed to be 17 percent based on conversations with bankers. Debt financing was assumed to be 14 percent based on a current rate of 16 percent with a 2 percent point discount for government or joint venture partners guarantee of the loan. A 20 percent interest rate was used for equity financing. The overall project rate was calculated to be 11.4 percent, a weighted average based on the debt equity ratio and after tax (.75 x .17 x .5 + .25 x .20 = .06375 + .050 = .11375 = .114). ρ

.

р р: р: р: р: р

р р

P P

. . •

· · ,

۰.

. .

. •

.

· • •

· • .

.

. •

х Г**ж** 8.2.4.5 <u>Financial Structure</u>. Based on discussion with bankers and company management, the financial structure of 75 percent debt and 25 percent equity was chosen.

8.2.4.6 Escalation Rate. A general inflation rate of 10 percent was used through the cash flow analysis except for escalation of refinery gas. A rate of 5 percent was assumed for this item.

8.2.4.7 <u>Depreciation Method</u>. A tax life of 20 years was assumed. Since the expected salvage value is less than 10 percent, salvage value was assumed to be 0. The straight line depreciation method was chosen to provide maximum tax benefits in the later years of the project. This is optimum because of leverage (interest deductions), investment tax credits, and lack of other income.

8.2.4.8 <u>Tax Rates and Schedules</u>. An effective income tax rate of 50 percent was calculated based on a federal rate of 43 percent and a state rate of 7 percent. Investment tax credit was taken at 20 percent, 10 percent general credit plus 10 percent for energy investment. Although the general investment tax credit expires in 1981, historically Congress renews it. It was assumed that a new tax credit would be passed equal to the present one. For investment tax credit purposes, it was assumed that the plant will go on line in January, 1984, thus 1984 will be the first year for the credit. A seven-year carry forward period was assumed based

on current laws. No other tax credits were assumed or taken. Current prices for uncontrolled domestic crude exceed the cut-off point for the alternate fuels tax credit contained in the Windfall Profits Tax Bill. ρ

8.3 INVESTMENT PATTERN

O

The methodology used to develop the project investment pattern was to treat investment in two phases. The first phase is preproduction and the second, production. The preproduction phase includes engineering, procurement, and construction and start-up. The production phase starts at the full attainment of 100 percent production capability and extends for the twenty-year project production life. The rationale for this methodology is that the sponsoring company has no other income to take advantage of the construction interest deductions. If carried forward as an operating loss against future income, significant investment tax credits would be lost. The most advantageous method of financing construction would then be for the joint venture shareholders to borrow the construction funds and take the annual interest expense as a deduction against their income. The joint venture shareholders would pass the tax savings to the project through a lower effective interest rate for the construction period. When the plant reaches production, the joint venture company will then assume the long-term debt repayment and the joint venture shareholders will retain the equity portion of the capital structure.

Table 8-2 shows the capital expenditures and investment pattern. The low interest equity advance will be used for detailed engineering and will be expended during 1981. Expenditures of other funds occur during 1981 through 1983. The expenditures are prorated on a 75 percent debt, 25 percent

CAPITAL	EXPENDITURE	PATTERN		
	(\$ x 10 ⁶)			
CONSTRUCTION FINANCING	<u>1981</u>	<u>1982</u>	1983	TOTAL
Government Grant	3.8	-	-	3.8
Private				
Debt (75%)	-825	14.10	19.35	34.275
Equity (25%)	275	4.70	6.45	11.425
	4.90	18.80	25.80	49.500
Interest				
Government Grant (5%)	.095	.195	-205	.495
Private (11.4%)	.063	1.205	3.884	5.152
	.158	1.400	4.089	5.647
Total Investment	5.058	20.200	29.889	55.147
LONG-TERM FINAN	ICING	A	MOUNT	
Government Gr	ant	\$ 4 ,	295,000	
Debt		38,	139,000	

Equity

.

12,713,000

\$55,147,000

.

ρ

÷,

equity contribution basis. During 1981, expenditure will be made to acquire land and engineering work. Expenditures for 1982 and 1983 will be made for procurement and construction. Interest costs were calculated based on level monthly expenditures thus the interest charge for the year would be the stated interest rate times one-half of the annual expenditure. Interest rates were taken from the economic analysis parameters, Section 8.2. Interest was accumulated, compounded and rolled into the construction cost to give a total capital cost of \$55,147,000 (rounding off of numbers for this calculation causes slightly different total capital cost than shown in Table 7-1). When production is reached, the interim financing is converted to long-term debt and assumed by the joint venture company. The joint venture shareholders retain an equity position of \$12,713,000. ρ

8.4 MBG PRICING

ρ

The methodology used in pricing the MBG was to consider only project requirements and not allow the price to be influenced by market condition. The price must meet all expenses incurred by the project, including debt principle repayment. The pricing approach was to project the first operating year's costs and divide by units produced to find the required selling price. This initial selling price would then be escalated annually, based on cost escalation.

Table 8-3 provides the calculation of the initial MBG sales price to cover all incurred cash outlays for the year. Operations costs were taken from Section 7 of this report. Interest was determined from the long-term debt shown earlier in this section, Table 8-2. These cost items were supposed to obtain total expected 1984 costs. Depreciation was not considered since it does not represent a real cash outflow.

TABLE 8-3

ρ

_

. .

р

MBG INITIAL SALES PRICE 1984

OPERATIONS COST	1984 EXPENSE (Millions							
Feedstocks								
Coal	\$ 2.73							
Refinery Gas	4.27							
Oxygen	3.29							
Other Operating Costs								
Interest								
Government Grant for Engineering	.22							
Private Debt	5.34							
Total Costs	20.49							
Plus Debt Principle	1.20							
Required Revenue	\$21.69							
÷Sales 3.65 million mm Btu	\$ 5.9425							
Round-up	\$ 5.95 per mm Btu							

Principal reduction was added since it is a real cash outlay. Taxes were considered and determined that they would be zero since the first year price would be essentially a breakeven case. A total required revenue of \$21.69 million was calculated. This figure was divided by expected sales to determine the unit price. The unit price was rounded up to \$5.95 per million Btu since conventional rounding would cause a selling price that would not cover costs (\$5.94 less than \$5.9425). ρ

Cost escalation was examined to determine a percentage escalation for the MBG price. In the first years it was found that total costs escalated at about 6 percent per year. In the final project years costs escalated at 8 percent. The cost escalation increased because decreasing interest costs shifted more weight to the costs influenced by the assumed 10 percent inflation rate. To prevent steady declining profits in the final years, the 8 percent escalation rate was selected. Thus, profits are expected to steadily rise, then flatten out in the final years.

The initial selling price of \$5.95 per mm Btu was escalated at 8 percent resulting in a set of prices that were used to determine annual revenues. When the internal rate of return was calculated, a 16.79 rate of return on investment was found. Since this is below the required rate, the initial price was increased to \$6.10. A discounted rate of return of 20.72 percent was calculated which meets the minimum 20 percent rate required.

8.5 CASH FLOW SCHEDULE

O

The cash flow schedule presents a schedule of annual disbursements and receipts for the various project accounts. Table 8-4 provides the cash flow schedule for the operating

period. The schedule for the capital investment period is provided in Table 8-2. The data needed to develop the operating cash flow schedules is shown in Table 7-5. In preparing the cash flow schedules, the following general assumptions were made: ρ

- No cash contributions are made by investors other than specified in the capital investment pattern.
- Each annual account is treated as a discrete end-of-year transaction.
- Escalation of costs estimates and prices is applied at the beginning of the year for the entire year.
- The plant is assumed to operate at 100 percent capacity for the entire year.
- Equity is recovered through depreciation and salvage value.
- Depreciation is treated as a cash flow item.
- MBG price is a single price for the year, expressed in then-current dollars.

8.5.1 Revenue

ρ

· .

11

Determined by multiplying the annual MBG price per unit times the units sold. One hundred percent, 3,650,000 mm Btu, is assumed to be sold each year.

р., , • . · · · · . • • . • • • . · . •

.

.

•

. .:

. . .

.

	FAA = 20,729	NET CASIL FLOW	TOTAL PRINCIPAL	<u>Los Intercet Equity Advance</u> Private Debt	Cash Fick	Depreclation	INCOME AFTER TAX	ITC Carry Porward Het Tax	Income Tax Legs ITC	INCOME TAX	Operating Loss Carry Porward	NET INCOME BEFORE TAX	TOTAL COSTS	Deproclation	Lew Interest Equity Advance Private Debt	Interest	Other Operating Costs	Coal Aqtinety Gas Oxygon	Teedstocks	COSTS	REVENUE	CALEBDAR YEAR Project Year Mbg Price (\$/MB BTU)
		58	921	78 42	198	26ġ	[90]	(940)	(940)			(90)	2,317	268	514 514		1	271 427 329			2,217	1984 5.10
		105	130	482	238	268	(30)		(940)		(120)	(30)	2,435	268	915 91		531	100 200			2,405	1985 2 6.59
		164	140	86 54	304	268	36	(940)	[940] 		(84)	36	2,563	268	521 521		562	470 470			2,599	1986 3 7,12
		214	152	90 62	366	268	86	(515)	(9 60) 70			98	2,705	268	514		618	429 429			2,803	1987 4 7.68
		273	99L	95 71	éc)	268	171	(847)	96 (913)			171	z,859	268	505 505		680	399 519 483			3,030	1988 5 9.30
		432	81	21	£†\$	268	245	(124)	123 (847)			245	3,025	368	31		747	229			3,270	1989 5 8,96
		496	92	21	885	268	320	(564)	160 (724)			320	3,213	26J	ŧ.		822	483 572 584			J, 5JJ	1990 7 9.60
		560	105	8 1	665	268	357	(J65)	199 (564)			397	3,417	269	Ð:		906	531 601 642			3,814	1991 8 10,45
		346	928	120	508	269	240	241	:		24J	481	3,640	268	456		995	584 631 786			4,121	1992 9 11,29
			136	136	550	268	282	283			283	585	3.804	269	\$1		1,094	642 663 717			4,449	1993 10 12,19
	8-2	412	135	155	597	269	329	330			330	659	4,138	269			1,204	854 854			4,807	1994 11 13.17
		467	177	177	614	268	376	376	:		376	752	1,438	260	 		1,324	777 731 939			5,190	1995 12 14.22
		492	202	202	169	268	426	427	T		427	853	4,753	268	ži		1,456	854 768 1,033			5,606	1996 13 15.36
		519	230	230	749	268	492	481	1		481	962	5,097	268	ž		1,602	939 806 1,136			6,059	1997 14 15.60
		540	262	262	802	268	534	534	1		534	1,068	9,473	269	Ë		1,762	3,033 867 3,250			6,541	1998 15 17.92
		85S	299	299	857	268	685	590			590	1,179	5,884	268	271		1,938	1,137 889 1,375			7,063	1999 16 19,35
		576	145	ž	917	268	649	649			649	1, 298	6, 331	268	135		2,132	1,250 934 1,512			7,629	2000 17 20.90
		588	389	3a9	977	268	203	710			710	1,419	6,819	268	147		2,345	1,375 980 1,664			B, 238	2001 18 22.57
		598	443	ŧ	1,041	268	773	174			774	1,547	7,352	268	ដ		2,579	1,513 1,029 1,830			6,899	2002 19 24, 38
		603	505	505	1,106	268	818	ê Çe	1		8C6	1,676	7,934	258	21		2,837	1,664 1,081 2,031			9,610	2093 20 26, 33

ĩ

TABLE 8-4 BILLINGS MBG PROJECT CASH FLOW SCHEDULE (\$ × 10⁶)

ą

ρ

8.5.2 Costs

8.5.2.1 Feedstocks. Coal is escalated at the rate of 10 percent per year. The amount shown is for coal delivered to the plant gate. Refinery gas is escalated at 5 percent per year. The amount shown is the price at the refinery gate. Oxygen is escalated at 10 percent per year. The amount shown is based on over-the-fence sale, delivered to the plant gate.

8.5.2.2 Other Operating Costs. Other operating costs include chemicals, utilities, operating and maintenance labor, maintenance materials, administration and overhead. Other operating costs are escalated at 10 percent per year.

8.5.2.3 <u>Interest</u>. Interest for the low interest equity advance is based on repayment over a five-year period with a level end of year payment which includes interest and principal. Only interest is shown here. Interest for debt is based upon repayment over a twenty-year period with a level end of year payment which includes principal and interest. Only interest is shown here.

8.5.2.4 <u>Depreciation</u>. The straight line depreciation method was used. The base for depreciation was taken from Table 8-1. For tax purposes, salvage value was considered less than 10 percent and not deducted from depreciable costs.

8.5.2.5 Total Costs. Summation of costs.

8.5.3 Net Income Before Tax

Revenues minus total costs. Operating losses are carried forward for a maximum of seven years.

8.5.4 Income Tax

Income tax was calculated using an assumed 50 percent effective tax rate. Investment tax credit was taken as 20 percent of qualified items, 10 percent normal investment for credit, plus 10 percent energy investment tax credit. It was assumed that the credit would be taken when the plant is put in service, 1984. Tax credit not used carried forward for seven years.

8.5.5 Income After Tax

Net income before tax minus net tax.

8.5.6 Cash Flow

÷ •

20

Income after tax plus depreciation.

8.5.7 Principal Payments

Reduction of long-term debt and equity advance.

8.5.8 Net Cash Flow

Cash flow minus principal payments. This figure was used to calculate the internal rate of return.

8.5.9 IRR

The internal rate of return as the discounted cash flow rate of return of the Net Cash Flow stream, based on an equity investment of \$12.71 million.

8.6 SENSITIVITY ANALYSES

P. .

•

• •

.

. •

. .

· .,

• 1

:

.

.

÷ *

٠.

.

•

•

. .

. . .

• •

.

This section of the study looked at the sensitivity of the initial sales price of the MBG to several operating parameters. The sensitivity of the discounted cash flow internal rate of return to initial sales price and financing options was studied.

8.6.1 MBG Price to Total Capital Cost

Variations in total capital cost yield the MBG prices shown in Figure 8-1. A 12 percent change in total capital cost causes a 3 percent change in MBG price.

8.6.2 MBG Price to Delivered Coal Price

Figure 8-2 shows the effect on MBG price caused by variations in delivered coal price. A 10 percent change in the delivered coal price causes about 1 percent change in MBG price.

8.6.3 MBG Price to O&M Cost

The sensitivity of the 1984 MBG price to operating and maintenance cost, minus coal cost, is shown in Figure 8-3. A 10 percent change in O&M cost causes a 5 percent change in MBG price.

8.6.4 MBG Price to Load Factor

As shown in Figure 8-4, the MBG price is very sensitive to load factor. A 10 percent change in load factor causes an 11 percent change in MBG price.

ρ

. .

.

. ..

Ŀ

• .•

۰.

.

5

ρ

FIGURE 8-1 SENSITIVITY OF 1984 MBG PRICE TO CAPITAL COST

.

ρ

ρ

٥

ρ

ρ

÷

2

	LOAD FACTOR	1984 MBG PRICE \$/MM BTU
BASE CASE	100%	6.10
LOW CASE (-10%)	90%	6.78
HIGH CASE (+10%)	110%	5.54

FIGURE 8-4 SENSITIVITY OF MBG PRICE TO LOAD FACTOR

.

8.6.5 MBG Price to Refinery Gas Price

Figure 8-5 shows the sensitivity of the MBG price to the cost of the refinery gas. A 10 percent change in refinery gas produces a 2 percent change in the initial MBG price. ρ

8.6.6 IRR to Initial MBG Price

ρ·

:

Figure 8-6 shows the effect that the 1984 MBG price has on the discounted cash flow internal rate of return. The analysis assumed the same escalation rate as in the base case, 8 percent. A 3 percent increase in MBG price causes a 29 percent increase in the IRR. A 2.5 percent decrease in MBG price causes a 20 percent decrease in IRR. It is seen that a small variation in MBG price has a great effect on the rate of return.

8.6.7 IRR to Financing Option

Sensitivity of the discounted cash flow rate of return to financing option is shown in Table 8-5. Three alternative financing methods were examined. Case II, 75 percent debt/ 25 percent equity and a 14 percent interest rate is the most likely case. Using the 75/25 debt equity ratio it was found that a 2 percentage point increase in the interest rate causes a 21 percent decrease in IRR.

8.7 INTERFUEL COMPETITION

The technical capability of the refineries to use MBG has been established. Assuming that the needed system modifications are made, the principal issues in the use of MBG are economic. Informal conversations with the refinery managers

Ρ

ρ

ŗ,

FIGURE 8-5 SENSITIVITY OF MBG PRICE TO REFINERY GAS COST

ρ

	1984 MBG PRICE \$/MM BTU	IRR, %	
BASE CASE	6.10	20.76	
LOW CASE	5.95	16.67	
HIGH CASE	6.30	26.88	

8-22

ρ

TABLE 8-5

SENSITIVITY OF IRR TO FINANCING

	SOURCE	AMOUNT	TERMS	<u>1RR, %</u>
BASE CASE	Equity Advance Private Debt Equity	\$ 4,300,000 38,135,000 12,711,000	5%/5 yr 14%/20 yr	20.79
CASE I	Private Debt Equity	41,360,000 13,787,000	12%/20 yr	24.08
CASE II	Private Debt Equity	41,360,000 13,787,000	14%/20 yr	21.03
CASE III	Private Debt Equity	41,360,000 13,787,000	16%/20 yr	16.62

indicate a willingness to use MBG if it is less costly than conventional alternatives. This subsection of the report compares projected costs of MBG with those of a mix of conventional refinery fuels.

. •

. . .

•

、 [•] •

۰.

• `___

• •

. **.**

: •

٠.

• ; •

.

ρ

8.7.1 Current and Future Refinery Conventional Fuel Price

The Conoco and Cenex refineries provided estimates of current refinery fuel costs. The figures provided by Conoco are based on 1980 year-end crude price of \$34.00 per barrel, or \$5.86 per million Btu. Conoco planning personnel advised that crude and fuel costs are expected to escalate at a 9 percent annual rate in constant dollar terms. The cost of natural gas is soon expected to reach 2/3 of the crude oil price on a contained energy basis. This expectation suggests a 1980 value of \$3.90 per million Btu. According to Conoco's planners, this same value can be applied to residual fuel oil which is frequently burned in place of or in addition to natural gas. Current fuel costs figures provided by Cenex yield a weighted average fuel price of \$3.91 per million Btu. The Cenex cost differed negligibly from that provided by Conoco. Cenex currently relies upon imported natural gas for about 40 percent of its requirements at a price of about \$5.00 per million Btu. Thirty percent of its requirements are met by domestic natural gas at \$2.47 per million Btu. The final 30 percent share is residual fuel oil. Personnel at the Cenex and Conoco refin- eries agreed to evaluating residual fuel at \$3.90 per million Btu and a 9 percent annual escalation rate in real terms.

8.7.2 Refinery Gas and MBG Price Comparison

Figure 8-7 provides a graphical representation of constant dollar refinery fuel costs escalated from 1980 at 4, 6, and 9 percent rates. The constant dollar MBG costs are also

١

D

8-25

plotted for comparative purposes. Since the MBG is manufactured and its costs are to a large degree tied to inflationary increases through long-term contracts for feedstocks and utilities, the constant dollar MBG price curve is flatter and expected to increase at a 2 percent real rate. As seen in Figure 8-7, MBG becomes competitive with conventional alternatives between 1985 and 1986 when conventional fuels rise at the expected 9 percent real rate. The MBG becomes competitive in 1990 at a 6 percent real increase rate in conventional fuels. The semilog plot somewhat obscures the magnitude of MBG's advantage in later years. Figure 8-8, a linear plot, graphically displays the MBG price advantage over conventional fuels. As the plot indicates the MBG price disadvantage is only one or two years and the long-term potential advantage is tremendous.

o

. -

....

.

.

۰.

One of the assumptions that have been made in this analysis is that patterns of refinery fuel consumption will remain constant. However, there is some likelihood that both quantity and the mix of refinery fuel requirements will vary with time. In particular, energy conservation programs may be expected to reduce overall plant energy requirements. As fuel requirements are reduced, purchases of the most costly fuel may be disproportionately reduced, which may cause a corresponding alteration in the weighted average cost of the refinery fuel mix.

Finally, there is another consideration that can influence the marketability of MBG. The use of MBG to replace residual fuel oil will increase the refiner's yield of residual fuels. This incremental supply of residual fuel may be difficult to market locally. In the Rocky Mountain area such fuel markets are often weak. Since residual fuels are generally not transported by pipeline and water transportation options are

.

8-27

.

not available, it is necessary to transport residual oils by relatively expansive rail transportation. High transportation costs can seriously impair refinery netbacks on residual fuel sales. However, since the residual fuel replace by MBG can be sold, the refinery netback will increase refinery revenues. Although the increased cost of MBG will tend to reduce the cost differential. It is expected that since residual oil will rise at a higher real rate than the MBG the price curves will cross in the near future, about 1988, thus making the use of MBG less expensive than the use of residual oils.

ρ

:

9. MBG SALES CONTRACT

9.1 GENERAL

ρ

It is the purpose of this task of the feasibility study to draft preliminary contract clauses unique to the sale of Btu gas. It is intended that these clauses would be added to the companies general clauses and then be used as a basis for negotiating the final contract.

9.2 CONTRACT CLAUSES

9.2.1 Term

The term of this contract shall be for a period of twenty (20) fiscal years beginning with January 1, 1984, each of such years to consist of twelve (12) months ending December 31.

9.2.2 Quantity

During each of the years provided for, Buyer shall purchase and accept delivery, and Seller shall sell and deliver, quantities of medium-Btu gas as set forth below:

Year	Minimum Quantity (Millions of Btu)	Maximum Quantity (Millions of Btu)
1984	0,000,000	0,000,000
1985	0,000,000	0,000,000
1986	0,000,000	0,000,000
1987	0.000.000	0,000,000
1988	0.000.000	0,000,000
1989	0.000.000	0,000,000
1990	0,000,000	0,000,000
1991	0,000,000	0,000,000

9-1

1

Year	Minimum Quantity (Millions of Btu)	Maximum Quantity (Millions of Btu)
1992	0,000,000	0,000,000
1003	0.000.000	0,000,000
100/	0,000,000	0.000.000
1005	0,000,000	0,000,000
1006	0,000,000	0.000.000
1990	0,000,000	0.000.000
1997	0,000,000	0.000.000
1990	0,000,000	0,000,000
1999	0,000,000	0,000,000
2000	0,000,000	0,000,000
2001	0,000,000	0,000,000
2002	0,000,000	0,000,000
2003	0,000,000	0,000,000

At least six (6) months prior to the beginning of each fiscal year, Buyer shall advise Seller of the millions of Btu's of gas to be purchased in the immediately succeeding fiscal year within the minimums and maximums above specified. In the event that Buyer fails to notify Seller within this time frame, Buyer shall be deemed to have elected to receive the minimum quantity.

Notwithstanding the above provisions regarding minimum and maximum quantities, the parties agree that Buyer may not purchase more than 00,000,000 millions of Btu's over the life of this contract.

9.2.3 Quality

• •

: *

÷ .

•

.

. .

. ·

ч.

.

٠.

.

.

.

During the term of this contract, Seller agrees to supply the medium-Btu gas by pipeline of the following approximate average quality and substantially free of sulfur, water and particulates.

Approximate Analysis

n

Constituent	Mole %
Но	36-8
No.	1.7
cô	32.3
CO2	15.ľ
Methane	9.3
Ethane	2.6
Ethylene	1.4
Propage	0.2
Propylene	0.6
1100011000	100.00
HHV=406 Btu/scf	
Specific Gravity = 0.684	1

Seller warrants that the gas shall have an "as received" heat content of not less than 286 Btu per cubic foot; however, that the approximate average quality of the gas shall be as specified above.

In the event Seller fails to meet the warranted specifications provided hereunder for any gas shipped to Buyer, and where such gas is burned by Buyer, Seller shall reduce the then current price by _____ percent (____%) per million Btu. Seller agrees to provide Buyer with notice of shipment of any gas not meeting the minimum specifications as soon as Seller becomes aware of this fact. In the event the gas shipped by Seller to Buyer is unsuitable for burning, and is not burned by Buyer, Buyer shall not pay Seller for such shipments.

Seller agrees to acquire and install at the gasification plant the most modern and efficient machinery, equipment and other facilities (as determined by Seller) required to produce, prepare and deliver the quality and quantity of gas provided for in this agreement. Seller further agrees to operate and maintain said machinery, equipment, and facilities in accordance with good engineering practices so as to efficiently and economically produce, prepare and deliver said gas.

9.2.4 Delivery

ρ. ·

. *

.

:...

÷

. ب

. . .

•

. • ب

:

•••

All gas purchased hereunder shall be delivered by Seller FOB Buyer's plant gate, and title thereto to shall pass to Buyer downstream of the meter. Buyer shall notify Seller at least twenty (20) days prior to the beginning of each month during the term of this contract of the quantities of gas Buyer will purchase during such month, and the average daily requirement. In addition, Buyer will furnish Seller an estimate of the quantities to be ordered in each of the two months following such month. Monthly quantities ordered by Buyer during each fiscal year shall relate to the annual quantities of gas to be purchased during the particular fiscal year, such relationship to be based on a ten percent (10%) variance of the figure derived by dividing the annual shipments specified by Buyer under Section _____ by three hundred sixty-five (365), said result to be multiplied by the number of days during the month. The daily quantities to be delivered by Seller shall not exceed _____ million Btu's during any twenty-four (24) hour period.

ρ

9.2.5 Measurement of Gas Quantity and Quality

Seller shall measure the volume of all gas shipped under this agreement. Seller shall monitor the gas constituents on a continuous basis. The Btu's of gas delivered shall be based upon quantities delivered times the higher heating value of the gas constituents. The quantity of Btu's delivered shall be based on eight-hour averages. The formula to calculate Btu's delivered shall be agreed to prior to signing this agreement and included at Buyer's plant gate. Meters shall be regularly calibrated using such methods as are then prescribed by standard accepted practices. During any period when the Seller's plant gate measuring facilities are not in operation,

measurements by Buyer shall be used for all purposes under this contract. Seller shall notify Buyer immediately of any failure in Seller's measurement facilities. Buyer shall have the right to have its personnel present during any measurement or during any calibration of the respective scales. Buyer shall also have the right to review the results of any calibration test.

In the event that Seller's measurement devices are shown to be faulty thereby causing erroneous measurements, an appropriate adjustment shall be made in the price to reflect the correction for these errors provided that no such adjustment shall be retroactive for a period in excess of one month prior to the date of discovery of fault in the equipment, provided that if the devices have not been tested as above provided, any such adjustment for excess measurement shall be retroactive to the last time such devices were so tested.

9.2.6 Sampling and Analysis

٥

Sampling and analysis of gas delivered hereunder shall be performed expeditiously by qualified employees or agents of a mutually acceptable independent commercial testing organization (the "Organization") using suitable testing equipment provided by Seller, said sampling and testing to be in accordance with the then current methods approved by the American Society for Testing Materials (ASTM). The results of the sampling and analysis so performed shall be mailed to Buyer as the tests are completed. Buyer may have a representative present at any time to observe the sampling. One part shall be forwarded to Buyer for analysis, one part shall be retained for analysis by the Organization, and the third part shall be retained in one of the aforementioned containers, properly

sealed and labeled to be saved for future analysis in the event of a dispute between the parties regarding the analyses. Should analysis of the third part be found necessary, such analysis shall be made in quadruplicate by an independent commercial testing laboratory (the "Lab"), selected by the parties, with the average of the results of such an analysis to be binding on the parties. The cost of the analysis made by the Lab shall be shared equally by the parties. ρ

9.2.7 Price

ρ

.

The base price of gas per million Btu FOB Buyer's plant gate which complies with the standard set forth above shall be \$______. The base price shall be subject to the adjustments provided for in Articles ______ hereof.

9.2.8 Price Adjustments

The per million Btu price of gas may be increased or decreased from the base price. The increase or decrease, when added to the base price, shall be called the current price. For the purpose of this contract, the base price date is deemed to be January 1, 1984, unless another date is specified hereunder. Price adjustments shall be computed quarterly or at such other time as may be specified in this article, with Seller sending Buyer a copy of each such calculation within thirty (30) days after the effective date of the adjustment.

The individual price adjustments specified in this article will be rounded to the nearest 1/100 of 1¢ per million Btu.

Seller shall furnish to Buyer a computation showing the effect of any price changes due to the below-enumerated paragraphs. In the event that Buyer is not satisfied with the computation of the adjustments, Buyer shall promptly notify Seller in writing of those portions of the computations with which it is not in agreement. The parties to this agreement shall meet within ten (10) days of such notification in an effort to arrive at a mutually satisfactory computation.

ρ.

If the meeting of the parties does not resolve the matter, they shall immediately refer same to a national independent accounting firm, selected by mutual agreement of the parties, for the purpose of arriving at the correct computation. Seller agrees to provide the independent accounting firm to arrive at its computation. The findings made by the independent accounting firm shall be final. During the period of verification of the computations, Seller shall continue to deliver hereunder and neither party shall be required to pay any part of the adjustment in question, provided, however, that when the matter is finally determined by the parties or the independent accounting firm, the paying party shall also pay interest at the rate of one percent above the Bank of America of Los Angeles prime rate during the period commencing fifteen (15) days after the date of first billing by Seller, to which such adjustment was applicable, and ending on the date of actual payment. The fees and other charges of the independent accounting firm shall be paid by the party whose contention as to the proper amount of the adjustment is farthest from the amount determined to be proper by such firm; in the event there is no such party, the fees shall be shared equally by both parties.

Seller will receive from or pay to Buyer within a period of thirteen (13) months following the termination date of this contract, any price adjustments resulting from the application of this Article where such adjustments were not known or subject to calculation as of the date this contract termiates

or otherwise expires, provided, however, that such price adjustment may only relate to a period of eighteen (18) months immediately preceding the date the contract termiates or otherwise expires. ρ

9.2.8.1 <u>Materials and Supplies</u>. A Composite Index shall be computed for each calendar quarter from the monthly Bureau of Labor Statistic Wholesale Price Index for:

- Chemicals and allied products
- Fabricated metal products
- Machinery and equipment
- Industrial fittings

ο

× . •

Each of said indexes is reported in the U.S. Department of Labor, Bureau of Labor Statistics publication "Wholesale Prices and Price Indexes."

The three monthly values of each index shall be ar "hmetically averaged to determine a quarterly average value. The quarterly average value for each index shall then be arithmetically averaged to obtain the quarterly average value of the Composite Index.

At the beginning of each calendar quarter, the price of gas delivered in that quarter shall be increased or decreased from the then base price. The quarterly average value for each index shall then be arithmetically averaged to obtain the quarterly average value of the Composite Index. At the beginning of each calendar quarter, the price of gas delivered in that quarter shall be increased or decreased from the then base price. The quarterly average value as determined above for that quarter will be compared with the average for the quarter ending ______, to determine the percentage increase or decrease. The percentage increase or decrease so derived times \$______ will be the increase or decrease in the price per million Btu in determining the new current price.

ρ

In the event the United States Department of Labor, Bureau of Labor Statistics shall change the basis of either or both of the indexes referred to herein, the parties shall agree upon the new basis to be followed in determining the adjustment of the price of coal as a result of increases or decreases in the cost of materials and supplies. If the parties are unable to agree to a new basis to be followed or to a means of utilizing the revised indexes within a period of fifteen (15) days after the start of any calendar quarter, the unresolved matter shall be resolved by arbitration, in accordance with the rules of the American Arbitration Association. Within thirty (30) days after the start of any calendar quarter the parties shall apply to such Association to appoint an arbitrator. Each part shall designate an established governmental index as a new basis to be followed in determining the increases or decreases in the cost of materials and supplies, whichever is applicable, and the arbitrator shall pick one of the two. The arbitrator shall have no power to reach any other decision. The decision of the arbitrator shall be binding upon both Buyer and Seller, and such decision shall constitute the method for adjusting the price of coal as a result of increases or decreases in the cost of materials and supplies. The new indexes or bases determined pursuant to this paragraph shall be used in lieu of the indexes or bases replaced by same for all applicable purposes of this agreement.

9.2.9 Labor, Salaries, and Related Costs

ρ

. .

٠.

· .-

...

-

÷.

.

. ·

.

. .

•

۰.

÷

. ~

.

÷ .

• .

÷

÷

A weighted average hourly wage rate for labor at the plant shall be computed whenever labor costs contained in the salary and wage list and fringe benefit list applicable to the plant are more or less than the costs shown on the initial salary list and fringe benefit list, attached hereto and made a part hereof. The cost of labor shall be computed in the manner prescribed by the Manning Table for labor cost adjustments, which is attached hereto and made a part hereof. As used herein, "labor costs" shall be deemed to include only those costs of labor as specified above provided, however, that any new or additional expenditures on behalf of past, present, or future employees not reflected on the initial salary and fringe benefit lists which are required by a new labor agreement, governmental, judicial or legislative action, shall be considered as increased cost of labor.

The number of persons employed in each classification listed on the position list shall not be changed and no new categories shall be added unless required by new labor agreements, governmental, judicial, or legislative acton, effective after In this event, Seller shall advise Buyer of • such changes and the persons will be added at the appropriate rate to arrive at a new weighted average hourly wage rate. TO the extent that persons are added to the numbers the position list resulting from new labor agreements, governmental, judicial or legislative action, and where such requirement is later reduced or eliminated, then the number of persons shown on the position list may be reduced to the extent of the increases. Seller shall not be required to show Buyer a payroll or other information relative to the number of persons actually employed. Seller agrees to provide Buyer with a

letter from an independent certified public accounting firm acceptable to both of the parties certifying the propriety of the labor costs included in the calculation.

The price per million Btu of gas shall be increased or decreased by the amount derived by multiplying the percentage of increase or decrease in the weighted average hourly wage rate times \$_____. The price adjustment shall be effective with respect to gas shipped on or after the effective date of the change in labor rates.

9.2.10 Costs Based on Values

ρ

Seller shall compute the total amounts paid governmental bodies and ad valorem property taxes, or similar governmental exactions, based upon the value of (a) personal property (including intangibles where such intangibles arise solely out of Seller's ownership or operation of the plant), (b) production taxes, or (c) real estate (to include only real estate needed by Seller to produce and distribute the gas where such properties (real or personal) were owned by Seller and constitute part of or were used solely in connection with the plant, excluding any such amounts which are includable in the calculation of any other adjustment under any other provisions of this Article. Buyer shall pay Seller, or Seller shall pay Buyer, within a reasonable period of time after such taxes and exactions payable for the year in question have been paid, as the case may be, a lump sum amount equal to the total million Btu purchased by Buyer during such year multiplied by the greater or less than \$_____. In the event that such payments by Seller are not based on millions of Btu produced, the total amounts paid by Seller for such year shall be divided by the greater of 0,000,000, or the number of millions of Btu of gas from the plant delivered by Seller to all

customers during such year. Buyer is hereby given the right to contest the validity of, or increase in, any such tax or exaction (in the name of Seller, if necessary); provided, however, that such contest is handled and paid for by Buyer. Seller shall give Buyer such assistance in prosecuting such contest as Buyer reasonably requests, provided Buyer pays the costs incurred by Seller in so doing.

9.2.11 Other New or Increased Taxes

p

ς.

١.

÷

• •

•••

· ·

۰.

÷. *

The price of gas delivered hereunder shall be increased or decreased from the basic price to reflect the amount that the cost per million Btu of producing gas at the plant is increased or decreased by new, additional or reduced taxes (or changes in the rates of said taxes) of any kind whatsoever, enacted or effective after _____. Neither this provision nor any other shall apply to costs relating to state or federal taxes on net income, profits or excess profits (except that a reduction in federal incentives shall be deemed to be an increase in cost within this provision). In the event that such payments by Seller are not based on Btu's produced, the per million Btu cost of such taxes shall be determined by dividing the amount of such taxes paid in the fiscal year involved by the greater of the actual number of million Btu's shipped in the previous fiscal year or 0,000,000. The calculation and payment of the amount due hereunder shall be accomplished promptly. This section shall not apply to taxes specified in other sections.

9.1.12 Additional Costs Imposed by Legislation, Regulation, Judicial Action, or Changes in the Method of Operation due to Material Shortages.

The price of gas shall be increased from the base price to reflect increases in the cost per million Btu of producing gas

at the plant due to any investment (other than costs or increases therein covered by any other Section hereof) required in order to comply with any new legislation, regulation, judicial action (other than the codification of the common law), enacted, promulgated, or taken or made effective , which pertain to production practices, after health and safety (other than compensation to employees for injuries or death), and all aspects of reclamation, such as waste disposal, air and water quality standards, and the like. In the event that a capital investment is so required, said cost will be recovered by Seller as follows. The price per million Btu of the first 0,000,000 million Btu multiplied by millions of Btu to be delivered subsequent to the date of payment of such investment cost by Seller, shall be increased from the base price by an amount equal to $\frac{Ia}{y}$, where:

ρ

I = The dollar cost of the investment item.

- a = The level annual payment which will amortize a one dollar investment over T years at Z interest rate.
- Z = The cost of money to Buyer expressed as an interest rate on debt securities having a maturity date of five (5) years obtainable by Buyer.
- T = The useful life allowed by the Internal Revenue Service for depreciation purposes of the investment item, if any, or if none, seventeen (17) years.
- X = The greater of (i) the total number of million Btu of gas to be delivered to all customers by Seller from the plant during the fiscal year the investment is made, or (ii) _____ million (0,000,000).

The per million Btu price of gas may be increased in the event that Seller incurs greater expense resulting from the purchase and consumption of a different item of significant materials and supplies due to the shortage or unavailability of a previously used item of significant materials and supplies, if the unit price of such different item is equal to or greater than 120 percent of the unit price of such item previously purchased and consumed in the preceding calendar quarter (the "Base Quarter"), or whenever the actual unit price of a significant item of materials and supplies purchased and consumed during any calendar quarter is equal to or greater than 120 percent of the unit price of such item purchased and consumed in such Base Quarter. A significant item of materials and supplies is herein defined as any item which represents at least 1 percent of Seller's total annual operating costs at the plant, said costs to be certified to by a national firm of independent certified public accounts. In the event the above occurs, the price of coal delivered in that fiscal quarter and each subsequent fiscal quarter during which the unit price of the items in question is equal to or greater than 120 percent of the unit price of such items in the applicable Base Quarter shall be increased by an amount equal to:

 $\frac{T(C-P) - [(I-Ib) (TP)]}{X}$

۰.

۰....

- C = Current fiscal quarter unit price of materials and supplies to which this paragraph applies, including "different materials and supplies" and/or "material items," where applicable.
- P = Base unit price of each "previously purchased and consumed materials and supplies and/or "material items."

T = The quantity of each item of "previously purchased and consumed materials and supplies" and/or "significant materials" purchased and consumed during the Base Quarter.

 \sim

- Total million Btu of gas produced during the applicable Base Quarter.
- I = The percentage increase in the Composite Index as defined above for the quarter in question.
- $I_b =$ The value of I in the applicable Base Quarter.

9.2.13 Transfer Taxes

X

o

For the purpose of this section, a transfer tax is deemed to include only a tax imposed by a governmental authority upon the transfer of property from Seller to Buyer, or the consumption of property received from Seller or Buyer.

9.2.14 Other Price Adjustments

The price of gas shall be increased or decreased from the base price to compensate either party for increases or decreases

. 9-15

in the cost of coal, oxygen, refinery gas and utilities. The increase or decrease shall be determined as follows. The annualized increase or decrease in cost shall be divided by the annual quantity of gas to be produced (expressed in millions of Btu) to derive a dollar per million Btu cost increase or decrease. The base gas price shall be adjusted to reflect this change in price. The adjustment in the price of gas under this section shall be made when the cost changes occur and will apply to gas shipped after the effective date of the change.

9.2.15 Composite Adjustment

•

The price of gas shall be increased or decreased from the base price to compensate either party for the increases or decreases in the various items making up the total base price and which are not otherwise provided for herein. The increase or decrease shall be determined as follows:

(a) _____ percent of \$0.00 shall be multiplied by the percentage increase or decrease in the weighted average hourly wage rate (as determined above) from that in effect at the base date.

(b) _____ percent of \$0.00 shall be multiplied by the percentage increase or decrease in the wholesale price index for construction machinery and equipment for each calendar quarter.

(c) _____ percent of \$0.00 shall be multiplied by the percentage increase or decrease in other price adjustments. The base date in making both of these calculations shall be _____, 198_. The adjustment in the price of gas under

this section shall be made (i) under subsection (a) at such time that the weighted average hourly wage rate is increased or decreased, (ii) under subsection (b) as soon after the end of each calendar quarter that the index is available for such period, and (iii) under subsection (c) when the price adjustment is made, all adjustments to apply to gas shipped after the effective date of the applicable change.

9.2.16 Quality Adjustment

D

(To be determined during negotiations)

10. GOVERNMENT ROLE

10.1 ENVIRONMENTAL

ρ

~

During the investigation of permit requirements for the project, it was found that definitive regulations were not in existence for coal gasification projects. Different views were often expressed by personnel within a single government agency. Such uncertainty causes an adverse impact on the financing of the project.

It was also found that the same type of permits, air quality for example, must be obtained from state agencies as well as from the Federal Environmental Protection Agency. Neither the state nor federal agency expressed a willingness to issue a permit based on the other's recommendations or findings. This lack of cooperation will require a duplication of permitting effort and expense. The government could greatly assist the permitting process by establishing definitive environmental guidelines and combining federal and state permit requirements.

10.2 DEREGULATIONS

Rapid and complete deregulation of domestic crude oil and natural gas will allow these fuels to rise to world prices, thus eliminating the government imposed constraint on the competiveness of synfuels. The price of synfuel should not be constrained by regulation.

10.3 FINANCIAL INCENTIVES

Financial incentives should be given in two categories, owner/operator and user.

10.3.1 Owner/Operator Incentives

From the view of the Billings MBG Project, the following financial incentives/assistance would expedite the project and ensure its commercial success.

- Grants Until medium-Btu gas is proven commercially viable, grants should be available for feasibility studies and engineering for projects of this type. The feasibility study grant Northern Resources received for this project expedited the project a minimum of one year. A follow-on grant for engineering and permitting would help ease the uncertainty arising from inconsistent of nonexistent environmental regulations and construction cost uncertainties.
- Loan Guarantees Financial institutions are not willing to make the large sums of capital available for construction of synfuel plants without strong guarantees of repayment. In the case of the Billings MBG Project, government loan guarantees will eliminate the financial barriers and make available capital at comparatively reasonable rates resulting in lower MBG cost.
 - Price Supports Since synfuel parity with conventional energy is some years ahead, price supports are needed to expedite synfuel production if national goals are to be achieved. For this project price supports would ensure the competiveness of the MBG with the natural gas and residual fuel oil that it would replace. The price support should make up the difference between the refineries' current cost of fuel and the sales price of the MBG. The support

should be contained until parity is reached. The length of time price supports would be needed would be dependent upon world energy prices, assuming complete decontrol of natural gas and crude oil. For this project, this period is expected to be 5 to 7 years.

 Rapid Depreciation - Rapid depreciation would not be a good incentive for the Billings MBG Project. For projects with a large equity position, rapid depreciation would provide some incentive.

10.3.2 Customer Incentives

÷

۰.

۰. ^۱.

.

Specific financial incentives for users of synfuel would also expedite acceptance and commercial viability.

- Rapid Depreciation In the case of MBG, retrofit costs of the refinery are small in relation to total plant cost but are a significant cost during the year incurred. Competition with other capital improvements of greater payback indicates the need for rapid depreciation for this type of investment. A one year write-off for investment of retrofit costs would increase the attractiveness of investment in fuel change.
- Tax Credits Tax credits for the user of synfuel would provide more rapid acceptance of the higher price fuel. They should be used with price supports to achieve parity of the synfuel with fuel being replaced.

10.4 OTHER GOVERNMENT ACTIONS

٥

During the investigation of pipeline routes it was found that the most direct route between the plant site and the Cenex Refinery would be along Interstate Highway 90. When the local, state, and federal highway right-of-way authorities were contacted regarding application for a permit to lay the pipeline inside the right-of-way, they said it could not be done. The authorities could not provide documentation that such permits were prohibited. The government could greatly improve the project economics by allowing the pipeline inside the highway right-of-way. A savings of two to three million dollars in pipeline construction costs could be achieved.

11. MARKET POTENTIAL

11.1 GENERAL REFINERY MARKET

ρ

۰.

•

÷

The technical feasibility of refineries to use medium-Btu gas has been established and documented in other studies.

Generally, refineries use energy in the form of process heat, steam, and electricity. Process heat is developed by furnaces and heaters to process crude oil. Steam is produced by boilers and is used to power turbines and pumps, in heat exchangers, and is used as a stripping agent. Electricity is purchased or cogenerated and is used for lighting and to power pumps. The refining industry obtains about two-thirds of its energy from its raw materials or by-products. The remaining one-third is purchased. Table 11-1 provides a breakdown of energy sources and its utilization.

The largest single source of energy is off-gases from the refining processes. This refinery gas accounts for over 40 percent of the industries energy. Other signicant sources include natural gas, petroleum coke, residual fuel oil and electricity. Overall, the refinery industry accounts for 4 percent of the total United States energy consumption. In 1978 the industry consumed the equivalent of 1.4 million barrels of crude oil per day in the processing of 14.7 million barrels of crude oil per day. The potential market for medium-Btu gas from coal is the nearly 80 percent or 1.1 barrels of crude oil equivalent per day currently consumed in the form of refinery gas, natural gas, and residual fuel oil.

Energy Source	<u>10¹² Btu's</u>	Percent
Refinery Gas	1291.7	42.2
Natural Gas	820.6	26.8
Petroleum Coke	394.8	12.9
Residual Fuel Oil	314.6	10.3
Purchased Electricity	94.8	3.1
Liquid Petroleum Gas	57.1	1.9
Distilláte Fuel Oil	51.7	1.7
Purchased Steam	32.9	1.0
Coal	3.2	.1
Crude Oil	2.6	0
	3064.0	100.0

TABLE 11-1

Ρ

1978 REFINING INDUSTRY FUEL USE

Source: "Crude Petroleum, Petroleum, and Natural Gas Liquids: 1978," U.S. Department of Energy, DOE/EIA-0108/78.
It is recognized that replacing the refinery gas could require large capital expenditures to construct additional facilties to make marketable products from the refinery gas. Accordingly, the initial market potential would be limited to replacement of natural gas and residual fuel oil which require small expenditures for retrofitting.

p

.'

Natural gas and residual fuel oil represents a total market of 3.1×10^{12} Btu per day. In terms of gasification units of a 3.5×10^9 Btu per day nominal production (the size considered for this project), this market size indicates a potential of over 880 gasifier units producing the equivalent of 534,000 barrels of crude oil per day. Constraints such as availability of cheap coal, locations near the coal source, and current prices for natural gas would tend to limit early development to specific areas of the United States. The first targets should be in those areas with high natural gas prices (those dependent on imported natural gas) and/or those areas highly dependent on imported crude oil and with good markets for residual fuel oil.

11.2 BILLINGS MBG PROJECT MARKET POTENTIAL

The basic market approach utilized by Northern Resources is to size the gasification plant to the demand of a specific group of customers committed to the purchase of the industrial fuel gas. The potential for plant expansion is limited to the expansion plans of these committed customers. Since it is possible that a new MBG customer could locate near the Billings MBG Project, additional land was purchased and no cost or very inexpensive considerations for possible expansion is to be incorporated in the final design. The approach of

11-3

establishing plant size to committed customers ensures a very high load factor, enables selling of the MBG at the most advantageous price, and eases financing of the project.

11.3 OTHER MARKETS

ρ

MBG as primary fuel and feedstock for other industries, offers a broad market much larger than petroleum refining alone. Based on industrial usage of energy in gross terms, Northern Resources perceives the industrial fuel gas market in total being several times as large as the refining industry. The market is broad and includes all users of natural gas and fuel oil. The limiting factors are perceived to be size (minimum of 7.0 billion Btu per day), and load factor (24-hour per day, 7-day per week demand). Studies by others indicate this market could approach 900 plants supplying 3.0 quads of energy per year.

11 - 4

APPENDIX A PIPING SPECIFICATIONS

.

· . .

.

۰. **_**

.

·, ·,

÷

•

÷.

.

`. •.

ŗ

٠

.

:

۰.

• • •, •

•

.

.

.

•

ρ

. . .

..

-

.

			Spec No. ICC
	ford. Isacon L	Orvis Atah Inc.	Rev. O
	SALT LAKE	CITY, UTAH	8/78
1			Sheet 1 of 3
SEI	VICE: Instr Air,	ument Air, Plant inert gases	CONSTRUCTION MATERIAL: 1/2" and smaller tuding 1/2" thru 3" screwed, 3" thru 12" buttweld and Flange.
CO	RROSION ALLO	WANCE: .1 inches	GENERAL MATERIAL: Copper tubing and carbon steel pipe.
AN	Sl Kating:	150 16	TEMPERATURE RANGE: -20°F to 300°F.
MA.	XIMUM DESIGN	PRESSURE: 275 psig	at 100° F or 230 psig at 300° F.
PN.	LUMATIC TEST	AT: 303 psig.	
VA	LVES		
	Check	1/2" and smaller 1/2" thru 3" 3" thru 12"	VC 10A 150# scrd bronze lift type VC-10A 150# scrd, bronze lift type VC-18A 150# flanged, C.S., swing type
(Globe	1/2" and smaller 1/2" thru 3" 3" thru 12"	Use Vu 10A Vu-10A 150# scrd, bronze Vu-18A 150# flanged carbon steel
	Jate	1/2" and smaller 1/2" thru 3" 3" thru 12"	VG-10A 150# serd bronze VG-10A 150# serd bronze VG-18A 150# flanged carbon steel
	5all	1/2" and smaller 1/2" thru 3" 3" thru 12"	VG 10A 150# serd bronze VB-45A 600# serd Carbon Steel VB-18B flanged carbon steel
TU	BING	1/2" and smaller	Copper 0.032 Wall Astm 568 or Astm 875
Pl	PING	1/2" thru 3" 3" thru 12"	Astm A53 GrB Type E or Astm A106 GrB Sch 80 Astm A53 GrB Type E or Astm A106 GrB std wall thicknoor
Fl	TTINGS		dib std wall thickness
	Tubings	1/2" and smaller	Swagelock tubing brass tubing fitting or approved equal
	Pipe	1/2" thru 3" 3" thru 12"	3000# Forged steel sord Astm A105 Std Wall, buttweld fitting Astm A 234 WPB
FL.	ANGES	1/2" thru 3" 3" thru 12"	150# HF threaded, Astm Al05 150" HF Weldneck with the same bore as the adjoining pipe Astm Al05
UR	IFICE FLG	1/2" thru 3" 3" thru 12"	300# HF threaded, Astm Al05 300# HF Weldneck, Same bore as the adjoining pipe Astm Al05
			A-2

•-

-

. .

NOT), IBACON SALT LI	d David Atah Inc. Ake city, utah	Spec No. ICC Rev. 0 8/76
		Sheet 2 of 3
UNICAS		
Tubing	1/2" and smaller	Swagelock brass union or approved equal
Pipe	1/2" thru 3"	3000# Forged Steel Steel to Steel seats Astm A105
PLUGS	1/2" thru 3"	3000# Forged Steel bull plug, Astm Al05
NIPPLES	1/2" thru 3"	Threaded both ends, Sch 80, Astm A106
REDUCERS		
Tubing	1/2" and smaller	Swagelock Brass reducer or approved equal
Piping	1/2" thru 3"	Swage SchbO Astm A234 THE Astm A234 WPE
	3" thru 12"	Buttwelded reducer Std wall thickness Astm A234 wPB
GASKETS		150# 1/16" compressed asbestos - flat ring
BOLTING		Studs Astm A-193 Gr 5-7 with A194 Gr 2H hvy Hex Nuts
	-	,

			Spec No. IC
JC.	on: Bacon & Tavis Atah Inc.		Rev. O
	SALT LAKE CITY, UTAH		8/78
			Sheet 3 of
NOI	£2: '		
۱.	Vents shall be 3/4" coupli	ng with plug.	
2.	Drains shall be 3/4" coup	ling with plug.	
3.	The temporary valves used upon the request of the cu	to accomplish the hydrost stomer.	atic test snall be re
4.	ASTM A53 GR b smls pipe ma GR B smls is available.	y be substituted for ASTM	A106 Gk B pipe when
5.	when Engineering judgement flanged valves. See Speci VC-20A.	dictates, buttweld valve fication Sheets VG-20A, V	s may be used in plac U-20A, VE-20A and 20b
6.	For instrument connections threadolets.	use 3000# FS Scr'd. AST	M A-105 half coupling
7.	When Engineering judgement may be changed to a buttwe	dicates the 1/2" to 3" s and or socketweld design.	ize screwed requireme
8.	All underground piping sha	all be welded.	
	,	A-4	

• • •

.

...

• ρ

.

•

• .

.

•

-

		Spec No. 1CA
Ford. Bacon d	Pavis Atah Inc.	Rev. O
SALT LAN	E CITY, UTAH	8/78
		Sheet 1 of 3
SERVICE: Fire Wate	water, Potable CONST er, Process Water 2" th	RUCTION MATERIAL: 1/2" thru 1-1/2" screwed ru 24" butweld and flange.
CURROSION ALL	OWANCE .1 Inch GENER	AL MATERIAL: Carbon Steel
ANSI RAING 15	0 1b RF TEMPL	RATURE RANGE -20° to 400°
MAXIMUM DESIG	A PRESSURE 275 psig at 1	00°F or 200 psig at 400°F
HYDROSTATIC 7	EST at 425 psig	
VALVES (S	See Note 5)	'
Check	1-1/2" and smaller 2" and larger	VC-10A 150≱ sord, bronze, lift type VC-18A 150≇ flanged, swing type
Globe	1-1/2" and smaller 2" and larger	VO-10A 150# scrd, bronze ISRS VO-18A 150# flanged, OS&X
Gate	1-1/2" and smaller 2" and larger	VG-10A 150# serd ,bronze ISRS VG-20A 150# buttweld, OS&Y
Butterfly	2" thru 12" 2" thru 6"	VF-22C 150# wafer, CS body VF-16A 150# wafer, CI body, (Firewater)
PIPE	1/2" thru 1-1/2" 1/2" thru 1-1/2" 2" thru 24"	ASTM A120 Galvanized Sch. 80 ASTM A53 Gr.B Type E or A106 Gr.B Sch. ASTM A53 Gr.B Type E or ASTM A106 Gr.B. Std Wall Thickness
FITTINGS	1/2" thru 1-1/2"	300# Mallable iron, sord, Galv. ASTM A4 Gr.32510
	1/2" thru 1-1/2" 2" thru 24"	3000# ASTM A105 Sch. 80 Std Wall, buttweld fittings ASTM A234 W
FLANGES	1/2" thru 1-1/2"	150# KF (FF if companion flange is Fr), threaded, ASTM A105
	2ª thru 24ª	150#kF (FF if companion flange is FF), weldneck, same bore as the adjoining pi ASTM A105
URIF. FLGS.	1/2" thru 1-1/2" 2" thru 24"	300# RF, threaded, ASTM Al05 300# RF weldneck,same bore as the adjoi pipe, ASTM Al05
UNIONS	1/2" thru 1-1/2"	300# Mallable iron, Galv. metal to meta seats - ASTM A47 Gr 32510
	1/2" thru 1-1/2"	3000# F.S. ASTM A105 metal to metal sea

	Spec	No. 1CA
Ford. Be	on & Davis Atah Inc. Rev.	0
ŞAI	LAKE CITY, UTAH 8/78	
	Sheet	: 2 of 3
		د پذاکر کار اور میں کاری کر اور اور اور اور اور اور اور اور اور او
PLUGS	1/2" thru 1-1/2" 300C# FS, bull plug ASTM A105	
NIPPLES	1/2" thru $1-1/2"$ Sch 60, IBE - ASIM A120 GALV.	
6		
REDUCERS	1/2" thru 1-1/2" Reducer Coupling, Galvanized ASI	lm 47
	Gr 32010 1/2" thru 1-1/2" Swage Sch 80. TBE - ASTM A106	
	2" thru 24" Buttweld reducer with std wall	thickness,
	ASTM A234 WPB	
CASSUTS	150# 1/16"compressed ashestos -	flat ring
UNDALID	(full face for FF flanges)	
BOLTING	Studs - ASTM A-193 GR B-7 W/A-1 Num Hor Nute	94 GR 28
	nyy nex ndcs	
		1
1	BRANCH CONNECTION	
	MEADER SIZE	ר
	24° 20° 18° 16° 14° 12° 10° 8° 6° 4° 3° 2%" 2° 1%" 1%" 1° 3/4" 1/2	
	1/2 ^d L L L L L L L L L L L L L L L L L L L]
1	1/4° L L L L L L L L L L L L L L T	
l		
. .		
	3 3 W W W W W H H H T CODE	
	3 4'W W W W W H H H H T C=COUPLING	
	E-EXTRUSION	
	PISTW WWWWWWHHHTI FFTEE W/SWAGEORR	EDUCER TLET
	12"W W W H H T L-THREDOLET, SOCK	OLET
	14'W W H T RESTUBIN, REINFORC	ED
1	16"W W H T	
	18"W W T I I I I I I I I I I I I I I I I I	
· · · · · · · · · · · · · · · · · · ·		<u>مین این میں بیرے میں ہیں۔</u>

•

. .

•

. :

.

۰.

-

· · ·

. :

. . .

.

.. **·**

• •

•

·._____

•

ρ

•

A-6

	Spec No. 1CA
Ford. Bacon & Davis Alah Inc.	Rev. 0
SALT LAKE CITY, UTAH	8/78
	Sheet 3 of 3

NOTES:

- 1. Vents shall be 3/4" coupling with plug.
- 2. Drains shall be 3/4" coupling with plug.
- 3. The temporary values used to accomplish the hydrostatic test shall be removed upon the request of the customer.
- 4. ASTM A53 GR B smls pipe may be substituted for ASTM A106 GR B pipe when A53 GR B smls is not available.
- 5. When Engineering judgement dictates, buttweld valves may be used in place of flanged valves. See Specification Sheets VG-20A, VO-20A, and VC-20A.
- 6. For instrument connections use 3000# FS ASTM A105 Scr'd half couplings, threaolets, or 300# Mallable iron scr'd Tec ASTM A-47 Gr 32510
- 7. When Engineering judgement dictates the 1/2" to 1 1/2" size screwed requirement may be changed to a buttweld or socketweld design.
- d. All underground piping shall be welded.

		Spec No. 1CB
sford. IBacon d	, Tavis Utah Inc.	Rev. O
SALT LAK	E CITY, UTAH	8/78
		Sheet 1 of 3
SERVICE: Fla Sta Hyo	ammable Gases, am, Condensates, irocarbon liquids	CONSTRUCTION MATERIAL 1/2 thru 1-1/2 socketweld 2" thru 14" buttweld and flang
CORROSION ALI	.GWANCE 1 inch	GENERAL MATERIAL Caroon Steel
ANSI RATING 1	L50 1b	1EMPERATURE RANGE -20°F to 400°F
MAXIMUM DESIG	SN PRESSURE 275 psig at	100°F or 200 psig at 400°F
HYDHOSTATIC 1	TEST at 425 psig	
VALVES (See	e Notes 5 and 9)	
Check	1/2" thru 1-1/2" 2" thru 14"	VC-49A 600# swing check, socketweld VC-18A 150# swing check, flanged
Plug	1/2" thru 1-1/2 2" thru 4" 6" thru 14"	VP-27A 300# screwed (seal welded) VP-18A 150# flanged VP-18B 150# Flanged
Eall	1/2" thru 1-1/2" 2" thru 4"	VB-12D 150# socketweld VB-18B 150# flanged
Globe	1/2" thru 1-1/2" 2" thru 14"	VO-49A 600# socketweld VO-18A 150# flanged
Gates	1/2" thru 1-1/2" 2" thru 14"	VG-30A 300# socketweld VG 18A 150# flanged
Butterfly	2" thru 12"	VF-22C 150# wafer, CS body
PIPE	1/2" thru 1-1/2" 2" thru 14"	ASTM A53 GrB Type E or A106 GrB Scn. 50 ASTM A53 GrB Type E or A106 GrB Std Wall thickness
FITTINGS	1/2" thru 1-1/2" 2" thru 14"	3000#FS, socketweld ASTM A105 Std Wall thickness, buttweld fittings AST A234 WPB
FLANGES	1/2¶ thru 1-1/2" 2" thru 14¶	150# HF, socketweld, ASTM A105 (see Note 150# HF, weldneck, same bore as the adjoining pipe,ASTM A105 (see Note 9)
ORIF. FLGS.	1/2" thru 1-1/2" 2" thru 14"	3004 HF, socketweld, ASTM A105 3004 HF weldneck, same thickness as bore as the adjoining pipe, ASTM A105
UNIONS	1/2" thru 1-1/2"	3000# FS. Steel to steel seats - ASTM A10

٠.

:

. .

A-8

د. امریکار زیادی بر میرا کری از																		ł	S	Dec	No	105	
1000 Bac	117	3 E). Treia	- 3 4 e	ah 1	3nc.													R	ev.	0		
Hele: 1.4ee																		-	8	/78	-		{
SALT	ĻA	IKE I	CITY,	. 01.	АН													-	Q. 6	7 50			
	ز میں دور میں اور								-							6			د ست	neei	5 2	01	·
PLUGS	-		1/:	2" 1	thru	1 1 -	1/2	Π			300	0# F	s,	bul	l p	lug	, AS	STM	Al	05			
NIPPLES		1/2" thru 1-1/2"						Ħ		Sch 80 plain both ends, ASTM A106.													
NUMBER			1.7	- 11 - 1				.,			···				•					_	_		
REDUCERS			2"	th:	ru]	х <u>т</u> - Ц4 и	172				Swa But thi	ge : twe] ckne	ien. Ldec ess,	80 i re AS	pla duc TM	in er 1 A23	boti witi 4 WE	n ei 1 ti 25	nds he	AST stj	[M / wa]	.234 .1	WPB
GASKETS											150; fil.	# l/ ler	′8¤ F1€	Şpi xit	ral all	WON ic S	und Styl	30- Le 1	4 S: CG	S W,	/ast	esto	e
BOLTING											Stu Hvy	- eb kex	- A2 K NI	its	A-1	93 (GR H	5-7	w/.	A-19	94 0	IR 2H	i
							R	RAN	сн (CON	NECT	TION											-
1									_	HE	ADE	1 512	E								٦		
		ł	24"	201	18"	16	14*	12"	10"	84	6 *	4 *	34	27, 4	2 ^µ	1%4	1%"	1.	3/4	1/2			
		1/2*					L	L	L	L	L	L	L		L	H		н	и		1		,
		3.'4*					L	L	L	L	L	L	L		H	Н		H	T				
		11					L	L	L	L	L	L	Н		H	H	ļ	T	J ·			• ,	
		1%*					<u> </u>	<u> </u>				- <u></u>					 	ļ					
		78						1.				<u>н</u>			н	T	j						
		2'4					5	<u> </u>	5	3	->	1	н_		<u>T</u>								
	SIZ	31					W	u u	W	H	н	н	Ť	C	ו החב								
	3	41					W	W	н	н	H	Т	-		CO	บิคิน	ING						
	AN	6*					W	Н	н	Н	T		•	= ع	EX	T Rบ	1510	N					
	28	81					H	H	H	Т				۶ =	TE	Ew	/SW	AG	ΕO	R R	ະບັບ	CER	
		10*					H	н	T	I				H	ΤE	E: F	RED	UCI	NG	ວບ	TLE	т	
		124				 	н	T						L-	ТН	REC	OL	EΤ,	SO	cko	οιε	т	
		14"			ļ	ļ	Т)						R :	STI	JB-1	N. 8	REH	NFC	RC	ED		•
		16			ļ	<u> </u>	L,							Ş≠ 	STU	18-11	N, P	LAI	N				
		18				ł								(* 	1 E (2 (V F	ε, S ΙΩγ	FRA DE E	۹IG ۳	ΗТ				
		20'			J													•					
l f																							

. .

		Spec No. 1CB
ز	ford. 18acon & Tavis Atah Inc.	Rev. O
	SALT LAKE CITY, UTAH	8/78
		Sheet 3 of 3
NOT	ES :	
1.	Vents shall be 3/4" coupling or threadolets with plug.	
2.	Drains shall be 3/4" coupling or threadolets with plug.	
3.	The temporary valves used to accomplish the hydrostatic upon the customer's request.	test shall be removed
4.	ASTM A53 GR B smls pipe may be substituted for ASTM A106 B smls is available.	5 GR B pipe when A53 GR
5.	When engineering judgement dictates, Euttweld valves may flanged valves. See Specification Sheets VC-20A, VB-20/ VG-20A.	/ be used in place of A & 20H, VO-20A, and
6.	For instrument connections use 3000# FS Scr'd. ASTM A-10 threadolets.)5 half couplings or
7.	When engineering judgement dictages the $1/2^{n}$ to $1-1/2^{n}$ s may be changed to a buttweld or screwed design.	size socketweld design
8.	All underground piping shall be socketwelded or buttweld	ded.
9.	All gas service containing free hydrogen gas shall be a class rating, all screwed connection shall be seal welde instrumentation connections shall be seal welded up to 1	minimum of 3004 ANSI ed, and all screwed the first block valve.

:

.

•

•

: ·

.

ŀ

: •

•

A-10

		Spec No. 3CE
sford, Ibacon d	L Tavis Utah Inc.	Rev. O
SALT LA	KE CITY, UTAH	8/78
		Sheet 1 of 3
SERVICE: Fla hyd ste ref	mmable gases, rocarbon liquids, am, condensates, rigerants	CONSTRUCTION MATERIAL 1/2 thru 1-1/2 sock welded 2" thru 12" buttweld and flange
CORROSION ALL	OWANCE .1 inch	GENERAL MATERIAL Carbon Steel
ANSI RATING 3	300 lb RF	TEMPERATURE RANGE -20°F to 400°F
MAXIMUM DESIG	N PRESSURE 740 psig at	100°F or 635 psig at 400°F
HYDROSTATIC T	EST at 1110 psig	
VALVES (See	Note 5)	
Check	1/2" thru 1-1/2" 2" thru 12"	VC-61A, 000# lift check, socket weld VC-33A, 300# swing check, flanged
Plug	1/2" thru 1-1/2 2" thru 4"	use VG-30A VP-33A & Ъ, 300# plug, flanged
Ball	1/2" thru 1-1/2" 2" thru 12"	VG-30A, 600# ball, socket weld VB-33A, 300# ball, flanged
Globe	1/2" thru 1-1/2" 2" thru 12"	VO-73A, 800# gobe, socket weld, FS VO-33A, 300# globe, flanged
Gate	1/2" thru 1-1/2" 2" thru 12"	VG-30A, 800# gate, socket weld VG-33A, 300# gate, flanged
Sutterfly	3" thru 12"	VF-30A, 300# wafer,
PIPE	1/2" thru 1-1/2" 2" thru 12"	ASTM A53 GrB Smls or AlO6 GrB Sch dO ASTM A53 GrB Smls or AlO6 GrB Std Wall thickness
FITTINGS	1/2" thru 1-1/2" 2" thru 12"	3000# FS, socket welded ASTM Al05 buttweld fittings, Std wall thickness - ASTM A234 WPB
FLANGES	1/2" thru 1-1/2"	300# RF, socketwelded, same bore as the adjoining pipe, ASTM A105
	2" thru 12"	300# RF, weldneck, same bore as the adjoining pipe, ASTM A105
ORIF. FLGS.	1/2" thru 1-1/2"	300# RF, Socketweld, same bore as the adjoining ASTM A105
	2" thru 12"	300# HF, Weldneck, same bore as the adjoining ASTM A105

							1													ec.	NO.	30
sford, R	3aco	пхт	avio	Atal	n, a	ċ.													Ke	ev.	0	
SA	ALT	LAKE	CITY.	UTAF	4														8/	78		
										•				i an Cainea					Sh	icel	t 2	of'
		_																				
UNIONS		1/2" thru 1-1/2					/2"	30004FS, Socketweld, st ASTM A105								ste	ee]	l to) 31	teel	3e	
PLUGS			1/2" thru 1-1/2"							30	000	F S	, bu	11	plu	g -	A	STN	1 A]	105		
REDUCER	3		1/2' 2" (' th thru	ru 12'	1-1/ "	/2"			Sw. Bu As'	age ttwe IM /	Sci 21de 123	n 80 ed r 4 wP), p edu 'B.	lai cer	n ei , S	nd ta	Wa	ASI 11	M th:	A234 ickn	e33
GASKETS										30 w/	04 s asbe	spi) esto	ral os f	wou 111	nd, .er-	l/ fle	8" Xi	, t ta:	ype Llic	30 2 S	04 S tyle	S c CG
BOLTING	BOLTING									St Nu	uds ts		A193	GH	8-	7 w	/A-	-19	94 G	ir i	2H H	٧y
						R	RAN	сн		NECT	10N											
						B	RAN	сн (CON	NECT	10N	E										
			sª 20ª	18*	16 ²¹	B	RAN	CH (CONI HE	NECT ADER	10N 512 4 "	5 3‡	2%"	2 *	13 ⁴	1% ¹¹	1*	· 3	/4" 1	/2 [#]		
		1/2*	sª 20ª	18*	16 ¹⁴	B	RAN 12" L	CH (10" L	E B'	NECT ADER 5ª	10N 512 4 " L	5 3 ⁴ L	2% ¹¹	2 # L	13 ⁴ H	1% ⁿ	1* H	3	/4" 1. H	/2 ⁸ T		
		1/2 ⁴ 3/4 ⁴	sª 20ª	18*	16#	B	RAN	CH (10" L L	HE 8' L L	NECT ADER 54 L L	ION SIZ 4" L L	е 3* <u>L</u> Ц	2% ¹¹	2# L H	13 ⁴ H H	1%"	1 ⁴ H	3	/4" 1 H /	/2* T		
		1/2 ⁴ 3/4 ⁴ 1 ⁴	s° 20°	18*	16 [#]	B	RAN 12" L L	CH (10" L L L	E B' L L L	NECT ADEF 64 L L L	ION SIZ 4" L L L	е 3* L L Н	2%"	2* L H H	13 ⁴ Н Н	1% ⁿ	1ª H H		/4" 1 H T	/2 ⁸ T		
		1/2 ⁴ 3/4 ⁴ 1 ⁴ 1 ⁵	\$ ⁴ 20 ⁴	18*	16 ²	B	RAN L L L	CH (10" L L L	HE B' L L L	NECT ADEF 64 L L L	ION SIZ 4" L L L H	е 3 ⁴ L H	2%"	2# L H H	13 ⁸ Н Н Т	1% ⁿ	I ⁴ H		/4" 1 H T	/2 ⁸ T		
		1/2 ⁴ 3/4 ⁴ 1 ⁴ 1 ⁵ 1% ⁴ 1% ⁴	sª 204	18"	16 ²	B	RAN	CH (L L L S	HE B' L L L L	DEF	ION SIZ 4" L L H H	е 3 ⁴ L H H	2%" 	2* L H H H	13 ^в Н Н П	1%"	1 ⁴ H		/4" 1 H / T	/2* T		
	5	1/2 ⁴ 3/4 ⁴ 1 ^f 1% ^f 2 ^h 2% ⁴	\$° 20'	18"	16"	B	RAN L L L S	CH C L L L S	HE B' L L L L S	NECT ADEF 6' L L L S	ION SIZ 4" L L L L H H	е 3 ⁴ L H H	2% ["]	2" L H H H T	1%" H H T	1½ ⁰	и" Н П		/4" 1 H T	/2° T		
	5126	1/2 ⁴ 3/4 ⁴ 1 ⁴ 1 ⁵ 2 ⁸ 2 ⁸⁴ 3 ⁵	sª 20ª	18"	16#	B	RAN L L L S W	CH C L L L S	E B' L L L L S H	NECT ADEF L L L S H	ION SIZ 4" L L L H H	е 3 ⁴ L H H H H	2%"	2" L H H T DDE	13 ⁴ H H T	1½ ⁿ	1ª H II T		/4" 1 H T	/2 ^s T		
	JCH SIZE	1/2 ⁴ 3/4 ⁴ 1 ^f 1% ^f 2 ^h 2% ⁴ 31 4 ^f	sª 20ª	18*	164	B	RAN L L L S W W	CH (10" L L L S W H	HE B' L L L L S H H	NECT ADEF 6' L L L L S H H	ION SIZ 4" L L L H H H T	E J ^J L H H H T	2%" 	2" L H H T DDE COO	1% ⁴ H H T	1½ ¹¹	H H H		/4" 1 H /	/2 ⁸ T		
	HANCH SIZE	1/2 ⁴ 3/4 ⁴ 1 ⁶ 1% ⁷ 2 ⁸ 2% ⁴ 3 ¹ 4 ⁴ 6 ⁴	1ª 20 ⁴	18"	16 ³¹	B	RAN L L L S W W W	CH C L L L S H H	HE. 8' L L L L S H H H	NECT ADEF L L L S H H T	ION SIZ 4" L L L H H H T	е 3 ⁴ L H H H	2%" 	2" L H H T COUE	1%" H H T UPL	1½"	1 ⁺ H T		/4"11 H / T	/2* T		
	BRANCH SIZE	1/2 ⁴ 3/4 ⁴ 1 ⁵ 1% ⁷ 1% ⁷ 2 ⁸ 2% ⁴ 3 [§] 4 ⁴ 6 ⁴ 8 [§]	sª 20ª		16 ⁴	B	RAN L L S W W W	CH (10" L L L S H H H	HE B' L L L L S H H H T	NECT ADEF 6 L L L L S S H H H T	ION SIZ 4" L L L H H H T	е 3 ⁴ L H H H T	2%" CC C= E= F=	2 [#] L H H T COU EX	H H H T T T T T U P L	IN G ISIO	N A G		/4"1 <u>H</u> T	72° T	DUC	ER
	BRANCH SIZE	1/2 ⁴ 3/4 ⁴ 1 ⁴ 1 ³ 2 ³ 2 ³⁴ 2 ³⁴ 3 ⁴ 3 ⁴ 6 ⁴ 8 ⁴ 10 ³	s" 20"			B	RAN L L S W W W H H	CH C 10" L L L S W H H H T	HE B' L L L L S H H H T	NECT ADER 6 L L L L S H H H T	ION SIZ 4" L L L L H H H T	е 3 ⁴ Ц Н Н Н Т	2%" 	2" L H H T COU EX TEE	IX" H H T T R U E; R S S	IN G ISIO /SW			0 R G O	72° T	DUC	ER
	BRANCH SIZE	1/2 ⁴ 3/4 ⁴ 1 ⁴ 1 ⁵ 2 ³⁴ 2 ³⁴ 2 ³⁴ 2 ³⁴ 3 ¹ 4 ⁴ 6 ⁴ 8 ⁴ 6 ⁴ 8 ⁴ 10 ³ 12 ⁴	sª 20ª	18"	16 ¹¹	B	RAN L L L S W W W H H T	CH C L L L S H H H T	NI HE. 8' L L L L S H H H H T	NECT ADEF L L L S H H H T	ION SIZ 4" L L L H H H T	ε 3 ⁴ L H H H T	2%" CC C= F= H= L=	2 ^r L H H T COUE COU E COU E T E T E T E	H H H T T U F U F U F U F U F U F U F U F U F	ING ISIO SIO/SW			/4" 1 H / T /			ΕŖ
	BRANCH SIZE	1/2 ⁴ 3/4 ³ 1 ^f 1% ^f 2 ^h 2% ⁴ 3 ^f 4 ⁱ 6 ⁱ 8 ^f 10 ^j 12 ^d 14 ^f	sª 20ª			B	RAN L L L S W W W H H T	CH C	HE B' L L L S H H H T	ADEF 6 4 L L L L H H H T	ION SIZ 4" L L L H H H T	е 3 ⁸ L H H H T	2%" CCC= E= H= L= S=	2" L H H T S COUE E COUE E T E T E S T I S T I	H H H T T R U P L T R U P L T R U P L J B-H J B-H	ING ISIO SUD OL N, F			0 R G O SOC	72° T UT KO	DUC LET LET D	ΕŖ
·	BRANCH SIZE	1/2 ⁴ 3/4 ⁴ 1 ⁶ 1% ⁷ 2% ⁴ 3 ¹ 2% ⁴ 3 ¹ 4 ⁴ 6 ⁴ 8 ⁴ 10 ³ 12 ⁴ 14 ⁴ 15 ⁴	1ª 20 ⁴	18"		B	RAN LLL LS WW WH HH T	CH C 10 ⁴ L L L S H H H T	HE B' L L L L S H H H T	NECT ADEF 6 L L L S H H T	ION SIZ 4" L L L H H T	е 3 ⁴ L H H H	2%" CC C = E = H = L = R = S = T =	2" L H H T COU E COU E T E T E T E T E T E T E T E T E T E	H H H T T UPL UPL UPL UPL UPL UPL UPL UPL UPL UPL	ING ISIO SIO OL N, F N, P TR/			OR GOCI COR	72° T UT KO	DUC LET D	ΕŖ
	BRANCH SIZE	1/2 ⁴ 3/4 ⁴ 1 ⁴ 1 ⁵ 2 ³⁴ 2 ³⁴ 2 ³⁴ 3 ¹ 4 ⁴ 6 ¹ 8 ¹ 10 ³ 12 ⁴ 14 ⁴ 16 ⁴ 18 ⁴ 20 ⁷	5ª 20ª			B	RAN L L L S W W W H H T	CH C	E B' L L L L S H H H T	NECT ADEF L L L L S H H H T	ION SIZ 4" L L H H H T	е 3 ⁴ L Н Н Н	2%" CC E = H = L = R = T = W	2 ^f L H H T E COD E COD E COD E COD E COD E COD E T E S T L S T L S T L S T L	H H H H T T U P L U P L U P L U P L U P L U P L U P L U P L U P L U P L U P L U P L U P L U P L U F L U D D L U D D L U D D L U D D L U D D L D D L D D L D D L D D D D	ING ISIO SUDIC N, P TRA DOLE			OR GOCI	T T UT KO	DUC LET D	ΕŖ

A-12[°]

.

•

ρ

۰ **.**

. -

·

÷

•••

•••

.÷.

ncorell Groft	52	Pavio	Hiah	عتد کې
SALT LA	ĸE	CITY.	UTAH	

Spec	No.	3CB	
Rev.	0		
6/78			
Sheet	: 3	of 3	

NOTES:

- 1. Vents shall be 3/4" thredolet with plug.
- 2. Drains shall be 3/4" thredolet with plug.
- 3. The temporary values used to accomplish the hydrostatic test shall be removed upon customer request.
- 4. When engineering judgement dictates, buttweld valves may be used in place of flanged valves. See Valve Specification Sheets VC-36A, VP-36A, VB-34A & B, VO-36A, and VG-36A.
- 5. For instrument connections use 3000# FS. ASTM A-105 threadolets or screwed half couplings.
- b. When engineering judgement dictates, the 1/2" to 1-1/2" size socketweld requirement may be changed to a buttwelded or screwed design.
- 7. All underground piping shall be welded.

A-13

FON. BUCH	2 Рачію Шађ Зпс. ке сітч. итан	Rev. 0 8/78 Sheet 1 of 2
SERVICE: Fl. st re ca	ammable gases, eam, condensates, frigerant hydro- rbon liquids	CONSTRUCTION MATERIAL: 1/2" thru 1-1/2" socketweld 2" thru 12" buttweld and flang
CORROSION AL	LUWANCE .1 inches	GENERAL MATERIAL: Carbon Steel
ANSI Hating	600 lb	TEMPERATURE RANGE -20°F to 750°F
MAXIMUM DESI	GN PRESSURE 1460 psig	at 100°F or 085 psig at 750°F
HYDROSTATIC	TEST at 2220 psig	
VALVES		
Check	1/2" thru 1-1/2" 2" thru 12"	VC-61A, 800# swing check, socketweld VC-54A, 600# swing check, buttweld
Plug	1" thru 1-1/2" 2" thru 6" 6" thru 12"	Use ball valve VP-54A, 600¢ plug, buttweld Use Butterfly valve
Ball	1/2" thru 1-1/2" 2" thru 4" 6" thru 12"	VB-46A, 600# ball, socketweld VB-50A, 600# ball, buttweld VB-50B, 600# ball, buttweld
Globe	1/2" thru 1"1/2" 2" thru 12"	VO-61A, 800# globe, FS socketweld VO-54A, 600# globe, buttweld
Gate	1/2" thru 1-1/2" 2" thru 12"	VG-60A, 800# gate, socketweld VG-54B, 600# gate, buttweld
butterfly	3" thru 12"	VG-50A 600# wafer
PIPE	1/2 thru 10	Astm A53 GrB smls or Astm A106 GrB x Strong wall thickness Astm A53 GrB Smls or Astm A106 GrB Sch 8
FITING	 1/2" thru 1-1/2"	Socketweld fitting xstrg wall thickness
	1/2" thru 12"	ASIM A105 Buttwelded fitting with the same wall thickness as the adjoining pipe ASIM A23 WPB
FLANGES	1/2" tnru 12"	600# HF, weldneck with the same bore as adjoining pipe, ASTM A105

• • • • •

.

. P

•

• ,

• . -•

-

۰.

.

•. . .

• •

ς,

. .

•

•

• *.*

· ·

÷ • ;

· .

, . , .

•

•

۰.

•. •

، .

ſ						الان مي الي الي ا			Ì											Ĩ		Sp	ec i	No.	6CB	
	sfor0.38	aco	πΖ	Pav	19 H	ltah	Juc.							•						ļ	_	Re	v. (0	-	
	SA	LT	LAKE	CIT	Y, U	ТАН																87	78			
1																	4 0 4 0			2 and 1		Sh	eet	2 0	of 2	
	REDUCERS			1/ 2" 12	2" (th:	thru ru]	1 1- 10"	-1/2	22			Swa: But AST But	ge twe M A. twe	pla 1de 234 1de	in e d re WPE d re	end educ B educ		str r,	g xs Sci	AST trg h 8	:M 5 7 30 ;	A2 val	34 5 1 t	WPB hick A2	anes: 34	3
									·			WPB						•				•			-	
	GASKETS											600 asb	∥ 1. est	/8" 03	spi fill	iral Led,	L	vou fle	ind exi	, 3 tal	301 11	4 š ic	S W. typ	ind: e CC	ing,]	
	BOLTING							8	RAN	сн (CON	Stu Hex NECI	ds Nu NON	- A ts	STM	Alg	93	GR	8 8	-7	W J	/A-	194	GR	2 H	Hvy
			••••								HE	ADEF	I SIZ	E			-				_					
		L		24*	20*	18"	16 [¥]	14#	12"	10 [#]	8 '	6 1	4 ^b	34	2% ⁴	2*	1:	4 ⁴	1%#	14	13	1/4"	1 2			
			1/2						1	Ļ	Ţ.	Ļ	Ļ	Ļ		Į.	L	I.		Į.	Ţ	<u>_</u>	T_			
			14	<u> </u>					L	L	L	L	L	L			+-	<u>-</u> 1.			╉	I				
			1%*														\uparrow	-	<u> </u>							
			177						L	L	L	L	ι.	L.		L	L	T		•						
			2"						W	W	W	W	H	11		T										
		IZE	28-						:. 14	1.1	ы	11	IJ													
		H	4						W	H H	H	n H	n T						NG						•	
		ANC	61						H	H	Н	T			٤- ۲	EX	TF	ιυ: 101	SIO	N						
		BH	81						H	H]				۽ ع	TE	ε	w/	sw	AG	ε	0 R	RE	DUC	ER	
, • ,			101						H	T					H	TE	Ε,	8	ED	UCI	IN	GC	UT	LET		
			12						T						۱. م	=ТН - ст	R: LLC		01	ΕŤ,	, S Al 6	500	KO	LET		
			16'						ĺ						S-	STU	J B	-1N	ч. п I. Р		in r IN	-06	(CE	U		
		ł	184					L							T =	TE	E,	ST	r R A	AIG	н	T				
			20"												W	- WE	٤L	00	LE	Т						
·	NOTES:	L	24 ^µ																							
	1. Vent	:5	sha.	11 8	e 3	/44	th	redo	olet	wi.	th	plug	з.													
	2. Drai	Ins	sha	all	be	3/4	"t	hred	iole	et w	ith	plu	ıgs.													
:	3. The upor	te 1 G	mpo) ust	rary oner	v va • re	lve	us st.	ed t	to a	1000	apl	ish	the	hy	dro	sta	ti	C 1	tes	st :	sh	alì	. be	rje	nove	đ
•	4. Wher valv and	n e res VG	ngi) - 3 -52	neer See A.	ing Val	; ju .ve	dge: Spei	ment cif:	t di icat	.cta .ion	tes Sh	, Rf eets	fl VC	ang -51	ed A,	val VPA	ve &	3 : 9	may , V	'r('8-5	ep 51	lac A ð	е с Ъ,	vutt VO	weld -51A	, ,
	5. For Thre	in do	stru let	anc	it, I us	con se V	nec' alv	tio: e V(ns u G-50	se A.	300	0∉ H	55	er'	d.	AS	ТM	Â	-10	95 i	'na	lf	ecu	pl1	152	or
	b. for see	hi th	gh -i e ei	pres ngir	isur ieer	re g ' fo	rea. r mi	se a axid	and	oil pre	pi Ssu	ping re a	, wh Ind	en ter	no iper	cor: atu	ro re	si 1	on imi	al. .ts.	10	war	ice	is	need	ed,
· ·	1										A-1	5														

•

. .

ρ

-

••

÷

; : .

р .

ρ	
	;
	•
	•
	• •
	. •
	:
	•
	-
	•
	•
	•
	•
	•
	;
	•
	•
	•
	•
	• •
	. •
	•

-	
÷.	
-	
-	

10 10 10 10 10 10 10 10 10 10	ANTE SINI
	1.100
	4334
	55
	UN M
	aritimi i
	11111
	Lititude
	In a close
	5 0 4 5 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	A DIA COLOR
11 COat	
	1004, 50 1004, 50 10000, 50 1000, 50 10000, 50 1
L H	
NOIS	
100 - F - F - F - F - F - F - F - F - F -	*
REP C	
ANDU ANDU	NAW)
NG NG	
2-303	
	-

NEWS ()

N 22)

Ş

. ۰.

•

p.

÷

p

÷

p

• .

ρ

•

APPENDIX C ISBL MATERIAL BALANCES

P .

Р

VSIFICATION

Interview 1 <th1< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th></th1<>														-	
Introlution Table Trant Trant Trant Trant Trant Trant Trant Trant Trant 2 1	AM MUMBER		-		2		3		4.		4		9		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CRIPTION			DAL	JONL FE	នាក	TOTAL. PL OCCUEN	ANT	UXXOBN REDXXO	z	e nalite Require	20	NIANT TRAIN		
OTT LUIR UT LUIR LUIR <thluir< th=""> <thluir< th=""> <thluir< td="" thr<=""><td>36</td><td>╞</td><td>S</td><td></td><td>53</td><td></td><td>-</td><td></td><td>U</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td></thluir<></thluir<></thluir<>	36	╞	S		53		-		U		-		-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ENT MO	DLWF	LB/IB	HT Z. 14	1.6/18	11 2	NDL/IER	2 TON	NOL/IR	VOI. Z	1.B/IR	чт 2 М	E/IR	HT 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	101	98161	60.85	9593	60.85				Ţ	T				-
2000 404 13.94 0.02 14.9 0.83 24.40 29.30 94.40 14.2 0.83 14.2 0.83 14.2 0.83 14.2 0.83 14.2 0.83 14.2 0.83 14.2 0.84 15.3 15.0 12.1 0.01 12.3 14.3 13.3 14.3 13.3 14.3 15.3 15.0 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0		2.016	0051	4.12	650	4.12				Ì					+
2804 280 0.81 0.82 <th0< td=""><td>8</td><td>2.000</td><td>4084</td><td>12.95</td><td>2042</td><td>12.95</td><td>565.20</td><td>99.50</td><td>282.60</td><td>99.50</td><td></td><td></td><td></td><td></td><td></td></th0<>	8	2.000	4084	12.95	2042	12.95	565.20	99.50	282.60	99.50					
2360 28,4 6.87 11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	8	9.014	280	0.69	140	0.69	2.84	0.50	1.42	0.50				1	
2 0.01 1 0.01 </td <td>H</td> <td>2.060</td> <td>274</td> <td>0.87</td> <td>757</td> <td>0.87</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td></td> <td>+</td>	H	2.060	274	0.87	757	0.87							T		+
··· 382 12.31 1341 12.31 1341 12.31 1341 12.31 1364 12.31 1364 12.31 1364 12.31 1364 12.31 1364			2	0.01	-	0.01					T				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3862	12.31	1941	12.31								+	_
1000 10000 100000 10000 10000		910.91	2522	8.00	1261	8.00					02(7)	100.00	332	100.00	+
0E 4011 1 <td>KIDE 2</td> <td>110.81</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(I-gil)</td> <td></td> <td></td> <td></td> <td></td>	KIDE 2	110.81									(I-gil)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		110.11													
FIGE 3005 FO FO <th< td=""><td></td><td>6.043</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td></th<>		6.043													+
FIG: 6001 6011	LFIDE 3	M.076												 -	
Image: constraint of the constr	5 IOE 6	11005													
Image: constraint of the constr															
Image: line line line line line line line line															
Image: constraint of the constr															
Image: constraint of the constrat of the constraint of the constraint of the constraint of the co									T			T			
Image: Normalized state Image: Normali															
TOTAL 31530 100.00 12765 100.00 284.02 284.02 284.02 286.04 100.00 23660 100.00 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>															
TOTAL 31530 100.00 15765 100.100 284.02 100.00 23660 100.00 23660 100.00 Xr.Vuchrilia JDRYI 31530 100.00 588.04 284.02 284.02 100.00 23660 100.00 23660 100.00 105.00															
TOTAL 31530 100.00 15765 100.100 588.14 100.00 284.02 284.02 284.02 284.02 284.02 100.00 23660 100.00 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200															
TOTAL 31530 100.00 15765 100.100 588.04 284.02 402.00 402.00 23660 402.00 OV. VOLHIN JBN 0.0.00 15765 1.00.100 588.04 284.02 284.02 284.02 284.02 23660 4.00.100 1.00.100				Ī			•	20.00			Cutt.	2	01660	100 001	
ON: WOLHIN LORVI Dev. U2 S86.04 Z04.02 266.02 266.02 Y GAS [VOLVOU] 15/65 18166 9033 97320 23660 2460 Y. OLANOLI 1530 15/65 115 215 215 216 A. A. AB AB 257 257 229 228 A. AB AB 297 257 229 228 228 A. BF AB 297 257 229 228 228 A. BF AB 297 215 229 228 228 B. D. 10397 10397 10397 10397 10397 10397 10397	TOTAL.		31530	100.00	15765	00.001	S.		70.00	M.W	170/4	3-24	~~~~		
N° GAS [Vol.Vol.1] 15/63 16/65 9033 97320 236/0 R.O.W. LB/HR 31530 15/65 15 115 215 A. B.B. 75 75 215 215 A. B.B. 257 253 228 228 E - F AB AB 257 223 228 228 E - F AB 297 257 229 228 228 E - SCRLIDBAY J0397 J13397 J13397 J13397 J13397 J13997 J13397 DFY CAS DFY CAS DFY CAS J13397 J13397 J13397 J13397 J13397 J13397 J13397 J13397 J11 J13397 J11 J11 </td <td>OVV. NOLAIR.</td> <td>(DRYI</td> <td></td> <td></td> <td></td> <td></td> <td>%</td> <td>3</td> <td>1-1402</td> <td></td> <td></td> <td>T</td> <td></td> <td></td> <td></td>	OVV. NOLAIR.	(DRYI					%	3	1-1402			T			
FLOW, LB/MR 31530 15,163 18166 9083 9.2320 23660 a.A. X X X X X X 215 215 216 a.A. X X X X X X 215 216 216 a.A. X X X X X 215 215 216 a.A. X X X 23 223 228 228 a.E 9* X X 233 228 228 228 a.E 5 X X 257 257 223 228 a.E 5 X X X 233 228 228 a.E 5 X X X X 228 228 228 a.E 5 X X X X 228 228 b.F - 5 X X X X X X X	IY GAS														
an 15 115 216 115 216 115 216 115 115 216 115 115 115 115 115 115 115 115 115 1	FLOW, LB/HR		315	N	9251	5	18	166	308		9		236		
E -9f AFB 251 253 228 228 VE - Sch IoBAY 13337 1339	1A							75	11			115	7	12	
VE - SCALLORYI 10397 13397 13397 1524 1524 1524 1524 1524 1524 1524 1524	E - 0F		2	6	AHB.			151	25			23	2	28	
VE - SCALIDAN 10397 13397 103												T			
0FY as 01397 13397	ITE - SCFII (DRV)														
DFY GAS			9	105	16601										
	DPY GAS			_											
														+	

D
			Ī				ſ								Γ
stre an number		~		80		9		9		ព		ឌ		5	
DESCRIPTION		NET 610 STEAM D	PSIG GORT	NVAL NEW	VENT	NUCHDONN	NIVALLA	myrus Em tviol	F	ndada Total pi	ANT	PRODUCT (Si Ha	NTOT PIC	opucr
PHASE		9		9				1.		I I I I I I I I I I I I I I I I I I I				ю-	
COMPONENT	TW LOW	1.A/AR	7 7	1.6/18	7 7	13/IR	M 7	1B/IR	4T 7.	1.B/HR	2 25	BIT DIA	ALL N	ML/III	VOI. X
AREON	110/21												T		T
YDROGEN	2,016											423.90	36.63	847.80	36.63
XYGEN	32,000														
ITAOGEN	28.014											12.74	1.10	25.48	1.10
urfuß	32.060														
THLORIDE	1			-											
5	1														
VATER	18.018	25512	100.001	415	100.00	1029	100.00	828	100,00	2058	100.00	06.64	9.2	87.60	3.79
ARBON MONOXIDE	29.011											10.712	37.78	874.62	37.78
AREON DIOXIDE	11011											207.98	10.01	615.96	16.1
uc THANG	16.043											27.93	2.41	55.86	2.41
TVORACEN CUT FIRE	34.078											3.35	0.29	6.70	0.29
	100.05											0.29	0,03	0.58	0.03
						-									
									T						
				Ī					Ī						
								•	T						Ī
											T	T			
											T	T			
		26613	100 001	212	100 001	1029	100.00	830	100.00	2058	00,001	1157.40	100.00	2314.80	100.00
	1700											IIE	.50	2227,	8
ILINE GOSTEON, MULTIN.												ď	194	0.03	-
WATER (VI/DHY GAS	INULIAUL	1996		Ż		18		81		8	9	R	679	99667	
TOTAL (NET) FLOW, LENN								16		Ĩ		7	4.7	("¥7)	
PRESURE - PSIA		5	3										130	120	
TEMPERATURE ^{OF}		3		2		77		77		5					
												57	2562	84512	
VOL FLOW RATE - SCFH IORY)															
HILV BTU/LB												2	0 5	275.9	
INV BTU/SCF DRY GAS											T				
											Ī		THE SAL		T
												State Makes			•

Davy McKee MATERIAL BALANCE SHEET

PROJECT NU

PROJECT NAM

PC-5/09

۳ ٩

2

CLIENT

D

C-3

•
•
· -
-4
•
•
•.
•
•
•
:
•
• .
•
•
:
•
•
۰.
•
•
•
•
•
.:
•
• •
•
• • •
_
-

ρ

LANCE SHEET
MATERIAL BA
Javy McKee

PROJECT NAM

PROJECT NUMBER___________

	ĺ													
STREAM NUMBER		14		IJ		16		7				_		
DESCRIPTION		TIOTAL P	ROCESS	TOTAL P	LANT DISPOSAL	N. 10 RED	PLANT SYSTEM	TOTAL PLAN	vr N ₂					
PHASE				5/1		9		5						
COMPONENT	TW JON	LB/HR	HE. T	LB/HB	ы. 2	ML/IR	<u>vu. 2</u>	HILLIN -	2 101			┥		
CARBON	110/21			3010	32.15							+	+	
HYDROGEN	2.016													
DXYGEN	22.000													
MITROGEN	28.014					29.51	100.00	16.87	100.001					
SULFUR	32.060			9	0.43							╉	+	
CILLORIDE				2	0.02							┥		
ASH	1			3880	41.44							╉		
WATER	810.61	11662	100.001	2430	25.96					-		╉		
CARBON MONDXIDE	28.015											╉		
CARBON DIDKIDE	11011											+	+	
METHANE	CM0.01											+		
HYDROGEN SULFIDE	34.076											+	+	
CARRONYL SULFIDE	1(0'09)								-			┥		
													+	
										-		-		Ì
												+		
										_		-		
												_		
												-		
													+	
TOTAL		11662	100.001 T	9362	00 ^{.00}	29.51	100.00	16.87	8.61	_				
TOTAL GAS FLOW MOLNIR.	(CRV)					8	5	- yr	<u>1</u>					
WATER (V)/DRY G45	INDAUNOU											+		
TOTAL (WET) FLOM. LB/AH		11	662	52	5	23	2	5				+		
PRESSURE - PSIA		4	4.7		0		2					╉		
TEMPERATURE - ³ F			20	n	0	N		W				╉		
												╉		
VOL FLOW RATE-SCFH (DRY)								203.4				╈		
HINY BTU/LB				-12	9							+		ł
HHV BTU/SCF DRY GAS												╉		
	ļ								ĺ		•	-		

and the second second

.

-

D

			E	ROJECT NUM	BEN TV-3										
STREAU MUNBER		-		2		~		-		-0	,	vo		~	
DESCRIPTION		TOTAL PL	53	COM. FEE PER TRAI	9.2	TOYAL PL	INV	OXYGE PER TR	-=	PLANT P	29	BFN PER TRAIN		NET GIO STEAN EX	P516 P0RT
PHASE	Ī	S				3		9						9	
COMPONENT	MOLWT	LB/HR	NTX	LB/HR	117	MOL/HR	KOL X	MOL/HR	\$ 107	LD/1:R	NT \$	LB/HR	х IJ	1B/HR	н к
CARBON	110.21	19166	60.85	9593	60.85										
HYDROGEN	2.016	1300	4.12	650	4.12							T			
DXYGEN	32,600	4084	12.95	2042	12.95	565.20	95.00	282.60	95.00						
MITROGEN	28.014	280	0.69	140	D. 89	29.74	5.00	14.87	5.00						
SULFUR	32.060	274	0.87	137	0.87						Ì				
CHLORIDE	1	2	0.01		0.01										
ASH	;	3882	12.31	1941	12.31										
WATER	18.016	2522	B.00	1261	8.00					47320	100.00	23660	00.001	25512	00.001
CARBON MONOXIDE	28.011									(<u>105 - 1</u>	ING OS	1.105	I I I I I I I I I I I I I I I I I I I	T	Ī
CARRON DIOXIDE	44.011												Ţ	Ť	
METHANE .	CHOIGH														
HYDROGEN SULFIDE	34.078													T	
CARBONYL SULFIDE	60.071											T			
															T
							-								
															T
								Ţ						T	T
					-					0000	- VV			1000	
TOTAL		31530	100.00	15765	100.00	594.94	8.00	11.162	100.001	. 41.120	100°00	00077	10-101	71667	JU., UU
TOTAL GAS FLOW, MOLAR.	(YRC)					594	2	162						Ī	Ī
WATER (VI/DRY GAS	INOL NOL)														
TOTAL (NET) FLOW, LEIHA		ŝle	30	1576	5	189:	2	946			22	530		. 2551	
PRESSURE-PSIA						~		2			119		2	3	
TEMPERATUHE - ^{DF}			2	Ŕ		25		257			228	2			
													T		T
VOL. FLOW RATE - SCFH (DRV)									T						T
BIAV BTUAB		10,	97	10.1	16										T
HHV BTUSEF DRY GAS							-								ľ

ρ

MATERIAL BALANCE SHEET Davy McKee

OF CAUDINES

200

C-5

SHEET
BALANCE
MATERIAL
Davy McKeo

ET and an and a set of the set of the set of the CASF current of the set of t

ž

ρ

·

DESCRIPTION LP PHASE 0.000016101 LP FHASE MOL WT LB FHASE 0.000016101 MOL WT LB CARBON 2.011 1.0 LB MYGEM 2.011 1.0 LB MYGEM 2.011 1.0 LB MYGEM 2.000 2.000 LB MYFOGEN 2.000 2.000 LB MYFOGEN 2.000 2.000 LB MYFOGEN 2.000 2.000 LB MYFORE 2.001 2.000 LB MYFORE 2.001 2.000 LB MYFORE 2.000 2.000 LB MYFORE 2.001 2.000 LB MYFORE 4.001 2.001 L MYFORE 4.001 2.001 L MYFORE 4.001 2.001 L	STEAN VE	1	BLOUDO										DIAL	TRUCESS
FHASE MOLWT FA CARBON 11.011 18 CARBON 12.011 18 HYORIGGEN 2.016 18 MYGINGEN 2.016 2014 MYGINGEN 2.016 2014 MYGINGEN 2.006 2014 MYROGEN 2.006 2014 MYROGEN 2.006 2.016 MYROGEN 2.006 2.016 MYROGEN 2.006 2.010 MYROGEN 2.006 2.011 MYROGEN 2.006 2.011 MYROGEN 2.010 4.011 MATHAME 1.010 - ASH - - ASH - - MATHAME 1.0010 4.001 MATHAME 1.002 3.016			PURCE PE	TRAIN	SYEA	KEN	TOTAL I BLOWD	ANT Star	PRODUCT PER T	RAIN MIN	TOTAL P	RODUCI	CONDE	NSATE
COMPORENT MOLWT IB CARBON 12.011 18 HYOROGEN 12.011 2016 HYOROGEN 2.016 2016 ANTGEN 22.000 2016 ANTROCEN 28.014 28.014 Sulf-UR 28.014 28.006 ChLONIDE 28.016 Asi 28.011 Asi <th></th> <th></th> <th></th> <th>Ì</th> <th></th> <th></th> <th></th> <th></th> <th>9</th> <th>Γ</th> <th>ų</th> <th></th> <th></th> <th></th>				Ì					9	Γ	ų			
CARBON 12.011 HYOROGEN 2.416 OXYGEN 2.416 ANTROCEN 2.600 ANTROCENTIC 2.601 CARBON MONOTOE 2.601 CARBON MONOTOE 2.601 CARBON MONOTOE 2.601		2	LB/IIR	MS	LB/HR	XIIX	LB/HR	ut s	HOL/HR	2.10V	HOL/HR	X0LS	LB/HR	X1X
HYCHOGEN 2.016 OYYGEN 2.000 MJTROGEN 22.000 MJTROGEN 28.014 SULFUR 20.04 SULFUR 20.04 CALBON MONOXIDE 28.011 CARBON MON														
QXYGEN 22.000 AJ7ADGEN 28.014 SULFUR 28.014 SULEN 20.06 ASIA									423.90	36.20	847.80	36.20		
AJTROGEN 28.014 SutFun 20.06 SutFun 32.066 CallOHIDE ASH														
SULFUR 2008 CILLONIDE ASIA ASIA ASIA ANTER ANTER ANTER ANTER AUTIANE METHANE METHANE AUTIANE METHANE	-								26.19	2.24	52,38	2.24		
CALLONIDE														
ASIA WATEA RUIO 4 CARDON WONOXIDE 28 011 CARDON MONOXIDE 28 011 CARDON DIOXIDE 28 011 METITANE 10.03 MOTO 70 610 6106 04.036			-		·									
WATER 18.016 4 CARDON MONOXIDE 28.011 CARDON DIQXIDE 28.011 METITANE 18.003 MOTO 58.0116.005	-													
CARBON MONOXIDE 28 011 CARBON DIOXIDE 44 011 METHANE 18,003 WATCHANE 18,003	415	100.00	1029	100.00	830	100.00	2058	100.00	43.90	3.75	67.80	3.75	11632	100.00
CARBON DIOXIDE 44.011 METHANE 18.043 LUVIDODEN SH EIDE 34.015					·				10.764	32. JE	874.62	37.35		
METHANE IBLOA3 LUVIDANCEN SH FIDE 34.078									207.98	17.76	415.96	17.76		
1010 34016 34076									27.93	2.39	<u>55.86</u>	2.39		
		:							3.35	0.29	6.70	0.29		
CARBONYL SULFIDE 60.071									0.29	0.02	0.58	0,02		
	-													
	-													
							1000		1170.00	00 001	02 1126	00 001	11630	100 00
TOTAL	415	8.001	6201	100.00	830	100.001	8C02	EUU.IN	CB-0/11	100.00	200		7011	8.mi
TOTAL GAS FLOW, MULMR. (DRV)														
WATER (VI/ORY GAS [VDL/VOL]									5.9	5				
TOTAL (WET) FLOW, LEAHR	A15.		ă	59	8	9	20	58	243	55	48	97	911	2
PRESSURE-PSIA	20			20		0		20	44		Ť	77	44	
TEMPERATURE - OF	227		2	27	22	2	řů (27		g		120		0
S - VOL. FLOW RATE - SCFH (DRY)									4276	8	655	152	-	
HHV BTU/LB									516	£1	14	1.63		
HIN DTU/SCF DRY GAS									S					
									Includes	SONG SIL				
					: [Nitrogen	fram Loa				

		LB/HR 1	UTZ I	MOL/H8	V01 2	MI AIR	7.07								
CARBON	11021	3010	32.15												
HYDROGEN	2.018														
DXYGEN	21,000			-											
NITROGEN	28,014			29.51	100.00	16.87	100.00				1				
SULFUR	31.060	40	0.43		-						1				T
CHLQRIDE	:	2	0.02									·		Ī	
ASI	1	3680	41.44												ĺ
WATER	18.016	2430	25.96												
CARBON MOMOXIDE	110762														
CARBON DIOXIDE	11011														
METHAME	CM0.81														
HYDROGEN SULFIDE	310.45														
CARBONYL SULFIDE	120.08														
												-			
										_			-		
						ſ									
					Γ										
								-							
TOTAL		9362	100,00	29.51	100.00	16,87	100.00								
TOTAL GAS FLOW, MOLMR.	(VRC)			29	.51	9	.87		1	+		T			
WATER (VI/DRY GAS	(TON YON)										Ť	T			
TOTAL (WET) FLOW, LEMHR		2966		8	27	-	13			-					
PRESSURE - PSIA		3			75		16				Ţ				T
TEMPERATURE - OF				Y	9		Ava				1				
															T
VOL, FLOW RATE - SCFH (DRV)				11.	200	5	20				T				
AILY BYU/LB		4550									1		T		
HIIV BTU/SCF DRY GAS											╋				
															Ī
		_									1				
					-									•	-

MATERIAL BALANCE SHEET Davy McKee

.

PROJECT NAME 95% 02 CASE PROJECT NUMBER PC-\$409

TOTAL PLANT H2 VEHT GAS

TOTAL PLANT 10TAL PLANT ASH FOR DISPOSAL N₂ TO FEED SYSTEH

2

9

5

STREAM NUMBER DESCRIPTION

PUASE COMPONENT

.

1/5

CLIENT NORTHERN RESOURCES

ρ

C-7

APPENDIX D

3

ISBL PRELIMINARY DESIGN DRAWINGS

- •

• • • •

P

. : a .

ι,

.

• .• •

ŗ

• • •

:

ρ

.

5409-100-F-0011 12100-J____ **()** 2 H E-WIR ---• Ð Davy McKee - F-0012 Ð E-NOT EXCHANGE <u>E-102</u> CHAN KUNAY PUROK COOLER CIRCULATION PUMP CIRCULATION PUMP CIRCULATION PUMP Ċ ଚ ۲ B-VCOV-D Ĝ 125 125 PRODUCT CAS fate po inite -----립 CIRCIA/TION FUND PACCESS FLOW DIAGRAM MINALER UNSFICATION BUSICH COAL FEEDING - CASIFICATION DAY PROCESSING NORTHERN RESOURCES, INC. 6-101/0 VENTURI DCRUMBER 201-3 E-10174 B-102//B FIEM BLONDONE DAUN P-103A/B FRONCT CAR CO-202A/45 CHUN TRAHSFEN -5 IND TANK - 1 100 TUNU B-102A/B ¢ CVCLOK CD-201A/0 FE-194A/0 FE-105A/0 GUA DOLIFCITON NEAT RECOVERY DAY CITLONE CONVEYOR BUTANY FEEDER NOTANY FEEDER P **া**ক্ত 0 A Design of the second 1117 DV-201A/B CHAR DIVERTEI G-LUIA/D STEAN LINIM CO-207A/H Ы <u>FF-105R/B</u> 10-2-20-20/8 10-2-2101 1000 1000 EY-101AVE H-104A/B H-102A/ 0-101A/0 8/12-102-10 М N-101A/B B.F.H. HERIER 1-1070-11 1-1070-11 O<u>LV-202-24/B</u> FE-104A/B 11-201-11/6 11-202-11/2 14-201-21/2 00.1 630 1054 1051 1051 6011 6014 1054 1057 100768 10418 101161 10114 1054 1051 1054 81AHT-LP BLOKE #-10201-H H-101-H HI-201-20/1 HD.2 CHUN LDCK HOPPEN TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTT R CV-201A C0-2011/0 CO-101-ZA/E CO-102A/E BASIFIER DAUR READVA. BCHEN FEERER -2 SCREW CONVEYOR 10-1 00-11/0 10-1 0000 1001 100760 No ar T. Ť B/NC01-1 CO-102N/8 21-4 Jan - 205 - 14.0 ALIGIAND H-201-10/8 8-101A/B M-1011/1 CO-101-10/B 0481F1Eh SCHEH FEEDCH 41 1000 1030/4 Ē Ritherandon and a second statements and a second seco 월일-HI-10M/A LOCK HOMAN VEREL BH-1018/8 PH-103A/ 17-1024 11001-11 <u>FE-102A/H</u> LOCK HEPPEN NUTARY FEEDER -24/1 M1-191-00 LV-102A/B LOCK HOPPEN **Internal** V201-H ₹ 1 FLED BIN FEED BELT 1 101-31 LV-101A/B ঔ C NJ# 0334 1138 1001 (M 101-M VIOT-18 E M-1028 C HANG BILING CON DISTRUTING 4 DIVLATER BELOVE TO ۲ ۲ $\textcircled{\blue}{\blue}$ ۲ 1 IKA U D-2

ρ

ρ

ρ

..

•

ρ

20'-0"

ρ

ο.

4.3.9 SINGLE-LINE EQUIP. LIST.

AREA 100

ρ

· ·

.:.

.

ITEM	NO. REQUIRED	DESCRIPTION
A-101	1	Settler Rake
A-102	l	Additive Mixer
B-102	1	Start-up Blower
BN-101	1	Weigh Belt Feed Bin
BN-102 A,B	2	Coal Feed Bin
BN-103 A,B	2	Lock Hopper Vessel
BN-104 A,B	2	Coal Feed Surge Vessel
CO-101-1 A,B	2	Gasifier Screw Feeder #1
CO-101-2 A,B	2	Gasifier Screw Feeder #2
CO-102 A,B	2	Char Removal Screw Conveyor
CO-103	1	Coal Distributing Conveyor
CY-101- A,B	2	Dry Cyclone
D-101 A,B	2	Steam Drum
D-102 A,B	2	Steam Blowdown Drum
D-103 A,B	2	Product Gas Separator Drum
DV-101 A,B	2	Raw Coal Diverter
E-101 A,B	2	Product Gas Condenser
E-102	1	Char Slurry Purge Heat Exchanger
E-103	1	Char Slurry Purge Cooler
FE-101	1	Coal Weigh Feed Belt
FE-102 A,B	2	Lock Hopper Rotary Feeder
FE-104 A,B	2	Heat Recovery Rotary Feeder
FE-105 A,B	2	Dry Cyclone Rotary Feeder
H-101 A,B	2	Boiler Feed Water Heater

р •] •

D-5

ITEM	NO. REQUIRED	DESCRIPTION
H-102 A,B	2	High Pressure Steam Boiler
H-103 A,B	2	Start-up Burner
H-104 A,B	2	Radiant Boiler
LV-101 A,B	2	Sleeve Valve
LV-102 A,B	2	Lock Hopper Inlet Valve
LV-103 A,B	2	Lock Hopper Outlet Valve
P-101 A,B	2	Venturi Circulation Pump
P-101-1	1	Venturi Circulation Pump (common spare)
P-102 1,2	1 + 1 (spare)	Char Sludge Pump
P-103 1,2	1 + 1 (spare)	Scrubber Water Return Pump
P-104 1,2	1 + 1 (spare)	Additive Metering Pump
R-101 A,B	2	Winkler Gasifier
S-101 A,B	2	Venturi Scrubber
S-102	l	Vent Scrubber
T-101	l .	Scrubber Water Return Pump Tank
T-102	1	Settler Tank
T-103	1	Additive Mix Tank

• • ••

ρ

;

, ²,

AREA 200

.

P .

÷

.

....

ITEM	NO. REQUIRED	DESCRIPTION
BN-201-1 A,B	2	No. 1 Char Lock Hopper
BN-201-2 A,B	2	No. 2 Char Lock Hopper
BN-202	1	Dry Char Storage Bin
CO-201 A,B	2	Char Collection Conveyor
CO-202 A,B	2	Char Transfer Conveyor
CO-203	1	Char, Blending Conveyor

D-6

ITEM	NO. REQUIRED	DESCRIPTION
CO-204	1	Char Distributing Conveyor
DV-201 A,B	2	Char Diverter Valve
FE-202	l	Dry Char Rotary Feeder
LV-201-1 A,B	2	No. 1 Char Lock Hopper Inlet Valve
LV-201-2 A,B	2	No. 2 Char Lock Hopper Inlet Valve
LV-202-1 A,B	2	No. 1 Char Lock Hopper Outlet Valve
LV-202-2 A,B	2	No. 2 Char Lock Hopper Outlet Valve
VB-201	1	Char Bin Activator

. .

ρ

Δ

D-7

APPENDIX E MAJOR EQUIPMENT COST ESTIMATES

.

. ·

.

.*

۰.

.

•••

•.

.

ρ

. .

. .

•

.

ŝ

- ·

5

۰.

.

.:

۰. .

÷

.

.

.

.

OSBL Major Equipment Quotes

ρ.

:

••••

Detail specifications were developed for major pieces of equipment within the OSBL facility. These specifications were then sent out for bids and quotations from vendors were received. After a preliminary bid evaluation successful vendors were identified for all items of equipment.

This Appendix shows the list of all equipment specifications, Inquiry numbers and bid dates.

An equipment list was also developed to identify each piece of equipment and its supplier along with the adjusted equipment price. The adjusted prices are the bid prices from the vendors, adjusted to suit the requirement of the OSBL plant.

Ρ.

2

÷

. •

. .

.

.

۰. ۲

.

 JOUN JARCON & WAY') CHAIN SILC. ENGINEERS-CONSTRUCTORS EQUIPMENT LIST (PUMPS) IN 10 252-3

. .

•

÷

.

.

:

•

JOB NO. UC 353-302

•

·

JOE JOE	IENT B NAME	NORTHERN RE	ssources, Inc. asification		08 NO	
1 ^w	: OUIP. NO.	Inquiry Number	DESCRIPTION	VENDOR * PRICE	DELIVERY**	VENDOR
11	1P - 1	353-0-010	IND PUMP, 100 GIM 100 TUM	3,494		
	11P-1A	353-0-004	FIRE PUMP, 2000 glum	12,891		
l	11P-1B	353-0-004	FIRE PUMP, 2000 gpm	12,891		
1	11P-2	353-0-004	JOCKEY PUMP gpm	782		
ł	12P-1A	353-0-010	H.PRESS. BOILER FEED 13097m	41,869		
1	a1-001	353-0-010	1765 TDH PRESS. BOILER FEED 130 Span	41,869		
	120-2A	353-0-010	546TDI L. PRESS. BOILER FEED 100 gpm	6,071		
	80-0c1	353-0-010	546 TDH	6,071		
1			CUDI 120000 EEED 750000 110000	1,750		
	121'- JA		DEMEMBER DATE PRESS	1.750		
	12P-3B	nrn-g-ses	DEAEKATOR FEED JOHN TITL	27.17		
	13P-1A	353-0-010	HOT 1001 mdp011, MMU 900100	11,052		
1	13F-1B	353-Q-010	SUMP PUMP, 130gpm 100TDH	11,052		.1
!	13P-2A	353-0-010	SUMP PUMP, 130gpm 100TDH	11,052		
1	13P-2B	353-0-010	SUMP PUMP, 130gpm 100TDH	11,052		
1	14P-1A	353-()-010	140 TDI COOLING WITER RECITG 6300000	28.303		
1	14P-18	353-Q-010	140 TDH COOLING WRITER Recirc 6300 cpm	28,303		
		*Adjust.ed **Vendor 's	vendor price (no tax include estimate of delivery at bid	ed). time.	• • •	•
•	•	•	· · · · · · · · · · · · · · · · · · ·		•••••••••••••••••••••••••••••••••••••••	· · · ·

ρ.

Ρ

.

. .

ŀ

. .. .

•

.

.

•••••

.

•

· . • . • .

SFORD, PSACON & WAV 3 GITAIN SIRC. ENGINEERS-CONSTRUCTORS EQUIPMENT LIST

·

•

÷

j. a

·

•••

••••

. .

•••

· . · ·

٠

٤

•

.. . ••

4

.

. .

•

•

•

•

.

:

. . . .

· ·

•

ρ

CLIENT NORTHERN RESOURCES, INC.

JOB NO. UC 353-302

...**. . .**

. . .

......

*Adjusted vendor price (no tax included).. **Vendor's estimate of delivery at bid time.

ρ

. .

۰.

.

•

•

•

. . . .

•

.

.

or venuor a carmare

ENGINEERS-CONS UCTORS COMPRESSORS

١

.

•

•

•

• •

•

Р

CLIENT NORTHERN RESOURCES, Inc.

JOB NO. UC 353-302

JOB NAME	NRI COAl G	asification .		PAGE	OF.
EQUIP. NO.	INQUIRY NUMREP	DESCRIPTION	VENDOR * PRICE	DELIVERY	VENDOR
7K - 1	353-0-001	COAL GAS COMP. 1238 hp	561,171		- I-1
7K - 2	353-Q-001	GAS COMP. TO CENEX	358,138		
7K – 3	353-0-001	GAS COMP. TO CONOCO	164,436		
10K - 1	353-Q-001	PLANT AIR COMP.	30,733		1
	·				
E-5					
		· ·			
	*Adjusted **Vandor's	vendor price (no tax includ	led). + imo		

٢ 5

٠,

. .

• •

•

•

. .

. • . . .

ρ

.

. .

. . .

÷

÷

. . .

. . .

ENGINEERS-CONS. AUCTORS ENGINEERS-CONS. AUCTORS EQUIPMENT LIST

۰. ۰

. ·

•

.. .. .

: •. •.

•

•

· · ·

÷

•

ρ.

•

· · · · ·

CLIENT NORTHERN RESOURCES, Inc.

JOB NO. UC 353-302

JOB NAME	NRI COAl G	iasification	-	PAGE	OF
EQUIP. NC). Inquiry Number	DESCRIPTION	VENDOR + PRICE	** DELIVERY	VENDOR
1CR -	1 353-Q-023	CRUSHER, S-A 18" x 18"	15,116		
1SF -	l. 353-Q-020	SCREW FEEDER, 9" × 11'-4	8,244		
1F - 1	353-Q-019	DUST COLLECTOR, 1000 cfm	55,319	14-16 wks	
1F - 2	=	DUST COLLECTOR, 1000 cfm	INCL.	14-16 WKS	
1F - 3	=	DUST COLLECTOR, 4000 cfm	=	14-16 wks	
1F - 4	=	DUST COLLECTOR, 4000 cfm	2	14-16 Wks	
1VF -	1 353-Q-021	VIBRATING FEEDER	33,826	12-14 wks	
H 1VF -	2 "	VIBRATING FEEDER	INCL.	12-14 WKS	
JVF -	= 	VIBRATING PERDER	Ŧ	12-14 wks	
1VP -		VIBRATING FEEDER	8	12-14 wks	
1VF -		VIBRATING FEEDER	-	12-14 wks	
1 VF -	= 9	VIBRATINC FEEDER	=	12-14 wks	
1 VF		VIBRATING FREDER	2	12-14 wks	
1D - 1	353-0-022	STEAM COAL DRYER	377,500		
					-
	*Adjusteó	i vendor price (no tax inclu	ded).		

*Adjusted vendor price (no tax included). **Vendor's estimate of delivery at bid time. р .

• .

.

.

•

,

JFOLU, JYAUCON & R/AV-5 CHLUN SHC. ENGINEERS-CONSTAUCTORS EQUIPMENT LIST

. •

•

. .

р

CLIENT NORTHERN RESOURCES, Inc.

.

JOB NO. UC 353-302

1

-	OB NAME	NRT COAL G	asification .		AGE	OF
•	EQUIP. NO.	Inquiry Number	DESCRIPTION	VENDOR* PRICE	DELIVER ^{Å *}	VENDOR
<u>م معمد ما</u>	1C - 1	353-Q-018	CONVEYOR,	882,935	23-30 WKS	
	IC - 2	=	CONVEYOR,	Incl.	23-30 wks	
	lC - 3	=	CONVEYOR,	=	23-30 wks	
	lC - 4	=	CONVEYOR,	1	23-30 wks	
	IC - 5	ü	CONVEYOR,	=	23-30 wks	
	JC - 7	=	CONVEYOR,	2	2 3- 30 wks	
	E-7					
		******	a wandor nrice (no tax inclu	ded).		
		vor en [nv	ACDULT INT AN AN SATURATION			

**Vendor's estimate of delivery at bid time.

Э,

) .

.

. :

.

· · · · ·

ρ

:

. . .

•

•

•

; . ;

• • •

•

: ; ;

•

.

.

APPENDIX F ISBL COST ESTIMATE DETAILS

ρ

,

.

p۰

. • 1 ۰.

·· .

•

ISBL EQUIPMENT COST DETAILS

NORTHERN RESOURCES

. .

SYSTEM *	MATERIAL COST (Including Freight)	DIRECT LABOR COST	SUB-CONTRACT COST	TOTAL INSTALLED COST
100-2501 Coal Feed System	193,300	14,000	100,100	307,400
100-2502 Gasifiers w/re- fractory	260,000	38,200	202,600	500,800
100-2503 Waste Heat Re- covery	726,400	40,600		767,000
100-2504 Particulate Removal	438,900	12,500		451,400
100-2505 Char Thicken- ing System	68,200	11,800	43,900	123,900
200-2501 Char Handling System	261,700	23,300		285,000

F-2

.

-

Attached pages describes systems.

• Ŷ ÷ 1 . . • ;•

р [°]

. . .

> . •.

ŀ

.

:

; .

ρ·

SYSTEM	EQUIPMENT I	TEMS INCLUDED
· · · · · · · · · · · · · · · · · · ·	ITEM NO.	NO. REQUIRED
100-2501 Coal Feed System	BN-101 BN-102 A,B BN-103 A,B BN-104 A,B CO-101-1 A,B CO-101-2,A,B CO-103 DY-101 A,B FE-101 FE-102 A,B LV-101 A,B LV-102 A,B LV-103 A,B	1 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2
100-2502 Gasifier w/Refractory	B-102 H-103 A,B R-101,A,B	1 2 2
100-2503 Waste Heat Recovery	D-101 A,B D-102 A,B FE-104 A,B H-101 A,B H-102 A,B H-104 A,B	2 2 2 2 2 2 2
100-2504 Particulate Removal	CD-102 A,B CY-101 A,B D-103 A,B E-101 A,B FE-105 A,B P-103 1,2 S-101 A,B S-102	2 2 2 2 2 1 + 1 (spare) 2 1
100-2505 Char Thickening System	$\begin{array}{c} A-101 \\ A-102 \\ E-102 \\ E-103 \\ P-101 \\ P-101-1 \\ P-102 \\ 1,2 \\ P-104 \\ 1,2 \\ T-101 \\ T-102 \\ T-103 \end{array}$	1 1 1 2 1 + 1 (spare) 1 + 1 (spare) 1 1 1

ρ

٠.

۰. : .

: 1

4

.

.

2

ρ . .

F-3

р · ·

200-2501 Char Handling System BN-201-2 A,B 2 BN-201-2 A,B 2 CD-202 A,B 2 CD-202 A,B 2 CO-203 1 DY-201 A,B 2 FE-202 1 LV-201-2 A,B 2 LV-201-2 A,B 2 LV-202-1 A,B 2 LV-202-1 A,B 2 VB-201 1			ITEM NO.	NO. REQUIRED	·
	· · ·	200-2501 Char Handling System	BN-201-2 BN-201-2 A,B BN-202 CD-201 A,B CD-202 A,B CO-203 CO-204 DY-201 A,B FE-202 LV-201-1 A,B LV-201-2 A,B LV-202-1 A,B LV-202-2 A,B VB-201	2 2 1 2 2 1 1 2 1 2 2 2 2 2 1	
					· .
		•	. ·		
			· · ·		
	· . ·				
	• •			•	
				•	

: • . • • • F-4 . •..

·· . .

· • · ·-

2