DOE/ET/2000/ -- T/

DISCLAIMER
""ITD "I and properties an account of and summaries by an appropriate the limited Sales Experiment,
"White the distance Experiment on any approximation of a Balance any
constructions, or unders any or animals are used habber to resourciately the animals,
constructions, or understained and any approximation, and approximation,
constructions, or understained and approximation, and approximation,
and any approximation and approximation and approximation,
and any approximation and approximation and approximation,
and approximation,
and approximation and approximation and approximation and
approximation and approximation and approximation,
and approximation and approximation and approximation,
approximation,
approximation and approximation approximation,
appro

. ...

CONVERSION OF BIOMASS MATERIALS INTO GASEOUS PRODUCTS

Phase II

Interim Technical Report

for the Bench Scale Pilot Plant Studies

Donald E. Garrett Ritchie D. Mikesell Dinh Co Hoang

.

Garrett Energy Research & Engineering Co., Inc. 911 Bryant Place Ojai, California 93023

Prepared for the

DEPARTMENT OF ENERGY

Division of Solar Energy

Under Contract <u>EY-Z6-C-03-1241</u> ACO3-70ET 2000/ August, 1978

TABLE OF CONTENTS

۱ . .

•	
INTRODUCTION	1
EXPERIMENTAL DATA	2
. Laboratory Studies	2
Vacuum Drying	10
Direct Contact Drying	13
Pyrolysis Experiments	24
Water Gas Reaction	44
Combustion	58
Pilot Plant Operating Characteristics	60
DATA ANALYSIS	62
Laboratory Studies	62
Vacuum Drying	65
Direct Contact Drying	67
Pyrolysis	80
Water Gas Reaction	86
CONSIDERATION OF AN ENTRAINED BED REACTOR FOR THE STEAM-CHAR REACTION	93
General	93
Water Gas Kinetics	108
Material Balances for Total Gasification in an Entrained Bed Reactor	112
Heat Balances for Total Gasification in an Entrained Bed Reactor	121
Combustion	130

Р

•

INTRODUCTION

In July of 1977 the Garrett Energy Research and Engineering Co., Inc. (GERE) published the final technical report for Phase I, or a brief exploratory study of the thermal conversion of biomass materials into gaseous products. A bench scale pilot plant that simulated individual hearths of a multiple hearth reactor was constructed and employed in the program. In this manner the needed processing steps of drying, pyrolysis, steam-char reaction, and combustion were all individually studied. An economic estimate was then made of a commercial processing plant using this data, which appeared to be quite promising.

Based upon these favorable results a continuation of the program was authorized, and a process development unit (PDU) constructed. While it was under construction and being installed work continued on the operation of the bench scale pilot plant. Some runs were made on all of the processing steps, but emphasis was given to the pyrolysis and drying operations, which are the most critical. This work has now been completed and the PDU is put into operation. Consequently, the results from these tests have been summarized and analyzed, and this data and its correlations presented in the following report. Only the new, Phase II work is considered, and for a more comprehensive review of the entire bench scale program, the Phase I final report must also be consulted. In the Phase II final report all of the bench scale pilot plant work will be combined.

EXPERIMENTAL DATA

÷ .

р

LABORATORY STUDIES

Isothermal Drying of Manure in a Laboratory Oven

A beaker was filled with moist manure and suspended in an oven with a wire attached to an external balance. The oven temperature was held constant throughout the experiment. The gross weight was recorded with time until all the moisture had been removed from the sample. Nine experiments were conducted in the first series, and two in the second (Table 1):

Expt. No.	Avg. Temp.	Comment
1	195.7 ⁰ C	Burned.
2	141.6 ⁰	Did not come to constant weight.
3	149.3 ⁰	Too much draft from open door.
4	150.8 ⁰	0.K.
5	156.5 ⁰	0.K.
6	198 ⁰	Did not come to constant weight.
7	180.3 ⁰	0.K.
8	122.9 ⁰	0.K.
9	100.8 ⁰	0.K.
10	100 ⁰	Apparent slow rate.
11	130 ⁰	Apparent slow rate,

Table 1

Laboratory Isothermal Drying of Manure

Run 9, Average Temperature 100.8°C

-

Drying Time (min)	Weight (gram)	Temperature (^O C)	Drying Time (min)	Weight (gram)	Temperature (^O C)
0	211.5	100	270	181.9	100
15	210.8	102	285	180.8	101.5
30	209.2	100	300	179.7	102
45	207.0	98	315	179.0	103
60	204.7	100	330	177.9	104
75	202.4	99	345	177.1	102.5
90	200.3	99.5	360	176.4	102
105	198.4	100	375	175.;	101
120	196.2	100	390	175.2	101 -
135	194.4	100.5	405	174.5	101.5
150	192.5	99.5	420	173.9	100
165	191.1	99.5	435	173.6	103
180	189.4	100.5	450	173.2	101
195	188.0	101.5	465	172.7	103
210	186.6	100.5	480	172.5	100.5
225	185.3	100	495	172.3	101
240	184.1	100	510	172.3	100
255	182.9	101	525	172.3	103.5

Weight of beaker & copper wire	140.8g
Weight of beaker & copper wire & Manure	173.8g
Volume of Manure	80 m]
Depth (cm)	1.6 cm
Weight of beaker & copper wire & H ₂ O & Manure	213.6 g
Volume of Manure	125 ml
Depth (cm)	2.6 - 3.4 cm

Table 1 (Cont.)

Run 8, Average Temperature 122.9°C

...[:]

Drying Time	Weight	Temperature
(min)	(gram)	(°C)
0	211.1	120
15	210.4	121.5
30	208.5	121
45	204.4	121
60	200.5	122
75	197.1	120.5
90	194	121
105	191.5	120.5
120	189	122.0
135	186.5	120.0
150	184.8	120.5
165	183	120.5
180	181	121.0
195	179.5	120.5
210	178.5	122
225	177.1	124
240	175.9	124.5
255	175.0	123.5
270	173.9	126.0
285	173.4	125.5
300	172.8	127.0
315	172.1	126.5
330	171.8	125.5
345	171.6	127.5
360	171.4	126.5
375	171.4	126.5
390	171.4	125.0
Weight of beaker & copp	er wire	140.8g
Weight of beaker & copp	er wire & Manure	173.9g
Volume of Manure		90 ml
Depth (cm)		1.9 cm
Weight of beaker & copp	er wire & H ₂ O & Manure	211.69
Volume of manure		110 ml
Depth (cm)		2.5 cm

4

••••••

.

·...

ρ

Table 1 (Conc.)

· .

Laboratory Isothermal Drying of Manure

Run 4, Average Temperature 150.8°C

÷

.

.

Drying Time	Weight	Temperature
(min)	(gram)	(⁰ C)
0	213.1	142
14	211.4	143
28	206.7	150
40	203.0	149
50	200.6	147.5
70	196.3	151.0
81	194.1	156.0
90	192.6	149.5
105	190.3	149.5
120	188.4	152
135	186.6	149
154	184.4	151
174	182.9	152
200	181.3	150
210	180.9	153
240	179.6	150
258	179.0	155
270	178.8	153
300	178.8	153

	Weight (gram)
Beaker & copper wire	141.5
Beaker & copper wire & Manure (24.4% moisture content)	191.0
Water added	22.1
Weight when dry	178.8

.Table 1 (Cont.)

Run 5, Average Temperature 156.5⁰C

٠.

21 3

Drying Time	Weight	Ten	perature
(min)	(gram)		(°C)
0	241.4		148
20	239.3		162
35	235.4		142
50	228.4		153
60	223.3		152
75	217.1	••••	150
98	206.2		158
105	203.7		154
120	198.0		152
135	193.5		157
150	189.5		154
165	185.5		152.5
180	182.5		156
195	180		155
205	178.5		156
210	177.5		159
225	176.0		159
240	174.0		160
257	171.7		156
270	170.7		162
285	169.6		159
301	168.9		159
316	168.4		156
330	168.4	Weicht (oram)	152
			;
Beaker & copper w	ire	141.7	
Beaker & copper w Manure (24.4%	ire & moisture content)	174.4	
Water added		67.9	
Weight when dry		168.4	
		•	

. .

Table 1 (Cont.)

•

.

.

Run 7,	Average	Temperature	180.3 ⁰ C

.

Drying Time	Weight	Temperature
(min)	(gram)	(3 ⁰)
0	212.3	180
10	211.0	182.5
20	205.2	182.0
30	199.9	182.5
40	194.7	178.0
50	190.7	181.5
60	187.1	179.0
70	184.1	178.5
80	181.5	178.5
90	179.3	180.0
100	177.3	180
110	176.4	181
120	174.6	179.5
130	173.4	181.5
140	172.5	182.0
150	171.8	181.0
160	171.3	178.0

Manure started to burn.

Weight of beaker & copper wire (empty)	140.5g
Weight of beaker & copper wire & Manure (30g) (dry)	173.6g
Volume of Manure (dry)	80 ml
Depth (cm) in beaker	1.8 cm
Diameter (cm) in beaker	7.5 cm
Weight of beaker & copper wire & Manure + H ₂ O (30g)	212 . 3g
Volume of Manure after adding H ₂ O	100 ml
Depth (cm) in beaker	2.8 cm
Diamater (cm) in beaker	7.5 cm

.

		ladie i	(Cont.)		
<u>Run 10</u> Temper	<u>)</u> rature	100 ⁰ C	(Second	Series of Isothermal Dryin	g Tests)
% Mois	sture	35.37%			
Inches	s of Vacuum	0			
Time '	in Run (min)	Weight (g)			
	0	318.1			
:	30	317.8			
(60	317.7			
9	90	317.4		Empty Bottle	199.6g
11	20	317.2		Empty Bottle & Manure	248.5g
1!	50	317.0		Enting System	
1/	80 .	316.8		Entire System	310. Ig
2	10	316.5		Manure	48.9g
2/	40	316,4		Water Removed	17.3g
2	70	316.3			-
3(00	316.0		(Note:	
3	30	315.8		Diameter of jar used	5.5 cm
3/	60	315.6		Approx, beight of manure	5.5 cm
46	80	300.8		opprove height of manure	$= 5.5 \zeta_{\rm H}$
					ior cach runy
Run 11	_				
<u>Run 11</u> Temper	ature	130 ⁰ C			
<u>Run 11</u> Temper % Mois	- ature ture	130 ⁰ C 41.9%			
<u>Run 11</u> Temper % Mois Inches	ature ture of Vacuum	130 ⁰ C 41.9% 0			
<u>Run 11</u> Temper % Mois Inches Time i	ature ture of Vacuum n Run (min)	130 ⁰ C 41.9% 0 Weight (g)			
<u>Run 11</u> Temper % Mois Inches Time i	ature ture of Vacuum in Run (min) O	130 ⁰ C 41.9% 0 Weight (g) 317.5			
<u>Run 11</u> Temper % Mois Inches Time i 3	ature ture of Vacuum in Run (min) O	130 ⁰ C 41.9% 0 Weight (g) 317.5 315.3			
<u>Run 11</u> Temper % Mois Inches Time i 3 6	ature ture of Vacuum n Run (min) O 30	130 ⁰ C 41.9% 0 Weighť (g) 317.5 315.3 312.7		Empty Bottle	19 9 3n
<u>Run 11</u> Temper % Mois Inches Time i 3 6 9	ature ture of Vacuum in Run (min) 0 30 50	130 ⁰ C 41.9% 0 Weight (g) 317.5 315.3 312.7 309.5		Empty Bottle	199.3g
<u>Run 11</u> Temper % Mois Inches Time i 3 6 9 12	ature ture of Vacuum n Run (min) 0 30 30 30 30	130 ⁰ C 41.9% 0 Weight (g) 317.5 315.3 312.7 309.5 308.5		Empty Bottle Empty Bottle & Manure	199.3 g 248.9g
<u>Run 11</u> Temper % Mois Inches Time i 3 6 9 12 15	ature ture of Vacuum n Run (min) 0 0 0 0 0 0 0 0 0	130 ⁰ C 41.9% 0 Weighť (g) 317.5 315.3 312.7 309.5 308.5 306.5		Empty Bottle Empty Bottle & Manure Entire System	199.3g 248.9g 317.5g
<u>Run 11</u> Temper % Mois Inches Time i 3 6 9 12 15 18	ature ture of Vacuum n Run (min) 0 30 30 30 30 30 30 30 30 30 30 30 30 3	130 ⁰ C 41.9% 0 Weighť (g) 317.5 315.3 312.7 309.5 308.5 306.5 305.3		Empty Bottle Empty Bottle & Manure Entire System Manure	199.3g 248.9g 317.5g 49.6g
Run 11 Temper % Mois Inches Time i 3 6 9 12 15 18 21	ature ture of Vacuum n Run (min) 0 30 30 30 30 30 30 30 30 30 30 30 30 3	130 ⁰ C 41.9% 0 Weighť (g) 317.5 315.3 312.7 309.5 308.5 306.5 305.3 304.3		Empty Bottle Empty Bottle & Manure Entire System Manure	199.3g 248.9g 317.5g 49.6g
Run 11 Temper % Mois Inches Time i 3 6 9 12 15 18 21 24	ature ture of Vacuum in Run (min) 0 30 30 30 30 30 30 30 30 30 30 30 30 3	130 ⁰ C 41.9% 0 Weight (g) 317.5 315.3 312.7 309.5 308.5 306.5 305.3 304.3 303.3		Empty Bottle Empty Bottle & Manure Entire System Manure Water Removed	199.3g 248.9g 317.5g 49.6g 20.8
Run 11 Temper % Mois Inches Time i 3 6 9 12 15 18 21 24 27	ature of Vacuum n Run (min) 0 30 30 30 30 30 30 30 30 30 30 30 30 3	130 ⁰ C 41.9% 0 Weighť (g) 317.5 315.3 312.7 309.5 308.5 306.5 305.3 304.3 303.3 302.6		Empty Bottle Empty Bottle & Manure Entire System Manure Water Removed	199.3g 248.9g 317.5g 49.6g 20.8
Run 11 Temper % Mois Inches Time i 3 6 9 12 15 18 21 24 27 32	ature ture of Vacuum in Run (min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130 ⁰ C 41.9% 0 Weight (g) 317.5 315.3 312.7 309.5 308.5 306.5 305.3 304.3 303.3 302.6 301.6		Empty Bottle Empty Bottle & Manure Entire System Manure Water Removed	199.3g 248.9g 317.5g 49.6g 20.8
Run 11 Temper % Mois Inches Time i 3 6 9 12 15 18 21 24 27 32 39	ature of Vacuum in Run (min) 0 30 30 30 30 30 30 30 30 30 30 30 30 3	130 ⁰ C 41.9% 0 Weight (g) 317.5 315.3 312.7 309.5 308.5 306.5 305.3 304.3 304.3 303.3 302.6 301.6 299.8		Empty Bottle Empty Bottle & Manure Entire System Manure Water Removed	199.3g 248.9g 317.5g 49.6g 20.8

*** * *** *** *

ρ

Volatiles in Manure at Various Temperatures

A sample of the manure currently used in our pilot plant was subjected to pyrolysis at increasing temperatures. ρ

	т	Volatiles	Amount Removed, %*
•	500 ⁰ C	37.18 wt %	85.3
	600	41.03	94.1
	700	41.03	94.1
	800	42.31	97.1
	1000	43.59	100.0

Based upon this data, 600[°]C appears to be high enough for fairly complete volatiles removal in pyrolysis. Higher temperatures, however, will give slightly higher yields and promote the water gas reaction.

*based upon 1000⁰C

VACUUM DRYING

(

The purpose of the first experiments was to measure the heat transfer coefficients for the screw feeder. No vacuum was applied to the inner chamber, and the moisture content of the product was not measured (it was very small). Steam at one atmosphere pressure was condensed in the jacket. The holdup volume and the condensate flow rate were measured. The inlet and outlet solids temperatures were also measured, along with the solids flow rate and moisture content. The rotation rate of the screw was varied to provide the experimental data given in Table 2. Laboratory vacuum drying runs were next made, and are shown in Table 3.

10

ρ

lable	2 2
-------	-----

Screw Feeder as a Heat Exchanger

Experimental

Run No.	Feed Moisture, Wt %	Speed, « RPM	Feed F Rate, gm/hr	Temp	Ambient Temp., C	Holdup gm	, Steam Pressure, mm Hg abs.	Conde Flow gm/h	ensate Rate,
12-09-A	37.34	١	2724	77.	7.	1168	774	608	
12-09-В	37.34	2	4848	81.5	11.5	1210	774	592	
12-09-C	37.34	3	7376	76.	12.	1152	765	592	
12-09-D	37.34	0			12.		793	336	To determine
12-12-A	50.0	1	1610	69.	10.	1351	780	56 0	Prod. temp.
12-12-B	50.0	2	3742	77.	12.	1713	777	592	(69 ⁰) in doub
12-12-0	50.0	3	4504	75.	13.	1132	776	576	50 wt% manure
<u>Calculate</u> Run No.	d Steam F Temp., T OC	tesidend ime,τ _ι min	Heat te Trans Rate cal/mi	t sf. (ΔT) s, ο _C	lm, ^{UA,} cal/mir	1 ⁰ C ca	U, 1/min cm ²⁰	<u>ט-\</u> דת א C Dime	ATR <u>M</u> Ensionless
12-09-A	100.5	25.73	1744	50.6	34.4 1	I 1.	007(10 ⁻²)	1.22	25 2.57
12-09-B	100.5	14.98	3104	45.3	68.47	72.	003	1.8	59 3.00
12-09-0	100.2	9.37	4318	49.4	9 87.2	52.	553	1.8	74 2.81
12-09-D	101.2								
12-12-A	100.7	50.35	1058	56.1	2 18.8	5 0 .	552	0.5	01 5.04
12-12-B	100.6	27.47	2708	49.1	4 55.11	ו ו.	612	1.0	80 5.49
12-12-0	100.6	15.08	3109	50.4	61.69) 1.	805	0.8	96 4.52
A = 3418	cm ² . N =	10 thr	eads.						
<u>Manure Pr</u>	operties (1	i):		٠					
37.34 wt	% moisture	2				50.0	wt % moist	ure	
p = 32	2.30 lbs/f1	t ³ bulk				ρ	= 44.62 1b	s/ft ³	bul k

 $C_{p} = 0.5488 \text{ BTU/1b}^{0}\text{F}$ $k = .0774 \text{ BTU/hr ft}^{0}\text{F} = 1.922(10^{-2})\text{cal/min cm}^{0}\text{C}$ $a = 6.761(10^{-2})\text{cm}^{2}/\text{min}$ $C_{p} = 0.6681 \text{ BTU/1b}^{0}\text{F}$ $k = .1619 \text{ BTU/hr ft}^{0}\text{F} = 4.021(10^{-2}) \text{ cal/min cm}^{0}\text{C}$ $\alpha = 8.409(10^{-2}) \text{ cm}^{2}/\text{min}$

⁽¹⁾ Houkom, Butchbaker, Brusewitz, "Effect of Moisture Content on Thermal Diffusivity of Beef Manure," Trans. ASAE, -, - (1974), pp. 973-977.

Isothermal Vac	uum Drying of Manure	in the Laboratory Oven	
Temperature	130 ⁰ C		
% Moisture	37.0%	,	
Inches of Vacuum	15		
Time in Run (min)	Weight (g)	Time in Run (min)	Weight (g)
0	351.5	165	338.6
30	348.8	180	338.1
45	347.0	195	337.5
60	344,7	210	337.5
75	343.7	225	
90	343.2	240	337.0
105	342.2	. 300	336.0
120	341.1	360	335.0
135	340.0	1080	333.0
150	339.1		
Empty Bottle			199.5g
Empty Bottle & Manur	e .		249.5g
Entire System			351.5g
Manure			50.0g
Water Removed			18.5g
Temperature	100 ⁰ C		
% Moisture	38.0%		
Inches of Vacuum	15		
Time in Run (min)	Weight (g)	Time in Run (min) '	Weight (g)
0	350.5	210	345.4
30	350.5	270	344.6
60	349.6	330	344.4
90	349.0	420	342.5
120	347.4	480	341.5
150	346.3	1200	341.0
180	345.6		•
Empty Bottle			199.5g
Empty Bottle & Manur	e		249.5g
Entire System			350.5g
Manure			50.0g
Water Removed	12		19.0g

Table 3

يستعصم متعاقفة المحاجات المراجع

•

DIRECT CONTACT DRYING

In the first set of pilot plant experiments (Table 4) runs 10-21-A through 10-28-B, the residence times were quite snort, so the rabble tooth angle was reduced. This increased the residence times, but it also resulted in wide bands of manure between the teeth (Runs 11-03-E, through $11-03-E_3$). The holdup could not be measured except by increasing the rabble tooth angle, so new rabble teeth and arms were fabricated. The teeth were 3 in. wide and could be spaced 1 in. apart on the arms. For the first operation they were spaced 2 in. apart alternately, i.e. 1, 3, 5, 7 on one arm and 2, 4, 6, 8 on the other (Runs 12-13 through 12-14-B). For run 12-13, the manure residence time was nearly 30 min. When the teeth were spaced 1 in. apart, the holdup was the same for all rabble tooth angles. The clearances in this case were so small that the manure and rabble teeth clung together as a solid bedy.

D

On the derived data sheet, Table 5, Q is based on the solids inlet and outlet temperatures and moisture contents. This is "delivered" heat, unaffected by the heat losses. The log mean ΔT used was:

$$(\Delta T)_{1m} = \frac{\{(T_G)_i - (T_S)_i\} - \{(T_G)_i - (T_S)_i\}}{\ln (T_G)_i - (T_S)_o}$$

Note that, while expedient, the use of this $(\Delta T)_{lm}$ is incorrect because the solids and gas flow are not countercurrent. However, using this $(\Delta T)_{lm}$, UA was calculated for each run. If (UA) were based on a correct $(\Delta T)_{lm}$, then it ought to depend only on the gas velocity, i.e. it should be the same for all the runs. For these particular experiments where the gas holes in the base-

Table 4

Direct Contact Drying - Experimental Data

.

Dun Ma	Product Flow	Product	Feed	Holdup,	Holdup	Gast	Inlet Flue Gas Dry Bul	Inlet Flue b Gas	Jacket	0 Ambient	utlet i Gas	Flue S	Dwe
AUR NO.	кате, gm/hr	wt. fract.	moisture, wt. fract,	, gn	Moisture, wt. fract.	Flow, SCFM	Тетр., ^О С	Humidity, gm H ₂ 0/ gm dry ² oae	Темр., ^О С	Temp.,Dry ^O C	Bulb, ^o C	Wet Bulb, ^O C	Te
10-21-A	3500	.192	. 385	255	.190	12.2	207	.039	103	20	93	52.5	
10-21-B	3785	.252	.385	325	.236	12.2	149	-026	75.8	23	69	۵7	į
10-25-A	3505	.221	.385	182	.191	12.2	198	.049	94	25	86.9	515	
10-25-8	4012	.253	. 385	222	.253	12.2	151	.030	78.3	29	71.2	47.5	
10-26-A	3969	.243	. 385	106	.216	12.2	198.6	.058	88.6	19	83.8	51	
10-26-B	4086	.279	. 385	105	.264	12.2	149.8	.030	81.2	23	74	47	
10-27-A	3796	.247	. 373	6B	.234	12.2	199.4	.054	89.2	15.5	83	51	
10-27-B	4185	.269	. 373	57	.281	12.2	151.3	.026	76.4	19	70.5	46	
10-28-A	7376	.239	. 334	973 [·]	.247	12.2	200.4	.041	80	21	73.4	51	
10-22-B	10150	.282	. 334	1120	.255	12.2	152	.025	71	24	60.6	45	
11-01-A	10200	.3139	. 3735	98	. 3228	12.2	201	.044	93	21.5	79.4	51.0	
11-07-B	1045B	.3611	. 3735	147	.3454	12.2	148	.024	76	24.5	67.4	45.0	
11-02-B	10266	. 3376	. 3735	387	. 3344	12.2	151	.030	66	19.0	59.3	44.5	
11-03-E ₁	9572	.3433	.3530	(1294)	.2948	12.2	200	.044	81	24.0	69.2	50 5	
11-03-E2	10135	.2728	.3530	(605)	.2665	12.2	199.5	.049	90	78.5	76.4	57 5	
11-03-E ₃	8959	.2380	. 3540	(1842)	.289	12.2	201.8	.0535	84	18.0	68.4	57.0	
12-13	3331	.2804	. 384	1390	.1998	12.2	144	.025	55	14	75	AD	
12-14-A	6895	.3364	. 384	2055	.2933	12.2	148	.0325	55	17	59	45 E	
12-14-8	7382	.3526	.3B4	750	.2148	12.2	150	.025	55	19	67	46	

In Runs 10-21-A through 11-02-B, the holdup measurements are at best estimates, because some manure between the rabble teeth could not be swept out, nor could some manure between the rabble reeth and the warped baseplate. In Runs 11-03-E through 11-03-E, the holdups were measured correctly, but after the series of experiments was completed. In Runs 12-13 through 12-14-B, holdup was measured correctly. The inlet flue gas was measured by weighing the moisture absorbed from a measured volume of gas. In Runs 10-21-A through 11-03-E, the two rabble arms were identical. In Runs 12-13 through 12-14-B, the rabble teeth were staggered--1, 3, 5, 7 on one arm and 2, 4, 6, 8 on the other.

.

.

Jdup

ts an

tween but nlet -E₂, n one

÷

•

. ·· · .

.

. . .

.

Table 4

ldup	Gas Gas	let Flue Dry Bul	Inlet Flue D Gas	Jacket	0 Ambient	utlet Gas	Flue	Ra Duo duo ta 7	bble	Rabble	Rabble	Shaft	Contacts
sture,	Flow,	Temp.,	Humidity,	Temp.,	Temp.,Ory	Bulb,	Wet Bulb.	Temp. A	lootn Ingle	Spacing,	Width,	Rate,	Minute,
fract.	SCFM	υC	gm dry gas	Ъ	°C	°C	°c	^O C de	egrees	inches	inches	RPM	CPM
190	12.2	207	.039	103	20	93	52.5	63	45	2 125	2.0	2	٨
236	12.2	149	.026	75.8	23	69	47	51	45	2,125	2.0	2	4
191	12.2	198	.049	94	25	86.9	51.5	63	45	2,125	2.0	- 3	6
253	12.2	151	.030	78.3	29	71.2	47.5	56	45	2,125	2.0	3	6
216	12.2	198.6	.058	88.6	19	83.8	51	56	45	2,125	2.0	5	10
264	12.2	149.8	.030	81.2	23	74	47	51	45	2.125	2.0	5	10
234	12.2	199.4	.054	89.2	15.5	83	51	53	45	2.125	2.0	12	24
281	12.2	151.3	.026	76.4	19	70.5	46	50	45	2.125	2.0	12	24
247	12.2	200.4	.041	80	21	73.4	51	56	45	2.125	2.0	2	4
255	12.2	152	.025	71	24	60.6	45	48	45	2,125	2.0	2	4
3228	12.2	201	.044	93	21.5	79.4	51.0	57 7	45	2.125	2.0	12	24
3454	12.2	148	.024	76	24.5	67.4	45.0	50.7	45	2,125	2.0	12	24
3344	12.2	151	.030	66	19.0	59.3	44.5	47 3	45	2.125	2.0	5	10
2948	12.2	200	.044	81	24.0	69.2	50.5	55.0	11.2	5 2.125	2.0	12	24
2665	12.2	199.5	.049	90	28.5	76.4	51.5	56 5	22 5	2 125	2.0	12	24
289	12.2	201.8	.0535	84	18.0	68.4	52.0	5010	E	2 125	2.0	12	24
1998	12.2	144	.025	55	14	75	48	58.0	5	1,000	2.0	1	
2933	12.2	148	.0325	55	17	59	45.5	47	5	1.000	3.0	י 1	,
2148	12.2	150	.025	55	19	67	46	47 46	5	1.000	3.0	5	5

والمحمد ممتنيا مرتبي بالمحمد فللمحاج والمراجع والمحمد والمراجع والمراجع والمحمد والمحمد والمحمد والمحمد والمحم

, *י*

ts are at best estimates, because some manure between the rabble tween the rabble reeth and the warped baseplate. In Runs 11-03-E but after the series of experiments was completed. In Runs 12-13 nlet flue gas was measured by weighing the moisture absorbed from a -E₃, the two rabble arms were identical. In Runs 12-13 through a one arm and 2, 4, 6, 8 on the other.

an an ann ann an an an an aire seallann an an Ann an An

Table 5

t

Direct Contact Drying - Derived Data

q Heat Flow, $k = 1.922(10^{-2}) \text{ cal/min cm }^{0}\text{C}$ cal/min 15,667 12,432 12,980 12,288 12,087 14,280 11,484 11,469 17,543 8,303 6,870 7,750 6,106 20,354 7,474 21,447 14,743 13,987 26,401 cal/gm 567.8 567.8 565.8 568.4 569.6 568.0 565.6 564.8 563.9 570.8 561.] 565.1 570.2 570.2 561.1 565.1 570.1 565.1 564.1 Š mg/mg 3423 2873 3050 .2390 .2669 .2269 .1874 .0310 0865 0228 3884 .1087 .1387 .1705 1165 2891 2357 2337 0788 ΔMS 37.5 36.2 26.2 28.3 31.0 28.0 40.0 ം 24 51 S 83 38 37 3 35 33 83 27 33 39 27 $\alpha = 6.761(10^{-2}) \text{ cm}^2/\text{min}$ Out, mg/mg 2376 3369 .3870 2837 3210 .3280 .3680 3928 4575 5652 5228 3123 5069 3387 3141 5097 3897 5446 3751 Solids Moisture gm/gm .6260 6260 .6260 6260 6260 5949 5949 5015 5015 5456 5480 6260 5962 5962 5962 5456 6234 6234 6234 In, 57.7 47.3 55.0 56.5 58.0 50.7 Temp. 23.98 പ 83 5 63 8 20 ខ្ល 20 56 8 47 5 4 9 Solids ti 15.5 21.5 24.5 19.0 24.0 28.5 18.0 ₿∽ In ပ္ပ 19 20 23 29 33 24 25 6 21 14 6 17 Soïids Residence Time, T_R $(c_p)_S = 0.55$ cal/gm ^OC 3.936 2.520 2.480 1.256 3.541 1.135 0.823 0.588 min 5.960 4.932 0.390 0.552 1.505 6.436 18.844 27.842 19.044 3.650 7.394 Outlet Gas Dry Solids Humidity, Flow Rate, gm/min 58.33 63.08 66.15 68.10 69.75 122.93 58.42 66.87 63.27 169.17 39.95 76.26 79.65 170.0 174.3 59.5 168.9 149.3 171.1 gm H20/ gm dry gas .077 .059 .076 .062 .073 .058 .075 .079 .056 ..057 .077 .054 .054 .079 .080 .088 .063 ..061 .060 $= 2498 \text{ cm}^2$ 11-03-E₃ 11-03-E2 11-03-E₁ 10-25-8 10-26-A 10-27-A 10-27-B 10-28-A 10-28-B ī1-01-A 11-02-B **J0-21-B** 10-25-A 10-26-B 11-01-B 12-14-A 10-21-A 12-14-8 Run No. 12-13 4

15

ρ

.....

Gas	Temp.	(СРМ)	(СРМ)т _R	Tooth	A Tooth Width.	S Tooth Spacing.	Holdup Volume.	- ô Mean Thickness.	۵T ₁	^{۵۲} 2
0C	°C	(min) ⁻¹		degrees	inches	inches	cm ³	Cm	°C	ос
207	93	4	17.48	45	2	2.125	638	0.255	144	73
149	69	4	20.61	45	2	2.125	813	0.325	98	45
100	86.9	6	18.70	45	2	2.125	455	0.182	135	61.9
100	2 17	6	19.92	45	2	2.125	、555	0.222	95	42.2
100 6	22 8	10	16.02	45	2	2.125	265	0.106	142.6	64.8
170.0	74	10	15.42	45	2	2.125	263	0.105	98.8	51.0
100 A	93	24	25.80	45	2	2.125	170	0.068	146.4	67.5
161 7	, 00 10 70 5	24	19.61	45	2	2.125	143	0.057	101.3	51.5
200 1	i 73 A	4	31.66	45	2	2.125	2433	0.974	144.4	52.4
200.4	cn 6	Л	26.48	45	2	2.125	2800	1.121	104	36.6
102	70.0	7 24	13.82	45	2	2 125	228	D.091	143.3	57.9
149	67 A	24	20.23	45	2	2.125	342	0.137	97.3	42.9
161	50 3	10	22.62	45	2	2.125	900	0.360	103.7	40.3
200	50 2	24	327.6	11.25	5 2	2.125	3009	1.205	145.0	45.2
200	09.L E 76 A	21	154.6	22.5	2	2.125	1407	0.563	143.0	47.9
199.	5 /0.4		15410	5	2	2,125	4284	1.715	143.8	50.4
201.	8 68.4	24	432.2	r	2	1 000	3475	1,391	97.0	61.0
144	75	(27.83	5 5	2	1.000	5138	2.057	101.0	42.0
148 150	59 67	ו 5	36.95	5	3	1.000	1875	0.751	104.0	48.0

•

Table 5 (Cont.)

•

.

ρ

s i

								VTOT	
S Tooth	Holdup	δ Mean Thickness	۵T ₁	ΔT ₂	(at) _{e_}	UA,	<u>Uð</u> <u>k</u>	5	<u>U.Υπατ_R k</u>
, spacing, inches	cm ³	CM	°C	°C	°c	cal/min ^O C			
0 105	620	0 255	٦44	73	104.51	149.85	0.796	3.401	2.707
2.125	030	0.205	00	45	68.75	180.83	1.224	2.813	3.443
2.125	813	0.325	105	-10 	93 75	128,93	0.489	4.020	1.966
2.125	455	0.182	135	12 2	65.07	199.48	0.922	3.269	3.014
2.125	、 555 065	0.222	90 142 6	42.L 64 8	98.64	144.77	0.320	4.873	1.559
2.125	205	0.100	98.8	51.0	72.28	158.88	0.347	4.676	1.623
2,125	203	0.068	146.4	67.5	101.91	120.58	0.171	6.149	1.051
2.125	143	0.057	101.3	51.5	90.83	125.27	0.150	6.200	0.930
2,125	2433	0.974	144.4	52.4	90.76	193.29	3.921	1,155	4.529
2,125	2800	1.121	104	36.6	64.54	228.43	5.334	0.913	4.870
2 125	228	0.091	143.3	57.9	94.24	215.98	0.409	3.163	1.294
2.125	342	0.137	97.3	42.9	66.43	124.99	0.357	2.499	0.892
2 125	900	0.360	103.7	40.3	67.08	208.51	1.563	1.571	2.455
2 125	3009	1.205	145.0	45.2	85.62	87.29	2.191	1.413	3.096
2.125	1407	0.563	143.0	47.9	86.95	246.66	2.892	2.077	6.007
2.125	4284	1.715	143.8	50.4	89.09	296.34	10.585	1.167	12.353
1.000	3475	1.391	97.0	61.0	77.61	88.52	2.565	1.748	4.484
1.000	5138	2.057	101.0	42.0	67.24	115.26	4.938	1 660	4.629
1.000	1875	0.751	104.0	48.0	72.43	84.30	1.313	1.005	51641

ан 1

plate are spaced so far apart, increasing the solids flow rate should cause (UA) to increase.

A preliminary mass and heat balance for a few of the runs gives the following data:

Run	Evaporatio	on Rate	Enthalpy Tra	nsfer Rate
	From Solids	To Gas	To Solids	From Gas
	gm/min	gm/min	cal/min	cal/min
12-13	9.34	16.99	1144	-2631
12-14-A	8.88	12.74	2330	2198
12-14-B	6.28	15.65	2294	- 84

Drying of Manure in a Fixed Bed With Hot Gas

Two sets of experiments were next made on fixed-bed drying. The first are described in Table 6, and the second set in Table 7. The latter were similar except that the apparatus was thermally insulated and the outlet gas temperature, the inlet gas temperature, and the solids temperature were measured as functions of time.

	• •	-	•				
Gas Temp.	Gas Flow	Sample Mass	Sample Moisture	Bed Temp.	Weight Loss	Rate	Rate Eqn. (2)
٥C	SCFM	gm	wt. fract.	0 ⁰ C	gm/min	(min) ⁻¹	(mîn) ⁻¹
100	.5325	140.1	. 3 85	30	4.2/10	.00811	
98	.5325	140.4	. 385	30	4.1/10	.00789	
וסו	.5325	140.2	. 385 Avg	<u>30</u> . 30	8.3/20 Avg.	<u>.00812</u> .00812	.00975
152	.5325	140.2	. 385	34	5.7/10	.01116	
154	.5325	139.9	.385	35	6.3/10	.01244	
148	.5325	140.1	.385	34	12.4/20	.01305	
			Avg	. 34.67	Avg.	.01222	.01047
98	.7738	139.4	.380	29	5.0/10	.00991	
98	.7738	139.9	.380	29	5.3/10	.01050	
101	.7738	739.9	.380 . Avg.	<u>30</u> 29.67	11.6/20 Avg.	<u>.01231</u> .01091	.01311

Direct Contact Drying of Manure in a Fixed Bed

The bed was 13.6 cm diam. x 3 cm deep. Hot flue gas was blown through it at about the same mass flux as in the pilot plant. Oven drying is controlled by moisture diffusion, and the coefficient, $\exp\left(-\frac{B}{T}\right)$ is associated with the moisture diffusivity.⁽²⁾ When drying is accomplished by blowing hot gas through the bed, however, the heat and moisture are transferred by the turbulent action of the gas. In this case the drying rate should depend on $D_V^{0.56} {}^{(3)}_{and}$ on $V^{0.3}$. First note that 0.56(2474) = 1385 and that: $\frac{.01091}{.00812} = \left(\frac{.7738}{.5325}\right)^n$ n = .7903, which is close to the anticipated 0.8. Consequently a relationship can be established:

$$\frac{\partial \ln M}{\partial \tau} = -1.27 \left(\frac{V}{150.8} \right)^{0.8} \exp \left(-\frac{1385}{T_S} \right) \quad (min)^{-1}$$
(1)

where V is gas velocity, cm/min. It represents this data to within about 20%.

< · ·

⁽²⁾ Reid, Prausnitz, Sherwood, <u>The Properties of Gases and Liquids</u>, McGraw-Hill, New York (1977), p. 587.

⁽³⁾Brown, <u>Unit Uperations</u>, John Wiley & Sons, New York (1950), p. 519

			Fixed B	ed Direct Contact	Drying of	Manure			
Sample	Sample	Gas	Bed	Bed	Sanple	Sample	Gas	Bed	Bed
Weight	Moisture	F1 ow	Depth	Diam.	Weight	Moisture	Flow	Depth	Diam.
139.4 gm	48.0 wt %	.7738 SCFM	3.0 ст	13.6 cm	139.7 gm	48.0 wt %	.7738 SCFM	3.0 cm	13.6 сы
۲	(T _G);	1 _G	T _S		T	(T _G) _i	T _G	T _S	
0	ı	1	1		a	ι	1	1	
l min	3 <mark>0</mark> 76	36°C	34°C		ไ min	104 ⁰ C	22 ⁰ C	30 ⁰ C	
73	67	34	33		3	103	26	33	
m	67	33	32		3	102	29	34	
4	96	32	32		4	101	31	33	
ŝ	96	32	32		ъ	.100	31.5	33	
Q	97	32	32		9	100	32	33	
7	25	32	32		7	66	32	32,5	
దు	57	32	32		œ	98.5	32	32	
6	98	32	32		6	98	32	32	•
10	66	32	32		10	86	32	32	
Evap. 5	.4 gm H ₂ 0/1	0 min			Evap. 8	.З дт Н ₂ 0/10 п	'n		

Table 7

.

.

19

ρ

Bed Diam. 13 6 cm	13.0 01	•																						
Bed Depth	а . U СШ	T _S	1	28 ⁰ C	31	32	32	32	32	32	32	32	32	32	32	32	32	33	33	33	34	34	34	
Gas Flow 7720 CCFW	.7738 SUHM	1 ₆	ı	23°C	24	26	28	29	30	30	31	31	32	32	32	32	32	32	32	32	32.5	32.5	33	min
Sample Moisture	48.0 wt %	(T _G) _i	ı	100°C	100	100	100	100	100	100	66	66	66	66	98.5	98	98	86	86	9 8	97.5	97.5	97.5	3.4 gm H20/20
Sample Weight]40.4 gm	t	0	1 ตาก	0	с	4	ស	Q	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Evap. 13
Bed Diam.	13.6 cm																							
Bed Depth	3.0 cm	t _د	, ı		1	33 ⁰ C	32	32	32	32	35	32	32											
Gas F1ow	.7738 SCFM	T _C	, ²	1	•	20 ⁰ C		5	: £	3. 65	5 66	5 65	5 6) min										
Sample Moisture	48.0 wt %	(T _c),	ם. י	1	1	- 1030C	103	103	102 5	102 5	102 5	102.5	102 5		- /oZu mfi I-									
Sample Neight	137.9 gm	t	c	້ 1 ຫໍາດ		1 ლ	9 4	· LO	9	, L	. ~	6	ŪL	Evan 6	ever. 0									

Table 7 (Cont.)

. .-

٠

20

•

•

ρ

Table 7 (Cont.)

21

.

ρ

Sample Weight 146.9 gm	Sample Moisture 48.0 wt %	Gas Flow .8913 SCFM	Bed Depth 2.6 cm	Bed Diam. 13.6 cm
τ	(T _G) _i	т _G	т _s	
0 1 min 2 3 4 5 6 7 8 9 10	104 ⁹ C 104 104 104 103 103 103 103 103 103	30 ⁰ C 32 32 32 32 32 32 32 32 32 32 32	36 ⁰ C 36 37 38 36 34 34 34 34 34	
11	103	32	33	
13 14 15 16	103	32	33	
17 18 19 20	101 101 101	32 32 32	33 33 33	
Evap. 19.8 gm	H ₂ 0/20 min			
Sample	Sample	Gas	Bed	Bed
Weight	Moisture	F1 ow	Depth	Diam.
69.7 gm	48.0 wt %	.8910 SCFM	-	13.6 cm
τ	(T _G) _i	T _G	т _s	
0 1 min 2 3	148 ⁰ C 148	30 ⁰ C 36	39 ⁰ C 41	
4 5 6 7	148.5 148 148	37 37 37	49 53 59	
8 9 10	1 48 1 48 1 48	37 37 37	64 67 73	

Table 7 (Cont.)

Evap. 8.0 gm H₂0/10 min

.

	Tab	le 7 (Cont.)		
Sample Weight 69.5 gm	Sample Moisture 48.0 wt %	Gas Flow .8910 SCFM	Bed Depth 1.5 cm	Bed Diam. 13.6 cm
τ	(T _G) ₁	TG	т _s	
0 1 min 2 3	153 ⁰ C 152 152	34 ⁰ C 37 37	42 ⁰ C 44 49	
5 6 7	151 150	38 38	59 58	
9 10 11	150 149	38 38	75 73	
12 13	149	38	84	
14	149	38	89	
16	149	38	94	
18	149	38	96	
20	148	40	9 8	
Evap. 22.2	gm H ₂ 0/20 min			
Sample Weight 70.0 gm	Sample Moisture 48.0 wt %	Gas Flow .8910 SCFM	Bed Depth 1.3 cm	Bed Diam. 13.5 cm
τ	(T _G) _i	Т _G	т _s	
U 1 min 2 3	155 ⁰ C 155	32 ⁰ C 37	41 ⁰ C 43	
4 5 6 7 8 9	155 154 154	37 37 37	45 45 53	
10 11 12 13				
14 15	151	38	80	
16 17	151	38	88	
18 19	150	39	94	
20	150	39	97	

T.L. 7 /0.

,

· • •

۰.

.

•

.

ρ

· · ·

•-••

٩

.

20 150 Evap. 23.0 gm H₂0/20 min

.

23

PYROLYSIS EXPERIMENTS

In the first experiments manure samples of different moisture contents were pyrolyzed at about 650°C. A similar set of experiments were later made over a wide temperature range. All of the data is shown in Table 8 for manure and Table 9 for sawdust. "Product char" is defined as the char caught in the receiver. "Dynamic holdup" is the remaining char that can be swept out of the reactor by the rabble teeth. "Static holdup" is the remainder of the remaining char. The static holdup is quite large, mostly because of the reactor geometry. In the PDU, the static holdup should be small compared to the dynamic holdup. Since these pyrolysis experiments lasted only about one solids residence time, the dynamic and static holdups are essential to the material balance.

The pyrolysis gas first passed through a condenser, and then through an automobile air filter. This removed most of the tarry aerosol. Then the gas flowed into a closed container filled with water. When the water pressure rose to 1 cm H_2O , a solenoid valve was tripped and some of the water in the bottle was allowed to escape. The gas pressure thus is limited to 1 cm H_2O . At the end of the run, the volume of the displaced liquid was measured.

The solids temperature was measured directly by a thermocouple attached to a rabble tooth. The junction of the thermocouple was mounted on the front side of the rabble tooth about 1/4 in. above the reactor floor. There were three thermocouples in the reactor: (1) one was located on the outermost rabble tooth where the char falls from the reactor, (2) a second one was located on the innermost rabble tooth, just inside

Table 8

Run 4-5-78	B Pyrolysis o	f Manure	$T_{S} = 495^{\circ}C, T_{G} = 4$	59°C, $\tau_{\rm R}$ = 15.10 min.
Feed 3025	g/47 min		<u>Receiver Char</u>	512 g
	Wt.	Fract.		Wt. Fract.
Moisture Volatile Carbon (7! Ash	(750 ⁰ C)	3323 3107 0643 <u>2927</u> 0000	Moisture Volatile (750 Carbon (750 ⁰ C Ash	•C) .0824 •C) .1569) .1421 <u>.6186</u> 1.0000
<u>Dynamic He</u>	<u>oldup</u> 399 g		Static Holdup	275 g
	Wt.	Fract.		Wt. Fract.
Moisture Volatile Carbon (75 Ash	(750 [°] C) . 50 [°] C) . 1.0	0913 1959 7128 0000	Moisture Volatile (750 Carbon (750 ⁰ C Ash	^o C) .0983) .1341 <u>.7676</u> 1.0000
Condensate	e 576 g			
Gas 1263 d	a (by differend	ce)		
	Vol.	Fract.	q/min	a/a DAF feed
Н ₂ 0	. 3596		12.255	373 0.11 1224
cō2	. 2287	.3571	19.049	.789
	.0911	.1423	4.830	. 200
H ₂	.2565	.4005	.971	.040
сн ₄	.0605	.0945	1.832	.076
с ₂ н ₄	.0036	.0056	.191	.008
^с 2 ^н 6	مد ده 			
	1.0000	1.0000	26.873 dry	1.113
	wet	dry	1263.0 g/47 min	
Overall as	sh balance clos	sure	91.7%	
Volatiles	(750 ⁰ C) remove	ed	84.7%	
H_0/C (750	(3 ⁰ C)		3.382 mol/mo	1
Carbon (75	60 ⁰ C) gasified		3.5%	
Pyrolysis (including	gas heating va g CO ₂ but not h	alue (low 4 ₂ 0)) 246.0 BTU/SCF	Gas flow by difference. Temperature falling rapidly.

.

Pup 5-15-78 - Pupol	voic of	Manuna T	_	520^{0} T $- 411^{0}$		10 25 min
Food 6905 a/00 mi	ysis () n	Hatiere (s -	G = 411 C,	'R -	10.35 1111.
reed babb gy se mi	11)J+ E			Receiver char 1054	9	. Frank
	NL. F	ract.			WT	. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.32 .29 .09 <u>.28</u> 1.00	15 46 95 <u>44</u> 00		Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	Ĩ	.1244 .2033 .6723 .0000
Dynamic Holdup 552	g			Static Holdup 1182	g	
	Wt. F	ract.			Wt	. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.09 .18 <u>.71</u> 1.00	95 54 51 000		Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	1	.0664 .1428 .7908 .0000
Condensate 1492 g						
Gas 2526 g (by dif	ference	2)				
	Vol. F	ract.		g/min	g/g	DAF feed
H ₂ 0 .	3958			<u>16.578</u>		
^{CO} 2 .	1982	.3281		20.296		.681
C0 .	0787	.1303		5.130		.172
^H 2 ·	2929	.4848		1.363		.045
сн ₄ .	0343	.0568		1.278		.043
C ₂ H ₄		-				
C ₂ H ₆		<u></u>				
	9999	1.0000		28.067 dry		.942
	wet	dry	2	526 g/90 min		
Overall ash balanc	e closu	ire		105.3%		
Volatile (750 ⁰ C) r H ₂ O/C (750 ⁰ C) Carbon (750 ⁰ C) gas	emoved			86.8% 2.556 28.3%	.	44.00
Pyrolysis gas heat (including CO ₂ but	ing val not H	lue (low) 2 ⁰⁾		222.7 BTU/SCF	uw by	UITTERENCE

Table 8 (Cont.)

.

.

Run 4-4-78 Pyrc	olysis of N	Manure T ₅	= 580 ⁰ C, T _G = 469 ⁰	² C, τ _R = 18.90 min.
Feed 4041 g/f0 m	กำท		<u>Reciever Char</u>	708 g
	Wt.	Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 [°] C) Ash)	3149 3143 0954 2753 9999	Moisture Volatile (750 ⁰ Carbon (750 ⁰ C Ash	.0744 .1613 .1143 .6500 T.0000
Dynamic Holdup	520 g		Static Holdup	272 g
	Wt.	Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash) .1 .1 .6 1.0	265 1995 5740 0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	- 0060 C) .1174 .1596 <u>.7170</u> 1.0000
Condensate 1289	g			
<u>Gas</u> 746 g				
	Vol.	Fract.	g/min	g/g DAF feed
^H 2 ⁰	.6881		21.483	
^{C0} 2	.1176	.3768	8.972	.325
CD	.0400	.1283	1.944	.070
H ₂	.1179	.3782	.409	.015
CH ₄	.0320	.1026	,888	.032
C ₂ H ₄	.0044	.0141	.214	.008
C2H6			6	
	1.0000	1.0000	12.427 dry	.450
	wet	dry	745.6 g/60 min	
Overall mass bal Overall ash bala	ance closu ince closur	re	87.5% 90.4%	
Volatiles (750 ⁰ 0) removed		83.3%	Poor closure, Omit.
H ₂ 0/C (750 ⁰ C)			2.611	
Carbon (750 ⁰ C) g	asified		40.8%	

TADIE O (COUCL)	Ta	ıЪТ	e	8	(Cont.)
-----------------	----	-----	---	---	--------	---

•

.

•

```
Table 8 (Cont.)
```

Pyrolysis of Manure: Pilot Plant Data $T_{S} = 591^{\circ}C$, $T_{G} = 472^{\circ}C$, $\tau_{R} = 49.4$ min. Run 4-4-78 Temperatures falling. Feed 4041 gm/60 min .3149 wt. fract. Moisture Volatile (750⁰C) .3143 Carbon (750⁰C) .0955 Ash .2753 1.0000 wt. fract. Static Holdup 272g Receiver Char 708g Dynamic Holdup 520g .0060 wt. fract. .0744 wt. fract. Moisture -Volatile (750⁰C) .1265 wt. fract. .1493 .1167 Carbon (750⁰C) .1646 .1747 .1995 Ash .6016 .7127 .6740 1.0000 wt. fract. 1.0000 wt. fract. 1.0000 wt. fract. Condensate 1289g Gas 1252g (by difference) .546 g/g DAF feed .3768 vol. fract. 15.065 g/min C02 **CO** .1283 3.264 .118 H2 .025 .3782 .687 CH_{Δ} .1026 1.492 .054 C2H4 .0141 .359 .013 C2H6 ---1.0000 vol. fract. 20.867 g/min .756 g/g DAF feed 1252 g/60 min Overall ash balance closure 87.2% Volatiles (750⁰C) removed 84.0% H₂0/C (750⁰C) 2.874 mol/mol Carbon (750⁰C) gasified 29.5%

Table 8 (Cont.)

ρ

1

Run 2-13-78 Pyrc	lysis of Manure.	$T_{\rm S} = 605^{\rm O}$ C, $T_{\rm G} = 402^{\rm O}$	C, τ _R = 15.06 min.
<u>Feed</u> 4070 g/75 mi	'n	<u>Receiver Char</u> 91	5 g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.2560 .3494 .0952 <u>.2994</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.004 .1139 .2581 <u>.624</u> 1.0000
Dynamic Holdup 38	30 g	<u>Static Holdup</u> 46	i5 g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 [°] C) Ash	.006 .1185 .2315 .644 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.007 .0798 .1722 .741 1.0000
Condensate 1360	9		
<u>Gas</u> 683 g			
	Vol. Fract.	g/min	g/g DAF feed
H ₂ 0	.7145	18.133	
cō,	.1082 .379	6.714	. 278
ເວ້	.0311 .109	1.229	.051
H ₂	.1142 .400	. 322	.013
сн _а	.0254 .089	. 573	. 024
C2H4	.0036 .0125	. 141	.006
	.0030 .0105	.127	.005
2 0	1.0000 1.0000	9.106 dry	.377
	wet dry	683.0 g/75 min	
Overall mass bal Overall ash bala	ance closure nce closure	93.4% Seems 95.2%	to be an error in C(750 ⁰ C) analyses.
Volatiles (750 ⁰ 0 H ₂ 0/C (750 ⁰ C)) removed	86.9% Ignor 2.714	e these data. seem to be in error.
Carbon (750 [°] C) s	team gasified	Negative (?)	

•

ρ

. • •

.

.....

•.

Run 5-12-78 Pyroly	sis of Manure T _S	= $615^{\circ}C$, $T_{G} = 503^{\circ}C$, τ _R = 27.62 min.
<u>Feed</u> 4440 g/75 min		<u>Receiver Char</u> 165	g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.2992 .3121 .0918 <u>.2969</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 [°] C) Ash	.1415 .2567 .6018 1.0000
Dynamic Holdup 687	9	<u>Static Holdup</u> 107	lg
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.0917 .2016 .7067 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.0810 .1404 .7786 1.0000
Condensate 656 g (?)		
<u>Gas</u> 800 g			
	Vol. Fract.	g/min	
н ₂ 0		<u>8.747</u>	
^{CO} 2	. 2943	7.164	
CO	.1548	2.398	
^H 2	.4876	. 540	
CH ₄	.0633	. 560	
^C 2 ^H 4		•	
^С 2 ^Н б		<u> </u>	
	1.0000	10.662 dry	
		799.7 g/75 min	
Overall mass balanc	e closure	76.1%	
		Steam	was escaping uncondensed.
		Ignor	e these data.

•

30

i

Run 5-19-78 Pyroly	sis of Manure	$T_{S} = 620^{\circ}C, T_{G} = 451^{\circ}C,$	τ _R = 43.82 min.
Feed 3936 g/120 min		<u>Receiver Char</u> 211	g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.0671 .4127 .0827 <u>.4375</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.1485 .2519 <u>.5996</u> 1.0000
<u>Dynamic Holdup</u> 857	9	Static Holdup 976	g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.0675 .1988 .7337 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.0618 .1530 <u>.7852</u> 1.0000
Condensate 436 g			
<u>Gas</u> 712 g			
	Vol. Fract.	g/min	
H ₂ 0	•	3.633	
^{CO} 2	.2394	3.055	
CO	.2753	2.235	
^H 2	.3960	.230	
сн ₄	.0893	.414	
с ₂ н ₂		-	
C2H6			•
- •	1.0000	5.934 dry	
	dry	712.1 g/120 min	
Overall mass baland Overall ash balance	e closure e closure	81.1% 88.4%	
Volatiles (750 ⁰ C)	removed	Pc	oor closure. Omit.
H ₂ O/C (750°C)			
Carbon (750 ⁰ C) gas ⁴	ified		

.

.

Run 2-10-78 Pyr	rolysis of Manure T _s	₅ = 630 ⁰ C, T _G = 376 ⁰ C,	τ _R = 16.02 min.
<u>Feed</u> 3184 g/60 m	nin	Receiver Char 392	g .
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 [°] C) Ash	.478 .232 .069 <u>.221</u> 1.000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.037 .1868 .1752 <u>.601</u> 1.0000
<u>Dynamic Holdup</u> 2	295 g	Static Holdup 355	g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ C) Carbon (750 [°] C) Ash	.0044 .0856 .273 <u>.637</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.0087 .0788 .1835 .729 1.0000
Dondensate 1316	9		
<u>Gas</u> 952 g			
H_20 $C0_2$ C0 H_2 CH_4 C_2H_4 C_2H_6	Vol. Fract. .6207 .1322 .3619 .0486 .0954 .1663 .4549 .0274 .0749 .0039 .0106 .0008 .0023 .9999 1.0000 wet dry	g/min <u>21.933</u> 11.422 2.671 .653 .860 .213 <u>.049</u> 15.868 dry 952.1 g/60 min	g/g DAF feed .715 .167 .041 .054 .013 <u>.003</u> .993
Overall mass ba Overall ash bala	lance closure ance closure	104.0% 97.0%	
Volatile (750 ⁰ C H ₂ 0/C (750 ⁰ C) Carbon (750 ⁰ C)) removed steam gasified	82.9% 5.063 2.4%	
Pyrolysis gas h (including CO ₂	eating value (low) but not H ₂ 0)	239.5 BTU/SCF	

.

.. . ρ

•
۰,

:

Run 2-8-78 Py	rolysis of Manure '	T ₅ = 635 ⁰ C, T _G = 437 ⁰ C,	^τ _R = 16.46 min.
Feed 3170 g/60	ភាព	Receiver Char 390	9
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750 ⁰) Carbon (750 ⁰ C) Ash	.4316 2353 .0954 <u>.2377</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.018 .1561 .1974 <u>.6285</u> 1.0000
<u>Dynamic Holdup</u>	295 g	<u>Static Holdup</u> 343	9
	Wt. Fract.		Wt. Fract.
Moisture Volatile (750°(Carbon (750°C) Ash	.003 .1067 .1894 <u>.7009</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.015 .0089 .2384 <u>.7378</u> 1.0000
Condensate 1304	4 g		
<u>Gas</u> 772 g			
	Vol. Fract.	g/min	g/g DAF feed
н ₂ 0	.6480	<u>21.733</u>	
^{CO} 2	.1084 .308	8.885	. 509
H-	1659 171	2.060	.118
"2 CH.	.1030 .471 0313 080	076	.035
с4 СН	0053 015	. 200	.054
ິ2''4 ເມ		.273	.010
⁶ 2''6		.098	.006
		12.8/1 dry	./38
	wet ary	112 g/nr	
Overall mass ba Overall ash ba'	alance closure lance closure	97.9% 93.6%	
Volatiles (750 ⁰	^D C) removed	87.2%	
H ₂ 0/C (750 ⁰ C)		3.610 mol/mol	
Carbon (750 ⁰ C)	steam gasified	29.0%	
Pyrolysis gas (including CO ₂	neating value (low) but not H ₂ 0)	272.6 BTU/SCF	

•

:

Run 5-22-78 Pyrolysis of Manure 1			T _S =	636 ⁰ C, T _G =	437 ⁰ C,	^τ _R = 36.82 min.	
<u>Feed</u> 3443 g/120 min				Receiver Char 19 g			
	Wt. Fr	act.				Wt. Fract.	
Moisture Volatile (750 ⁰ Carbon (750 ⁰ C) Ash	.072 C) .446 .102 <u>.378</u> 1.000	5 0 9 6 0		Moisture Volatile (7 Carbon (750 Ash	50 ⁰ C) ³ C)	.1416 .2700 <u>.5884</u> 1.0000	
<u> Dyanmic Holdup</u>	571 g			<u>Static Hold</u>	up 1203	g	
	Wt. Fr	act.				Wt. Fract.	
Moisture Volatile (750 ⁰ Carbon (750 ⁰ C) Ash	C) .074 .224 .700 1.000	6 9 5 0		Moisture Volatile (7) Carbon (750 Ash	50 ⁰ C) C)	.0514 .1407 <u>.8079</u> 1.0000	
Condensate 335	g						
<u>Gas</u> 1315 g (by	difference)						
	Vol. Fra	act.		g/min		g/g DAF feed	
Н ₂ 0	.2188			2.792			
C0 ₂	.1790	. 2289		5.584		.355	
CO	.1918	. 2454		3.808		.242	
· ^H 2	.3145	.4028		.446		.028	
сн ₄	.0923	.1181		1.047		.066	
с ₂ н ₄	.0037	.0047		.073		.005	
с ₂ н ₆			_				
	1.0001	.9999	1	0.958 dry		.696	
	wet	dry	131	5 g/120 min			
Overall ash ba'	lance closur	2	10	06.1%			
Volatiles (750	^D C) removed		g	3.0%			
H ₂ 0/C (750 ⁰ C)				1.090			
Carbon (750 ⁰ C)	gasified		٦	4.5%			
Pyrolysis gas ((including CO ₂	neating value but not H ₂ 0	e (low))	29	9.1 BTU/SCF	Gas flo	w by difference.	

Run 2-9-78 Pyre	olysis of Manure T	$S = 640^{\circ}C$, $T_G = 428^{\circ}C$,	τ _R = 14.05 min.				
<u>Feed</u> 2775 g/60 r	nin	Receiver Char 770 g					
	Wt. Fract.		Wt. Fract.				
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.0589 .4141 .2144 <u>.3126</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.010 .1426 .2307 <u>.6168</u> 1.0000				
Dynamic Holdup	330 g	<u>Static Holdup</u> 350	g				
	Wt. Fract.		Wt. Fract.				
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.007 .1192 .2582 <u>.6157</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.008 .0754 .2222 <u>.6944</u> 1.0000				
Condensate 595 g	I						
<u>Gas</u> 1134 g							
	Vol. Fract.	g/min	g/g DAF feed				
н ₂ 0	.3993	<u>9.917</u>					
^{CO} 2	.2012 .335	12.210	.420				
CO	.0918 .153	3.548	.122				
H ₂	.2091 .348	.577	.020				
сн ₄	.0769 .128	1.697	.058				
с ₂ н ₄	.0114 .019	.440	.015				
^с 2 ^н 6	.0102 .017	.422	.015				
	.9999 1.000	18.894 dry	.650				
	wet dry	1134 g/hr					
Overall mass bal Overall ash bala	ance closure ince closure	114.6% 106.2%					
Volatile (750 ⁰ C) H ₂ O/C (750 ⁰ C) Carbon (750 ⁰ C) s	removed team gasified	84.7% 1.016 mol/mol 42.7%					
Pyrolysis gas heating value (low) 312.5 BTU/SCF (including CO ₂ but not H ₂ O)							

•

. .

ø

Run 2-6-78	Pyrolysis of Manur	e T _S = 657 ⁰ C, T _G = 460 ⁰ C	$\tau_{\rm R} = 9.70 {\rm min}$
<u>Feed</u> 2700 g	/60 min	Receiver Char 600) g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (7 Carbon (750 Ash	.052 50 ⁰ C).4143 ⁶ C).1969 <u>.3368</u> T.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.012 .1225 .3004 <u>.5651</u> 1.0000
Dynamic Hol	<u>dup</u> 230 g	<u>Static Holdup</u> 595	5 g
	Wt. Fract.		Wt. Fract.
Moisture Volatile (7 Carbon (750 Ash	.009 50 ⁰ C) .0842 C) .2676 <u>.6392</u> 1.0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	.006 .0696 .2336 <u>.6908</u> 1.0000
Condensate	466 g		
<u>Gas</u> 875 g			
	Vol. Fract.	g/min	g/g DAF feed
H ₂ 0	. 3976	7.767	
^{C0} 2	.1860 .309	8.885	. 323
CO	.1065 .177	3.238	.118
H ₂	.2119 .352	.460	.017
· CH ₄	.0760 .126	1.320	. 048
с ₂ н ₄	.0128 .021	. 390	.014
^C 2 ^H 6	.0090 .015	. 295	.011
	.9998 1.000) 14.588 dry	. 531
	wet dry	875 g/hr	
Overall mas Overall ash	s balance closure balance closure	102.4% 98.7%	
Volatiles (750 ⁰ C) removed	88.0%	
H ₂ 0/C (750 ^C	C)	1.409 mo]/mo]	
Carbon (750	^O C) steam gasified	28.4%	
Pyrolysis g (including	as heating value (1 CO ₂ but not H ₂ O)	ow) 319.3 BTU/SCF	

•

•

.

Table 8 (Cont.)

Run 4-10-78 Py	rolysis of	f Manure	T _s =	$660^{\circ}C, T_{G} = 5$	35 ⁰ C,	, τ _R = 18.30 min.	
Feed 3832 g/60	min			Receiver Char 673 g			
	Wt. 1	Fract.			-	Wt. Fract.	
Moisture Volatile (750 ⁰ C Carbon (750 [°] C) Ash	.3() .28 .07 .27 1.00	567 304 790 7 <u>39</u> 000		Moisture Volatile (750 Carbon (750 ⁰ C Ash	°C)	.0420 .1013 .2144 <u>.6423</u> 1.0000	
Dynamic Holdup	440 g			Static Holdup	350	g .	
	Wt. H	Fract.			-	Wt. Fract.	
Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash) .02) .07 .17 .72 .99	292 717 713 277 999		Moisture Volatile (750 Carbon (750°C Ash	⁰ C) ;)	.0263 .0625 .1087 .8025 1.0000	
Condensate 995	g						
<u>Gas</u> 1374 g (by	difference	≥)					
	Vol. 1	Fract.		g/min		g/g DAF feed	
н ₂ 0	.4327	•		<u>16.583</u>			
cō ₂	.1511	.2663		14.152		.617	
со	.0811	.1430		4.836		.211	
H ₂	.2607	.4597		1.110		. 048	
CH ₄	.0639	.1126		2.176		.095	
с ₂ н ₄	, 01 05	.0185		.626		.027	
с ₂ н ₆							
	1,0000	1.0001		22.900 dry		.998	
	wet	dry	1	374 g/60 min			
Overall ash bal	ance closu	ıre		98.5%			
Volatiles (750 ⁰ C) removed H ₂ 0/C (750 ⁰ C) Carbon (750 ⁰ C) gasified				88.7% 3.511 mol/mo 14.9%	Gas 1	flow by difference.	
Pyrolysis gas h (including CO ₂	eating val but not H	ue (low) 20)	:	297.9 BTU/SCF			

Table 8 (Cont.)

Ruti 5-16-78 F	Pyrolysis o	f Manure	$T_{\rm S} = 661^{\rm O}$ C, $T_{\rm G} =$	499 ⁰ C, $\tau_{\rm R}$ = 28.85 min.
Feed 4123 g/10	05 min		Receiver Cha	<u>r</u> 56 g
	Wt.	Fract.		Wt. Fract.
Moisture Volatile (750 Carbon (750°C) Ach) .3) .0 <u>.2</u> 1.0	018 071 998 <u>913</u> 000	Moisture Volatile (75 Carbon (750 Ash	0 ⁰ C) .1239 C) .2643 .6118 1.0000
Dynamic Holdur	o 465 g		Static Holdu	o 1008 g
	Wt.	Fract.		Wt. Fract.
Moisture Volatile (750 ⁰ Carbon (750 ⁰ C) Ash	² C) .0) .2 <u>.7</u> 1.0	866 037 097 000	Moisture Volatile (75 Carbon (750 Ash	0 ⁰ C) .0627 C) .1219 <u>.8154</u> 1.0000
Condensate 96	2 g			
<u>Gas</u> 1632 g (b)	y differenc	e)		
	Vol.	Fract.	g/min	g/g DAF feed
н ₂ 0	.3808		9.162	
co ₂	.1647	.2659	9.686	.606
CO	.0969	.1564	3.625	. 227
^H 2	.2895	.4678	.774	.048
CH ₄	.0681	.1100	1.457	. 091
с ₂ н ₄	• •	••		
^с 2 ^н 6	80 - 100 	<u> </u>		
_	1.0000 wet	1.0001 dry	15.543 dry 1632 g/105 min	.972
Overall ash ba	alance clos	ure	98.8%	Gas flow by difference.
Volatiles (75 H ₂ O/C (750 ⁰ C) Carbon (750 ⁰ C	0 ⁰ C) remove) gasified	ed	91.3% 2.744 43.5%	
Pyrolysis gas (including CO	heating va 2 ^{but not l}	llue (low) 1 ₂ 0)	274.0 BTU/SCF	

Table 9

Run 3-22-78 Pyrolysis of Sawdust. $T_{S} = 631^{\circ}C$, $T_{G} = 381^{\circ}C$, $\tau_{R} = 69.89$ min. Feed 1866 g/60 min Receiver Char 35 g Wt. Fract. Wt. Fract. Moisture .0995 Moisture Volatile (750[°]C) Carbon (750[°]C) Volatile (750[°]C) Carbon (750[°]C) .7164 .1773 .1797 .7427 .0044 Ash Ash .0800 1.0000 1.0000 Dynamic Holdup Char 194 g Static Holdup Char 94 g Wt. Fract. Wt. Fract. Moisture Moisture ------Volatile (750[°]C) Carbon (750[°]C) Volatile (750[°]C) Carbon (750[°]C) .0741 .0860 .8766 .8674 Ash . 0493 Ash .0466 1.0000 1.0000 Condensate 235.5 g Gas 1307.5 g (by difference) Vol. Fract. g/min g/g DAF feed H₂0 .1916 3.925 CO2 .1895 .2344 9.492 .341 Ċ0 .2730 .3376 8,699 .312 .1915 .2370 H₂ .436 .016 .1312 .1624 СНД 2.391 .086 C2H4 .0137 .0170 .438 .016 C2H6 .0095 .0117 . 324 .012 1.0000 1.0000 21.780 dry .783 wet dry 1306.8 g/60 min Volatiles (750⁰C) removed 97.9% H₂O/C (750^OC) 0.936 mol/mol Carbon (750⁰C) gasified 17.2% Gas flow by difference. Pyrolysis gas heating value (low) 36D.6 BTU/SCF (including CO_2 but not H_2O)

39

:

	Table 9 (Cont.)								
Run 3-28-78 Pyr	rolysis o	f Sawdust.	$T_{S} = 640^{\circ}C$, $T_{G} = 404^{\circ}C$, τ _R = 26.22 min					
Feed 1811 g/60	min		Receiver Char 53	g					
Moisture Volatile (750 ⁰ Carbon (750 ⁰ C) Ash	Wt C) 	. Fract. .1245 .6744 .1945 .0066 .0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	Wt. Fract. .0082 .1458 .7983 <u>.0477</u> 1.0000					
Dynamic Holdup	<u>Char</u> 182	g	<u>Static Holdup Cha</u>	<u>r</u> 42 g					
Moisture Volatile (750 ⁰ Carbon (750 ⁰ C) Ash	Vt C) T	. Fract. .0097 .0840 .8776 .0287 .0000	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	Wt. Fract. .0020 .0808 .8778 .0394 1.0000					
Condensate 299	g								
<u>Gas</u> 1235 g (b	y differe	ence)							
	Vol.	Fract.	g/min	g/g DAF feed					
H ₂ 0	.2425		4.983						
cōz	.1863	.2460	9.360	.357					
CO	.2438	.3219	7.796	.297					
H ₂	.1817	.2397	.415	.016					
СН ₄	.1228	.1621	2.243	.086					
C2H4	.0134	.0177	. 429	.016					
^С 2 ^Н 6	.0095	.0126	. 326	.012					
	1.0000	1.0000	20.569 dry	. 784					
	wet	dry	1234.1 g/60 min						
Volatiles (750	^o C) remov	/ed	97.8%						
H ₂ 0/C (750 ⁰ C)			0.990 mol/mol						
Carbon (750 ⁰ C)	gasified	i	32.2%	• • • • • • • • •					
Pyrolysis gas (including CO ₂	heating v but not	value (low) H ₂ O)	358.6 BTU/SCF	Gas flow by difference.					

•

· .

ρ

a.

.

.

:

Table 9 (Cont.)

.

,

.

Run 5-25-78 Py	rolysis of Sawdust.	$T_{S} = 640^{\circ}C, T_{G} = 403^{\circ}$	C, _{τR} =?		
Feed 1778 g/150) min	<u>Receiver Char</u> 0	<u>Receiver Char</u> O g		
	Wt. Fract.		Wt. Fract.		
Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash	.2459 .5991 (est.) .1522 (est.) <u>.0029</u> (est.) 1.0001	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	 		
Dynamic Holdup	14 g	Static Holdup 21	7 g		
Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash	Wt. Fract. .) .05 (est.) .87 (est.) .08 (est.) 1.00	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	Wt. Fract. .0442 .8527 <u>.1031</u> 1.0000		
Condensate 354	g				
<u>Gas</u> 1193 g (by	difference)				
	Vol. Fract.	g/min	g/g DAF feed		
н ₂ 0	.2682	2.360			
со ₂	.1714 .2344	3.687	.414		
C0	.2060 .2819	2.820	.317		
H ₂	. 2087 . 2844	.204	.023		
CH ₄	.1282 .1755	1.003	.113		
С ₂ н ₄	.0175 .0239	.239	.027		
^C 2 ^H 6					
	1.0000 1.0001	7.953 dry	.894		
	wet dry	1193 g/150 min			
Volatiles (750 ⁰	C) removed	99.0%			
H ₂ 0/C (750 ⁰ C)		1.551 mol/mol			
Carbon (750 ⁰ C)	gasi fi ed	27.1%			
Pyrolysis gas h (including CO ₂	eating value (low) but not H ₂ D)	359.4 BTU/SCF	Gas flow by difference. The run duration was too short.		

ρ

.

;

Table 9 (Cont.)

•

Run 3-29-78	Pyrolysis	of Sawdust.	T _S =	$653^{\circ}C$, $T_{G} = 417^{\circ}C$;, τ _R =	72.61 min.	
Feed 2320 g/60) min			<u>Receiver Char</u> 42 g			
	Wt.	Fract.			Wt.	Fract.	
Moisture Volatile (750 ⁰ Carbon (750 ⁰ C) Ash	2c) .2 (c) .5 .1 .0 1.0	2995 5558 429 0018 0000		Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	. - 	0696 1216 7596 0492 0000	
Dynamic Holdu	<u>o</u> 190 g			<u>Static Holdup</u> 50	9		
	Wt.	Fract.			Wt.	Fract.	
Moisture Volatile (750 ⁰ Carbon (750 ⁰ C Ash). (3 ⁰ 3. (3 ⁰ 3. (1	0645 0779 3310 <u>0266</u> 0000		Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash		0536 0724 8246 0494 0000	
Condensate 703	3 g						
<u>Gas</u> 1335 g (b <u></u>	y differe	nce)					
	Vol.	Fract.		g/min	g/g D	AF feed	
H ₂ 0	.4091			<u>11.717</u>			
^{CO} 2	.1462	.24/3		10.236	•	379	
	. 1863	.3152		8.302	•	307	
^H 2	. 1458	.2470		.464	•	017	
сн ₄	.0941	.1592		2.396	•	089	
с ₂ н ₄	.0123	.0208		.548	•	020	
с ₄ н ₆	.0062	.0106		.298	÷	<u>011</u>	
	1.0000	1.0000		22.244 dry	•	823	
	wet	dry	. 1	334.6 g/60 min			
Volatiles (75	0 ⁰ C) remo	ved		98.2%			
H ₂ 0/C (750 ⁰ C)			1.918 mol/mol			
Carbon (750 ⁰ C) gasifie	d		30.3%			
Pyrolysis gas (including CO	heating 2 but not	value (low) H ₂ O)		357.3 BTU/SCF	G	as flow by	difference.

ρ

•.

•

the feed drop point, and (3) the third one was located just outside the feed drop point. In the experiments it became clear that the incoming manure heated to the pyrolysis temperature very rapidly. For example, as the two inside thermocouples passed under the feed drop hole, the temperature dropped suddenly. When the feed was very wet, the temperature drop sometimes was as large as 400° C. After this sudden drop, the solids temperature as measured by these thermocouples increased rapidly. By the time the thermocouples had gotten back to the feed drop location, the solids had heated up to the pyrolysis temperature. D

Additional pyrolysis runs were next made at a higher temperature (Table 8), and sawdust was also used as a feed stock (Table 9). Unfortunately, it appeared that there was a serious gas leak in the apparatus as these experiments were done. Accordingly, the weight of the gas produced was determined by difference. During run 4/4/78 (on manure) the temperature level was falling, so the reactor was not at equilibrium. The feed moisture content was high (33 wt %) and so was the H_2O/C (750^oC) ratio. About 30% of the carbon (750^oC) was steam-gasified in spite of the low solids temperatures.

WATER GAS REACTION

The feed for the water gas experiments was incompletely pyrolyzed char. Of the volatiles (750°C) contained in raw manure, about 14% remained in this char. These water gas experiments, as well as the previous pyrolysis experiments, were done at comparatively low temperatures. To get reasonable water gas reaction rates, it is necessary to get good steam-char contact. In the present pilot plant apparatus, steam was passed through the hollow shaft and then into the moving bed of char through the hollow rabble teeth. The resultant steam-char contact was probably only moderately effective. Also, during some runs the solids and gas temperatures did not reach steady-state. In Run 3-8-78, for example, the solids temperature fell from about 660°C to about 570°C in 90 minutes. In the later runs the contact time was long enough to obtain steady state. The data is presented in Table 10.

ΛA

p

÷

1

Table 10

ρ

Water Gas Reaction: Pilot Plant Data $T_{S} = 564^{\circ}C$, $T_{G} = 343^{\circ}C$, $\tau_{R} = 23.18$ min. Run 3-6-78 Feed 5371 g/75 min manure char Receiver Char 2064 g Wt. Fract. <u>min</u> Moisture Wt. Fract. Moisture ----Volatile (750°C) Carbon (750°C) Volatile (750°C) Carbon (750°C) .1536 .1125 . 2007 .2253 .6622 1.0000 Wt. Fract. Wt. Fract. Moisture ---Moisture ---Volatile (750°C) Carbon (750°C) Volatile (750°C) Carbon (750°C) .0944 .0951 .1864 .1446 Ash <u>.7192</u> Ash .7603 1.0000 1.0000 Condensate 850 g Steam Input 875 g, .460 g DAF Gas 370.4 g/75 min g/min Vol. Fract. g/g DAF H₂0 .6971 11.333 --C02 .0960 .3165 3.814 .1503 C0 .0235 .0775 .594 .303 .1677 .5538 H₂ CHA .0158 .0521 .228 C2H4 -----C2H6 ---------4.939 dry <u>.1947</u> 1.0001 1.0000 .0444 (w/o CO2) wet dry 91.4% Overall material balance closure Overall ash balance closure Volatiles (750°C) removed 92.4% 43.2% Reactor H₂O/C(750°C) Carbon (750°C) steam gasified 1.219 mol/mol 17.6%

ť

. .

...

Table 10 (Cont.)

.

.

.

•

ì

Water Gas Reaction: Pilot Plant Data

.

p.

Run 3-1-78 No	steam app	lied. T _S	= 597 ⁹ C, $T_{G} = 2$	80 ⁰ C, τ _R = 29.87 min.
Feed 4891 g/90 m	nin manure	e char	Receiver Char 2	321 g
Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	Wt. 1 .1 .1 .6 1.0	ract. <u>9</u> 526 795 579 <u>35.75</u> 500 54.34 DAF 18 59	Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash	Wt. Fract. .) .1308 .2010 <u>.6682</u> 1.0000
Dynamic Holdup (<u>Char</u> 1423	g	Static Holdup (<u>Char</u> 728 g
Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash	Wt.) .D .1 <u>.7</u> 1.0	Fract. 851 643 506 000	Mois ture Volatile (750 ⁰) Carbon (750 ⁰ C) Ash	Wt. Fract.
Condensate 98	g			
Steam Input 0	9			
<u>Gas</u> 357.0 g/90 r	nin			
	Vol.	Fract.	g/min	g/g DAF
Н ₂ 0	.2183		1.089	
co ₂	.1961	.2509	2.391	.1286
CO .	.1286	.1646	. 998	
H ₂	.3735	.4778	. 207	
сн ₄	.0835	.1067	.370	
с ₂ н ₄				
^с 2 ^н 6				
	1.0000	1.0000	3.966 dry	.2133
	wet	dry		
Overall material balance closure Overall ash balance closure Volatiles (750°C) removed			100.7% 98.5% 38.9%	
Reactor H20/C(7 Carbon (750 ⁰ C)	750 ⁰ C) steam ga	sified	0.140 mol/ 7.1%	"moใ

Table 10 (Cont.)

.

٠

.

.

•

Water Gas Reaction: Pilot Plant Data

ρ

Run 3-8-78		T _S =	$606^{\circ}C$, T _G = 342 ⁰	^D C, τ _R = 32.37 min.
<u>Feed</u> 3993 g/90	min manure char	~	Receiver Char 12	214 g
Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash	Wt. Fract.) .1441 .2006 <u>.6553 29</u> 1.0000 44 DAF 15	<u>y</u> min .07 .37	Moisture Volatile (750 ⁰ C) Carbon (750 ⁰ C) Ash	Wt. Fract. .1106 .2426 <u>.6468</u> 1.0000
<u>Dynamic Holdup</u>	<u>Char</u> 1282 g		<u>Static Holdup C</u>	<u>har</u> 918 g
Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash	Wt. Fract.) .0890 .1770 <u>.7340</u> 1.0000		Moisture Volatile (750 ⁰ C Carbon (750 ⁰ C) Ash	Wt. Fract.) .0774 .1504 <u>.7722</u> 1.0000
Condensate 639	g			
Steam Input 641	9, .466 g/g DAF			
<u>Gas</u> 294.8 g/90 m	in			
	Vol. Fract.		g/min	g/g DAF
H ₂ 0	.6918		7.100	
CO ₂	.1026 .3328		2.574	.1683
C0	.0258 .0837		.412	
H ₂	.1693 .5492		.193	
	.0105 .0343		.096	
C ₂ H ₄				
2.6	1.0000 1.0000		3.275 drv	.2141
	wet dry			.0458 (w/o CO ₂)
Overall material balance closure Overall ash balance closure Volatiles (750°C) removed			92.9% 93.1% 44.5%	
Reactor H ₂ 0/C(7 Carbon (750°C)	50 ⁰ C) steam gasified		1.451 mol/m 17.7%	ſo

Table 10 (Cont.)

Water Gas Reaction: Pilot Plant Data $T_{S} = 650^{\circ}C$, $T_{G} = 464^{\circ}C$, $\tau_{R} = 19.937$ min. Run 4-12-78 Receiver Char 2470 g Feed 6454 g/60 min manure char g Wt. Fract. Wt. Fract. min Moisture .0792 -Moisture Volatile (750⁰C) Volatile (750°C) .1263 .1683 Carbon (750^OC) Carbon $(750^{\circ}C)$.2254 .1878 .6483 <u>.5646 60.73</u> Ash Ash 1.0000 .9999107.57 Dynamic Holdup Char 1685 g Static Holdup Char 820 g Wt. Fract. Wt. Fract. Moisture Moisture -Volatile (750⁰C) Carbon (750⁰C Volatile (750°C) Carbon (750°C) .0747 .0867 .1498 .1947 .7755 .7186 Ash Ash 1.0000 1.0000 Condensate 534 g Steam Input 577 g, .251 g/g DAF Gas 1522 g/60 min (by difference) Vol. Fract. g/min g/g DAF H₂0 .2617 8.900 002 .2002 .2712 16.646 .4346 C0 .1229 .1665 6.503 .5290 1.476 Н2 .3906 .0245 .0332 .741 СНД C_2H_4 -------C2H6 -------.9999 .9999 25.366 dry .6622 wet dry .2277 (w/o CO2) Ash balance closure 94.6% Volatiles (750⁰C) removed 52.2% Carbon (750⁰C) steam gasified 16.9% H₂O/C (750^OC) 0.732 mol/mol

Entrainment of Manure Particles in the Reactor

In the cross-flow drying of biomass materials the drying gas is passed through the bed of solids which is flowing in a direction perpendicular to the flow of gas. At certain gas rates solid particles are lifted against gravity and kept in suspension by the gas stream. This, for a bed of uniform-sized particles, marks the point of bed expansion. As the gas rate increases further, the solid bed continues to expand and eventually is carried away by the gas. For a bed of uneven particle sizes, smaller-sized particles at certain locations are suspended and sometimes even carried away without any evidence of bed expansion. This is particularly true for the case of cattle manure. It not only has an uneven distribution of particle sizes but also has a stickiness of nature so that it is virtually impossible to offer any theoretical treatment on its fluidization behavior. The amount of entrainment (carried-away) of cattle manure is studied here because it determines the amount of loss of solids, and more importantly the degree of possible clogging in flue gas transport lines. In the case of more than one drying stage being used, the base plate holes may easily clog for the next drying stage.

P

Experimental Procedure and Method of Calculation. Entrainment fraction is defined as the ratio of the solids entrained to the feed rate. This quantity is expected to be a function of the physical properties and particle geometry of the solid, and the properties and velocity of the gas. It is not a function of solid rate. Therefore experiments to determine it can be carried out with fixed solid flow rates. Two solid feed rates were used with an experimental procedure as follows:

Starting the gas flow through the base plate at a given rate,
 Starting the screw feeder to feed the manure into the reactor,
 Allowing 15 minutes from the time the first quantity of solid appears at the outlet to ensure steady conditions, 4. Connecting collection bags at the solid outlet and air outlet. The collection bag at the air outlet has small openings to allow for air discharge and to avoid pressure buildup in the reactor, 5. Allowing 30 minutes for the collection and then weighing the materials collected.

The feed rate (F) is equal to the sum of discharge rate (w_D) , the entrainment rate (E) and moisture lost into the air stream $(\Delta m_A W_A)$, i.e.:

$$F = W_{D} + E + \Delta m_{A} W_{A} \tag{1}$$

where Δm_A is the change of the absolute humidity (1b of H₂O/1b dry air) and W_A is the mass flow rate of dry air. Thus the entrainment fraction is defined by:

$$X_{E} = \frac{E}{W_{D} + E + \Delta m_{A} W_{A}}$$
(2)

Equation 2 is true, however, only if the entrained solid retains its original moisture content, namely the moisture content of the feed. In the experimental procedure described above, the entrainment moisture content is expected to be less than or equal to the solid moisture content at the discharge point because of additional drying of the suspended solid. In the case where the moisture content of the entrained solid and discharge solid are equal, the correct equation to be used to calculate entrainment fraction should be:

$$X_{E} = \frac{E}{W_{D} + E}$$
(3)

When additional drying of the entrained solid occurs, the value of X_E calculated by equation 3 using measured quantities as indicated in the experimental procedure would yield values lower than the corrected values. The difference in the worst case where there was no drying for the throughput solids, but complete drying for the entrained solids is equal to the moisture content of the feed. This maximum difference is 24% for high and 12° for low moisture feed material tested.

<u>Results and Discussion</u>. The results of the experiment are tabulated in Table 9 and plotted in Figure 1. The calculation of the entrained fraction X_E is based on equation 3. The difference between the moisture content of the entrained and discharged solids is assumed to be negligible at this stage. It is seen in Table 11 that the air temperature was kept low (ambient) to minimize the evaporation effects. The air flow rate in the reactor is assumed to be equal to the flow rate at standard conditions. This assumption encompasses a maximum error of = 3°. In examining the curves of Figure 3, two conclusions can be drawn:

1. The entrainment fraction increases with increasing air velocity. The relationship is not a direct proportionality but indicates characteristics somewhat similar to the cumulative weight fraction versus particle size distribution. The slope of the curve tends to zero as the air velocity approaches zero. An attempt to determine the particle size distribution will be presented later.

2. The entrainment fraction follows an inverse relationship with solid moisture content. The higher the moisture content, the lower the entrainment fraction is for a given air velocity. This indicates that

Table 11

Solids Entrainment in the Reactor (Reactor Cross-sectional Area = 12.57 ft^2)

<u>Run</u>	Q _G	TG	^m o	<u>∆t</u>	W _D	<u>E</u>	V _{SG}	Х _Е	<mark>-д</mark> -
٦	7	15	23.4	30	2277.	٦.	1.132	0.044	0.018
2	8.6		23.4	30	2104.	5.	1.391	0.237	0.027
3	10.0		23.4	30	2050.	8.	1.617	0.389	0.037
Ņ	1:.2	**	23.4	30	2100.	14.	1.811	0.662	0.046
5	12.2		23.4	30	2122.	23.5	1.973	1.095	0.055
6	13.0	17	23.4	30	1977.5	35.5	2.102	1.764	0.062
7	14.0		23.4	30	2019.	46.5	2.264	2.251	0.072
8	15.8	-	23.4	30	1957.	50.0	2.555	2.491	0.092
9	17.2	18	23.4	30	1939.	82.5	2.781	4.081	0.109
10	18.7		23.4	30	1854.	118.5	3.024	6.008	0.129
11	20.0		23.4	30	1895.5	137.0	3.234	6.740	0.147
12	7	9.5	12.0	30	1575.	7.0	1.132	0.442	0.017
13	10	11.0	12.0	30	1743.	37.0	1.617	2.079	0.035
14	13	12.0	12.0	30	1725.	114.0	2.102	6.199	0.060
15	17.2	15.0	12.0	30	1655.	203.0	2.781	10.926	0.105
Ĩĉ	20.0	17.0	12.0	30	1605.	251.0	3.234	13.524	0.142

Q _G	Gas Flow (scft/min)
Τ _G	Mean Gas Temperature (^O C)
mo	Feed Moisture Content (%)
Δt	Duration of Measurement (min)
۳D	Mass of Solid Discharge (wet basis) (g)
E	Entrainment Collected (g)
٧ _{SG}	Superficial Gas Velocity (cm/s)
Х _Е	Entrainment Fraction (%)
DP	Maximum Particle Diameter of Entrained Solid (10 ⁻³ mm)

.. .

Figure 1

ρ

.

•

an increase in the solid moisture content would either a) increase the particle density without changing its size distribution at one extreme, or b) increase the size of particles and hence alter the size distribution without changing particle density at the other extreme. Cellulose materials have a specific gravity ranging from 1.32 for wool to 1.50 for cotton, flax or hemp⁽⁴⁾ and are major constituents of cattle manure. Hence it is reasonable to assume that the presence of water in the solid has an effect closer to the extreme b) than the extreme a). <u>Particle Density</u>. The particle density according to the above argument can be determined as a function of moisture content. Let the particle density be $\rho_p \ g/cm^3$ and the moisture content m gH₂0/g wet solid. In 1 cm³ of solid which weighs ρ_p g there are m ρ_p g of water of density $\rho_W \ g/cm^3$. Thus the total volume is:

$$\frac{m\rho_{\rm P}}{\rho_{\rm W}} + \frac{(1-m)\rho_{\rm P}}{\rho_{\rm S}} \approx 1$$
 (4)

ρ

ì

where ρ_S is the dry solid density. The particle density has been calculated for the experimental conditions assuming $\rho_W = 0.998 \text{ g/cm}^3$ and $\rho_S = (1.32 + 1.50)/2 = 1.41 \text{ g/cm}^3$. They were 1.34 g/cm³ and 1.29 g/cm³ for the 23.4% and 12.0% moisture contents, respectively.

<u>Particle Size Distribution in the Entrained Solids</u>. Assume that the distance between the entrained particles is large enough that the velocity gradients surrounding each particle are not affected by the presence of neighboring particles. The minimum entraining gas velocity will be equal to the terminal velocity of the suspending particles. The terminal velocity v_T of a particle can be determined according to Newton's law as follows:

$$v_{T} = \frac{4(\rho_{p} - \rho_{G})gD_{p}}{3C_{D}\rho_{G}}$$

⁽⁴⁾ Perry, Chemical Engineers' Handbook, 5th ed., McGraw-Hill, N. Y., 1969.

where ρ_p and ρ_G are the densities of solid and gas particles, respectively. D_p is the diameter of a sphere having the particle volume, g the gravitational acceleration, and C_p the drag coefficient which is correlated with the particle sphericity Ψ as follows⁽⁵⁾: ρ

 $C_{\rm D} = 5.31 - 4.88$ (6) Equation 6 applies to the range $10^3 < \text{Re} < 2(10^5)$, and is probably not applicable here. Instead, Figure 70, page 76, of Brown's Unit Operations⁽⁶⁾ has been used. This is a plot of friction factor (i.e. drag coefficient), f_D, versus Re with Ψ , sphericity, as the parameter.

$$D = \frac{3\rho_{G}v^{2}}{4g(\rho_{S} - \rho_{G})} \cdot f_{D} = 7.695(10^{-7}) \cdot f_{D} \text{ in cgs units, } 20^{\circ}\text{C},$$

1 atm, dry air. $\rho_{\rm S} = 1.2 \text{ gm/cm}^3 \cdot \left(\frac{\mu}{\rho}\right)_{\rm G} = 0.157 \text{ cm}^2/\text{sec}$ Re = $\frac{Dv}{(\mu/\rho)_{\rm G}} = \frac{3\rho_{\rm G}v^3}{4g(\rho_{\rm S} - \rho_{\rm G})} \cdot f_{\rm D}$

Given v, a straight line of slope 1 with intercept dependent on

$$\frac{3}{4g(\rho_{S} - \rho_{G})} \left[\frac{\mu}{\rho}\right]_{G}$$
 can be plotted. The intersection with the curve for

 Ψ = 0.874 gives f_D. Now Re and D can be calculated. (A = 3283 cm² was the total drying area.

^{(&}lt;sup>5)</sup>Gaudin, Am M., <u>Principles of Mineral Dressing</u>, McGraw-Hill, N. Y., 1939 (⁶⁾John Wiley and Sons, New York (1950).

Gas Velocity (v),	Manure Particle Size (D),	Reynolds Number, Re	Drag Coefficient, ^f D		
cm/sec	microns				
1.007 1.236 1.438 1.610 1.754 1.869 2.013 2.156 2.271 2.473 2.688 2.875	17.95 21.16 23.87 24.93 23.67 22.85 24.32 26.11 26.19 27.30 29.47 31.80	1.151(10 ⁻²) 1.666 2.186 2.557 2.645 2.654 3.118 3.586 3.789 4.299 5.045 5.824	2300 1800 1500 1250 1000 850 [.] 780 730 660 580 530		

The small inconsistencies in D are due to graph-reading errors. It appears that this manure contains quite a lot of fine material smaller than 30... This would indicate of designing for a superficial gas velocity of 1 cm/sec to avoid entrainment.

<u>Sphericity of Entrained Particles</u> Sphericity of a particle is defined as the ratio of the surface area of a sphere having the particle volume to the surface area of the particle. For example, a fiber having equal length and diameter would have a sphericity of:

$$\Psi = \frac{\pi (6v_p/\pi)^{2/3}}{A_p} = \frac{\pi (6D^3/4)^{2/3}}{\pi D^2 + \pi D^2/2} = \frac{2}{3} \left(\frac{3}{2}\right)^{2/3} = 0.874$$

The cylindrical fiber having an equal length and diameter has a minimum surface area per unit volume. From an energy point of view such a configuration is most stable for a cylinder and is therefore often considered as the final product in the grinding process of fibers.

56

•

Moisture often has a glueing effects on small particles. Because of the nature of the surface tension wet lumps of particles usually have near-spherical shape. Thus the sphericity of such lumps should be close to unity. From this consideration and the consideration of the cylindrical fibers above, it is possible that the sphericity of entrained manure particles is about 0.87. The other variables were assumed to be:

$$C_D = 1.064$$

 $\rho_G = 0.00129 \text{ g/cm}^3$
 $\rho_p = 1.34, 1.29 \text{ g/cm}^3$
 $g = 9.81 \text{ cm/s}^2$
 $v_T = \text{ in cm/s}$

57

COMBUSTION

Several trial combustion runs were initially made using commercial charcoal as feed. It was noticed that the bed burned red hot directly above each air hole, but not elsewhere. This suggested poor contact between the air and the burning char. It was also noticed that when the ash layer was too thin or when the rabble arm rotation rate was too fast, whole sections of the bed might go out and become difficult to reignite. The number of 1/8 in, holes through the baseplate was consequently doubled, the ash thickness maintained at at least 1 in., and the rabble arm speeds were kept slow.

In the pilot plant tests with manure char, the reactor was first filled with a layer of char which was burned down to ash as new char fed into the reactor at a constant rate. After about two hours the initial char had been reduced to ash, and a steady state run was started. The flue gas was passed through a settling chamber where the larger fly ash particles were removed and weighed. The flue gas was analyzed for H_2 , N_2 , O_2 , CO_2 , CO, and H_2O . The feed char was analyzed for moisture and ash, and the ash and fly ash were analyzed for their ash content. (Volatiles [750^OC] were small in these samples and ignored). The flue gas temperature and two char temperatures were measured directly. This data is shown in Table 12.

Table 12

Pilot Plant Combustion Tests

Run Duration 40 min. Solids Flow Rate 82.25 g/m Carbon .3097 Ash .6903 1.0000 **Combustion** Air 8.6 SCFM Excess Air @ Total Carbon Input 7.48% $\{\frac{12(8.6)(28.316)(.210)}{82.25(.3097)(22.414)}$ - 1} 2.745 ft² Baseplate Area $\frac{2550}{(30.48)}^2$ lov Flue Gas Composition (Dry) .0037 H₂ N₂ .7960 02 .0468 C02 .1436 C0 .0093 1.0000 Fly Ash Collected 177.8 g/40 min Carbon .1885 .0183 g fly ash/1 Ash .8115 1.0000 Combustion Efficiency, % C Burned 78.3% $\frac{8.6(28.316)(40)(.1529)(12)}{22.414(92.25)(.3097)(40)}$ Char Heat of Combustion (net) 12,972 cal/gm carbon 12,468 BTU/hr ft² Heat Flux <u>60(82.25)(.3097)(1783)(12972)</u> 453.59(2.745)

Flue	Gas Temperature	644 ⁰ C
Char	Temperature	820 ⁰ C

PILOT PLANT OPERATING CHARACTERISTICS

Action of The Rabble Teeth

The average radial velocity of the solids is A Sin α . (CPM). Assuming that there are no gaps between the teeth, the volumetric solids flow rate, a constant at steady state, is:

 $Q_{S} = 2\pi r \delta A \sin \alpha . (CPM)$ The holdup volume is $\int_{a_{1}}^{a_{2}} 2\pi r \delta dr = \frac{(a_{2} - a_{1}) . Q_{S}}{A \sin \alpha . (CPM)}$

Therefore, the residence time is:

$$\tau_{\rm R} = \frac{(a_2 - a_1)}{A \, \rm Sing.(CPM)}$$

Note that :

$$\delta r = \frac{Q_S}{2\pi A \, \text{Sina}(CPM)}$$

In any given experiment, $\delta(r)$ is hyperbolic. δ could be constant if r.Sina were made constant, i.e. if the angle of the teeth is made to decrease as r increases. When there are gaps between the teeth the above relationships need to be modified. The product $\tau_R(CPM)$ Sina should be constant. Using 2" teeth spaced 2-1/8" apart in the present pilot plant, $\tau_R(CPM)$ sina is about 16 ± 6. Typical reactor holdup calculations are shown in Table 13.

Α	width of rabble teeth, cm
(CPM)	contacts per minute
Q _S	volumetric solids flow rate, cm ³ /min
r	radius, cm
aj	inner radius of reactor, cm
a2	outer radius of reactor, cm
α	angle
δ	manure layer thickness, cm
τp	holdup volume/volumetric flow rate, min.

Table 13

·· ··

Typical Reactor Holdup Calculations

Expt.	Feed	Vol. Feed					{τ _p (CPM) Sinal
No.	Rate	Rate	Holdup	τ _R	(RPM)	(CPM)	α .	
	gm/min	cm ³ /min	gm	min	(min) ⁻¹	Contacts min	Degrees	Dimen- sionless
10-21A	58.33	133.8	255	4.371	2	4	45	12.363
10-21B	63.08	144.7	325	5.152	2	4	45	14.572
12-25A	58.42	134.0	182	3.116	3	6	45	13.220
10-25B	66.87	153.4	222	3.320	3	6	45	14.086
10-26A	66.15	151.7	106	1.602	5	10	45	11.328
10-26B	68.10	156.2	105	1.542	5	10	45	10.904
10-27A	63.27	145.1	68	1.075	12	24	45	18.243
10-27B	69.75	160.0	· 57	.817	12	24	45	13.865
10-28A	122.93	282.0	973	7.915	2	4	45	22.387
10-28B	169.17	388.0	1120	6.621	2	4	45	18.727
11-01A	170.0	389.9	98	.576	12	24	45	9.775
11-01B	174.3	399.8	147	.843	12	24	45	14.306
11-02B	171.1	392.4	387	2.262	5	10	45	15.995
	188.0	431.2	605	3.218	12	24	22.5	29.555
	190.9	437.9	1479	7.748	12	24	11.25	35.277
	188.2	431.7	1109	5.893	12	24	11.25	27.592
	184.0	422.1	1797	9.766	12	24	5.00	20.428
	207.0	474.7	1887	9.116	12	24	5.00	19.068

•

DATA ANALYSIS

LABORATORY STUDIES

Isothermal Drying

The drying of manure in a laboratory oven provides data of the falling-rate type, and for any given oven temperature the slope of the rate of evaporation per gm of dry solids versus the moisture content (gm H₂O/gm dry solids) curve is constant. Since "gm dry solids" cancels out, one can simply use "gm H₂O evaporated/min" versus "gm H₂O remaining" in the data correlation. In each run the data obtained while the sample was warming up was not considered. Since the evaporation rate is necessarily zero when the moisture content is zero (T > 100^OC), the slope of the best (least squares) straight line that passes through the origin can be used for each set of data. This is:

Best slope =
$$\frac{\Sigma}{\Sigma (W_i)^2}$$

R_i gm H₂O evaporated/min W_i gm H₂O remaining, mean over interval

A plot of ln(slope) versus $\frac{1}{T}$ (^oK)⁻¹ gives a straight line of slope -2474 ($r^2 = .982$) (Figure 2). These data are represented by:

$$\frac{\delta \ln W}{\delta \tau} = 4.2698 \exp \left(-\frac{2474}{T}\right) \qquad (min)^{-1}$$

Figure 2

63

•

•

Parker⁽⁷⁾ obtained:

1 1

$$\frac{\delta \ln W}{\delta \tau} = 2.8(10^4) \exp\left(-\frac{5250}{T}\right) \quad (\min)^{-1}$$

His experiments, however, were not isothermal. At 100°C, the lower end of these tests and his upper end, this data predicts $.0056 (min)^{-1}$. while Parker predicts $.0216 (min)^{-1}$ for the drying rate. Conclusion

ρ

To dry manure in the oven at 180°C from 35 to 10 wt % moisture would require:

$$T_{\rm D} = \frac{10.35}{.10} \frac{.90}{.65} = 87.2 \text{ minutes}$$

In the earlier contact drying experiments, the solids residence times were not longer than about 12 minutes. The solids flow rates appear to have been too high, so lower feed rates with small rabble tooth angles and high rabble arm rotation rates were next attempted. Smaller rabble tooth angles produce thicker layers, while higher rotation rates produce more stirrings per solids residence time and thinner layers. This provided thicker and better stirred manure layers in the drying section.

⁽⁷⁾ Parker, "Reaction Kinetics and Thermophysical Properties of Feedlot Waste During Drying and Pyrolysis," AIChE Symposium Series, No. 162, Vol. 73 (1977), pp. 216-223.

VACUUM DRYING

All of the run data of Table 2 appears to be of good quality except for run 12-12-A which probably should be omitted since the product temperature may be in error. The dimensionless number $\frac{\omega^T R}{N}$ in the table is: (solids residence time/thread)/(screw rotation time/thread). If the solids did not stick to the solid surfaces, $\omega_T R/N$ would relate to the thoroughness of the solids mixing--the larger $\omega_T R/N$, the better the mixing. ρ

mixing--the larger $\omega \tau_R/N$, the better the mixing. The dimensionless number $\frac{U \cdot V \tau_0 \tau_R}{k}$ is the (actual heat transfer rate)/(conductive heat transfer rate to a continuous solid cylinder of manure). The penetration depth is relatively small compared to the diameter of the screw chamber, so the flat plate theory should apply. For non-sticking solids, $U \cdot V^{\pi_0 \tau_R}/k$ ought to increase as ω^{π_R}/N increases. The experimental data of 12-9 show that it does.

The experimental data of 12-12 relate to tacky manure that probably stuck to the solid surfaces in the screw feeder. There was probably very little mixing, and $U\sqrt{\pi\alpha\tau_R/k}$ appears to be about unity. These data together with the isothermal drying data allow a calculation of drying rates.

A direct plot of the feed rate with the overall heat transfer coefficient has been made in Figure 3. This relationship should be able to be scaled-up to larger screw conveyors on an equal feed rate to circumference basis. Over the range tested, manure moisture content, flue gas temperature, and the degree of vacuum did not significantly influence the results.

Ì

DIRECT CONTACT DRYING

Pilot Plant Data Correlation

The pilot plant direct contact drying data were correlated according to the improved enthalpy transfer model. The calculations are shown below:

	(UA) _A = 7	0 B/h ^O F					Calc. M	leas.	
	(UA) _S	(C _P) _S W _F	(C _P) _G W _G	(UA)*	Ψ٦	Ψ 2	тs	т _s	к
	B/h ^O F	B/h ^O F	B/h ^O F	B/h ^O F		°c	с _с	°C (min) ⁻¹
10 /21 A	2.1571	3.9 39	15.704	13.689	21,246	1367.1	64.3	63	
10 /21 B	0.6069	4.253	15.297	14.701	19.914	1093,4	54,9	51	\$11 BA
10/25A	3.6625	3.942	15.822	12.553	20.942	1407.7	67.2	63	
10 /2 5B	0.8552	4.508	15.389	14.557	18.755	1150.8	61.4	56	
10/26A	5.4488	4.461	15.901	11.288	18.221	1114.5	61.2	56	
10/26B	1.2174	4.589	15.336	14.166	18.342	1018.8	55.5	51	~-
10/27A	4.1792	4.168	15.875	12.201	19.721	1183.6	60.0	53	
10/27B	1.0459	4.596	15.270	14.259	18.333	938.9	51.2	50	
10/28A	3.1284	7.521	15.757	12.919	11.024	691,5	62.7	56	
10/28B	2.1035	10.398	15.244	13.279	8.009	427.0	53.3	48	
11/01A	3.4706	11.214	15.770	12.655	7.371	467,9	63.5	57.7	
11/01B	1.3069	11.500	15.205	13.952	7.300	393,8	53.9	50.7	
11/02B	3.5258	11.288	15.283	12.135	7.276	352.2	48.4	47,3	
11/03E	1 3.8846	10.175	15.796	12.352	8,094	522.7	64.6	55.0	
11/03E	2 3,9054	10.730	15.875	12.413	7.681	537.6	70.0	56.5	*=
11/03E	3 3.9346	9.484	16.039	12,550	8,704	549.9	63.2	58.0	
12/13			÷n +n					47	1,61
12/14A	2.2710	7.718	15.408	13.297	10.792	533,3	49.4	47	1.02
12/14B	0,4321	8.260	15,297	14.870	10.274	531.6	51.7	46	1.70

$$(UA)_{S} = 59.080\{.24 + .445 \frac{H_{1} + H_{2}}{2}\}\ln \frac{(T_{G})_{1} - \bar{T}_{S} + \frac{\lambda_{S}H_{1}}{\{.24 + .445 \frac{H_{1} + H_{2}}{2}\}(1.8)}}{(T_{G})_{2} - \bar{T}_{S} + \frac{\lambda_{S}H_{2}}{\{.24 + .445 \frac{H_{1} + H_{2}}{2}\}(1.8)}} \frac{BTU}{hr^{0}F}$$

ρ

$$(C_p)_S W_F = \frac{W_F (1 - T_m)}{453.59} \{.2 + \tilde{M}\}$$

hr^oF

$$(C_p)_G W_G = 59.080 \{.24 + .445 \frac{H_1 + H_2}{2}\}$$

hr^oF

$$(UA)_{S}^{*} = (C_{p})_{G}W_{G} [1 - exp\{-\frac{(UA)_{S}}{(C_{p})_{G}W_{G}}\}] \frac{BTU}{hr^{O}F}$$

$$\Psi_{1} = \frac{(UA)_{S} + (UA)_{A}}{(C_{P})_{S}W_{F}}$$

$$\Psi_{2} = \frac{1}{(C_{p})_{S}W_{F}} \cdot [(UA)_{S}^{*}[(T_{G})_{1} + \frac{\lambda_{S}H_{1}}{(.24 + .445 + \frac{H_{1} + H_{2}}{2})(1.8)} + (UA)_{A} \cdot T_{A}] \quad o_{C}$$

$$T_{S} = \frac{\Psi_{2}}{\Psi_{1}} [1 - (1 - \frac{\Psi_{1}T_{A}}{\Psi_{2}}) \exp(-\Psi_{1})]$$

$$\frac{\kappa}{\tau_{\rm R}} = \frac{1}{\tau_{\rm R}} \cdot \ln \frac{M_1}{M_2} \cdot \exp \left(\frac{1385}{\bar{T}_{\rm S}}\right) \tag{min}^{-1}$$

<u>lathematical</u> Models

<u>Initial Calculation</u>. When hot gas is passed through a fixed bed of moist manure, as time passes the moisture is removed. At steady state, the radial solids velocity across the base plate of the pilot plant reactor should be constant. Therefore, τ , time in the fixed bed, corresponds to $\frac{\mathbf{r}}{U_R}$ in the pilot plant. The solids residence time in the pilot plant, $\tau_R = \frac{a}{U_R}$, corresponds to the same τ_R in the fixed bed. Manure drying is in the falling-rate period when $N_0 < 1.0$ approximately. In the pilot plant

$$-\frac{\delta \ln M}{\delta \tau} = 1.27 \cdot \left(\frac{V}{150.8}\right)^{0.8} \exp\left(-\frac{1385}{T_S}\right)$$

Figure 4

Calculated Versus Measured Solids Temperature: Direct Contact Drying

ρ

V is the velocity (cm/min) of the hot gas; T_S is in ${}^{O}K$; M is in gm $H_2O/$ gm dry solids.

Heat from the hot gas is used to increase the temperature level of the moist bed and to supply the latent heat of evaporation. Both the solid and gas phases offer resistance to the heat transfer, and the overall heat transfer coefficient, UA, cal/min ^OC, is assumed to depend only on $V^{0.8}$. Assuming that the bed is sufficiently thin that variations in temperature with depth are negligible, T_S should be a function of τ alone. The heat transfer coefficient UA is based upon a log-mean temperature difference:

$$(\Delta T)_{1m} \frac{(T_G)_i - (T_G)_0}{\ln \frac{(T_G)_i - T_S}{(T_G)_0 - T_S}}$$
(1)

The heat balance reads:

$$T_{S} = \frac{1}{(1 + M) C_{p}} \cdot \left| \frac{(UA)}{W_{S}} \cdot (\Delta T)_{1m} + \lambda \cdot \Delta M \right|, \qquad (2)$$

where C_p is the heat capacity, cai/(gm moist solid) (${}^{O}C$), and depends upon M. (1 + M) C_p is in cal/(gm dry solid) (${}^{O}C$). W_S (1 + M) $C_p \Delta T_S$ is the rate of sensible heat accumulation, cal/min. W_S is gm dry solids/min. λ is the latent heat, so $W_S^{\lambda} \Delta M$ is the rate of latent heat transfer, cal/min. (UA)(ΔT)_{1m} is the total rate of heat transfer, cal/min.

$$C_p = .1128 + 1.335 \left(\frac{M}{1+M}\right) - .4486 \left(\frac{M}{1+M}\right)^2$$
 (3)

A heat balance on the gas reads:

$$(T_G)_0 = (T_G)_i - \frac{W_S (C_P \Delta T_S - \lambda \Delta M)}{124 W_G}$$
 (4)

 W_G is gm dry gas/min, and 0.24 is its specific heat, cal/(gm dry gas) (^OC).

Rewriting the drying equation:

$$\Lambda M = -A M \exp \left(-\frac{B}{T_{S}}\right) \Lambda_{1}$$
(5)
If V were a variable, $\left(\frac{V}{V_{O}}\right)^{0.8}$ would modify A in (5) and (UA) in (1).

D

Initial Numerical Integration. A HP-67 was used to calculate numerical solutions to this set of five equations, using a naive time step approach. There is a HP Runge-Kutta program available, but this program requires too many steps and so it couldn't be used. Starting with a cold bed, the HP-67 has to run about 3 hours to get to a nearly (M = 0.05) dry bed. Substantial errors are incurred in the integration because of the size of the At's that must be used. A sample problem was worked out, and the results are shown on Figure 5. The constants used were

Initial Values	то	0 min
	Mo	0.55 gm H ₂ 0/gm dry solids
	(T _S) _o	298 ^o k (25 ^o c)
	(Δτ) ₀	.0001 min
Constants	A	1.27 gm H ₂ 0/(gm dry solids) (min)
	В	1385 ⁰ K
	(UA)	100 cal/min ⁰ C
	(T _G) _i	423 ^о к (150 ^о с)
	Ws	1888 gm dry solids∕min
	W _G	2276 gm dry gas/min

 W_S and W_G are based on 3 T dry solids/day in a 4 ft. diam. reactor. The values for A and B are based on the laboratory data. The value (UA) = 100 cal/min ^OC is a guess.

The first phase is rapid warm up. Within 0.5 min. from the start, T_S shoots up almost to the gas temperature. During this time very little

.

moisture evaporates. The calculation is very tedious because T_S changes so rapidly. In the second phase evaporation is very rapid, so rapid that the heat transfer rate from the gas is insufficient to meet the demand. T_S falls off, the $(\Delta T)_{1m}$ and the overall heat transfer rate increase. Eventually a balance is struck and T_S passes through a minimum. In the third period the rmisture content and evaporation rate decrease slowly, while T_S rises just rapidly enough to maintain the balance. After a very long time, M goes to zero and T_S goes to $(T_G)_i$.

For this particular calculation, M goes to 0.1 in about 45 min. and to $(0.05 \text{ in about 60 min. } (UA) = 100 \text{ cal/min}^{O}C$ appears to be too large, so in the pilot plant the corresponding solids residence times are probably somewhat longer than these. In the pilot plant the longest residence time to date has been about 30 minutes. The (UA) calculated from the pilot plant data is not the same (UA) used in this calculation.

A second calculation was also made using (UA) = 10 instead of 100 cal/ min $^{\circ}$ C. The solids temperature shot up to only 73 $^{\circ}$ C in Phase I. In Phase II, T_S plummeted to 260 $^{\circ}$ C (-13 $^{\circ}$ C, frozen!) at which point the work was stopped. Thus, a realistic (UA) must be in the 10-100 cal/min $^{\circ}$ C range.

In order to more simply review the major functions in direct contact drying, it appears in Figure 5b that the rate of water evaporation is directly proportional to the residence time (or inversely to flow rate). Very high moisture contents (greater than 50%) also appear to greatly reduce the evaporation rate. Flue gas temperature and moisture content (below 50%) do not appear to influence the rate of drying.

•

.-

 ρ

moisture evaporates. The calculation is very tedious because T_S changes so rapidly. In the second phase evaporation is very rapid, so rapid that the heat transfer rate from the gas is insufficient to meet the demand. T_S falls off, the $(\Delta T)_{1m}$ and the overall heat transfer rate increase. Eventually a balance is struck and T_S passes through a minimum. In the third period the moisture content and evaporation rate decrease slowly, while T_S rises just rapidly enough to maintain the balance. After a very long time, M goes to zero and T_S goes to $(T_G)_{1i}$.

For this particular calculation, M goes to 0.1 in about 45 min. and to 0.05 in about 60 min. $(UA) = 100 \text{ cal/min}^{\circ}C$ appears to be too large, so in the pilot plant the corresponding solids residence times are probably somewhat longer than these. In the pilot plant the longest residence time to date has been about 30 minutes. The (UA) calculated from the pilot plant data is not the same (UA) used in this calculation.

A second calculation was also made using (UA) = 10 instead of 100 cal/ min $^{\circ}$ C. The solids temperature shot up to only 73 $^{\circ}$ C in Phase I. In Phase II, T_S plummeted to 260 $^{\circ}$ C (-13 $^{\circ}$ C, frozen!) at which point the work was stopped. Thus, a realistic (UA) must be in the 10-100 cal/min $^{\circ}$ C range.

72a

Analysis. The connection between the model and contact drying

in the pilot plant is that time, τ , in the model corresponds to $\int \frac{dr}{u_r}$ in the pilot plant. The superficial gas velocity, W_G/A , is the same in the model and in the pilot plant, but the outlet gas temperature in the pilot plant corresponds to

$$\frac{1}{\tau_{\rm R}} \cdot \int_{0}^{\tau_{\rm R}} \tau_{\rm G} \cdot d\tau$$

in the model. Here $\boldsymbol{\tau}_R$ is the residence time of the solids in the pilot plant.

It turns out that the plant problem is somewhat simpler than this, since (UA) is essentially infinite for the bed thicknesses of interest. When (UA) is essentially infinite, $T_G = T_S$, i.e. thermal equilibrium is attained between the gas and solid. In a well-insulated fixed bed the bed temperature, outlet gas temperature, and inlet gas temperature were measured as functions of time. The outlet gas temperature, and inlet gas temperature were measured as functions of time. The outlet gas temperature and solids temperature were the same in these experiments. Thus, simplified reduced calculations could read as follows:

$$W_{G}(C_{p})_{G}\{\{T_{G}\}_{i} - T_{G}\} = M_{S}\{\{C_{p}\}_{S} \frac{\delta^{1}S}{\delta\tau} - \lambda_{v} \frac{\delta M}{\delta\tau}\}$$
 Heat Balance (5)

$$T_{S} = T_{G}$$

$$- \frac{\delta M}{\delta \tau} = A^{*} \cdot M \cdot \left(\frac{W_{G}}{A}\right)^{0.8} \cdot \exp \left(\frac{B}{T_{S}}\right)$$

$$Rate of Moisture Transfer (7)$$

$$-M_{S} \cdot \frac{\delta M}{\delta \tau} = W_{G} \cdot (H - H_{i})$$

$$Moisture Balance (8)$$

The moisture balance is not very important, since it has only a minor influence on $(C_p)_{G}$.

For the solids and gas heat capacities:

$$(C_p)_s = (1 + M) \cdot \{.1128 + 1.335 \left(\frac{M}{1 + M}\right) - .4486 \left(\frac{M}{1 + M}\right)^2\}$$
 (9)

$$(C_p)_G = 0.24 + 0.445 H$$
 (10)

Equations (5) through (10) were programmed on the HP-67. Using the proper initial condition (discussed below), the calculation proceeds smoothly with Δt 's of reasonable size. When (UA) is essentially infinite, the solids temperature, T_g , and the outlet gas temperature, T_g , converge very rapidly--so rapidly that very little drying occurs in this time. During this initial warm-up period, Equations (5) and (7) become approximately

$$W_{G}(C_{p})_{G}\{\{T_{G}\}_{i} - T_{G}\} \approx M_{S}\{\{C_{p}\}_{S} \frac{\delta T_{S}}{\delta \tau} + A \star M^{O} \left(\frac{W_{G}}{A}\right)^{O,O} \exp\left(-\frac{B}{T_{S}}\right)\} \text{ for small } \tau \quad (11)$$

where M^{O} is the initial moisture content of the solids, gm H₂O/gm dry solids. Starting from a low value, T_S first passes through a maxima, and then through a minima. (See Figure 2). For the present purpose, it is assumed that T_L becomes T_S just as T_S passes through its minima, and that this temperature is the above-mentioned proper initial condition for the numerical integration of the reduced problem. This initial temperature, T_S^O, is the root of the following equation:

$$W_{G}(C_{p})_{G}\{(T_{G})_{i} - T_{S}^{0}\} \approx M_{S} \cdot A^{*} \cdot M^{0} \cdot \left(\frac{W_{G}}{A}\right)^{0.8} \cdot \exp\left(-\left(\frac{B}{T_{S}^{0}}\right)\right)$$
(12)

<u>Comparison of Pilot Plant Data and Model</u>. In the pilot plant experiments 10-21-A through $11-03-E_3$ (Table 4) the holdup volumes were not measured properly. The holdup volumes were measured properly in the final three experiments, 12-13 through 12-14-B, and so these data will be used for comparison with the model:

 $A^{**} = \frac{A^{*}}{(150.8)^{0.8}} = 1.185$; B = 1385 throughout. Experiment 12-13 $M_{\rm S}$ = 1112 gm dry solids $V_{G} = W_{G}/A = 138.3 \text{ cm/min}$ W_{G}/M_{S} = .4021 gm dry gas/(min)(gm dry solids) $(T_{G})_{1} = 417^{\circ} K$ $H_1 = .025 \text{ gm } H_2^0/\text{gm } \text{dry gas}$ M^{O} = .6234 gm H₂O/gm dry solids $\tau_R = 27.842 \text{ min}$ Calculated $T_S^0 \approx 347^0 K$ At $\tau = 27.842$ min: Calculated Measured т_s 386.2⁰К 320.2⁰K .3103 gm/gm $\frac{1}{\tau_{R}} \cdot \int_{0}^{\tau_{R}} T_{G} \cdot d\tau$.3897 gm/gm 358.4⁰К 348.2⁰K

ρ

Experiment 12-14-A $M_{\rm S}$ = 1452 gm dry solids $V_{G} = W_{G}/A = 138.3 \text{ cm/min}$ $W_G/M_S = .3079 \text{ gm dry gas/(min)(gm dry solids)}$ $(T_{G})_{i} = 421^{\circ} K$ $H_i = .033 \text{ gm } H_2 \text{O/gm } \text{dry gas}$ M^{O} = .6234 gm H₂O/gm dry solids $\tau_{\rm R}$ = 19.044 min Calculated $T_S^0 \approx 337^0 K$ At $\tau = 19.033$ min: Calculated 352.5⁰K т_s .4160 gm/gm 343.9⁰K

Measured 320.2^DK .5069 gm/gm $\tfrac{1}{\tau_{\mathsf{R}}}\cdot \int_{\mathsf{O}}^{\tau_{\mathsf{R}}} \overline{T}_{\mathsf{G}}.\mathsf{d}\tau$ 332.2⁰K

Experiment 12-14-B

 $M_{S} = 588.9 \text{ gm dry solids}$ $V_{G} = W_{G}/A = 138.3 \text{ cm/min}$ $W_{G}/M_{S} = .7592 \text{ gm dry gas/(min)(gm dry solids)}$ $(T_{G})_{i} = 423^{O}K$ $H_{i} = .025 \text{ gm } H_{2}O/\text{gm dry gas}$ $M^{O} = .6234 \text{ gm } H_{2}O/\text{gm dry solids}$ $\tau_{R} = 7.394 \text{ min}$

Calculated
$$T_S \simeq 373^{\circ}K$$
.

At τ = 7.394 min:	Calculated	Measured
TS	379.7 ⁰ К	319.2 ⁰ K
M	.4995 gm/gm	.5446 gm/gm
$\frac{1}{\tau_R} \cdot \int_{C} T_G d\tau$	375.9 ⁰ К	340.2 ⁰ K

<u>Discussion</u>. This mathematical model does not consider heat losses, so the calculated T_S and $\frac{1}{\tau_R} \cdot \int_0^{\tau_R} T_G d\tau$ should be higher than the measured solids and outlet gas temperatures. Similarly, the calculated M should be lower than the measured final moisture content of the solids.

The measured solids temperature, however, seems too low to be explained by heat losses alone. Intially this temperature was measured outside the reactor, and the solids had probably cooled somewhat, Later equipment was installed to measure the solids temperature inside the reactor (using a thermocouple attached to a rotating rabble tooth).

<u>Improved Mathematical Model</u>. Enthalpy transfer rates, rather than heat transfer rates, appear to have some advantages in forming the model. In addition to being more correct, they appear to greatly simplify the analysis. When the drying gas in direct contact drying contains insufficient heat to dry the manure, its temperature falls below 100° C and its humidity approaches saturation. Since manure behaves in a somewhat hygroscopic manner, the corresponding equilibrium moisture contents, M_e, become large. The drying rates, which vary as (M-M_e), fall to low levels. Enthalpy Balance;

Enthalpy Transfer Rate :

$$W_{G}(C_{p})_{G} \left[(T_{G})_{i} - T_{G} + \frac{\lambda_{v}}{(C_{p})_{G}} \cdot (F_{i} - H) \right]^{2}$$

$$(UA)_{s} \cdot \frac{(T_{G})_{i} - T_{G} + \frac{\lambda_{v}}{(C_{p})_{G}} \cdot (H_{i} - H)}{(T_{G})_{i} - T_{s} + \frac{\lambda_{v}}{(C_{p})_{G}} \cdot H_{i}}$$

$$(2)$$

Which can also be written:

$$\frac{T_{G} - T_{S} + \frac{\lambda_{v}}{(C_{P})_{G}} \cdot H}{(T_{G})_{i} - T_{S} + \frac{\lambda_{v}}{(C_{P})_{G}} \cdot H_{i}} = \exp\left(-\frac{(UA)_{S}}{(C_{P})_{G} W_{G}}\right)$$
(3)

Moisture Balance:

$$W_{G}\{H - H_{i}\} = -M_{S} \frac{\partial M}{\partial \tau}$$
(4)

Drying Rate:

(Falling Rate Period)

$$-\frac{\partial M}{\partial \tau} = A \left(\frac{V}{V_o} \right)^{C \cdot B} \cdot (M - M_e) \cdot \exp \left(- \frac{B^*}{T_s} \right)$$
 (5)

where M_e is a function of $\frac{H}{H}_{Sat}$ and T_{G} .

Equations (1) and (3) can be combined to read

$$-\frac{1}{\psi_{1}} \cdot \frac{\partial n}{\partial e} + n - 1 = 0$$
 (6)

The solution is

$$\frac{1-\eta}{1-\eta_0} = \exp\left(-\psi_1^{-2}\right) \tag{7}$$

where

$$\theta = \frac{\tau}{\tau_R}$$
; $r_1 = \frac{\psi_1 T_s}{\psi_2}$ (8), (9)

$$\psi_{1} = \frac{(C_{p})_{G} W_{G}}{(C_{p})_{S} W_{F}} \cdot \left[1 - \exp\left(-\frac{(UA)_{S}}{(C_{p})_{G} W_{G}}\right)\right] + \frac{(UA)_{A}}{(C_{p})_{S} W_{F}}$$
(10)

$$\Psi_{2} = \frac{(C_{p})_{G} W_{G}}{(C_{p})_{S} W_{F}} \left[1 - \exp\left(-\frac{(UA)_{S}}{(C_{p})_{G} W_{G}}\right) \right] \left\{ (T_{G})_{i} + \frac{\lambda_{v}}{(C_{p})_{G}} \cdot H_{i} \right\} + \frac{(UA)_{A}}{(C_{p})_{S} W_{F}} \cdot T_{A}$$
(11)

٠.

ρ

Nomenclature

•

Α	Empirical constant, (min) ⁻¹
B*	Empirical constant, ^O K
(C _P) _G	Heat capacity of gas, cal/(gm dry gas)(⁰ K)
(c _p) _s	Heat capacity of solids, cal/(gm dry solids)(⁰ K)
н	Humidity of gas, gm H ₂ O/gm dry gas
н _і	Humidity of gas at inlet, gm H ₂ O/gm dry gas
H _{sat}	Saturated humidity of gas at temperature $T_G^{}$, gm $H_2^{}O/gm$ dry gas
М	Moisture content, gm H ₂ 0/gm dry solids
M _S	Solids holdup, gm
т _А	Temperature of ambient air, ^O K
т _G	Temperature of gas leaving bed, ^O K
(T _G) _i	Temperature of gas entering bed, ^O K
т _s	Temperature of solids, ^O X
(UA) _A	Rate of heat loss to ambient air/($T_S - T_A$), cal/min ^O K
(^{UA)} S	Rate of enthalpy transfer in the bed/(Difference in enthalpy between gas and solids), cal/min [°] K
V	Superficial gas velocity, cm/min
W _F	Solids flow rate, gm dry solids/min
W _G	Gas flow rate, gm dry gas/min
۸ _۷	Latent heat of evaporation at T _G , cal/gm
τ	Time, min
$\tau_{R}^{=M}s^{/W}F$	Solids residence time, min

PYROLYSIS

The material balances on the total manure and on the ash close satisfactorily. A summary of the manure pyrolysis runs is given in Table 14. Runs at 580 and 591° C are essentially duplicates of each other. Between 83-91% of the volatiles (750° C) were released as gas and tar at solids temperatures of from 495 to 660° C. In the proximate analysis, pyrolysis is continued at 750° C under inert gas until no more gas is evolved. (The temperature 750° C has been selected as an arbitrary reference). In all cases the static holdup which was at the solids temperature for the longest times had the lowest volatiles (750° C) content of the three types of char.

In these experiments between 2 and 44% of the residual carbon (left behind after pyrolysis) was gasified by the steam present in the feed, or generated during pyrolysis. This appears to be consistent with Phase I steam/char reaction results. In Phase I the char residence times for Runs 5 and 6 were 33 and 30 min. respectively. Solids temperatures were not measured, but judging from the measured baseplate and outlet gas temperatures, the solids temperatures were probably in the 700°C range. In Run 5, 36.0% of the carbon was gasified, and in Run 6, 34.6% of the carbon was gasified.

When the solids temperature is above 635° C, and the gas phase contains a high concentration of steam, CH₄ and the higher hydrocarbons might be hydrocracked down to H₂ and CO. When the feed manure contained about 45 wt % moisture, the pyrolysis gas (at 635° C) contained about .054 gm CH₄/gm DAF

ΰL
Table

.

.

Summary of Manure Pyrolysis Experiments

emp., C	Feed Hoisture, Wt %	Volatiles Removed, %	Carbon Gasified, %	Heating Value, BTU	Gas 9/9	Yield, w/o CO ₂	c02	Gas Ar CO	ualysis, H ₂	64 14	c2+	Connents
	33.2	84.7	3.5	246	1.11	.324	35.7	14.2	40.1	9.5	9.	
	32.2	86.8	28.3	223	.94	.261	32.8	13.0	48.5	5.7	1	:
	31.5	83.3	40.8	2	.45	.125	37.7	12.8	37.8	10.3	1. f	Poor Run
	31.5	84.0	29.5	8	.76	.210	37.7	12.8	37.8	10.3	1.4	Poor Run
	25.6	86.9		ł	.38	660.	37.9	10.9	40.0	8.9	2.3	Run
	29.9	1	ţ	!	ł	ł	29.4	15.5	48.8	6.3	1	Run
	6.7	-	ţ	ł	1	ł	23.9	27.5	39.6	8.9	1	Poor Run
	47.8	82.9	2.4	240	66'	.278	36.2	9.5	45.5	7.5	1.29	
	43.2	87.2	29.0	273	.74	.229	30.8	11.2	47.1	8.9	2.0	
	7.3	93.0	14.5	299	.70	.341	22.9	24.5	40.3	11.8	ŗ,	
	5,9	84.7	42.7	313	.65	.230	33.5	15.3	34.8	12.8	3.6	
	5,2	88.0	28.4	319	.53	.208	30.9	7.71	35.2	12.6	3.6	
	36.7	88.7	14.9	298	1.00	.381	26.6	14.3	46.0	11.3	1.9	
	30.2	91.3	43.5	274	76.	.366	26.6	15.6	46.8	11.0	1 05	
	26.2	86.8	25.2	276	.85	.291	29.1	15.3	42.0	9.7	1.33	

. . . .

• .

.

feed and about .022 gm ($C_2H_4 + C_2H_6$)/gm DAF feed. When the feed moisture was about 5 wt %, the pyrolysis gas (at 740 and 651°C) contained .048 to .058 gm CH₄/gm DAF feed and .025 to .030 gm ($C_2H_4 + C_2H_6$)/gm DAF feed. Even if the feed were perfectly dry, the pyrolysis gas would contain a great deal of steam. Thus, the data seem to suggest that either the hydrocracking reactions are frozen at the existing temperature, or the steam derived from the feed moisture simply adds to an already gross excess of pyrolytic steam. The variation of gas yields and volatiles removed with temperature are shown in Figure 6. As would be expected, the higher the temperature the greater the gas yield. Equilibrium for the reaction C0 + H₂0 \neq CO₂ + H₂ shifts to the left as the temperature increases. D

The runs performed on sawdust (summarized in Table 15) were at temperatures of from 631 to 653⁰C. Wood has a very large volatiles (750⁰C) content-about 79 wt % dry basis--and about .82 g gas/g DAF feed were produced. The wood pyrolysis gas contained about 16.5 vol % CH_4 and about 2.9 vol % C_2^+ giving it a relatively high volumetric heating value (360 BTU/SCF). Here also about 30% of the carbon was steam-gasified in spite of the low solids temperatures. The ash content of wood char is low (5.9%), but the steamgasification rates did not change for lack of a catalysis in the ash. (An average of 25.2% carbon gasification occurred with manure at 611⁰C and 26.2% moisture in the feed, compared to 26.7% of the carbon gasified from sawdust at 641⁰C and a 19.3% feed moisture content). It is interesting to note, however, that apparently the ash in manure did catalyze the $CO \rightarrow CO_2$ shift conversion. The gas averaged 15.3% CO and 42.0% H₂ from the pyrolysis of manure, and 31.4% CO and 25.2% H₂ from sawdust. However, the CO₂ was 29.1% from manure, and 24.0% from sawdust, so perhaps the high ash content in manure accelerated the $H_2O + CO \neq CO_2 + H_2$ reaction.

Manure Pyrolysis Yields

Figure 6

Manure Pyrolysis Gas Composition

Figure 7

.

Table 15

Summary of Sawdust Pyrolysis Experiments

wt.% <u>Ash</u>	8.0	4.8	ł	4,9	5,9
Char, <u>Volatiles</u>	17.7	14.6	1	12.2	14.8
C + C +	2.9	3° ü	2.4+	3.1	2.9
llysis, Vol. H2 CH4	3 23.7 16.2	24.0 16.2	28.4 17.6	5 24.7 15.9	25.2 16.5
as Ana CO	33.8	32.2	28.2	31.5	31.4
	23.4	24.6	23.4	24.7	24.0
Yield, ∦/o CO_2	.441	.427	.480	.444	.448
Gas g/g	.783	.784	, 894	.823	.821
Heating Value, BTU	361	359	359	357	359
Carbon Gasified, %	17.2	32.2	27.1	30.3	26.7
Volatiles Removed, %	9.79	97.8	0.99	98.2	98.2
Feed Moisture, wt. %	10.0	12.5	24.6	30.0	19.3
Temp. ⁰ C	631	しから	640	653	641
					Average

•

•

.

•

•

,

ł

85

ρ

WATER GAS REACTION

Run 3-1-78 served as a "blank", where the completely dry feed char contained 16 wt % volatile (750°C) matter, and about 39% of it was removed. Pyrolytic water was formed, and this gasified about 7% of the carbon $(750^{\circ}C)$.

Runs 3-6-78 and 3-8-78 were similar, but steam was present in excess in both cases. About 18% of the carbon (750°C) was gasified. The solids temperatures were low, 564° and 606° C respectively, and this is why the gasification rates are low. About 44% of the volatiles (750°C) were removed in these runs.

The equation involved in the steam-char or water gas reaction is:

$$C_{(s)} + H_2 O_{(q)} \rightarrow CO_{(q)} + H_2(q)$$
 (1)

Both thermogravimetric analysis and the pilot plant data show that the reaction between biomass char and steam is comparatively fast even when the reaction temperature is as low as 650°C. The reaction rates of biomass char and steam are much higher than the corresponding reaction rates of the various coal chars and steam(8, 9, 10).

In the thermogravimetric work, the biomass char samples were very small (3-5 mg) and sieved into fractions containing different particle D

⁽⁸⁾Linares, A., Mahajan, O. P., Walker, P. L., "Reactivities of Heat-Treated Coals in Steam," ACS Div. Fuel Chemistry Symp., Vol. 22, No. 1 (March 1977), p. 1.

⁽⁹⁾ Tomita, A., Mahajan, O. P., Walker, P. L., "Catalysis of Char Gasifi-cation by Minerals," ACS Div. Fuel Chemistry, Symp., Vol. 22, No. 1 (March 1977), p. 4.

⁽¹⁰⁾ Walker, P. L., Mahajan, O. P., Yarzab, R., "Unification of Coal Char Gasification Reactions," ACS Div. Fuel Chemistry Symp., Vol. 22, No. 1 (March 1977), p. 7,

sizes (100/200, 200/250, and -250 mesh) in order to reduce the diffusional component of the overall reaction rate. In spite of this, the steam-carbon reaction appeared to be primarily controlled by the diffusion rate of steam to the reaction sites when the reaction temperature was higher than about 600° C.

D

.

In the pilot plant pyrolysis experiments, the data showed that only a small part of the pyrolytic carbon had been steam-gasified when the solids temperature was as low as 600° C, but considerably more started to react when the temperature was raised to 650° C. (See the Gas Yield in the summary, Table 16). Pyrolytic carbon is defined as the carbon remaining in a laboratory batch pyrolysis experiment done at 750° C in which there is essentially zero contact time between the solids and the evolved gases. It is also apparent from Table 16 that the shift reaction (CO + H₂O \Rightarrow CO₂ + H₂) must have taken place to a considerable extent because of the comparatively low CO₂ and high CO content in relation to the hydrogen.

A simplified analysis of the diffusion-controlled steam-carbon reaction is presented here. A pile of char is reacting with steam at its surface. As time proceeds, the ash-char interface recedes further into the mass. The volume of the ash layer is less than the volume of the char it replaces. The temperature is so high that the carbon-steam reaction is very fast. The humidity of the gas phase at the ash-char interface is essentially zero. There is a net outflow of gas through the ash layer, and the steam must diffuse into the ash layer against this outflow. Also, the water gas shift reaction:

$$CO + H_2O \neq CO_2 + H_2$$
 (2)

occurs throughout the ash layer and in the micropores of the carbon at the ash-char interface. Equilibrium for this reaction shifts to the right at

Table 16

:

.. .

.

· · • • • •

Water Gas Reaction of Manure Char

	Temp. ^O C	Volatiles in feed, %	Steam g/g Feed	Added H ₂ 0/C (mo1 <u>e/mo1e)</u>	Volatiles Removed, %	Carbon Gasified, %	Gas 9/9 DAF	Yield, w/o CO_2	c0 ²	Gas And CO	ulysis H2	CH4
	564	15.4	.46	1.22	43.2	17.6	.195	.044	31.7	7.8	55.4	5.2
	597	16.3	0	.14	38.9	۲.٦	.213	.085	25.1	16.5	47.8	10.7
	606	14.4	.47	1.45	44.5	17.7	.214	.046	33.3	8.4	54.9	3.4
	650	16.8	. 25	.73	52.2	16.9	.662	.228	27.1	16.7	52.9	3,3
erage	604	15.7	.30	.89	44.7	14.8	.321	.101	29.3	12.4	52.8	5.7

.

· · · · · · · · · · · ·

ρ

Aver

88

•

lower temperatures. For this simplified analysis and data correlation, it is assumed that at about 600^DC the pseudo reaction:

$$C + \frac{7}{4}H_2 0 \rightarrow \frac{1}{4}C0 + \frac{3}{4}C0_2 + \frac{7}{4}H_2$$
(3)

occurs at the ash-char interface and that the reactant and product gases diffuse through the ash layer without reaction. The diffusion equation for this stoichiometry is:

$$N_{H_{2}0} = \frac{-c \Re_{im}}{(1 + \frac{4}{7} \cdot X_{H_{2}0})} \cdot \frac{\partial X_{H_{2}0}}{\partial Z}$$
(4)

 N_{H_20} is constant with Z. $X_{H_20} = 0$ at Z = δ . $X_{H_20} = X_{H_20}^0$ at Z = 0. The

integral is:

$$\ln\{1 + \frac{7}{4} \cdot X_{H_20}\} = (1 - \frac{7}{5}) \cdot \ln\{1 + \frac{7}{4} \cdot X_{H_20}^0\}$$
(5)

And so:

$$N_{H_20} = + \frac{cB_{1m}}{\delta} \cdot \ln[1 + \frac{7}{4} \cdot X_{H_20}^0]$$
 (6)

The char is assumed to contain only carbon and ash. As carbon is gasified, the ash layer thickens.

$$\frac{\partial \delta}{\partial \tau} = \frac{4}{7} \cdot \frac{12}{p_{A}} \cdot \frac{f_{A}}{f_{c}} \cdot N_{H_{2}0} = \frac{4}{7} \cdot \frac{12}{p_{A}} \cdot \frac{f_{A}}{f_{c}} \cdot \frac{c \vartheta}{\delta} \frac{im}{m} \ln\{1 + \frac{7}{4} \cdot X_{H_{2}0}^{0}\}$$
(7)

$$\frac{\partial \mathcal{E}}{\partial \tau} = \frac{\Lambda}{7} \cdot \frac{12}{\rho_{\rm A}} \cdot \frac{\frac{1}{f_{\rm C}}}{\frac{1}{f_{\rm C}}} \cdot \frac{1}{22414} \cdot (22414 \ N_{\rm H_20})$$
(7a)

(22414 N_{H_20}) is the velocity, cm/sec, of the steam molecules in the ash layer. $\frac{\partial \delta}{\partial \tau}$ is the rate of increase, cm/sec, of the ash layer thickness. Since $\frac{4}{7} \cdot \frac{12}{\rho_A} \cdot \frac{f_A}{f_c} \cdot \frac{1}{22414}$ <<1, the use of a quasi-steady state diffusion equation, Equation (4), is justified. The integral of Equation (7) is:

$$5 = 2 \sqrt{\frac{4}{7} \cdot \frac{12}{\rho_A} \cdot \frac{f_A}{f_c}} \cdot c \vartheta_{1m} \cdot \ln\{1 + \frac{7}{4} \cdot \chi^0_{H_20}\} \cdot \tau$$
(8)

ρ

And

$$N_{H_20} = \frac{1}{2} \frac{7}{4} \cdot \frac{\rho_A}{12} \cdot \frac{f_c}{f_A} \cdot \frac{c \dot{t}_{1m} \cdot \ln\{1 + \frac{7}{4} x_{H_20}^0\}}{\tau}$$
(9)

The amount of carbon gasified in time τ is:

$$\int_{0}^{T} N_{H_{2}0} d\tau = \sqrt{\frac{7}{4} \cdot \frac{\rho_{A}}{12} \cdot \frac{f_{c}}{f_{A}} \cdot cS_{in} \ln\{1 + \frac{7}{4} \cdot X_{H_{2}0}^{0}\} \cdot \tau}$$
(10)

The fraction of all the carbon in the pile that has reacted in time τ is:

$$(1 - Y) = \frac{124_{c}}{f_{c}M_{c}} \sqrt{\frac{7}{4} \cdot \frac{\rho_{A}}{12} \cdot \frac{f_{c}}{f_{A}} \cdot c\beta_{ini} \cdot \ln\{1 + \frac{7}{4} \cdot X_{H_{2}0}^{0}\} \cdot \tau}$$
(11)

In the pilot plant reactor the char is contacted four times by the rabble teeth as it moves across the baseplate. Steam in the mas space above the char layer reacts with the char. Suppose, then, that the pilot plant situation can be simulated by four reaction stages, each $\tau_p/4$ seconds in duration at which time the char is thoroughly mixed to start the next reaction stage. The starting values for f_c , f_A , and M_c must be recomputed at the beginning of each new reaction stage.

$$\frac{(M_c)_{i+1}}{(M_c)_i} = 1 - (f_c)_i (1 - Y_i)$$
(12)

$$\frac{(f_A)_{i+1}}{(f_A)_i} = \frac{1}{1 - (f_c)_i(1 - Y_i)}$$
(13)

$$\frac{(f_c)_{i+1}}{(f_c)_i} = \frac{Y_i}{1 - (f_c)_i(1 - Y_i)}$$
(14)

<u>Pilot Plant Data Correlation</u>. In Table 17 pilot plant data for the steam-gasification of manure char are compared with the simplified theory.

		3/1/2	78	3/6/	78	3/8/	78
N	stages		4		4		4
x ^o H ₂ O	mol fraction .	.218	33	. 69	71	. 69	18
T	°ĸ	87	70 ⁰	8	37 ⁰	8	79 ⁰
τ R	seconds	17	92	13	90	19	42
(f _c)	wt. fract. carbon (750 ⁰ C)	.21	4 4	.23	71	.23	44
(f _A /f _c)	wt. ash/wt. carbon (750 ⁰ C)	3.6	65	3.2	17	3.2	67
(M _c) _o	gms dry weight	13	60	14	05	12	29
		Theory	<u>Meas.</u>	Theory	Meas.	Theory	Meas.
(1 - Y)	fract. carbon (750 ⁰) gasified	.0948	.071	.1179	.175	.1649	.177

ŀ.

And the second

1.4.1.1.1

.

Table 17

ł

PILOT PLANT STEAM-MANURE CHAR REACTION DATA COMPARED WITH THEORY

The solids residence time is:

$$\tau_{R} = \frac{\text{Holdup Ash (gm)}}{\text{Ash Input Rate (gm/sec)}}$$

The presence of volatiles (750°C) in the char complicates the data. $(M_c)_o$ is the equivalent devolatilized char mass, $W_F(f_c + f_A)_F \tau_R$. $(f_c)_o = \left\{ \frac{f_c}{f_c + f_A} \right\}_F$. $\Re_{im} = \beta T^{1.75}(11)$

ρ

The constant

$$12A_{c}$$
 $\frac{7}{4} \cdot \frac{^{\circ}A}{12} \cdot \frac{^{\circ}B}{12}$

was taken to be .003 to best correlate the pilot plant data.

⁽¹¹⁾ Perry and Chilton (Ed.), <u>Chemical Engineers' Handbook</u>, Mc-Graw-Hill, New York (1973), pp. 3-233.

CONSIDERATION OF AN ENTRAINED BED REACTOR FOR THE STEAM-CHAR REACTION

GENERAL

The general configuration of an entrained bed tubular pyrolysis reactor is illustrated in Figure 8. To design such a system it is necessary to first consider two problems: 1) Biomass particles are not uniform, with some ranging from 0.01 to about 3 mm. The amount of biomass lifted is a function of the gas rate at the entrance, and 2) Considerable heat must be delivered to the reactor.

Particle Size vs. Gas Rate

In analyzing the entrance region where steam and/or air and recycle gas are mixed with the biomass, only those particles which have a terminal velocity in the gas equal to or less than the gas velocity are kept in suspension or lifted through the reactor. The larger particles will fall and deposit in the collector (see Figure 9). If the particle size distribution is known, it is possible to calculate the fraction which is lifted through the reactor at given flow rates.

A particle of diameter D_p falling in stagnant fluid will accelerate until it reaches a point where the drag exerted on it by the fluid equals its weight. The particle velocity at this point is called the terminal velocity and, according to Newton's laws, is:

$$V_{\rm T}^2 = \frac{4 \Delta \rho g D_{\rm p}}{3 C_{\rm D} \rho} \tag{1}$$

where

 ρ = steam density at the mixing zone where the pressure and temperature are assumed to be 1.3 atm. and 130[°]C, respectively. ρ = 0.000713 g/cc

÷

i

.

Figure 8

Preliminary Design of Entrained Bed Reactor

ITEM	DESCRIPTION	QTY.	MATL.	•
1	Reactor. 20' long x l" dia. Flanges at two ends for connection with screw feeder and condenser.	1	Inconel	
2	Heating chamber. 19' long x 3" dia. Flanges at both ends for enclosing. Flue gas outlet is 2" Dia.	١	Inconel	:
3	2" thick insulation	1	Refractory	
4	Burners. ½" diameter long flame burner at 5' spacing from the top.	4	Stainless steel	
5	Burner feed. ½" dia. tube with connections for burners.	1	Stainless	
6	Positioning braces. Any shape provided flow of flue gas is not blocked. 2' spacing.	10	Inconel	
7	Lids. The top sliding fit on reactor, the bottom welded on reactor.	2	Inconel	

ρ

 $\Delta \rho$ = density difference between particle and steam; particle density, ρ_p = 1.3 g/cc

 $C_n = drag \ coefficient$

The drag coefficient is correlated against particle Reynolds number defined by:

$$Re = \frac{\rho V_T D_P}{\mu}$$
(2)

٠...-

where μ = steam viscosity = 130 x 10⁻⁶ poise at 1.3 atm. and 130^OC. The correlation is reported in many text books including Perry's handbook (5th ed. pages 5-62) and Foust et al. (1960).

Rearrangement of equations 1 and 2 to eliminate V_T gives:

$$C_{\rm D} = \frac{4\rho \ \Delta \rho \ g \ D_{\rm P}^3}{3\mu^2} \ {\rm Re}^{-2} = {\rm K \ Re}^{-2}$$
(3)

with K equal to:

$$K = \frac{4 \times 0.000713 \times 1.3 \times 981}{3 (130 \times 10^{-6})^2} D_{P}^{3}$$

= 71714.46 D_{D}^{3} D_{D} in mm (4)

Equation 3 can be represented by a straight line in log-log plot of C_D vs Re, having slope equal to -2. This straight line will intersect the correlation curve C_D as a function of Re at the point of solution. The method requires the knowledge of K which is a function of D_p (equation 4). The method of calculation is shown in Figure 9 and the results for different values of K are tabulated in Table 18. The value of Re at the intercept is substituted into equation 2 to determine V_T using:

$$Re = \frac{0.000713}{0.000130} \frac{V_T D_P}{10} \qquad \begin{cases} D_P \text{ in mm} \\ V_T \text{ in cm/s} \end{cases}$$

$$= 0.548 V_T D_P \qquad (5)$$

distribution of the second second

Table 18

. :

. • *

Steam Consumption Versus Particle Size and Reactor Diameter

				<u>St</u>	eam Requirement	nt (Kg/hr)	
Re	к	D _D (m <i>m</i>)	V _T (cm/s)	3/4" 1.050" 0.884"	1" <u>1.315"</u> 1.097"	1-1/2" 1.900" = 1.682" =	<u>SCH10S</u> = OD = ID
12,000	10 ⁸	11.17	1959.12	19.9053	30.6532	72.0635	
1,200	10 ⁶	2.41	909.33	9.2391	14.2278	33.4484	
.70	10 ⁴	0.519	246.21	2.5015	3.8522	9.0563	
0.5	20	.0653	13.96	.1418	.2184	.5134	
0.035	1	.0241	2.65	.0269	.0415	.0976	
0.0027	0.06	.0094	.523	.0053	.0082	.0192	

Table 19

.

Sieve Analysis of Bee	f Manure According	g to Hou	kom et al.
-----------------------	--------------------	----------	------------

Sieve	Aperture (mm)	<u>25% Moisture</u> Fraction of <u>Smaller (%)</u>	(w.b.) % on <u>Sieve</u>	(Wet Screeni <u>85% Moisture</u> Fraction of Smaller (%)	ng) <u>(w.b.)</u> % on <u>Sieve</u>
4	4.75	96.20	3.8	96.80	3.2
8	2.38	60.80	35.4	89.70	7.1
16	1.190	33.00	27.8	77.80	11.9
30	.595	14.70	18.3	68.10	9.7
50	.297	5.20	9.5	60.20	7.9
100	.140	1.80	3.4	56.60	3.6
140	.104	0.80	1.0	55.30	1.3
pan	< .104		0.8		55.3

Houkom, R. L., Butchbaker, A. F., Brusewitz, G. H., Trans. ASAE, pp. 973-977, 1974.

.

ì

Steam required, (Kg/hr)

The gas rate required can then be determined from the knowledge of the gas velocity, density, and pipe inside diameter (see Table 18). The results of Table18 are plotted in Figure 9. To use these curves first assume that 70% by weight of biomass particles have a diameter of about 1 mm or less and that the reactor is 1 inch schedule 10S pipe. To pass 70% of the feed through the reactor, the gas rate (as steam) must be at least 7 Kg/hr. At 7 Kg/hr, the steam velocity is 4.50m/s (see Figure 9), the residence time of a 1 mm particle is theoretically infinity, and of a 0.7 mm diameter particle, which has $V_T = 3.25m/s$, or about:

$$t = \frac{\text{length of reactor}}{4.50 - 3.25}$$
(6)

ρ

Heating of the Reactor

The reactor is designed to be heated to, and maintained at, at least 860⁰C. To heat the reactor evenly, an electric heater will be expensive, and a better solution may be to use gas. However, regardless of whether electricity or gas is used, the crucial problem is the insulation of the reactor and the possible overheating in local areas of the reactor wall.

The heat required can be calculated approximately by assuming that the heat of pyrolysis is zero, and the heat capacity of the biomass is about 0.6 $Btu/(1b.^{O}F)$, and an 80% heat loss. The heat to be removed in the double-pipe condenser can also be estimated in a similar manner. The heat required in the steam generator, and therefore the capacity of the heating element in the boiler, can be estimated when the maximum requirement of steam is decided.

Design of the Unit

Houkom et al. (1974) reported a sieve analysis for beef manure which is reproduced in Table 19. From these results it can be seen that the wet screening test resulted in more fines than dry screening. Table 19 also shows that a substantial amount of manure has a size between 1.19 - 2.38 mm, and therefore 2.0 mm might be taken as the particle size limit in the design.

 $! \cdot$

ρ

To decide on the reactor diameter, the heat transfer requirement needs to be considered. The heat required to heat steam at 1.3 atm. from 120° C to 1000° C is 1107.2 - 648.2 = 459.0 kcal/kg or = 459.0 x 1.80 = 826.20 Btu/lb. The total amount of heat transferred, Q, is calculated assuming that the reactor is used to heat steam only, and shown in Table 3. The steam Reynolds number calculated for the purpose of heat transfer coefficient determination is also shown in Table 20 for three pipe sizes using 2.0 mm as the limiting particle diameter. The heat transfer factor $j_{\rm H}$, according to correlations reported in Kern (1950), is defined by:

$$j_{H} = \frac{h_{i} D_{i}}{k} \left(\frac{C_{P}}{k}\right)^{-\frac{1}{3}} \left(\frac{\nu}{\nu_{w}}\right)^{-0.14}$$
(7)

where the viscosity ratio between the bulk material and the wall, $\mu/\mu_W^{}$, can be taken as unity. The thermal conductivity k, heat capacity C_p , and the voscosity μ are listed for the inlet and outlet conditions as follows:

Heat capacity, C _p	Inlet, <u>120⁰C</u> 0.165	Outlet, <u>1000°C</u> 0.500	Btu/(1b [°] F)or Cal/(g°C)
Viscosity, p	125	485	10 ⁻⁶ micropoise
Thermal conductivity, k	26.5	142.0	mW/(m ^O K)
-)	15.32	82.10	$\times 10^{-3}$ Btu/(ft hr ^O F)
(C _p µ/k) 3	1.453	1.118	_
$(C_{p\mu}/k)^{-\frac{1}{3}}/k$	9.48	13.62	$Btu/(ft ln {}^{O}F)$

The values for the heat transfer coefficient, h_i , of steam calculated for the inlet and outlet are listed in Table 20. As an approximation, the heat

Table 20

•

.

: <u>Heat Transfer Calculations For Three Reactor Diameters</u>

	5	-		.2	:
Δt _m (⁰ C)		41	54	78	
	L=15 ¹	54.8	72.1	104.3	
∆t _m (°F)	L=20*	74.0	97.3	140.8	
	L=15 ^L	98.7	129.7	187.7	
Q/A	Btu/(hr ft ²)	62 , 909/L	79,842/L	114,889/L	
	⁰ F)	42.50	41,05	40.80	(mean)
	/hr ft ²	34.9	33.7	33.5	(outlet)
	(Btu	50.1	48.4	48.1	(inlet)
	J _H	35	42	i 9	
	Re	9,726	12,069	50,591	
C	(Btulhr)	14,559	22,930	50,591	
Ctoam	(Kg/hr)	8.0	12.6	27.8	
с -	(in.)	0.884	1.097	1.682	

ρ

. • transfer resistance of the pipe wall is neglected. Then, the log mean temperature difference can be calculated by:

$$\Delta t_{\rm m} = \frac{Q/A}{h_{\rm i}}$$
(8)

٥

where A is the heating surface based upon the inside diameter of the reactor. The values of Δt_m are listed for two reactor lengths and in ^{O}F and ^{O}C in Table 20.

The resultant Δt_m shows that the smaller the reactor diameter the less the Δt_m has to be. However, the magnitudes of Δt_m appear to be reasonable for all three diameters and should be achievable without much difficulty. Selection should thus be based upon other factors such as the diameter ratio between the particles and the reactor, material availability and costs, etc. Because of the lack of information on these factors the choice of reactor diameter is arbitrary, and a 1" sch. 10S pipe has been chosen.

General

.

It appears likely that the water gas reaction:

$$C_{(S)} + H_2 O H_2 + CO$$
 (1)

is much faster when the source of the carbon is biomass than when it is lignite. For instance, it has been suggested that the rate of reaction (1) might be 23 times faster for biomass char than it is for lignite char. On this basis it can be calculated that a 3-second residence time in an entrained bed reactor at 1000° C ought to be sufficient time to almost completely steam-gasify biomass carbon.

While the use of excess steam increases the rate of reaction, it would probably be better to use as little excess as possible, since if this steam comes from an external source any excess represents wasted heat. The water gas reaction requires 1.5 gm steam/gm carbon, or roughly
0.75 gm steam/gm char. At 1000° C, the density of steam is $1.72(10^{-4})$ gm/cm³ while the density of the char is about 2 gm/cm³, so a .75 gm steam/gm char stoichiometric ratio is equivalent to a mixture containing only 115 ppm char.

ρ

The steam flow classifies the feed solids into particles larger than, and particles smaller than, the particle whose terminal velocity just equals the steam velocity. There is no need to screen the feed. Thus an inlet steam velocity of 1000 cm/min should be high enough to entrain all but the largest particles in dried manure. If the wall of a 1" vertical pipe is at 1000° C, and steam injected at the stoichiometric ratio into the bottom at 100° C, and the unit is designed for a threesecond residence time: 1000(3)/60 is 50 cm for the heated length of the pipe, and the gas will leave the tube close to 1000° C,

Steam, 100° C: $(Re)_{in} = \frac{(2.664)(16.67)}{.217} = 204.$ 1" pipe: 2.664 cm = 1.049 in inside diameter (H₂ + CO), 1000° C: $(Re)_{out} = \frac{(2.664)(16.67)(2)(1273)}{7.38(373)} = 41.1$ There is no excess steam. There are 2 mols (H₂ + CO)/mol H₂O reacted. The kinematic viscosity of H₂ at 1000° C is quite high. The flow is laminar throughout.

For fully-developed laminar flow in a tube with a constant wall temperature, Nu = 3.656.

$$(h)_{in} = \frac{3.656(12)(.0145)}{1.049} = .6064 \frac{BTU}{hr ft^{2} OF} = .2961 \frac{cal}{hr cm^{2} OC}$$

$$(h)_{out} = \frac{3.656(12)(.169)}{1.049} = 7.08 \frac{BTU}{hr ft^{2} OF} = 3.46 \frac{cal}{hr cm^{2} OC}$$

 $(h)_{out}$ is so large because the thermal conductivity of H₂ at 1000⁰C is very high. The gas is nearly invisible to radiation from the wall. The particles,

however, receive radiant heat from the wall. Some of this heat is lost to the surrounding gas.

ρ

the surrounding gas. At the inlet $(100^{\circ}C)$: $\frac{\pi}{4}(2.664)^{2}(1000)\frac{273}{373}\frac{18}{22414}(60) = 196.6 \text{ gm steam/hr}$ Using a mean C_p of about 0.4 cal/gm^oC for the gas phase, and ignoring the indirect heat transfer from the wall, to the particles, to the gas: $\frac{\text{Temp.}}{196.6(.4)(T - 100)} = \pi(2.664)(50)\frac{3.46 \text{ T} - 3194}{1n - .2961(1000 - 100)}$ T = Gas outlet temperature

The root, T, is 973.6° C. This is close enough to 1000° C to justify the above calculations. 196.6 gm H₂O/hr will oxidize 131.1 gm carbon/hr.

Design Assuming a Plug Flow

يري والوارد والوالي المروم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

The previous discussion dealt with a model of a well-mixed steam gasification reactor. Sample calculations were presented which were based on some lignite char gasification data from the literature. A plug flow entrained steam gasification reactor is modeled next, and some calculations of carbon yield presented using an estimated rate constant, A*, for biomass char.

Assumptions:

Tube has constant cross section. The tube and the material flowing through it are isothermal. There are no radial gradients. Plug flow with no axial dispersion. Steady state. No resistance to heat or mass transfer. ρ

The gasification rate is proportional to the product of the steam concentration and the exposed carbon concentration. "Exposed" means carbon atoms exposed on the internal BET surfaces.

$$\overline{U} \cdot \frac{\delta[C]}{\delta Z} = -A \star [C] \{1 + \frac{B}{A} - \frac{[C]}{[C]_{i}}\} [H_2 O] \exp \{-\frac{E}{RT}\}$$
(1)
$$C(s) + H_2 O(s) + CO(s) + H_2(s)$$
(2)

At Z = 0 there is just steam and char. The gas velocity increases as gasification proceeds.

$$\overline{U} = \{2 - \frac{[C]}{[C]_{i}}\} \cdot \frac{(Q_{s})_{i}}{A}$$
(3)

104

A simple material balance gives:

$$[H_20] = [H_20]_i - [C]_i + [C]$$
(4)

Equation (1) now reads:

$$\int_{V}^{I} \frac{(2 - \phi)d\phi}{\phi\left(1 + \frac{B}{A} - \phi\right)\left(\frac{\left[H_{2}O\right]_{i}}{\left[C\right]_{i}} - 1 + \phi\right)} = \frac{A^{*} AZ [C]_{i}}{(Q_{S})_{i}} \cdot \exp\{-\frac{E}{RT}\}$$
(5)

 $\left\{\frac{H_2O_{i}}{[C]_{i}}-1\right\}$ is "excess steam". B/A depends on the nature of the material. For example, a good raw material for activated carbon would have a small B/A, say, less than 0.1. Lignite char has a B/A of 0.4.

<u>Sample Calculations</u> Take $A^* = 1(10^6)$. This is some 23 times larger than the constant obtained for lignite char.

Take B/A = 0.4 as it is for lignite. Take E = 31000 cal/gm mol ⁰K as it is for lignite. $\frac{AZ}{(Q_s)_i}$ is the residence time.

The inlet steam concentration, $[H_20]_i$, is 1 atm. Thus, the inlet carbon concentration, $[C]_i$, and the "excess steam" are mutually dependent.

Fraction carbon gasified (1 - Y) was calculated as a function of residence time, excess steam, and temperature.

AZ (Q _S) _i	= 1 sec; <u>B</u> = 0.4	Table	gives (1 -	- Y), fracti	ion carbon g	gasified.	
Excess Steam	T emperatu re	1100 ⁰ К	1150 ⁰ К	1200 ⁰ К	1250 ⁰ К	1 300 ⁰ K	
0 0.5 1.0 3.0		.243 .254 .259 .268	.391 .419 .434 .457	.549 .604 .632 .675	.686 .767 .805 .857	.788 .884 .920 .959	

$\frac{AZ}{(Q_S)_i} =$	$3 \sec; \frac{B}{A} = 0.4$					
Excess Steam	Temperature	1100 ⁰ к	1150 ⁰ K	1200 ⁰ K	1250 ⁰ K	1300 ⁰ K
0 0.5 1.0 3.0		.525 .576 .602 .642	.689 .771 .809 .860	.805 .903 .937 .972	.879 .972 1.000 1.000	.924 1.000 1.000 1.000

It is likely that the ash would melt if the temperature were 1250°K or higher.

•

Notation

Α	Cross sectional area of tube, cm ²
A*	Empirical constant, (atm sec) ⁻¹
B/A	Empirical constant, dimensionless
E	Activation energy, cal/(gm mol) (⁰ K)
[C]	Concentration of carbon at Z
[[];	Concentration of carbon at $Z = 0$
[H ₂ 0]	Concentration of steam at Z
[H ₂ 0] _i	Concentration of steam at $Z = O$
(Q ₅);	Volumetric flow rate of steam at $Z = 0$, cm^3/sec
R	Gas constant
т	Temperature, ^O K
Ū	Mean gas velocity, cm/sec
$Y = [C]/[C]_{i}$	Yield
Z	Distance along tube, cm

•

•

 $\phi = [C]/[C]_{i}$ Dimensionless variable

.

.

•

•

.

· • •

¢

۰ :

ч 1 WATER GAS KINETICS

Theory

In a steady state entrained reactor of volume V and temperature T in which the reactions:

$$C + H_2 0 + H_2 + C0$$

 $C0 + H_2 0 \neq C0_2 + H_2$

occur, and in which the char particles are infinitesimally small (no diffusion resistance),

$$\frac{1}{V} \{ W_{i} \in C_{i}^{1} - W_{o} \in C_{i}^{1} \} = A^{*} \in C_{i}^{1} \{ 1 - \frac{[C]}{[C]_{i}} + \frac{B}{A} \} [H_{2}^{0}] \exp \{ -\frac{E}{RT} \}$$
(1)

where

and

$$W_0 = 22.4 \cdot b \cdot P\{1 + (1 - Y)\frac{a}{b}\}$$

W_i = 22.4.b-P

A* constant, (atm - sec)⁻¹ Ь mols steam fed/sec a/b mols carbon/mol steam in the feed Ρ total pressure, atm W, volumetric gas flow, inlet, l/sec Wo volumetric gas flow, outlet, l/sec rate constants, (atm - sec)⁻¹ A, B [C]; concentration of carbon in the feed, gm/1 [C] concentration of carbon in the reactor, gm/l concentration of steam in the reactor, atm [H₂0] ۷ reactor volume, 1 Ε activation energy, cal/mol gas constant, cal/mol ^OK R reactor temperature, ^OK Т carbon yield, [C]/[C];, dimensionless Y

ρ

The factor:

1

$$\{\mathbf{I} - \frac{\mathbf{[C]}}{\mathbf{[C]}} + \frac{\mathbf{B}}{\mathbf{A}} \cdot \mathbf{A} \cdot \mathbf{[C]}$$

is the concentration of "reactive" carbon in the reactor. The rate of gasification, then, is second order, being proportional to the steam concentration and to the concentration of "reactive" carbon in the reactor.

Equation (1) can be rewritten:

$$\frac{W_{i}}{V} = \frac{A^{*}}{\frac{1}{V} - \{1 - (1 - Y), \frac{a}{b}\}}, \{1 - Y + \frac{B}{A}\}, [H_{2}O], \exp\{-\frac{E}{RT}\}$$
(2)

Input

<u>Output</u>

			Solid	Gas
C	a mols/ sec	C	Y۰a	
H ₂ 0	b mols/sec	Н ₂ 0		b - (l - Y)a mols/sec
		H ₂		(1 - Y)a
		$CO + CO_2$		<u>(1 – Y)a</u>
Thomas	·	Total gas		b + (l - Y)a mols/sec

Therefore:

$$\begin{bmatrix} H_2 0 \end{bmatrix} = \frac{1 - (1 - Y)\frac{a}{b}}{1 + (1 - Y)\frac{a}{b}} \cdot P$$

$$\frac{22.4 \ a}{V} = \frac{A^* \cdot \frac{a}{b}}{\frac{1}{Y} - \{1 - (1 - Y)\frac{a}{b}\}} \cdot \{1 - Y + \frac{B}{A}\} \cdot \frac{1 - (1 - Y)\frac{a}{b}}{1 + (1 - Y)\frac{a}{b}} \cdot \exp\{-\frac{E}{RT}\} \quad (3)$$

Discussion

Two other reactions occur:

$$C + 2H_2 \neq CH_4$$
$$C + CO_2 \neq 2CO$$

When T is about 1173 ^{O}K (900 ^{O}C), these reactions are slow compared to

$$C + H_2^0 \rightarrow H_2 + C^0$$

'a

aller and the second

At higher temperatures these reactions may become significant.

Char particles cannot be infinitesimal, so as T is increased, there will be some point at which the gasification rate becomes controlled by the diffusion processes. "Reactive" carbon means exposed or BET (adsorptive) surface contained in the micropores. This surface varies linearly with the burnoff.

Calculations

According to Coates⁽¹¹⁾, E is about 31,000 cal/mol^oK. Using data from Walker, et al.⁽¹²⁾ for lignite: $A = 1.7905(10^{-3}) \quad (atm.sec)^{-1} \cdot A = 2.5$

$$A = 1.7906(10^{-3}) \quad (atm-sec)^{-1}; \frac{H}{B} = 2.$$

B = 0.7162(10⁻³) (atm-sec)⁻¹
A* = 43659 (atm-sec)⁻¹

A* and $\frac{A}{B}$ may be quite different for manure char. For a sewage solids char (13), A/B was about 12. Walker <u>et al</u>. worked with coal chars from various ranks of coal, from anthracite to lignite. Lignite chars are more reactive than bituminous chars which are more reactive than anthracite chars. Manure char should be more reactive than lignite char.

Using Equation (3), $\frac{V}{22.4 a}$ was calculated as a function of Y, a/b, and T. For a 3 dry T/D plant, a = .3156 mols C/sec assuming 20 wt% ash and 15 wt% fixed carbon in the dry manure. The reactor volume, V, has been calculated in Table 21.

^{(11)&}lt;sub>Coates</sub>, "Kinetic Data from a High Temperature Entrained Flow Reactor," ACS Div. Fuel Chemistry, <u>22</u>, 1 (1977), pp. 84-87.

⁽¹²⁾ Walker, Mahajan, Yarzab, "Unification of Coal Char Gasification Reactions," ACS Div. Fuel Chemistry, 22, 1 (1977), pp. 7-11.

⁽¹³⁾Bosch, Kleerebezem, Mars, "Activated Carbon from Activated Sludge," Journ.
WPCF, 48, 3 (1976), pp. 551-561.

Table 21

Residence Time Requirements for Entrained Bed Steam Gasification

•

• •

۲

-				:	• • :	1					:			
÷	÷		1000	°c		1500 ⁶	J		2000 ⁰	U		2500 ^G	2	
۲	Ŧ	0.2	0.1	0.05	0.2	0.1	0.05	0.2	٥.1	0.05	0.2	0.1	0.05	
a/b = 1.	V V	174.1	699.6	2786 sec	5.485	22.04	87.80 sec	1167.	3.179	12.66 sec	, 2294	6126.	3.672 sec	
0% excess steam	N	1230 4	4946	L 66961	38.77	155.8	620.7 1	5,592	22.48	89.53 1	1.621	6.517	25.96 1	
a/b = 0.8	V 67 CC	106.5	277.6	648.7 sec	3.355	8.747	20.44 sec	.4838	1.262	2.948 sec	.1403	. 3658	.8548 sec	
25% excess steam	nt:	752.6	1962	4586 1	23.71	61.83	144.5 1	3.420	8.918	20.84 1	166.	2.586	6.043 1	
a/b = 0.5	<u>م در</u>	82.73	185.3	391.9 sec	2.607	5.840	12.35 sec	.3760	.8422	1.781 sec	.1090	. 2442	.5164 sec	1
100% excess steam	ρ ι . 32	584.9	1310	1 1773	18.43	41.28	87.30 1	2.658	5,954	12.59 1	.7070	1.726	3.651 1	

L.

ρ

••-- • •,

ρ

For pyrolysis at 900° C. Schlesinger, Sanner, and Wolfson⁽¹⁴⁾ give the yields of gas, char, water, tar, and NH₃ as well as the ultimate analyses of the manure and char and the gas composition.

Basis: 1 gm dry manure.

Feed

- C .412 g
- H .057
- 0.333
- N .023
- S .003
- Ash _____
 - 1.000 g dry manure
 - <u>.037</u> g moisture

1.037 g total

Pyrolysis Products

Char	.363 gm	Gas	.43] g			Ta	<u>.0665</u>	g	
C	.504	^{C0} 2	.4857 wt fract	.245 vol f	ract	C	.647	wt	fract
H	.004	CD	.2271	.180		H	.045		
0	.004	H ₂	.0248	.275		0	.012		
N	.011	CH ₄	. 1637	.227		N	.268		
S	.003	с <mark>+</mark>	.0987	.073		S	. 028		
Ash	.474		1.000 wt fract	1.000 vol f	ract		1.000	wt	fract
	1.000 wt fract					Ana	alysis	Ьу	difference

Water .175 g

<u>NH₃.0015 g</u>

(14)Schlesinger, Sanner, Wolfson, "Energy from the Pyrolysis of Agricultural Wastes," Chapter 9 of Symposium: Processing Agricultural and Municipal Wastes, Avi Publishing Co., Westport, Conn. (1973), pp. 93-100. Reference (14) gives .385 g gas/gm dry feed and 13940 SCF gas/ton dry feed. These figures do not quite agree, so 13940 SCF/ton dry feed was used, which comes out to .431 gm gas/gm dry feed. In the char analysis, 49.4 wt % C was given, and 50.4 wt % C was used. Similarly 48.4 wt % ash was given, but 47.4 wt % ash used. This makes the ash balance. The tar ultimate analysis was worked out by difference. These tar numbers are small differences between large numbers, and are therefore not to be taken as seriously as the rest.

Water-Gas Gasification

It is assumed that the total dry feed plus varying amounts of moisture are pyrolyzed and steam-gasified in one step. Further, all of the carbon and tar are assumed to be gasified, since the calculations below are not valid for partial gasification. The gas temperature is assumed to be high enough that the water gas shift reaction equilibriates in the reaction tube, but methane and the higher hydrocarbons formed in pyrolysis are assumed to be frozen against their decomposition by steam. The calculations below are based on the data of Reference (14).

113

 $D_0 = gm H_2 0$ used/gm DAF feed $E_0 \frac{.1637(.431)}{.828} = .085211 \text{ g CH}_4/\text{g DAF feed}$ Gas $\rm CO_2$ a gm/gm DAF feed $F_0 \frac{.0987(.431)}{.828} = .051376 \text{ g } C_2 H_6/\text{g } \text{ DAF feed}$ CO b $G_0 = 0$ H₂ c H₂O d CH₄ E₀ C₂H₆ F₀ Feed C .4976 g/g DAF feed H .0688 0.4022 C2H4 G N .0278 S <u>.0036</u> T.0000 g/g DAF feed NH3 17 N $H_2S \frac{34}{32}S$ $(1 + D_0)$ gm/gm DAF feed $\frac{a}{44} + \frac{b}{28} = \frac{C}{12} - \frac{E_0}{16} - 2\frac{F_0}{30} - 2\frac{G_0}{28} = P_1$ $2 \cdot \frac{C}{2} + 2\frac{d}{18} = \frac{H}{1} + 2\frac{D_0}{18} - 4\frac{E_0}{16} - 6\frac{F_0}{30} - 4\frac{G_0}{28} - 3\frac{N}{14} - 2\frac{S}{32} = P_2$ Carbon Balance Hydrogen Balance $2\frac{a}{44} + \frac{b}{28}$ $+ \frac{d}{18} = \frac{0}{16} + \frac{v_0}{18}$ Oxygen Balance = P3 Water Gas Shift Equilibrium $\frac{ac}{bd} = \frac{(44)(2)}{(28)(18)} \cdot K_1$ Let $\xi = \frac{d}{18}$. The solution is $2(1 - K_1)\xi^2 - [2(P_3 - P_1) + P_2 + 2K_1(2P_1 - P_3)]\xi + P_2(P_3 - P_1) = 0$ $a = 44(P_3 - P_1 - \xi)$ $b = 28(2P_1 - P_3 + \xi)$ $c = (P_2 - 2\xi)$

> . 114

	6/6 Q(Vol	0611.	.1707	.3235	.3058	.0471	.0152	.0176	11000.1		9052.6		101	.3067	.5813	.0847	<u>.9999</u>	1	372.6
	1.(g/g DAF feed	.591382	.539711	.073078	.621661	.085211	.051376	.033757	.003825 2.000001										
	ե/բ (vol	.1075	.2324	.3474	.2178	.0553	.0178	.0206	.0012 1.0000		2.0016	:	Vol	, 3559	.5321	.0847	<u>0272</u>		374.9
	۲.	ց/ց DAF feed	.455195	.626376	.066888	.377373	.085211	.051376	.033757	.003825										
	b/в (Vol	6660.	.2608	.3545	.1841	,0587	.0189	.0219	.0012 .0000		132.8		vol	.3764	.5116	.0847	.0272 .9999		375.9
.7377	.60	g/q DAF feed	. 398634	.662369	.064317	.300511	.085211	.051376	.033757	<u>.003825</u> <u>1.600000</u> 1		5								
" Y	6/6	v 01	.0406	.4185	.3647	.0480	.0747	.0240	.0279	.0016 .0000		3245.6		lov	.4745	.4135	.0847	.0272 .9999		380.6
T = 900 ⁰ C	.26	g/q DAF feed	.127286	.835045	.051982	.0615174	.085217	.051376	.033757	.003825 1.249999	•	0,								
	ú∕£ [Vol	ł	.5037	.3556	ì	.0820	.0264	.0306	.0000.1		9298.6		lov	.5205	.3675	.0847	.0272 .9999		382.8
lculations	Vgm DAF feed .13641	g/g DAF feed	ł	.916045	.046197	ı	.085211	.051376	.033757	.003825 1.136411		alue //1b DAF feed !								ic /alue /SCF
Sample Ca	0, gm H ₂ 0		60,	00	H	о ^с н	CH,	C _o H _c	° HN	H2S		GI Heating V BTU (low)	Product	Gas	00		CII.	c ₂ H ₆		Yolumetri Heačing V BTU (low)

•

ρ

 $D_0 = .136411 \text{ gm H}_20/\text{gm DAF}$ feed is the minimum. Less water than this will not completely gasify the feed. The thermal recovery, i.e. the heating value of the product gas/gm DAF feed, decreases slightly as D_0 is increased. Reference (1) gives 7110 BTU/1b feed. This would be 8904 BTU/1b DAF feed. In this process the water gas reactions are endothermic, and so it is theoretically possible to produce a gas that has a higher heating value than the feed material itself. This seems to be the case here. The volumetric heating value of the product gas decreases slightly as D_0 is increased.

ρ

. .

It is especially interesting to work with manure at a moisture content of 1.0 gm H_2O/gm dry feed. If D_0' is the moisture content at the reactor inlet, then $(1 - D_0')$ gm water/gm dry feed was removed in the predryer. To do this predrying, $(1 \cdot D_0')$ gm water/gm dry feed is needed in the reactor outlet gas to condense. The calculations show that the feed should be predried to about 0.65 gm H_2O/gm dry feed (about 40 wt %) to accomplish this balance.

Methane, and especially the higher hydrocarbons, do react to some extent with steam at 900° C. These reactions are far from equilibrium; the equilibrium concentrations of CH₄ at 900° C in these mixtures would be very low.

116

Hanford Manure

This is a repeat of BIO II - General II, except that the raw material is now Hanford manure and the pyrolysis temperature is 750°C.

Hanford manure was analyzed by Truesdail Labs. The results are shown below.

Feed

С	.3306	Moisture	.0006
H	.0389	Volatile (750 ⁰ C)	. 41 58
n	.1470	Carbon (750 ⁰ C)	.1295
N	.0235	Ash	.4541
S	.0058		1.0000
Ash	<u>.4541</u> 1.0000 g		
н ₂ 0	<u>.0006</u> 1.0006		

Pyrolysis Products (750°C)

Char	<u>.6396</u> g		
С	.2651	Moisture	.0109
Н	.0067	Volatile (750 ⁰ C)	. 0408
0	.0037	Carbon (750 ⁰ C)	.2383
N	.0082	Ash	.7100
5	.0063		1.0000
Ash	.7100		

1.0000

.

117

.

•

.

From our pilot plant data, take $E_0 = .053 \text{ g CH}_4/\text{g DAF feed}$ $F_0 = .015 \text{ g C}_2\text{H}_4/\text{g DAF feed}$ $G_0 = .011 \text{ g C}_2\text{H}_6/\text{g DAF feed}$

C .6056 gm/gm DAF feed H .0713 O .2693 N .0432 S <u>.0106</u> 1.0000 gm/gm DAF feed

۰.

$$P_{1} = \frac{C}{12} - \frac{E_{0}}{16} - 2\frac{F_{0}}{28} - 2\frac{G_{0}}{30}$$

$$P_{2} = \frac{H}{1} + 2\frac{D_{0}}{18} - 4\frac{E_{0}}{16} - 4\frac{F_{0}}{28} - 6\frac{G_{0}}{30} - 3\frac{N}{14} - 2\frac{S}{32}$$

$$P_{3} = \frac{O}{16} + \frac{D_{0}}{18}$$

118

.

•

 $K_1 = 1.747$ at $750^{\circ}C$

.

•

D gm H_O/gm DAF feed	0,513	326	0.6		0.8		
D, gm H_O/gm dry feed	0,280	225	. 327	540	.436	720	
	g/g DAF feed	vol. fract.	q/a DAF feed	vol. fract.	g/g NAF feed	vol. fract.	
C0.	-	-	. 123464	. 0259	. 367113	. 0699	
C0	1.269783	.4380	1,191215	. 3932	1.036166	. 3101	
Ha	,100824	,4876	.106436	.4918	, 117511	.4924	
	-	-	.036165	.0186	. 136491	.0636	
CH.	.053	.0320	.053	. 0306	.053	.0278	
Colla	.015	.0052	,015	. 0050	.015	.0045	
Calle	.011	.0035	.011	.0034	.011	.0031	
NH2	.052457	. 0298	.052457	.0285	.052457	. 0259	
H ₂ S.	.011263	.0032	.011263	.0031	.011263	.0028	
	1.513327	. 9999	1,600009	1,0001	1.93000000	1.484,64	
Product Gas	vol.	fract.	vol.	fract.	vol.	fract.	
CO	_ 4	536	.4	255	. 3	701	
H ₂	.5	042	.5	323	. 5	877	
CHA	.0	331	.0	331	.0	331	
C2H4	.0	054	.0	054	.0	054	
Calle	.0	037	.0	037	.0	037	
<i>C</i> U	1.0	100	1.0	000	1,0	000	
Volumetric							
Heating Valve	32	3.2	32	1.9	31	9.2	
BTU (low)/SCF							

.

0.6		0.8		1.0		1.831	837
. 327	540	.436	720 .	. 545	9	1.000	000
q/a DAF feed ,123464 1 101215	vol, fract. .0259 3932	η/η DAF feed .367113 1.036166	vol. fract. .0699 .3101	ıj∕q DAF feed .563336 .911297	vol. fract. .0982 .2495	q/q DAF feed 1.066134 .591334	vol. fract. .1372 .1196
. 105436 . 036165 . 053 . 015 . 011 . 052457	. 918 . 0186 . 0306 . 0050 . 0034 . 0285	. 117511 . 136491 . 053 . 015 . 011 . 052457	.4924 .0636 .0278 .0045 .0031 .0259	.126430 .256219 .053 .015 .011 .052457 .011263	. 4847 . 1091 . 0254 . 0041 . 0028 . 0237 . 0025	. 149284 . 882365 . 053 . 015 . 011 . 052457 . 011263	.4226 .2775 .0189 .0030 .0021 .0175
<u>011263</u>	<u>.0031</u> 1.0001	.011263 1.800000	.0028 1.0001	2.000000	1.0000	2.831837	1.0002

.

vol fract	vol fract	vol. fract.	vol. fract.
YUI. ((GLC.	3703	. 3255	.2112
.4200		. 6323	,7466
, 5323 , 033]	. 0331	. 0331	. 0331
0054	. 0054	. 0054	. 0054
.0037	0037	.0037	.0037
1,0000	1,0001	1.0000	1.0000
321.9	319.2	317.1	311,5

•

Discussion

For Hanford manure, the stoichiometric D_0 is .513326 gm H₂O/gm DAF feed (.280225 gm H₂O/gm dry feed, or 21.9 wt.% moisture).

For Schlesinger, et al manure, stoichiometric D_0 is .136411 gm H₂O/gm DAF feed (.112948 gm H₂O/gm dry feed, or 10.1 wt.% moisture).

If less than stoichiometric moisture is used, gasification can not go to completion. If gross excess of moisture is present, the Volumetric heating value of the product gas goes down and useless CO_2 is produced.

Hanford manure yields slightly less gas per gm DAF feed then does Schlesinger, <u>et al</u>, manure, and its gas has a substantially lower heating value. This appears to be due to the lower yields of CH_4 , C_2H_4 , and C_2H_6 on a gm/gm DAF feed basis that we have obtained in the pilot plant.

١,

HEAT BALANCES FOR TOTAL GASIFICATION IN AN ENTRAINED BED REACTOR

These calculations are based on the experimental work of Schlesinger, Sanner, and Wolfson⁽¹⁵⁾ and the previous mass balances.

Manure at 25° C and containing 1.207729 gm H₂O/gm DAF feed (1.0 gm H₂O/ gm dry manure) is dried to D₀ gm H₂O/gm DAF feed at 200 mm Hg (T_{sat} = 66.5^oC). The dried material is fed to an entrained bed reactor where it is completely gasified at 900^oC and 1 atm pressure. The product gas is passed through a spray tower from which no heat is recovered. Part of the purified and compressed product gas is burned in the jacket of the entrained bed reactor. The combustion air is heated by heat exchange with the flue gas. Flue gas at 200^oC is used in the dryer.

Basis: $H_2O(g) = 25^{\circ}C$ Assume $C_p = 0.4$ cal/gm $^{\circ}C$ for solids. The heat requirement of the dryer is given by:

 $\{1.207729(.4)(66.5 - 25) - 1.207729(25.05 - 607.35) + D_0(66.48 - 607.35) +$

(1.207729 - D_o)(625.53 - 607.35)} cal/gm DAF feed

The enthalpy of the entrained bed reactor feed is given by:

 $\{1.207729(.4)(66.5 - 25) + D_0 (66.48 - 607.35)\}$ cal/gm DAF feed.

In Table 22, the reported heat of combustion $(25^{\circ}C)$ of the manure is used to calculate the heat of combustion at $900^{\circ}C$. Then, the heat of formation $(900^{\circ}C)$ of this manure is calculated to be -1569.6 cal/gm DAF feed. The heat of formation $(900^{\circ}C)$ of ethane (not in the JANAF tables) was also calculated.

In Table 23, the heat of reaction (900^oC) for the complete gasification of this manure is calculated for several values of D_0 .

⁽¹⁵⁾ Schlesinger, Sanner, and Wolfson, "Energy from the Pyrolysis of Agricultural Wastes," Chapter 9 of <u>Symposium: Processing Agricultural and</u> <u>Municipal Wastes</u>, Avi Publishing Co., Westport, Conn. (1973), pp. 93-100.

Heat of com	hustion = 4770.5	cal/am DÅF feed	. Assume that	this is a	×	23.1	69	
	ssoug"	@ 25°C" heat of	combustion.		x + .043564	$\frac{1}{9} = \frac{1}{760}$		
Assume C _p =	0.4 cal/gm ^o C fo	r solids.			x = .001402 .032998	moîs H ₂ ' mols H ₂ (0/gm DAF D/gm DAF	feed in gas feed condensate
		Heat of Com	bustion				Heat of	Formation
Products				(H ₁₁₇₃ - H ₂₉₈)			∆H _f ⊦	(2,006)
c0 <i>3</i>	10271 cal/mol	.0414667 mols	/ἀm DΛF feed	425.9 cal/gm		-94406 ci	al/mol	-3914.7 cal/gm DAF
н ₂ 0(9)	7962 cal/mol	.0344 mols	/gin DAF feed	273.9 cal/gm	. AF feed	-59484 ci	al/mol	-2046.2 cal/gm DAF 1
H ₂ 0 (1→g)		.032998 mols	/gm DAF feed	345.9 cal/gm	DAF feed			
ND,	9920 ca!/mol	.0019857 mols	/gm DAF feed	19.7 ca1/gm 1	JAF feed ⊣	+ 7694 ci	al/mol	+ 15.3 cal/gm DAF
so,	10508 cal/mol	.0001125 mols	/ym DAF feed	1.2 cal/gm	DAF feed -	-86499 ci	al/moi	- 9.7 cal/gm DAF
dsh dsh	I	.2077 gm/g	m DAF feed	72.7 cal/gm	DAF feed	บี 0	al/mol	-5955 3 cal/cm DAF
s keactants								
0,	6885 cal/mol	.0481962 mols,	/gm UAF feed	331.8 ca1/gm l	AF feed	с 0	l/mol	0 cal/gm DAF 1
Manure	3	1.2077 gm/g	m DAF feed	422.7 cal/gm 1	DAF feed			-1569.6
,				754.5 cal/gm {	DAF feed			-1569.6 cal/gm DAF 1
ΔH _C (25 ⁰ C)				4770.5 cal/gm 1	DAF feed			
∆H _C (900°C)				4385.7 cal/gm [JAF feed			-4385.7 cal/gm DAF 1
Heat of For	nation for Ethane	(3000)						
Product								
C ₂ H ₆	20820 cal/mol							
Reactants								
2C 2(3738)) 7476 cal/mol							
3H ₂ 3(6206)	18618 ca1/mo1							
АН, [–] (2 5 ⁹ С)	20236 cal/mol							
ΔH ^F (900 ^O C) -25510 cal/mol							
and the second states and the second states and								

Ρ

۳κ.

Tab._ 22

 $V_{j}(t)$

· · · · · · ·

.. .

•

m
¢,
C.
-
Ъ.
ື
_

.

<u>Complete Gasificat</u>	D _o gm H ₂ 0/gm DAF fi	<u>Products</u> $\Delta H_{f}(900'$ CO2 -94406 (c0 -27022	H ₂ 0	H ₂ 0 -59484	сн ₄ - 21811	c ₂ H ₆ -25510	5 NH ₃ -13324	, H ₂ S -21627	Ash 0	Reactants	H2 ⁰ -59484 (Manure -1569.7	АН _~ (900 ⁰ С) cal/gm [
on: Heat of F	ed .136	c) al/mol	-86			11-	- 4	I	1		-107	a1/mo1 - 45	cal/gm <u>-156</u> DAF feed -202	AF feed + 94
<u>Reaction (9</u>	5411	1	34.0	I	1	16.2	ta.7	26.5	2.4	1	72 . 8 -	- 8.03	<u>10.5</u>	+ ++
00 <mark>0</mark> C)	.25	-273.1	-805.9	1	-203.3	-116.2	- 43.7	- 26.5	- 2.4	•	I471.1	826.2	1569.7 2395.9	924.8
	.60	-855.3	-639.2	1	-993.1	-116.2	- 43.7	- 26.5	- 2.4	•	-2676.4	±1982.8	<u>-1569.7</u> -3552.5	+ 876.1
	1.00	-1268.9	- 520.9	t	-2054.4	- 116.2	- 43.7	- 26.5	- 2.4	a	-4033.0	-3304.7	<u>-1569.7</u> -4874.4	+ 841.4
	1.207729 gm H ₂ 0/gm DÅF fee	-1425.9 cal/gm DAF feed	- 475.9	ı	-2641.9	- 116.2	- 43.7	- 26.5	- 2.4		-4732.5	- 1995.	<u>-1569.7</u> -5560.8	+ 828.3 cal/gm DAF feed

ρ

.

In Table 24, the heats of combustion $(900^{\circ}C)$ for the product gases are calculated. Flue gas compositions are also calculated, and the heat available for drying is determined. The flue gas is assumed to enter the dryer at $200^{\circ}C$ and to leave at $80^{\circ}C$. ρ

Table 25 shows the complete heat balances. The energy recovery for the ideal case--no heat losses--is calculated. The energy recovery for a nonideal case--50% heat loss in the reactor and 20% heat loss in the dryer--is also calculated. These values of energy recovery are based on the heat of combustion of the incoming manure.

Table 26 shows a calculation of the fraction of the product gas that must be burned in the reactor and the corresponding excess air that must be used in the combustion. The flame temperature was taken to be 900° C, the same as the reactor temperature. The values of (1- Ψ) correspond to the energy recovery values in Table 23. The values of (1- Ψ) are somewhat smaller than the energy recovery values because they reflect the fact that the flue gas is cooled only to 80° C rather than to 25° C and that quite a lot of Fritra air was used in the combustion compared to stoichiometric air for the heat of combustion of the manure. The excess air requirement would be reduced if the flue gas could be used hotter than 200° C in the dryer.

Discussion

As D_0 increases, the energy recovery worsens. This is because the heat contained in the steam in the reactor product gas is lost in the spray tower. At $D_0 = .136411$, there is no steam in the reactor product gas, and so the energy recovery is maximum. The calculations show that heat losses from the system have a very strong influence on the energy recovery. The residence time in the reactor has to be long enough, and the reaction temperature high enough, that all the carbon and tar are gasified. Temperatures lower

124

· Jable 24	$\frac{c}{c}$ of Combustion (900 ^O C) for CO, H ₂ , CH ₄ , and C ₂ H ₆ $\Delta H_{f}(900^{O}C) = H_{2} \qquad \Delta H_{f}(900^{O}C) = CH_{A} \qquad \Delta H_{f}(900^{O}C) = C_{2}H_{f} = \Delta H_{c}(900^{O}C)$	$\frac{1}{100} - \frac{1}{2} - $	tant C0 -27702 H_2 H2 0 -59484 H_4 - 21811 -213374 -367264 -367264 -367264	$\frac{\frac{1}{2}0^2}{900^0(1)} = \frac{0}{-57384} \frac{\frac{1}{2}0^2}{ca1/mol} = \frac{0}{-59484} \frac{20}{ca1/mol} \frac{20}{-191563} \frac{2}{ca1/mol} \frac{1}{-391563} \frac{2}{ca1/mol} \frac{0}{-341754} \frac{1}{ca1/mol}$	of Combustion (900 ^o C) for Purified Product Gases of BIO II-General II	.136411 .25 .60 1.00 1.207729 gm H ₂ 0/gm DAF feed	2204.5 35073 2009.6 31974 1594.0 25363 1298.9 20667 1186.7 18881	1374.0 21860 1546.0 24597 1912.9 30/32 2173.5 34578 2272.4 36154	$_{4}$ 1020.2 16225 1020.2 16225 1020.2 16225 1020.2 16225 1020.2 16225	H ₆ 585.3 9296 585.3 9296 585.3 9296 585.3 9296 585.3 9296 525.3 9296	orero oceant ocore organization ocore organization oceano oceano oceano oceano oceano oceano oceano oceano ocean cal/gm cal/ cal/gm cal/ cal/gm cal/ cal/gm cal/ cal/gm cal/ cal/gm cal/ DAF feed mol DAF feed mol DAF feed mol DAF feed mol DAF feed mol	Gas Heat (200 ⁰ →80 ⁰ C) .0628526 mols product gas/gm DAF feed. e = excess air.	Hg.s. Hs.o	2 1147 cal/mol 47.55 44.24 37.16 32.14 30.23 cal/gm DAF feed	0 986 38.33 41.18 47.26 51.58 53.22 cal/gm DAF feed	841 131.44(1 + e) cal/gm DAF feed	863 36.06e 36.06e 35.06e 35.06e 35.06e 36.06e cal/gm DAF feed	Gas Heat 217.32 + 167.5e 216.86 + 167.5e 215.86 + 167.5e 215.16 + 167.5e 214.89 + 167.5e cal/gm DAF feed inder 4966.68 - 167.5e 4944.24 - 167.5e 4896.54 - 167.5e 4862.74 - 167.5e 4849.71 - 167.5e cal/gm DAF feed
	Heat of CO	Product	Reactant	ΔH _C (900 ⁰	Heat of	a	8	£2	CH4	c ₂ H ₆		Flue Gas		c02	H ₂ 0	N2	02	Flue Gas Remainde

lable 24

ρ

				lable 25			
°C	.136411		.25	.60		1.00	1.207729 gm $h_2^{0/gm}$ DAF feed
Dryer Heat Demand	669.0	669.0	605.5 605.5	409.8 4	0، 8	186.2 186.2	0 cal/gm DAF feed
Feed Enthalpy	-53.7		-115.2	-304.5		-520.8	-703.3 cal/gm DAF feed
Ash	72.7		72.7	72.7		72.7	72.7 "
C02	1		29.7	93.1		138.0	155,1 "
03	215.1		196.1	155.5		126.7	115.8 "
Н2	143.3		161.3	199.6		226.8	237.1 "
н ₂ 0	1		27.2	132.9		275.0	353.6 "
Cli4	65.2		65.2	65.2		65.2	65.2 "
C ₂ H _E	35.7		35.7	35.7		35.7	35.7 "
6 ^{HN}	20.3		20.3	20.3		20.3	20.3 "
H2S .	1.0		1.0	1.0		1.0	1.0 "
Product Enthalpy	553.3		609.2	776.0		961.4	1056.5 "
Heat of Reaction	<u>947.7</u>		924.8	876.1		841.4	828,3 "
Reactor Heat Demand	1	1554.7	1649.2	i6 L	56,6	2323.6	2588.1 cal/gm DAF feed
Heating Value of Feed	7	1770.5	4770.5	477	70.5	4770.5	4770.5 "
Heating Value of Product	Gas E	5184.0	5161.1	511	12.4	5077-9	5064.6 "
Energy Recovery: No Losse Energy Recovery: 50% Heat	Ś	62.1% 26.0%	60.9% 23.2%	ы —	57.6% 4.4%	53.8% 4.1%	51.9%
Loss in Reactor, 20% Heat in Dryer.	Loss						
÷							

*** <u>.</u>

· · ·

•

()

•

ρ

•

and the second second

			Table 26	
.136411	.25	.60	1.00	1.2077
	No Heat Los	SSES		
Ψ(4966.6B - 167.50e) = 1554.	7 ¥{4944.24 - 167.50e} = 1649.2	¥(4896.54 - 167.50e) = 1956.6	Ψ(4862.74 - 167.50e) = 2323	1.6 ¥ (4849.7
Ψ(217.32 + 167.50e) = 669.	0 ¥(216.86 + 167.5De) = 605.5	Ψ(215.86 + 167.50e) = 409.8	¥(215.16 + 167.50e) = 186	.2 ψ(214.89
Ψ = .4290	¥ = .4369	Ψ = . 4629	¥ = .4943	
e = 8.0136	e = 6.9800	e = 3.9969	c = .9646	
	50% Heat Loss in Reactor; 20	i% lleat Loss in Dryer		
¥(4966.68 - 167.50e) = 2(155	4.7) ¥(4944.24 - 167.50e) = 2(1	649.2) ¥(4896.54 - 167.50e)*	2(1956.6) ¥(4862.74 - 167.50	ie) = 2(2323.
Ψ(217.32 + 167.50e) = 1.25(6	69.0) \(216.86 + 167.50e) = 1.25	i(605.5) ¥(215.86 + 167.50e) =	1.25(409.8)¥(215.16 + 167.50e)= 1.25(186
Ψ = .7611	¥ = .7857	Ψ = .8656	Ψ = .9610	
e = 5.2620	e = 4.4562	e = 2.2442	e ≈ .1614	
	¥ =	fraction of product gas burned		

e = excess air

•

٠.

ρ

ex

and the s

.

.

Tahle 26

	.60	1.00	1.207729 gm H ₂ 0/qm DAF feed
LO	sses		
.2	¥(4896.54 - 167.50e) = 19	56.6 ¥(4862.74 - 167.50e) = 232	23.6 ¥(4849.71 - 167.50e) = 2588.1
.5	Ψ(2]5.86 + 167.50e) = 4	09.8 ¥(215.16 + 167.50e) = 18	16.2 ¥(214.89 + 167.50e) = 0
	Ψ = .4629	Ψ = .4943	-
	e = 3.9969	e = .9646	-
2	0% Heat Loss in Drver		

: 20% Loss in Uryer

2(1649.2) v(4896.54 - 167.50e) = 2(1956.6) v(4862.74 - 167.50e) = 2(2323.6) v(4849.71 - 167.50e) = 2(2588.1) 1.25(605.5) = 1.25(409.8) = 1.25(409.8) = 1.25(100.8) = 1.25(186.2) = 1.25(186.2) = 1.25(0) = 1.25(0)

Ψ = .8656	Ψ = .9610	-	
e = 2.2442	e = .1614	-	

Ψ = fraction of product gas burned

e = excess air

than 900^oC may be possible in the entrained bed reactor. Lower temperatures would mean lower heat losses, fewer materials problems, and higher CH_4 and C_2^+ yields.

The diagram in Figure 11 shows a schematic diagram of the process. This scheme avoids the problem of recovering heat from a (probably) very dirty reactor product gas. The carrier gas (which could be some of the product gas or steam) flow rate needs to only be large enough to get the solids into the reactor. Once in the reactor, the heated solids generate enough gas and steam to carry them up through the reactor. In the flash dryer, large wet particles are recycled. In the entrained bed reactor, the recycle stream is used to control the solids residence time. In the pilot plant work a Torus Disc-type dryer would probably be used instead of the flash aryer. In order to avoid corrosion problems, purified gas is burned in the jacket of the entrained bed reactor.

In the entrained bed reactor, each particle must "see" the radiation from the tube wall. This means that the tube diameter is limited. For scale-up. one would use externally fired multiple vertical tubes of fairly small diameter. The flash dryer can probably be scaled up by simply going to a larger diameter tube. ρ

ρ

Biomass Gasification Process Flash Dryer/Entrained Bed Reactor Combination

COMBUSTION

In the combustion experiments the $0_2/C$ ratio was 1.0748 mol/mol. and yet only 78.3% of the carbon burned. This is probably the result of poor air-char mixing. In the PDU, there are many more perforations in the baseplate than in the bench scale reactor, so the air-char mixing should be better. The flue gas contained CO and H₂ in small amounts, which may be due to pyrolysis or the reaction ٤.

$$C + H_0 \rightarrow CO + H_0$$

The moisture content of the flue gas was 0.64 g/ft^3 . The concentrations of CO and H₂ were probably equal. Using the gas chromatography equipment concentrations lower than about 1 vol % are not too accurate.

The heat of combustion of manure char is based upon a laboratory analysis, and indicates a heat flux through the plate above the burning char of 12,972 BTU/hr ft². Based upon design calculations, a heat flux of 15,506 BTU/hr ft² would be required for a "high moisture" manure in commercial equipment. Assuming that the combustion efficiency of the PDU is higher than that of the bench scale reactor, the required heat flux for the worst case should be attainable.

In Run 6, Table 10.1 of the GERE Final Report, Phase I, the $0_2/C$ ratio was $\frac{11(.210)(28.316)(12)}{.414(67.7)(.2096)} = 2.47$ mol/mol, while the combustion efficiency was $\{1 - \frac{.1655(.6284)}{.2096(.8203)}\} = 39.5\%$. The flue gas temperature was indicated to be only $335^{\circ}C$, and the rabble arm speed was 6 RPM. The very low combustion efficiency was probably due to only patchy burning in the char layer. In these runs a much higher combustion efficiency resulted from the more complete air-char contact.

130

GENERAL

Thermodynamics of Some Reactions Accompanying Pyrolysis

One of the important factors to be determined in this experimental program is the optimum water content of the biomass material before pyrolysis. One consideration is that the methane might be preferentially oxidized (before the char) by the steam to CO and H₂. Also, when dry biomass is pyrolyzed, H₂O is one of the products, so it is never possible to exclude H₂O. Since CO and H₂ have lower volumetric heating values than CH₄, the overall volumetric heating value of the pyrolysis gas would thereby be reduced. The free energy calculations below indicate that methane is not oxidized by steam when the temperature is 600° C or less. The oxidation of methane by CO₂, and the oxidation of carbon by H₂O and/or CO₂ do not proceed when the temperature is 600° C or less.

Calculations

	CO	^{C0} 2	Сн ₄	H ₂ 0
700 ⁰ К	-41.468	-94.510	-3.046	-49.915
800	-43.612	-94.556	-0.533	-48.646
90 0	-45.744	-94.596	+2.029	-47.352
1000	-47.859	-94.628	+4.625	-46.040
1100	-49.962	-9 4-658	+7.247	-44.712
1200	-52.049	-94.681	+9.887	-43.371
1300	-54.126	-94.701	+12.535	-42.022

Free Energy of Formation⁽¹⁶⁾, kcal/mot

(16) JANAF Thermochemical Tables - Second Edition, Natinal Bureau of Standards, U. S. Government Printing Office, Washington, D. C. (1971). SCI/QC 100/U573 No. 37.

CH ₄ +	н ₂ 0 ≠ со	+ 3H ₂	CH ₄ + CO ₂ ≠ 2CO + 2H ₂	
700 ⁰ K	+11.349	kcal/mol	+14.620	
800	+5.567	+ 620 ⁰ 0	+7.865	
900	-0.421	020 0	+1.079	
1000	-6.444		-5.715	
1100	-12.497		-12.513	
1200	-18.565		-19.304	
1300	-24.639		-26.086	
с + н ₂	o ≠ co +	^H 2	c + co ₂ ‡ 2co	. CO + H ₂ O -
700 ⁰ К	+8.447		+11.574	- 700 ⁰ K -
800	+5.034		+7.332	800
-				

ρ

C • A	20 00 00 12	$c + co_2 + 2co$	$10^{+} H_2^{0} \neq C_2^{0} + H_2^{-}$
700 ⁰ К	+8.447	+11.574	700 ⁰ K -3.127
800	+5.034	+7.332	800 -2,298
900	+1.608	+3.108	900 -1.500
1000	-1.819	-1.090	1000 -0.729
1100	-5.250	-5.266	1100 +0.016
1200	-8.678	-9.417	1200 +0.739
1300	-12.104	-13.551	1300 +1.447

The water gas shift reaction does occur at pyrolysis temperatures. Given a gross excess of steam, most of the CO will be driven to CO_2 . Since CO is objectionable, this is good since the volumetric heating value of the pyrolysis gas decreases only slightly as the water gas shift reaction is driven to the right. Thermodynamics, of course, says nothing about reaction rates. CO and H₂ do not react at low temperatures and pressures to form C or CH_4 even though this is thermodynamically possible. Even though the oxidation of carbon by H₂O and/or CO_2 at 1200^{O} K has a large negative free energy change, the reaction is nevertheless rather slow. The water gas shift reaction, on the other hand, is fairly fast, "freezing" only at low temperatures.

132

Heat Balances for Gasification and Combustion in a Multiple Hearth Furnace

Data for the pyrolysis of bovine manure given by Schlesinger, Sanner, and Wolfson $^{(17)}$ were used for these calculations. Those data refer specifically to the pyrolysis of bovine manure containing 0.0447 gm H₂O/gm DAF manure, at 900^oC, and so then do these calculations. The reported pyrolysis was done in such a way that the contact time between the pyrolytic steam and the residual carbon was very short. In our pilot plant, on the other hand, this contact time is not so short and a significant portion of the residual carbon is steam-gasified. Nevertheless, in these calculations steam-gasification of carbon is ignored.

Bovine manure containing 1 gm H_2O/gm dry feed (1.207729 gm H_2O gm DAF feed) is dried at 200 mm Hg abs. (66.5^oC) to D.0447 gm H_2O/gm DAF feed. Then it is pyrolyzed (without steam-gasification) at 900^oC. The off-gas is passed through a condenser which removes the steam and tar. No heat is recovered in the condenser. The tar, a small quantity of material, is not recycled. The pyrolytic char is burned to provide the heat necessary for pyrolysis, and the flue gas resulting from this combustion is used in the dryer. If there is more than enough pyrolytic char to satisfy the process heat demand, then the excess is steam-gasified, and the resulting water gas is mixed with the pyrolysis gas.

In Table 27 the heats of combustion of the pyrolytic char at 900° C and 1100° C are calculated. Then the heat of formation from the elements of the pyrolytic char at 900° C is calculated by difference. Since pyrolytic char is essentially impure carbon ($\Delta H_{f} = 0$), its heat of formation is small. No

· · · · · · :=

⁽¹⁷⁾Schlesinger, Sanner, and Wolfson. "Energy from the Pyrolysis of Agricultural Wastes," Chapter 9 of <u>Symposium: Processing Agricultural and</u> <u>Municipal Wastes</u>, Avi Publishing Co., Westport, Conn. (1973), pp. 93-100.

Heat of Combustion Heat of Combustion oducts H ₁₁₇₃ -H ₂₉₈ H ₁₃₇₃ -H ₂₉₈ H ₁₃₇₃ -H ₂₉₈ Last of Combustion Heat of Complexing Calling Calling	•		• IIU1 4 581001			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Heat of Co	mbustion	Heat of F	ormation (900 ⁰ C)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1173 ^{- H} 298 ^H 1373 ⁻¹	¹ 298	H173 ^{-H} 298	H ₁₃₇₃ -H ₂₉₈	AH cal/mb1	∆H _F cal/qm DAF char
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cal/mol cal/n	nol mols/gm DAF char	cal/gm DAF char	cal/gm DAF char	-	.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1027] 129!	91 .07985	820.1	1037.3	94406	-7538.3
$\begin{array}{cccccc} 0(1+g) & (582.3) & (582.3) & .004855 & 2.8 & 2.8 & 2.8 & 4.76 \\ 2 & 9920 & 12874 & .001493 & 14.8 & 19.2 & +76 \\ 2 & 10508 & 13192 & .000178 & 1.9 & 2.3 & -86^4 \\ 6 & 10508 & 13192 & .000178 & 1.9 & 2.3 & -86^4 & \\ 1 & 0 & 1001 & 00178 & 1215.5 & 1525.7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	7962 100!	91 .0076	60.5	76.7	-59484	- 452.1
2 9920 12874 .001493 14.8 19.2 + 78 2 10508 13192 .000178 1.9 2.3 -864 2 .901 gm/gm DAF char 315.4 387.4 0 0 1215.5 1325.7 1215.5 1525.7 0 0 actants 6885 8602 .084846 584.2 729.8 0 0 ar 1.901 gm/gm DAF char 1249.6 1547.2 1547.2 0 0	(582.3) (582.3	3) .004855	2.8	2,8		
2 10508 13192 .000178 1.9 2.3 -86 ⁴ n .901 gm/gm DAF char .315.4 .387.4 0 0 0 actants .901 gm/gm DAF char .1215.5 1525.7 0 0 0 0 actants 6885 8602 .084846 584.2 729.8 0 0 ar 1.901 gm/gm DAF char 665.4 817.4 1547.2 0 0	9920 128;	74 .001493	14.8	19.2	+ 7694	+ 11.5
n 901 gm/gm DAF char 315.4 387.4 0 actants 1215.5 1525.7 0 actants 6885 8602 .084846 584.2 729.8 ar 1.901 gm/gm DAF char 665.4 817.4 1249.6 1547.2	10508 1315	32 · 000178	1.9	2.3	-86499	- 15.4.
actants 1215.5 1525.7 actants 584.2 729.8 6885 8602 .084846 584.2 729.8 ar 1.901 gm/gm DAF char 665.4 817.4 1249.6 1547.2		.901 gm/gm DAF ch	ar <u>315.4</u>	387,4	0	0
actants 6885 8602 .084846 584.2 729.8 ar 1.901 gm/gm DAF char <u>665.4</u> 817.4 1249.6 1547.2			1215.5	1525.7		-7994.3
6885 8602 .084846 584.2 729.8 0 ar 1.901 gm/gm DAF char 665.4 817.4 0 1 1.901 gm/gm DAF char 1249.6 1547.2 0				• .		
ar 1.901 gm/gm DAF char <u>665.4</u> <u>817.4</u> 1249.6 1547.2	6885 86(.084846	584.2	729.8	0	0
1249.6 1547.2		1.901 gm/gm DAF ch	ar <u>665.4</u>	817.4		- 260.6 +-
			1249.6	1547.2		- 260.6
(25 [°] C) 7699.6 7699.6			7699.6	7699.6		
c 7733.7(900 ⁰ C) 7721.1(1100 ⁰ C)			7733.7(900 ⁰ 0	() 7721.1(1100 ⁰ C)		-7733.7
heat of combustion on ultimate analysis is given for the far — Assume AH_(QOO ^O C) = _1000 cal/am tav	combustion on ultim	ate analysis is given for t	the tar. <u>Assume</u> AH _f (5	00 ⁰ C) = -1000 ca1/gn	n tar.	

() Table 27

. K

•

•

Р

data are given for the heat of combustion or the ultimate analysis of the tar, so $\Delta H_{f} = 1,000$ cal/gm tar has been assumed. Since only a little tar is produced in pyrolysis, the resulting error should not be too important.

р

In Table 28 the heat of the pyrolysis reaction is calculated. Here manure at 66.5° C and containing .0447 gm H₂O/gm DAF feed is pyrolyzed at 900° C. Δ H_R is nearly zero.

In Table 29 the heat requirements of the dryer and the pyrolysis reactor are calculated. The feed to the dryer is manure at 25° C and containing 1.207729 gm H₂O/gm DAF feed. The dryer output is saturated steam at 66.5°C and dried manure at 66.5°C that contains .0447 gm H₂O/gm DAF feed. Pyrolysis occurs at 900°C. Gas, char, and tar all leave the reactor at 900°C.

In Table 30 the total heat available for drying and for pyrolysis are calculated as a function of e, excess combustion air, assuming that all the pyrolytic char is burned for heat. If there is a 20% heat loss in the dryer and a 38.3% heat loss in the pyrolysis reactor, then the assumption that all the pyrolytic char is burned for heat is just satisfied. When the initial feed manure is substantially drier than 50 wt % moisture (1.207729 gm H₂O/ gm DAF feed), there will be excess char to steam-gasify.

<u>Discussion</u>. Even when the pyrolysis feed is completely dry, the pyrolysis off-gas will contain pyrolytic steam. If the raw feed is relatively dry and there is a need to steam-gasify carbon, then it may be desirable to dry the incoming manure less completely so that the excess steam will promute the water gas reaction inside the pyrolysis reactor. If the raw feed is relatively wet and there is no excess carbon, then it may be desirable to completely dry the pyrolysis feed. In either case the heat contained in the steam in the pyrolysis reactor off-gas is not recovered.

It thus appears that when there is a need to steam-gasify carbon, it is
Table 28

Heat of Pyrolysis Reaction

•

.

Pyrolysis: Heat of Reaction (900⁰C)

 $D_0 = 0.0447 \text{ gm H}_20/\text{gm DAF feed}$

Products

.

	ΔH _f ,	ΔH _f ,	
Gas	cal/mol	cal/gm DAF f	eed
^{CO} 2	-94406	-542.5	
CO	-27022	-114.1	
н ₂	0	0	
н ₂ 0	-59484	-698.4	
CH4	-21811	-116.2	
^С 2 ^Н 6	-25510	- 43.7	
^{NH} 3	-13324	- 1.4	
<u>Char</u>		-114.2	
<u>Tar</u>		- 80.3	
		-1710.8	
<u>Reactants</u>			
H ₂ 0	-59484	-147.7	
Manure		-1569.7	
		-1717.4	
∆H _R (900 ⁰ C)		+ 6.6	

Table 29

Dryer and Pyrolysis Reactor Heat Demands

Assume Solids $C_p = 0.4$ and Tar $C_p = 0.8$. Basis: $25^{\circ}C$, $H_2O(g)$ Drying Input 1.207729 gm H₂0/gm DAF feed, 1.207729 gm dry solids/gm DAF feed (25°C) Output .0447 gm H₂D/gm DAF feed, 1.207729 gm dry solids/gm DAF feed +

1.163029 gm steam/gm DAF feed (66.5^oC)

Heat Requirement:

1.207729(.4)(66.5 - 25) + .0447(1.0)(66.5 - 25) + 1.163029(625.53 - 25.05)

= 720.3 cal/gm DAF feed

Pyrolysis		H ₁₋₁₇₃ -H ₂₉₈	^H 1173 ^{-H} 298
Products (900 ⁰ C)	mols/gm DAF feed	cal/mol	cal/gm DAF feed
co ₂	0.574595(10 ⁻²)	10271	59.02
CO	.422188(10 ⁻²)	6575	27.76
^H 2	.645459(10 ⁻²)	6206	40.06
н ₂ 0	1.174181(10 ⁻²)	7962	93.49
сн ₄	.532568(10 ⁻²)	12234	65.15
с ₂ н ₆	.171255(10 ⁻²)	20820	35.66
NH3	.010656(10 ⁻²)	10206	1.09
Char	.438406 gm/gm DAF	.4(900 - 25) ca	al/gm 153.44
Tar	.080314 gm/gm DAF	.8(900 - 25) ca	al/gm <u>56.22</u>
			531 . 89
Reactants (66.5 ⁰ C)			

H ₂ 0	.0447	gm/gm DAF	-540.87 cal/gm	-24.18	,
Manure	1.207729	gm/gm DAF feed	.4(66.5 - 25) cal/gm	20.05	,
				- 4.13	i
Heat of Reaction				+ 6.6	
Total				542.6 cal/g DAF f	m eed

ì

Table 30

•

۰.

÷.

.

.

Overall Heat Balances

mols	/gm DAF char	mols/gm DAF feed	H ₁₃₇₃ - H ₃₅₃ cal/mol	Flue Gas Enthalpy Drop H ₁₃₇₃ - H ₃₅₃ cal/gm DAF feed
^{CO} 2	.07985	.0184135	12476	229.7
н ₂ 0	.0076	.0017526	9647	16.9
NO2	.001493	.0003443	12369	4.2
50 ₂	.000178	.0000410	12645	0.5
0 ₂	.084846e	.0195656e	8212	160.7e
N ₂	.79 .21 (.084846)(1 +	e) .0736038(1 +	3) 7746 _	570.1(1 + e)
Heat Available for Drying 821.5 + 730.8			821.5 + 730.8e	
Heat Available for Pyrolysis		ysis		958.9 - 730.8e
Total	ΔH _C (900 ⁰ C)			1780.5

Assume:	No heat losses.	ssume: 38.3% heat loss in pyrolys	is reactor
		20% heat loss in dryer	
(821.5 +	730.8e)¥ = 720.3	(821.5 + 730.8e)¥ = (1.25)(720.3)
(958.9 -	730.8e)¥ = 542.6	(958.9 - 730.8e)¥ = (1.621)(542.	6)
Ψ = 7	0.9% of char must be burne	Ψ = 100% of the char must	be burned
e neg	ative	e = 0.108	

ρ

preferable to do it in the pyrolysis reactor. One of the objectives of the pilot plant work is to determine whether or not this can be done. If the water gas reaction must be done separately, either in whole or in part, then external water would have to be vaporized and superheated for the purpose. This represents an additional heat requirement on the process.

. -`

ч., . ,

a su a x

۰.