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ABSTRACT

Friction, triboelectrification and sonoluminescence are phenomena which indicate
nature’s propensity to focus energy and stress is continuous media driven into off-equilibrium
motion. In cavitation luminescence sound energy can focus by 12 orders of magnitude to
make light. In tribological processes quantum mechanics focuses applied stress by over a
factor of 1 million to account for stick-slip friction. Observation of these effects makes use of
new techniques that have been developed to measure charge transfer and bonding between
sliding surfaces.

INTRODUCTION

The tendency of nature to spontaneously focus energy in the off-equilibrium motion
of continuous media is spectacular. Figure 1 shows the spectrum of light that is emitted from
a fluid as it is forced to flow through a Venturi tube at speeds which lead to a pressure drop of
about an atmosphere[l ]. Although the velocity of the room temperature water is measured in
meters/second the emitted light is broad band out to energies of 6eV which means that the
light is emitted from hot spots with temperatures of about 50,000K or higher. This light is due
to the formation of bubbles which focus energy as they collapse supersonically[2]. A single
such bubble can be trapped in a resonant sound field so as to emit one flash of light with each
cycle of sound and as shown in Figure 1 its spectrum is similar to that of the Venturi tube
flow. The pulsating motion of the bubble focuses the difhse sound energy density by 12
orders of magnitude to make flashes of light whose width is measured in picosecond.
Cavitating bubbles have actually found use in surgical procedures where they form on the
end of a vibrating tip. The energy focused by this cloud of bubbles can effectively cut through
tissue[3]. The spectrum of a cloud of transient bubbles is also displayed in Figure 1. At high
frequencies [over lMHz] the bubbles formed in a high amplitude sound field collapse down
to radii on the order of tens of nanometers[4] at which point light is emitted. This can be
called nanoluminescence.
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Energy focusing is not limited to cavitation. One of the earliest ~icard 1676]
investigations of luminescence dealt with the light emitted by mercury sloshing around inside
of a barometer. In a controlled laboratory experiment[5] one can rotate a container of mercury
around a horizontal axis and observe light emission from the region of the meniscus with the
unaided eye. For the purpose of taking the spectrum shown in Figure 1 neon gas was added to
the system. In the case of “rubbing electricity” the spectrum appears to come out as lines. But
excitation of the neon line requires electrons with energies above 20ev. So the relative motion
of mercury against glass at about 1mrdsecond leads to the repetitive acceleration of electrons
to about 1% the speed of light. These fast electrons collide with the neon atoms to make the
light. The mechanism of this effect is still unclear[6].

EXPERIMENTS AND DATA

In the experiments where mercury rubs against glass one observes that the mercury
sticks to the glass between discharges. It thus undergoes a kind of stick-slip motion. In order
to determine whether these observations can be generalized so as to gain insight into the long
standing problem of friction[7], the charge transfer between rubbing surfaces has been
measured[8], Figures 2A,B show the apparatus used to measure the force of friction between
surfaces in relative motion as well as the charge transfer. In this case the tip is gold and the
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substrate is a dielectric [PMMA]. Charge deposited onto the substrate as a result of a stick slip
friction event will lead to a time varying voltage when chopped with a conductor as shown
the figure.
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FIGURE 2A - APPARATUS TO MEASURE STICK-SLIP FRICTION AND CHARGE TRANSFER

Figure 3 shows the force of friction as a function of distance scanned as well as the
total charge laid down by the gold tip. Note that each slip event in Figure 3 reveals a jump in
the accumulated charge and furthermore there exists a scale factor .48eV/A which can be used
to collapse these two measurements onto one curve as shown in Figure 3B.

To calculate the scaled curves we introduce the displacement Axi of the tip on the i’1’

slip event which is resisted by a force, ~. = hkr, where k is the lateral spring constant of

the cantilever [47N/m]. The total distance x,$ scanned by the stage obeys:

x.$ = Axj + AX(XY) (1)
i<s

where Ax(x.,) is the deflection of the tip from its position of mechanical equilibrium after

being scanned a distance x,. Setting AK = oAN, and summing over all events yields
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(2)

i’h event, N(x,, ) is the total charge deposited in

scanning x.$and ~ is the average lateral force per charge. The force curve in Fig. 3A, which

is equal to klw(x$, ), has been combined with the imposed x, to obtain a scaled force curve

equal to the left hand side of Equation (2). This is plotted in Figure 3B along with ti(x~) ,

using the value 0.48 eV/ ~ for ~. The energy and length scale that combine to determine ~
are characteristic of a single molecular bond, which suggests that in these experiments friction
arises from bunches of bonds that form between and grab to rest two surfaces in relative
motion. The charge transfer is a marker for the number of bonds ruptured at a particular slip
event. The force of a single bond is remarkably large as an eV/~ (the natural scale for ~ ) is 1
nN so that 108bonds/mrn2, which is typical of our findings, corresponds to a force of 1 mN.
This corresponds to an average macroscopic stress of about an atmosphere, and a focused
stress at each bond of a Mbar (ule V /~3 ).

By use of a liquid crystal film under the substrate the location of the charges can be
instantaneously imaged with a resolution of 1()-12Coulomb/ mmz. Future generations of this
charge microscope should reach resolutions of 10-14Coulomb/ mmz . This device shows that
the charge transfer is indeed concentrated at the slip locations [8].
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For a metal surface sliding over ahother metaI_stiace it ii not”obvious how io””rnias~e-~. . ....... -.

the charge transferred as a result of stick-slip events. In this case one can measure the
~elasticity of the bonds which form when the surfaces come into contact. The apparatus is
Ishown in Figure 2. A 100micron gold ball han’s from the end of a fiber optic which also

~
I
Iserves as cantilever. The natural frequency of oscillation of the ball on the fiber is 1,600Hz. ~-

As a lmm gold ball is brought into contact with the suspended 100micron ball one observes !
that the resonant fkequency for motion parallel lo the interface stiffens and that the balls I
attract each other. This behavior is shown in Figure 4. Attraction between the surfaces is a
process that can take off on its own[9]. For the parameters presented here the centers of the
spheres can approach by an additional 40nm.

This behavior can also be interpreted ii terms of bonds that form between surfaces in
contact. As some bonds form the local attractive stresses increase so as to favor the formation
of additional bonds until the elastic forces setup by the distortion of the stiace balance the
process. The observed forces of stick-slip friction for gold on gold agree with the bonding
forces documented in Figure 4. f
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CONCLUSION

In conclusion macroscopic measurements of surfaces in relative motion suggest that
triboelectrification and friction have a common origin namely bond formation and rupture. ,
The quantum processes that lead to bonding also lead to highly focused local stresses that
constitute an essentiaI consideration for engineering at the nanoscale.
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Abstract

We are interested in the types of spatially and temporally complex dynamics that may arise in systems
in which patterns with hezagomd planform become unstable. Motivated by the Kiippers-Lortz instability
of rotating Rayleigh-B&mrd convection, whkh leads to persistent domain chaos, we study the effect of
rotation on convection with a hexagonal planform ss it arises for sufficiently strongly temperature-
dependent fluid parameters. Using coupled Ginzburg-Landau equations and order-parameter models of
the Swift-Hohenberg type, we find that the steady hexagons that arise near onset can become unstable
via steady and oscilla~ory,short- and long-wave instabilities. There are regimes in which the instability
gives rise to persistent dynamics in which the Fourier spectrum of the disordered pattern effectively
rotates with time, Within weakly nonlinear theory, the oscillating hexagons that arise farther away
from threshold are described by the single complex Ginzburg-Landau equation (CGLE) and generically
exhibit bktability between periodic oscillations and defect chuos. They appear to be the first system that
should allow detailed quantitative comparison between experiments and the CGLE in one of its regimes

I of complex dynamics. As a first step towards a quantitative comparison we derive the relevant coupled
Ginzburg-Landau equations directly from the Navier-Stokes equations.

1 Introduction

Among the current challenges in the understanding of chaotic systems are systems that behave chaotically in
time but are also disordered in space. Such spatio-temporal chaos can arise in systems ranging from waveson
fluid surfaces to electrical excitation waves in hearts undergoing fibrillation, a serious heart condition. The
understanding of Iow-dimensional chaos of systems with few active degrees of freedom has reached a high
level and has allowed substantial progress in its control as well as in harnessing its features for applications,
e,g, in communications or in mixing.

High-dimensional chaos is far less well understood. Spatio-temporal chaos in spatially extended dynami-

cal systems falls into this category. One of its characteristic features is the extensivity of the chaotic attractor,
i.e. the number of active modes grows linearly with the size of the system. This suggests that these systems
may be thought of as interacting dynamical, possibly chaotic units. The identification of the relevant units
is, however, far from obvious. In many pattern-forming systems, e.g. in R,ayleigh-B&mrd convection, natural
candidates for building blocks of the chaotic dynamics are defects in the pattern. These can be point defects
like holes or dips in the wave amplitude in one dimension [1, 2], or disclinations and dislocations in two

dimensions [3, 4, 5, 6], or they can be line defects like domain walls separating, for instance, stripe patterns
of different orientation [7, 8]. Whether the defects play in fact an active role in the overall dynamics has not
been clarified in most systems. In simulations of the single complex Ginzburg-Landau equation (CGLE) it

has been established that a certain fraction of the total fractal dimension of the attractor can be attributed

“Current address: The CNA Corporation, 4401 Ford. Ave,Alexandria,VA22302
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to the dislocations in the wave pattern with the remainder being due to the wave field between the defects
[4]. In simulations of coupled Ginzburg-Landau equations the dynamics of the dislocations have been found
to provide an intuitive understanding of the transition between a spatially ordered and a spatially disordered
state, both of which are chaotic in time [6]. In experiments on waves in binary-mixture convection progress
has been made in reconstructing the complete wave field from the field generated by the dislocations alone
[5].

Experimentally, spatio-temporal chaos has been investigated in a number of systems, in particular in
various fluid flows in layers with large-aspect ratio. In Rayleigh-B6nard convection at low Prandtl numbers

quite complex textures have been found that are characterized by stripe patches of various orientations,

spirals, disclinations, and dislocations [3]. This state does not arise very close to threshold and is therefore
not a good candidate for theoretical approaches using weakly nonlinear reductions of the full Navier-Stokes

equations. In the presence of rotation, roll convection can become unstable and chaotic immediately above
threshold due to the Kiippers-Lortz instability [9]. In thk system the dynamics are characterized by domain
walls separating stripes (rolls) or different orientation. The success of a description using Ginzburg-Landau
equations is, however, limited since these equations break the isotropy of the system. In electroconvection
of nematic liquid crystals a regime is found in which spatio-temporal chaos arises immediately above onset
[10]. Since the system is anisotropic, coupled Ginzburg-Landau equations should be able to describe the

dynamics quantitatively. Unfortunately, while most of the coefficients in these equations have been derived
from the underlying fluid equations [11], one coupling coefficient is still missing.

On the theoretical side, spiral-defect chaos in convection has been treated by full numerical simulations

of the Navier-Stokes equations [12] as well as model equations of the Swift-Hohenberg type [13]. The latter
approach has also been used for the study of the domain chaos arising from the Kuppers-Lortz instability [7].
Most theoretical investigations of spatio-temporal chaos have been concerned, however, with the complex
Ginzburg-Landau equation (CGLE) which applies quite generally to systems undergoing an instability to
homogeneous oscillations. Despite its simplicity the CGLE exhibits a number of different chaotic and ordered
regimes [14, 15, 16]. Surprisingly, however, up to recently no system appears to have been identified that
exhibits one of the complex regimes found theoretically in the two-dimensional CGLE and that is suitable
for detailed quantitative comparison with experiments.

In this communication we enlarge on recent results on the dynamics of hexagonal patterns in the presence

of rotation [17, 18, 19, 20, 21]. The motivation for thk work is two-fold. Most of the previous studies of spatio-
tcrnporal chaos have been addressing regimes that arise from stripe-like states and therefore inherit some
of their characteristics. It is to be expected that chaotic states that arise from instabilities of a hexagonal
planform will differ in a qualitative way. Motivated by the results on the Kiippers-Lortz instability, we
conjectured that rotation may also trigger persistent dynamics in the hexagonal planform. This is indeed
the case, albeit in a quite different way. In addition to inducing instabilities of the steady hexagons, the
rotation introduces a completely new state, oscillating hexagons, that arises in a secondary Hopf bifurcation
off the steady hexagons. Strikingly, these oscillating hexagons are to leading order described by the single
CGLE and within the weakly nonlinear theory they are always in a regime of bistability of stable oscillations
and deject chaos [19]. Thus, rotating non-Boussinesq convection appears to be the first system that should

allow a detailed comparison of one of the non-trivial regimes of the two-dimensional CGLE with precise
experiments.

2 Weakly Nonlinear Description of Hexagons with Rotation

We are interested in a weakly nodinear description of hexagon patterns in the presence of rotation. One

of the best known systems exhibiting such patterns is non-Boussinesq convection, i.e. fluid convection in
regimes in whkh the temperature dependence of the fluid parameters is of importance. In the weakly

nonlinear regime the full fluid equations can be reduced to simpler equations for the overall amplitude of the

convective pattqn. We discuss two complementary approaches.
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Figure 1: Bifurcation diagrams for weakly non-Boussinesq convection without imd with rotation.

For small convection amplitudes the fluid equations can be reduced systematically to three coupled
Ginzburg-Landau equations for the three Fourier modes making up the hexagonal pattern [17],

6jA = RA + (nA. v)2A+ 7X7– AIA12 – (~+ fi)Ap312– (~ – ti)A\c12. (1)

In terms of the amplitudes A, B, and C, typical fluid quantities like the temperature in the midplane are
given by

fj = Aeif’m + fjei(-f?z/z’-!-fi9v/2) + &G17d2-d%/2) + ~.~. + ~.oj. (2)

The form of (1) can be derived using symmetry arguments. The bifurcation parameter in the amplitude
equations is R. The breaking of the chiral symmetry by the rotation introduces a difference between the
two cross-coupling coefficients as expressed by U . In the absence of spatial gradients these equations yield

typically the bifurcation diagrams shown in fig.1 [22, 23]. The main new feature introduced by the rotation
is the branch of oscillating hexagons arising at RH in a Hopf bifurcation and ending on the mixed-mode
solution in a heteroclinic cycle at R~ .

To achieve a quantitative comparison with experiments we have also derived the coupled Ginzburg-
Landau equations (1) for weakly non-Boussinesq convection directly from the fluid equations. A typical
phase diagram obtained from ‘:at analysis is shown in fig.2. Since currently available experimental set-ups

allow rotation rates up to lHz the regime of oscillating hexagons should be easily accessible in these systems.
It turns out that due to the rotation the steady hexagons can undergo an instability to a spatially

disordered state with an isotropic Fourier spectrum. Since the coupled Ginzburg-Landau equations (1) only
allow small deviations in the wavevector from the three preferred wavevectors they cannot capture such a
state, We have therefore also made use of a phenomenological model of the Swift-Hohenberg type [20],

@J = R@-(V2+l)2@–163+a~2+72= . (VV X V(V2@)), (3)

which preserves the isotropy of the system. Here R is the control parameter, ~ is a measure for the rotation,
and v is the order parameter, which gives, e.g., the temperature of the layer in the mid-plane.

3 Instabilities of Steady Hexagons

The stability analysis of the steady hexagons within coupled Ginzburg-Landau equations as well as within
Swift-Hohenberg-type equations reveals steady and oscillatory instabilities that can arise at long wavelengths
or at finite wavelengths [20, 17]. A typical result from the Swift-Hohenberg-type equation (3) is shown in
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hexagons.

fig.3a. The stability limit for wavenumbers larger than the critical wavenumber is due to an oscillatory

instability, which leads to spatially and temporally periodic modzdated hexagons. A snapshot of this state is
shown in fig.3b. The modulation is in the form of a standing wave: after half a period the contour lines will
be disconnected in the center of the pattern and connected in the top and the bottom part. The bifurcation
t,o the modulated hexa~ons is supercritical as shown in the bifurcation diagram fig.3c.

The modulated hexagons persist up to the line marked by solid diamonds. There, additional sideband
modes come into play and destroy the order as illustrated in the time dependence of the dominant Fourier
modes shown in fig.4a. The modes A, B, and C make up the hexagon pattern, while the mode POOO

is responsible for the spatial modulation of the hexagons. Around t = 4000 additional modes become

important and the modulated hexagons are supplanted by a spatio-temporally chaotic state. Two snapshots

of that state are depicted in fig.4b,c. Strikingly, the hexagonal symmetry of the pattern does not break down
completely. Thus, the Fourier spectrum still exhibits 6 peaks, which are, however, quite broad due to the
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disorder in the pattern. With time, the spectrum evolves and effectivelyrotates at a quite steady rate 120].
The rotation can be seen by comparing the two snapshots in fig.4b,c. In fig.4c the dominant orientation

has rotated by about 30° compared to fig.4b. The rotation is also visible in the time-dependence of the

dominant Fourier modes shown in fig.4a. Beyond t = 6000, the growth and decay of the modes A, B, and
C representing the initial hexagon pattern shows the variation of the dominant orientation of the pattern
relative to these modes. “

4 Defect Chaos in Oscillating Hexagons

The oscillating hexagons arise in a secondary Hopf bifurcation off the steady hexagons. Near that bifurcation
they can be described by a CGLE for the oscillation amplitude H coupled to the phase vector ~s (@Z,@v)
that characterizes the two wave vectors of the hexagons [18],

Two aspects of these equations are particularly noteworthy. First, to the cubic order considered in (1)
the CGLE (4) decouples from the equation (5) “for the phase vector if the hexagon wavenumber is at the
bandcenter. Second, although the coefficients & and p in the CGLE depend on the values of v and U their
variation turns out always to be restricted to a range in which there is bktability of ordered oscillations
and defect chaos, Thus, if the non-Boussinesq effects in the fluid are sufficiently weak to allow a description
of the oscillating hexagons by the coupled Ginzburg-Landau equations (1), then independent of the values
of v and fi the oscillating hexagons are predicted to exhibit defect chaos of the type studied theoretically
in the CGLE [14]. Two snapshots of simulations of the coupled Ginzburg-Landau equations in that regime
are shown in fig.5a,b. The dkordered pattern shows domains in which the hexagons oscillate. Thus, they
have a slight roll-like character with an orientation that ‘rotates’ in time. The time interval between fig.5a
and fig,5b corresponds to half a period of the oscillation. In addition, there are also localized regions in

which the hexagons are quite unperturbed and steady, e.g. in the bottom left corner of fig.5a,b. The latter
positions correspond to locations of vanishing oscillation amplitude, i.e. dislocations (spirals) in the complex
amplitude 7f, This is made more clear in fig.5c in which the zero-lines of the real and of the imaginary part
of 74 are plotted for the same time as in fig.5a. The dislocations correspond to the points of intersection of
these lines. Comparison with fig.5a,b shows that whereever two defects are close to each other the oscillation
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Figure 5: Snapshot of defect chaos
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amplitude is strongly suppressed and the hexagon pattern is quite regular. For these parameters the spiral
character of the dislocations is not very strong; the spirals do not persist long enough to develop into a clear
spiral structure.

Away from the band center the CGLE (4) becomes coupled to the phase equation (5). At the same time
the values of the other coefficients in the CGLE change as well. The resulting dynamics are found to be very

similar to that obtained in the CGLE alone. As the wavenumber of the underlying hexagons is increased the

chaotic activity becomes weaker and the average number of defects decreases. A comparison of the density of

dislocations in simulations of the coupled Ginzburg-Landau equations (l), of the phase-amplitude equations
(4,5), and of the CGLE alone shows that even away from the band center the effect of the coupling to the
phase is small. Specifically, we find a decrease in the chaotic activity and eventually a transition to a state
like the frozen-vortex state found in the CGLE [16].

5 Conclusion

We have performed a weakly nonlinear analysis of hexagon patterns in systems with broken chiral sym-
metry. For the steady hexagons various regimes of interesting complex dynamics are possible, including

the stable coexistence of steady hexagons, modulated hexagons, and spatio-temporally chaotic hexagons.
The oscillating hexagons arising at slightly larger amplitudes are predicted to be described by the complex
Ginzburg-Landau equation. The coefficients are found to be such that the oscillating hexagons should ex-

hibit defect chaos that is bistable with the ordered oscillations. Calculations based on the fluid equations for
weakly non-Boussinmq convection predict that this regime should be accessible in current experiments [24].
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ABSTRACT

The machine control problem is normally approached from the perspective of having a central
body of intelligence (and control) in the machine [Albus, 1991 ]. However, we present a conceptual
design of a machine using distributed learning and intelligence. This new design is loosely based on
biological models of social insects. For example, in an ant colony each ant functions according to local
rules of behavior [Holldobler and Wilson, 1990, see chdpters 8 and 9]. There is no “king” or “queen”,
although the latter name has been given to the reproducing ant. Following a similar approach, we present
a modular machine architecture in which each machine element has local rules of behavior (and local
learning) along with a global element that influences local behavior (but does not dictate actions). A
prime goal is to develop methods of learning and behavior modification that ensure global stability and
optimization of the total machine; we discuss the theoretical aspects of ensuring such optimal
performance.

INTRODUCTION

James Albus [1991] at NIST has defined machine intelligence as “the ability of a system to act
appropriately in an uncertain environment, where appropriate action is that which increases the
probability of success, and success is the achievement of behavioral subgoals that supports the system’s
ultimate goaL” Following Albus’ intent, we can say that intelligent machines are those that either know
or can learn everything they need to know to perform a process or task. Such machines may be able to
perform a processor task autonomously (without opemtor intervention) or semi-autonomously (with
operator intervention).

In this paper, we present a conceptual design of a machine using distributed learning and
intelligence. Related work has been conducted, for example, by Dorigo and Colorni [1996] using ant-
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Figure 1. Arc spot welding machine with agents for the power supply, electrode wire feeder,
positioner axes, sensor, and operator interface.

based local behaviorof multiple agents to solve the TrdveilingSalesmanProblem and other classical hard
problems. Schatz et al. [1999]formulateda model for route learning in ants. Lambrinos et al. [2000]
used a similar model for navigation of a mobile robot. Overgaard, Petersen, and Perram [1995, 1996]
used local agent control of dynamic motion and pdth planning in multiple link robot arms.

Consider an intelligent machine in which various machine functions are carried out in a distributed
manner. A schematic of such a machine for arc spot welding is shown in F@re 1. In addition to the
machine hardware required (most of which is not shown) there are seveml “agents”. These agents have
local control of various machine functions and are able to communicate with each other and with an
operator agent, see Figure 2. The operator agent may be a human or may be an interface to a hurndn (or
even an interface to another rn~chine). (Although it would be possible to focus on autonomous machines,
we chose not to do so; our machines will interact with humans who have supervisory control authority.)

analog

dead
man

digital

mid-level
motion
control

Figure 2. Agent block diagram.
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Figure 3. Schematic of gas metal arc weldingprocess showingtypical values of parameters.

The various agents will incorporate knowledge of how to perform tasks, the ability to learn from
experience, and memory of past performance. The agents will also be able to optimize both their local
behavior and the global behavior of the total machine.

To formulate such a machine, we need a variety of methods. In addition to distributed learning and
control, we also chose to have our machines learn rules of behavior. This is distinct from learning control
trajectories, a method frequently employed for machine learning. Our rules will be embodied using a
variant of tizzy logic [Johnson and Smartt, 1995] that allows the system to learn by back propagation
[Rumelhart, 1986]. However, we discuss the application of iterative learning control’ to distributed
intelligence. Iterative learning control is a recent set of methods for learning control trajectories that is
well suited to iterative processes. However, iterative learning control methods may also be used to learn
the weighting of rules for local optimization. We also discuss a new method of global optimization that
uses artificial neural networks that learn the contribution of local behaviors to global cost.

SIMPLE INTELLIGENT WELDING MACHINE

Now consider the welding machine control problem. This is a much more complicated problem
than two-dimensional motion control. First, there is a motion control problem involved. Even simple
automated welding machines may have three degrees of motion. Consider welding in the flat position
(e.g. joining two flat plates edge to edge with the plates in the horizontal plane). The welding torch must
move along the weld joint. It also needs to be able to move at right angles to the weld joint (in the
horizontal plane) to track misalignment of the joint with the axis of primary motion. Finally, it needs to
move in a vertical direction to obtain changes in the contact tube to weldment distance. In addition, the
weld torch may be mounted with a lead or lag angle relative to the weld joint. That is, the torch maybe
nominally vertical to the plates, but tilted backwards or forwards, respectively, with respect to the welding
direction. For other weldment configurations, the torch maybe leaned to one side or the other. Finally,
the torch may be moved laterally with respect to the weld joint in a weaving pattern to effective]y increase
the width of the weld bead. Robotic welding systems maybe even more complicated.

a. Uchiyama, 1978; Arimoto, Kawamura, and Miyazaki, 1984 Moore, 1993



Welding also involves selection of proper values of the process independent variables, see Figure
3. Disturbances to the processor uncertainties in the welding conditions may result in a need for the
welding process independent variables to be changed during welding. Consequently, we need to consider
that the trajectory we must obtain involves multiple degrees of motion via the robot as well as multiple
degrees of motion through welding parameter space. What we seek is a set of generic rules that will
ensure that the weld is made in some manner that will result in a structurally reliable weldment. Further,
we want the welding machine to tune those rules to obtain a more robust process than would result from a
fixed set of rules.

Consider a specific welding control problem. We desire to fabricate a steel structure using arc spot
welding. Thus, steel sheet will be welded to an underlying structure by means of weld nuggets deposited
into circular holes in the sheet. This geometry is shown in Figure 4.

Figure 4. Cross section of gas metal arc spot weld showing a hole in the top sheet and a completed
weld bti~d.

In this situation, the weld torch maybe moved to a suitable position over a weld site, using motion
control M discussed ealier. The welding power supply contactor is actiwdted, the power supply voltage is
set, the shielding gas is turned on, and the electrode wire is fed downward. This will result in ignition of
an arc with corresponding heat and mass transfer to the weldment. After a suitable time, the power
supply contactor is deactivated and the electrode wire feed is stopped. A short time later the shielding gas
is turned off. Although this is perhaps the simplest arc welding example we can consider, there are still
important control decisions that ensure that the weld will meet its acceptance requirements.

A good weld in this example is one that is strong enough, does not excessively over or under fill
the hole, has minimal spatter, and does not contain gross defects such as cracks or porosity that could lead
to failure. To be strong enough, the weld bead must adequately penetrate the lower structure (but not
excessively melt through that structure) while fusing into the upper sheet. For most applications, the
cross-sectional area of the weld bead in the plane of the interface between the upper sheet and the lower
structure needs to be equal to or greater than some critical amount.

To obtain a good weld in this example, the current must be high enough but not too high and the
weld time (the time the arc is on) must be equal to or greater than some critical minimum. This will
ensure that adequate heat and mass have been transferred to the weldment. It is also necessary for the
voltage to be above some minimum (to reduce spatter) and below some maximum (to avoid melt through
and bum back).
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GLOBAL OPTIMIZATION

One of the key challenges to achieving intelligent distributed learning with global optimization
within our welding machine is the interaction between the global optimization cost function and local
agent optimization cost functions. Each independent optimization agent must be able to make changes to
its locally controlled parameters while keeping in mind its effects on the global cost/process.
Traditionally, industrial process optimization is broken down into sub-components then optimized locally.
If there is time and resources, once the sub-components have been optimized, an engineering team is
formed to globally optimizing the interactions between sub-components through manual trial and error
adjustments away from the sub-components optima. Today there is a growing interest in global process
self-optimization, or near optimization, through the use of “swarm intelligence” [Bonabeau et al., 2000].
One method in particular is based on how ants function in nature while searching for food [Dorigo et al.,
1996]. Each ant acts as an independent agent making random decisions on where to search with each
move. As traffic increases along a particular path, ants crossing that path will be biased with a greder
probability to follow the already more traveled path by its higher pheromone level. This tendency is
reinforced as ants travel back and forth along the path between food and the anthill faster than other ants
on competing paths. This leads to a faster increase in the pheromone trail on the shorter paths with
respect to the longer competing paths, which attracts additional ants to the short paths. This is a never-
-ending reinforcement of the global optimization cost function, i.e. increased food movement back to the
anthill, However, as is pointed out by Bonabeau et al. [2000], there is also a kind of integral wind up
effect in ant behavior. When a shorterpath is introducedafter the “best path”has been found, the system
has a hard time finding it unless the dynamicsare changed,e.g. the initial food source is used up. This
limitationcan be overcomeby modelingthe pheromonetrial as evaporative [Bonabeauet al., 2000;
Dorigo et al. 1996], It is importantto makeclear the key idvdsbeing presented within this optimimtion
system each ant adds its own piece of cost to the global cost function (food delivered), and they are able
to communicate to each other about their success (pheromone trail).

A slightly different intelligent distributed learning system can be expressed in human terms as an
everyday project team, Here each team member is an individual agent that contains a wide range of
experience, talents, and education. Norrndlly, such teams have a teandproject leader whose role is key to
their achieving intelligent distributed learning on a global optimization problem. The team leader, and his
allowed interactions, differentiates this method of distributed learning from the ant’s. Within this model
of distributed learning, the global cost function is contained within the team leader and acts as an agent of
its own. Tasks are distributed among team members as well as sub-groups of team members. These
agents progress in solving their tasks, as well as developing localized communication paths between
agents, i.e. real time reconfiguration of the sub-groups. More importantly, the key concept within this
structure is that the tettm leader cannot dictate any particular action to a team member, In human terms,
this is primarily due to the tedm leader’s lack of technical details and/or conceptual understanding
required to solve any particular subtask. Remember, the team leader is globally oriented. However, team
ltx~derscan attempt to influence a particular tedm member’s actions in order to achieve the global optimal
solution. For example, the team leader can inform a member/agent that by increasing the tolerances
within their portion of the process, all of the remaining process can speed up dramaticallyy, i.e. the other
agents are waiting on that particular agent due to the extra time required to optimize his subtmk, even
though it will not add much to the global cost function. We propose that this interaction between the team
leader and individual team members is the key to the successful development of an intelligent global
distributed learning algorithm, as opposed to “swarm intelligence.” Furthermore, we differentiate an
intelligent global distributed learning algorithm from a centralized learning algorithm, such as traditional
neural networks, by not allowing any agent to dictate to another agent its actions, i.e. the team leader is
not allowed to force any agent into a particular action. In short, an intelligent global distributed learning
algorithm must allow each agent its own localized cost function and the ability to solve its subtasks
primarily by itself with non-dictated feedback from the other agents. Global optimization is actually



achieved through the local optimization procedures employed by each agent while taking into account the
global effects of its choices.

Using the human project team model just discussed, consider the intelligent spot welding machine
outlined in Figure 1. This machine has a team leader, the Weld Quality Agent. Its job is to evaluate the
overall success of welds produced by the machine and supply feedback to the local agents—i.e., x-axis
agent, y-axis agent, z-axis agent, power suppiy agent, wire feeder agent-on their effectiveness in
producing quality welds. The key to designing a particular algorithm is how the team leader, the Weld
Quality Agent, is allowed to interact with each of the local agents. A further complication is by what
methods will the team leader pass localized global cost information to each agent.

With this in mind, we consider the following initial architecture and algorithm for study, as
outlined in F@me 1. This algorithm is based on a global cost function maintained and calculated within
the Weld Quality Agent using generic weld parameter information developed from machine’s agents.

Weld _Quali~=V~(V~,V~ )+ S~(S,,V, )+ B~(S,,V, )+ M~(PI)+T~

where

V. represents the quality of the well nugget volume based on the desired volume, V~, and the

measuredfcaIculated volume, V~.

S~ represents the quality cost of spatter produced during the welding process based on sensor

inspection, S,, and operator visual inspection, V,.

B~ represents the quality cost associated with burn back.

ikl~ represents the quality of the mechanical joint produced by the machine based on the

opemtor’s physical inspection, PI .

T~ represents the cost to quality due to the time involved in producing the weld

Now that the form of the global cost function has been chosen, the next step is to define the
relationship and method for communicating global cost information to the local agents. We propose to

accomplish this task by adding these effects of the localized global cost, C~’~’, to the traditional local

cost function, C~~~.

c(tgettt=LYc:;:;+(1- a)cf’

The ct term is used to adjust the balance between local cost and global cost variations on the local
optimization process. It is planned that for new welding setups, the machine may f~xu to be 1 for an
initial period of time, thereby allowing development of the initial relationships between the local agent
costs and globaI costs before proceeding with the augmented local cost function above (i.e. ~ # 1). Note
that the effect due to the global cost is based on multiple terms within the weld quality cost function, e.g.

C~~} (V~, S~, ). These mappings form the uniqueness and key difficulty of the proposed algorithm;
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namely, how will the algorithm obtain a mapping from global cost effects to local cost effects, i.e.

Weld _Quality + C~~ ? To simplify the initial algorithm and its solution, it will be assumed that the

effect of the global cost on a particular agent is a Iinew combination of each of the Weld _ Quality sub-

terms:

c:~;’(vQ,sQ,BQ,~Q,TQ)= alV~ -t-azS~ + a#3~ + adM~ + a5T~

where the aj’s are constants.

With this assumptionin hand, it is plannedto learn the forwarddirectionmap, from the local agent
costs to the global cost fi.mctionterms,via a neural networkmapping:

where C~~!’~represents the wire feeder agent’s cost, C~ represents the i’”-axis agent’s cost, C:”

represents the power supply agent’scost, and as above the ai’s are constants. This forward neural

network mapping will then be used to produce the reverse gradient mapping by way of the back-
propagation training method. In addition to training the neural network based on the traditional error

prediction feedback of the forward network, the change in each of the global cost terms ( AM~ ) due to
:;! , @.c(([changes in the local agents (AC .A ,AC

;~l , @,)CU\~ , @W\
~,y ) will be back propagated through

the network all the way to its inputs (this process is not used to update weights). By doing this, one is
attempting to use the back-propagation training method to relate a change in gIobal cost to the local
agents by exploiting the gradient knowledge contained within the forward mapping of the neural network.
We are not attempting to reverse map the input to outputs, instead we are only trying to obtain gradient
information at the input of the neural network based on the change of the output of the network. In fact,
the back-propagation algorithm is based on a gradient descent method, which back-propagates gradient
information about the error in the outputs due to the inputs in a similar fashion,

It is planned to use radial basis neural networks within this part of the project because of their
connection to Takagi-Sugeno fuzzy systems. This connection will be used to obtain a qualitative
understanding of the mapping between the local agent costs and the global sub-cost. This is possible
because radial basis neural networks and Takagi-Sugeno fuzzy systems have been shown to be
rndthematica]ly the same, though developed from a different understanding [Spooner and Passino, 1996].
In essence, it is thought that one can develop a fuzzy model of the mapping process from local costs to
global sub-costs by using a radial basis neural network [Passino, 1999]. This qualitative understanding of
the relationships between local costs and global sub-costs can then be used in future model development
for the welding process as well as in more traditional control systems for welding processes.

CONCLUSION

An approach to design of an intelligent machine has been presented based on distributed
intelligence. Local agents are used to control individual machine functions and to process information
needed by the machine functions. Examples of how this approach may be used to build a specific
rntchine are presented for an arc spot welding application. A possible agent internal structure is
presented that provides for local rules of behavior and safety considerations. An initial method for
accomplishing distributed learning with global optimization has been presented. The learning method
outline within this paper will form the basis for our continued research.
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ABSTRACT

While considerable progress haa been made in recent years toward the development of multi-
robot teams, much work remains to be done before these teams are used widely in real-world
applications. Of particular need are the development of mechanisms that enable robot
teams to autonomously generate cooperative behaviors. This paper examines the issue of
multi-robot learning and looks at various types of multi-robot learning. We briefly review
various multi-robot learning approaches we have studied. The paper then presents the
Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT) application
as a rich domain for studying the issues of multi-robot Icarning of new behaviors. We discuss
the results of our hand-generated algorithm for CMOMMT and the potential for learning
that was discovered from the hand-generated approach. We then describe our research in
generating multi-robot learning techniques for the CMOMMT application and compare the
results to the hand-generated solutions. Our results show that, whalethe learning approach
performs better than random, naive approaches, much room still remains to match the
results obtained from the hand-generated approach. The ultimate goal of this research
is to develop techniques for multi-robot learning and adaptation that will generdlze to
cooperative robot applications in many domains, thus facilitating the practical use of multi-
robot teams in a wide variety of real-world applications.

INTRODUCTION

Research in multi-robot cooperation haa grown significantly in recent years. While the growth of this
research is duc in part to a pure scientific interest in teams of autonomous robots, much of the growth is due
to the increasing reahzation by the user community that teams of robots may provide solutions to difficult
problems that previously were untenable. Certainly, it has been shown (e.g., in [1] and elsewhere) that
multi-robot teams can increase the reliability, flcxibllity, robustness, and efficiency of automated solutions
by taking advantage of the redundancy and parallelism of multiple team members.

However, before multi-robot teams wilI ever become widely used in practice, wc believe that advances
must be made in the development of mechanisms that enable the robot teams to autonomously generate
cooperative behaviors and techniques. With the current state of the art, the implementation of cooperative
behaviors on physical robot teams requires expert behavior programming and experimentation, followed by
extensive tuning and revision of the cooperative control algorithms. It is unlikely that a significant real-world
impact of cooperative robot teams will occur aa long as the current level of effort is required to implement
these systems.

Researchers have recognized that an approach with more potential for the development of cooperative
control mechanisms is autonomous learning. Henccj much current work is ongoing in the field of multi-agent
learning (e.g., [2]). Brooks and Mataric [3] identify four types of learning in robotic systems:

. Learning numerical functions for calibration or parameter adjustment,

. Learning about the world,

● Learning to coordinate behaviors, and

● Learning new behaviors.



Our research h= examined several of these learning areas. In the first area - learning for parameter adjustm-
ent – wc have developed the L-ALLIANCE architecture [4],which enables robots to adapt their behavior
over time in response to changing team capabilities, team composition, and mission environment. This
archkecture, which is an extension of our earlier work on ALLIANCE [5], is a dktributed, behavior-based
architecture aimed for usc in applications consisting of a collection of independent tasks. The kcy issue
addressed in L-ALLIANCE is the determination of which tasks robots should select to perform during their
mission, even when multiple robots with heterogeneous, continually changing capabilities are present on
the team. In this approach, robots monitor the performance of their teammates performing common tasks,
and evaluate their performance based upon the time of task completion. Robots then use this informa-
tion throughout the lifetime of their mission to automatically update their control parameters according
to the L-ALLIANCE update mechanism. We note, however, that the parameter update strategy used by
LALLIANCE is dependent upon the assumption of independent subtasks whose performance can be evalu-
ated based upon the time of task completion. This assumption does not hold for the CMOMMT application
domain that we describe in this paper.

We have also addressed approaches for learning in the second area - learning about the world. We
have implemented a multi-robot system in which one robot learns to communicate symbolic information
about the environment to another robot [6, 7]. In particular, we developed a two-robot team that was
specifically designed to be heterogeneous, such that neither could successfully achieve the task alone. The
robots were also endowed with a mechanism for learning to communicate task-specific symbolic information.
To accomplish learning, a number of self-organized levels build upon each other. First, each of the robots
learns a topological map of its environment. Once the topological map self-organizessufficiently, the robots
can learn successivelyhigher-level relationships between locations, resulting in the emergenceof a navigation
capability. When the robots have a consistent concept of “location” as defined in terms of their sensory and
behavioral suite, they will begin to have succcss in communicating task-specific information. Specifically,
each robot is endowed with behavior that results in the robots communicating in order to ground specific
symbols to particular locations. Having learned a shared grounding that maps a set of symbols to locations,
the robots can communicate important task-specificlocations to each other. The receiving robot can interpret
the communicated information, drive to the communicated location, and perform mission-specifictasks. The
robot soon learns that this reliably assists in the completion of its tasks, and is more efficientthan performing
the task without communication. The result is that the robots together learn to adapt their behavior toward
more efficient mission completion by learning to represent and navigate around their environment and to
communicate about it [8]. This approach has been successfully demonstrated in a laboratory cleaning task.

In the remainder of this paper, wc discuss our research in the fourth topic area – that of learning new
behaviors in multi-robot teams. The types of applications that are typically studied for this area of multi-
robot learning vary considerably in their characteristics. Some of the applications include air fleet control
[9], predator/prey [10, 11, 12],box pushing [13],foraging [14],and multi-robot soccer [15, 16]. Particularly
challengingdomains for multi-robot learning are those tasks that are inherently cooperative. By this, wemean
that the utility of the action of one robot is dependent upon the current actions of the other team members.
Inherently cooperative tasks cannot be decomposed into independent subtasks to bc solved by a distributed
robot team. Instead, the success of the team throughout its execution is measured by the combined actions
of the robot team, rather than the individual robot actions. This type of task is a particular challenge in
multi-robot learning, due to the cMllcultyof assigning credit for the individual actions of the robot team
members.

Of the.se previous application domains that have been studied in the context of multi-robot learning,
only the multi-robot soccer domain addresses inherently cooperative tasks with more than two robots while
also addressing the real-world complexities of embodied robotics, such as noisy and inaccurate sensors and
effecters in a dynamic environment that is poorly modeled. To add to the field of challenging application
domains for multi-robot learning, we have defined and have been studying a new application domain –
the Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT) – that is not only an
inherently cooperative task, but, unlike the multi-robot soccer domain, is also a domain that must deal with
issues of scalability to large numbers of robots.

In the next section, we clcfincthe CMOMMT application. Wc then describe a hand-generated solution to
this problem, along with the results we obtained with this approach. We then define a learning approach to
enable robot teams to autonomously generate viable solutions to the CMOMMT application and compare
the results to the hand-generated approach. The final section of the paper concludes with some summary
remarks.
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THE CMOMMT APPLICATION

The application domain that we are studying for use as a multi-robot learning testbed is the problem
we entitle Cooperative Multi-robot Observation of Multiple, Moving Targets (CMOMMT). This problem is
defined as follows. Given:

s:
v:

o(t):

a two-dimensional, bounded, enclosed spatial region
a team of m robot vehicles, vi, i = 1,2, ...m. with 360° field of view observation sensors
that arc noisy and of limited range
a set of n targets, q(t),j = 1,2,..., n, such that target oj (t) is located within
region S at time t

We say that a robot, vt, is observinga target when the target is within vi’s sensing range.
Define an m x n matrix B(t),as follows:

13(t) = [bij(t)]mXn such that btj(t) =
{

1 if robot vi is observing target oj (t) in S at time t
O otherwise

Then, the goal is to develop an algorithm, which we call A-Cit40MMT,
metric A

A = )A: f: ~@$)~j)
t=l j=l

where:

g(qt), j) =
{

1 if there exists an i such that b~j(t)
O otherwise

that maximizes the following

= 1

In other words, the goal of the robots is to maximize the average number of targets in S that are being
observed by at least one robot throughout the mission that is of length T time units. Additionally, we define
sensor.coverage(q) as the region visible to robot vi’s observation sensors, for vi E V. Then we assume that,
in general, the maximum region covered by the observation sensors of the robot team is much less than the
total region to be observed. That is,

u sensor-coverage (Vj) << S.
vi0

This implies that fixed robot sensing locations or sensing paths will not be adequate in general, and instead,
the robots must move dynamically as targets appear in order to maintain their target observations and to
maximize the coverage.

The CMOMMT application is an excellent domain for embodied multi-robot learning and adaptation.
CMOMMT offers a rich testbed for research in multi-robot cooperation, learning, and adaptation because it
is an inherently cooperative task. In addition, many variations on the dynamic, distributed sensory coverage
problem arc possible, making the CMOMMT problcm arbitrarily more difficult. For example, the relative
numbers and speeds of the robots and the targets to bc tracked can vary, the availability of inter-robot
communication can vary, the robots can differ in their sensing and movement capabilities, the terrain may
be either enclosed or have entrances that allow objects to enter and exit the area of interest, and so forth.
Many other subproblems can also be addressed, including the physical tracking of targets (e.g. using vision,
sonar, IR, or laser range), prediction of target movements, multi-sensor fusion, and so forth.

A HAND-GENERATED SOLUTION TO CMOMMT

We have developed a hand-generated solution [17, 18] to the CMOMMT problem that performs well
when compared to various control approaches. This solution has been implemented on both physical and
simulated robots to demonstrate its effectiveness. The hand-generated solution, which we call A- Cit40h4MT,
is described briefly as follows. Robots use weighted local force vectors that attract them to nearby targets
and repel them from nearby robots. The weights are computed in real time by a higher-level reasoning system
in each robot, and are based on the relative locations of the nearby robots and targets. The weights are
aimed at generating an improved collective behavior across robots when utili~cd by all robot team members.
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Figure 1: Simulation results of three robots and six targets (first image), and five robots and twenty targets
(second image), with the robots using the hand-generated solution to CMOMMT, and the targets moving
randomly.

The local force vectors are calculated as follows. The magnitude of the force vector attraction of robot
V1relative to target ok, denoted I f~ 1,for parameters O < dol < do2 < dos, is:

{2

–1
Z71 for d(vl, ok) < dol

1
]fl~1= do:ziol for dol < d(vl, ok) s do~

dos–doz for do2 < d(w, ok) S oh

o otherwise

where d(a, b) returns the distance between two entities (i.e., robots and/or targets). The magnitude of the
force vector repulsion of robot V1relative to robot vi, denoted I gli 1, for parameters O < drl < drz, is:

{

for d(vl, vi) < drl

I gli 1= -- for drl < d(vl, vi) s dr2

o otherwise

Determining the proper setting of the parameters dol, dq, do3, drl, and dT2 is one approach to solving
the CMOMMT multi-robot learning task using a a priori rnodel-bmed technique.

Using only local force vectors for this problem neglects higher-level information that may be used to
improve the team performance. Thus, the hand-generated approach enhances the control approach by
includlng higher-level control to weight the contributions of each target’s force field on the total computed
field. This higher-level knowledge can express any information or heuristics that are known to result in
more effective globaI control when used by each robot team member locally. The hand-generated approach
expresses this higher-level knowledge in the form of a weight, Wlk, that reduces robot T1’s attraction to a
nearby target ok if that target is within the field of view of another nearby robot. Using these weights helps
reduce the overlap of robot sensory arc.as toward the goal of minimizing the likelihood of a target escaping
detection.

The higher-level weight information is combined with the local force vectors to generate the commanded
direction of robot movement. This direction of movement for robot V1is given by:

n m

~ Wl~fi~ + ~ gli

!4=1 i=l,ijd

where flk is the force vector attributed to target ok by robot vi and gli is the force vector attributed to robot
vi by robot VI. To generate an (z, y) coordinate indicating the desired location of the robot corresponding to
the resultant force vector, we scale the resultant force vector based upon the size of the robot. The robot’s
speed and steering commands are thcm computccl to move the robot in the direction of that dcsirecl location.
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Figure 2: Robot team executing hand-generated solution to CMOMMT. The first photo shows robots oper-
ating in area with no obstacles. The second photo shows the robots amidst random distributed obstacles.

Results from Hand-Generated Solution

Figure 1 shows two of the simulation runs of the hand-generated algorithm (out of over 1,000,000 simu-
lation test runs), in which (first image) three robots attempt to observe six targets, and (second image) five
robots attempt to observe twenty targets. Figure 2 shows snapshots of two of the physical robot experiments
(out of over 800) in which the the robots perform the task either with no obstacles in the work area (first
photo) or with randomly distributed obstacles (second photo].

The results of the hand-generated approach to CMOMMT vary depending upon a number of factors,
including the relative numbers of robots and targets, the size of the work area, the motions of the targets
(i.e., whether random or evasive), and the setting of the weights. In general, the A-CMOMMT algorithm
performed best for a ratio of targets to robots greater than 1/2. We compared the hand-generated A-
CMOMMT approach with a non-weighted local force vector approach, os well as two control cases in which
robots either maintained fixed positions or arc moved randomly. Figure 3 gives a typical set of these
comparative results. Refer to [17] for more details on these results.

LEARNING lN THE CMOMMT APPLICATION

Wc have studied the CMOMMT problem from a learning perspective without the assumption of an
a prz”on”model [19]. This approach uses a combination of reinforcement learning, lazy learning, and a
Pessimistic algorithm able to compute for each team member a lower bound on the utility of executing an
action in a given situation. The challenges in this multi-robot Iearning problem include a very large search
space, the need for communication or awareness of robot team members, and the difficulty of assigning credit
in an inherently cooperative problem.

In this learning approach, lazy learning [20] is used to enable robot team members to build a memory of
situation-action pairs through random exploration of the CMOMMT problcm. A reinforcement function gives
the utility of a given situation. The pessimistic algorithm for each robot then uses the utility values to select
the action that maximhs the lower bound on utility. The resulting algorithm is able to perform considerably
better than a random action policy, although it is still significantly inferior to the hand-generated algorithm
described in the previous section. However, even with a performance less than that of the hand-generated
solution, this approach makes an important contribution because it does not assume the existence of a model
(as is the case in the Partially Observable Markov Decision Process (POMDP) clomain), the existence of
local indicators that help individual robots perform their task.., nor the use of symbolic representations. The
following subsections describe this approach and its results in more detail.

Lazy learning and Q-learning

Lazy learning [20] – also called instance-based learning – promotes the principle of delaying the use
of the gathered information until the necessity arises (see Fig. 4). The same pool of information (i.e.,
memory) is used for different behavior syntheses. The lz~y memory provides a good way of ~cducing the
duration of any robotic learning application. In the context of reinforcement learning, lazy Iearning provides
an instantaneous set of situation-action pairs (after the initial and unique sampling phase). Lazy learning
samples the situation-action space according to a random action selection policy, storing the succession
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Fiare 3: Simulation results of four distributed amroaches to cooperative observation, for random/linear
tm”get movements, for various ratios of number of ~&gets (n) to number of robots (m).

of events in memory and, when needed, probes the memory for the best action. The exploration phase
is performed only once. By storing situation-action pairs, a lazy memory builds a model of the situation
transition function.

In order to express a behavior, the memory must be probed. To do thk probing, we use a modified version
of the technique proposccl in [21]. In [21] the objective is to provide a method for predicting the rewards
for state-action pairs without explicitly generating thcm. For the current real world situation, a situation
matcher locates all the states in the memory that are within a given distance. If the situation matcher has
failed to find any nearby situations, the action comparator selects an action at random. Otherwise, the
action comparator examines the expected rewards associated with each of these situations and selects the
action with the highest expected reward. This action is then executed, resulting in a new situation. There
is a tlxed probability (0.3) of generating a random action regardless of the outcome of the situation matcher.
New situation-action pairs arc added to the memory, along with a Q-value computed in the classical way [22].
Among similar situation-action pairs in the memory, an update of the stored Q-values is made. However,
there is a limit to the generality of this lazy memory because the Q-values associated with the situation-
action p,airs only apply for a particular behavior. With the desire of reducing the learning time as much as
possible, as well as preserving the generality of the lazy memory, wc modified the algorithm as follows: (1)
the situation matcher always proposes the set of nearest situations - no maximum distance is involved, (2)
there is no random selection of actions by the action comparator, and (3) the Q-values are not stored with
the situation-action pairs, but computed clynamically as the need arises.

The Pessimistic Algorithm

We define a Pessimistic Algorithm for the selection of the best action to execute for a given robot in
its current local situation as follows: find the lower bounds of the utility value associated with the various
potential actions that may be conduct,cd in the current situation, then choose tkm action with the greatest
utility. A lower bound is defined as the lowest utility value associated with a set of similar situations.

The idea behind the Pessimistic Algorithm is that a local robot situation is an incomplete observation
of the true state of the system. Thus, instead of trying to solve the observation problem by completing
the observation (usual POMDP approach), we arc only interested in ranking the utility of the actions. If
we use a unique instance of the memory to obtain the utility of the situation, then chances arc that the
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Figure 4: Lazy learning: randomly sampled situation-action pairs in the lookup table are used by the situation
matcher to select the action to execute in the current situation. The reinforcement function qualifies the
actions proposed, helping to select the best one.

utility attributed to this local situation is due in fact to other robot’s actions. This probability decreases
proportionally with the number of similar situations that are taken into account. If a large number of
situations are considered, then there must be at least one for whkh the reward directly depends on the local
situation. By taking the minimum utility value of the set of similar situations, we are guaranteed that, if
the value is null, then the situation achieved does not imply loosing target(s).

The Pessimistic Algorithm is then given as follows:

●

●

●

●

●

●

Let H be the memory, a lookup table of situation-action pairs gathered during
an exploration phase -- M = [(sea), .... (sea), (s(t + l), a(t + l)), ...].

Let s~t be the current situation.

Find S(sit), the set of n situations of M similar to A!.

Let Sf .Ilow(sit) be the set of the situations that directly follows each
situation of S(sit).

Compute the lower bound (LB) of the utility value (U) associated with each situation

s(k) C SjO~lOW(sit):

– LB(s(k)) = min(~(s(m))), for s(m) c S(s(k)), the set of situations similar
to s(k).

Execute the action that should take the robot to the new situation s*: s* =
max(~~(s)) and s~s~ollo~(sit),

The utility U associated with a given situation can be computed in many ways. It can be the exact
value of the reinforcement function for this particular situation-action pair, or it can be a more elaborate
variable. For example, in our experience we store the situation-action pairs, plus the number of targets
under observation in the lookup table (M). However, the value that is used as utility is +1 if one or more
targets have been acquired compared to the previous situation, -1 if one or more targets have been lost, or
O otherwise. An exact Q value requires running the Q-learning algorithm with the samples stored in the
memory.

Results of Learning Approach

Wc studied the efficiency of the Pessimistic Algorithm by comparing the performance of a team of robots
with a purely random action selection policy, a user-defined non-cooperative policy and A- CMOMMT. In
these experiments, each robot situation is a vector of two times 16 components. The first 16 components
code the position and orientation of the targets. It simulates a ring of 16 sensors uniformly distributed
around the robot body. Each sensor measures the distance to the nearest target. The sensor position around
the body gives the orientation. The second ring of 16 components code in the same manner the position and
orientation of neighboring robots. The maximum range for a target or a robot to be seen is 1, for an arena
radius of 5. The actions of each robot arc rotation and forward movement. The measure of performance is
the mean observation time of all targets.
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F@re 5: Performances of the Pessimistic lazy Q-learning approach compared to a random action selection
policy, a user-defined non-cooperative policy and the hand-generated solution A- CMOMMT. The size of the
lazy memory varies between 100 to 900 situation-action pairs. There are 10 robots and 10randomly moving
targets. The results arc the mean of 10 different experiments per point for lazy learning policy, and 100
experiments for the other 3 policies. Each experiment duration is 1000 iterations.

Figure 5 shows the performance of a Pessimistic lazy Q-learning policy versus the size of the lazy memory,
from 100 to 900 situation-action pairs. Each point is the average of 10 experiments. The standard deviation
is also plotted on the graph. The lazy memories are obtained through an initial exploration involving from 15
to 25 targets and a single robot. During the sampling, the targets are fixed and the robot’s policy is random
action selection (with 5% chance of direction and orientation changes). The reinforcement function returns
+1 if the total number of targets under observation increases, -1 if this number decreases, or Ootherwise.

As we see there is an important performance gain associated with the Pessimistic lazy Q-learning over
a purely random selection policy. This clearly demonstrates the importance of lw~yQ-learning as a learn-
ing technique. Even more interestingly, lazy Q-learning performs much better than the user-defined non-
cooperative policy (Local). It is important to note that neither policy is aware of the existence of the other
robots. Both policies usc the same sensory information – i.e., the distance and orientation of nearby targets.
It is our opinion that the variation of performance is due to the fact that the lazy Q-learned behavior is
somewhat less rigid than the user-defined policy. A lazy Q-learning guided robot will follow a target further
than it could be, and, in doing so, will exhibit an erratic path, moving from one side of the target to another,
back and forth without losing the target. In doing so, the surface under observation per unit of time is larger
than the covered surface by the more rigid center-of-gravity-oriented robot. On the other hand, because it
does not take into account the neighboring robots, it is easy to understand why the lazy Q-learned behavior
performance cannot reach the level of the A- C’MOMMT performance.

CONCLUSIONS

In thki paper, we have proposed that the Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT) application domain provides a rich testbed for learning and adaptation in multi-robot
cooperative teams. We have described the need for learning and adaptation in multi-robot teams, and have
defined the CMOMMT application, along with the characteristics that make it an interesting testbed for
learning and adaptation. Wc reported on a hand-generated solution to the CMOMMT problem and discussed
how the results from the implementation of this solution reveal the need for learning and adaptation in this
domain. We discussed our work that uses the CMOMMT problem as a learning domain. The ultimate
objective is to develop learning techniques using the CMOMMT domain that will generalize to other real-
world domains, and will thus help realize the ultimate goal of enabling the widespread, practical use of
multi-robot teams.
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ABSTRACT

A physical system can be described by a set of parameters which are related
to each other by certain physical laws. We consider that each parameter is
either measured by sensors anchor estimated computationally. As a result, the
estimated or measured values for a single parameter could be widely varying.
We address the problem of fusing various meamrements and/or estimates to
improve the accuracy in estimating the parameter, when the error distributions
of sensors and estimators arc unknown. We propose a fusion method based
on the least violation of physical laws that relate the parameters. Under the
bounded variation condition of the physical law, we derive distribution-free
performance bounds for a fusion rule computed using a finite sample. This
result also implies the asymptotic convergence of the estimated fusion rule to
the best possible rule which can bc obtained under a complete knowledge of
the error distributions.

INTRODUCTION

We consider a multiplc sensor system that measures physical parameters of a system.
Each parameter is either measured using an instrument or estimated using a computational
method based on the measurements. There could be both systematic and random errors in
the measurements as well as in the estimators. Furthermore, it may not be possible to know
the actual parameter values, since all measurements and estimators (based on measurements)
can introduce errors of different types. Consequently, there are a number of estimated and/or
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measured values for each parameter. In general, very accurate sensor noise models could be
clerivcd from device properties. But such models are difficult to derive for estimators based on
complicated computer codes. On the other hand, it is relatively easy to collect measurements
using the sensors, and then compute the estimators based on measurements. Fusion rules
based on measurements have been developed [6], and are shown to bc very effective in
practical engineering and robot systems. We consider the fusion of various measurements
and estimators such that for each parameter the fused estimate is superior to the individual
estimator or measurement. Since the actual parameter values are not known, the traditional
pattern recognition or fusion solutions are not applicable here, The actual values, if available,
could be used as the training data to design powerful fusers [6, 7, 5]. The lack of traditional”
training data motivated a new paradigm [8] that utilizes physical laws. In this paper, we
extend the results of [8], which are valid for only Lipschitx physical laws, to include non-
smooth physical laws.

The parameters of physical systems are related by physical laws, which are typically
derived from first principles, and arc vcrifiecl by independent mechanisms. For example, for
a simple mass sliding on a friction-less surface, we have j = ma, where ~ is force, m is mass
and a is acceleration. If we choose a measurement or an estimator for each parameter, the
accuracy of this set depends on how well the physical law is satisfied, and the “violation”
of physical law is an indication of error. Thus, the set of estimators that achieves the
least violation of the physical law is the most preferred. By fusing the measurements and
estimators, on can achieve, in principle, performances superior to any set of estimators. The
performance of the fuser, however, depends on the knowledge about the error distributions.
If the sensor error distributions are known, the isolation fusers [5] can be designed to ensure
fuser performance at least as good as best set of estimators. In the practical case, where we
only have sensor measurements, we showed in [8] that (smooth) Lipschitz physical laws can
be used to design the fuser. In particular, this result holds asymptotically (i. e. as sample
size approaches infinity) and for finite samples, under Lipschitz properties of the physical
law and fusion functions. These results arc not valid if the physical law is discontinuous or
the individual fusion functions are not smooth.

In this paper, we show that the bounded variation of the physical law is sufficient to
obtain the finite sample as well as the asymptotic guarantees of the fusion procedure. This
is achieved by employing fusers classes with the isolation property [5] and the bounded
pseudo-dimension [1]; these conditions are satisfied by a number of fusers such as certain
feedforward networks and linear combinations. The results of this paper enable us to utilize
discontinuous physical laws and fusion rules to achieve performance superior to the best set
of measurements. For finite sample sizes, wc show distribution-free result that given large
enough sample the fuser performs better than the best set of estimators within a specified
precision and with a specified probability. This result also implies that the computed fuser
asymptotically approaches the best fusion rule (computable under complete knowledge of
the distributions) as the sample size increases.

In section 2, we describe the fusion problem originally formulated in [8], We show how
physical laws can be used to design a fuser in Section 3 under the above conditions. We
briefly discuss fusion of data collected in the exploration of methane hydrates in Section 4.



PHYSICAL SYSTEMS AND LAWS

A physical system is specified by the parameters P(z) = (pl (z), p2(z),..., pn(z)) with
pi(z) G $?, where z is one-climcnsional variable such as time or position. Each parameter pi
is measured by ai instruments and estimated by 1Aestimators (ai ~ O,bi >0, and ai + bi > 1).
The measurements corresponding to pi (z) are denoted by

?7Zi(Z) = {77ti,l(Z), ?7ti,2(Z)j . . . .7L?i,ai(Z)}

and the corresponding estimators arc denoted by

f3i(Z) = {ei,l(Z), ei,2(Z), . . . . (?i,~i(Z)}.

Thus, there are ai + bi competing values for each parameter, and in general we do not know
which one is more accurate. The measurements are assumed to be noisy in that repeated
measurements by a sensor of pi (z) = z for a fixed value are distributed independently accord-
ing to the distribution Pm{,jlx, which is denoted by Pmi,j lPi(Z).Thus, mi,j is a random variable.
The estimator eiti is a (deterministic) function of the measurements, and hence is also a ran-
dom variable. The joint distribution of the measurements is denoted by P~l,~z,...,lPIPl ,PZ,...,P..

There is a physical law

J%(Z))P2(Z)) . . .%(~)] = o

which relates the actual parameters corresponding to z. For the example of mass in the
previous section, we have L[~, m, a] = (~ – ma)2 = O. We assume that L[.] satisfies the
reasonable monoikmicitg condition: for any VI,y2, lyl I s ly21,we have

lL~l(z) ,... ,pi(z)+yl,. . ., Fu(z)]l S lL~l(Z),...,~i(Z) +Y2)...>Pn(z)]1.

Monotonicity means that accurate parameter estimators yield no lesser “magnitude” of vi-
olation of the law compared to less accurate estimators.

Consider a single estimator or measurement @i for the parameter. The closeness of

L@1(z)>j2(z)>. . . ,@n(z)] to O determines how closely the law is satisfied. Let a basic set,
denoted by S, be a set of measurements and estimators such that for each parameter wc
choose precisely one measurement or estimator (but not both). The total error due to S is
given by

J!?(S) = ~L@l(z), fi2(z), . . . ,@n(Z)].
z

In all there are fi (ai + hi) possible basic sets, and ~ be the one with least error such that
icl

2(S) = m~n2(S). The expected error of S is denoted by

and let S* be the one with the least expected error such that -?3(S”)= rn~ E(Y). Note that

S* minimizes the expected error but S in general does not. More detailed discussion of the
physical laws can be found in [8].
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DATA FUSION BASED ON PHYSICA1 LAWS

A jusion junction ~~ G Xi for parameter p; combines the measurements and estimators
such that fi(rni(z), e~(z)) is an estimate of pi(z). Let f = (fl,..., ~~) denote the fuser for
all parameters. The expected error due to the fused estimate is

w = x@fl(Mz))el(z)) ,””” , L(m(z)j en(z))]~~ml,...,mnIpl,pnl,pnl
.2

andlet~’~~l x... x ~n be the one with the least expected error. In general E(f) cannot
be computed if the ~rror distributions are not known, and hence ~“ is not computable. In
stead, wc compute f that minimizes the empirical cost given by

~(f) = ~ L [fl(nzl(z), cl(z) ),..., fn(rnn(z), en(z))],
z

based on a set of iid measurements (also called the sample)

{<(ml(z), el(z)),..., (inn(z), en(z))>: z = 1,...,s}.

Now we disc~ss methods that ensure 13(~*) S 13(S*), and more importantly based on a
computable f that

E(f) < E(S*),
with a specified probability based entirely on the measurements and without any knowledge
of the underlying distributions.

A fuser class %i = {fi(y) : $la’+~’ H R}, for y = (YI,..., y[a,+~il), has the isolation
property [5] if it contains the function ~-(y) = gj for all j = 1,2,..., (ai + ~i). If each 3;
satisfies the isolation property, then the following conditions are directly satisfied.

E(f*) < J!?(S*) and a(f) < E(3).

The first condition is useful only if f* can be computed, which in tur~ requires the knowl-
edge of the distributions. If the distributions are not known, then j can be used as an
approximation. In [8] we showed that with probability 1 – 6, we have

E(f) – E(f*) <6

given a sufficiently large sample, when the physical law and the fusers classes arc Lipschitz.
In general, however, physical laws may not be Lipschitz, especially if they involve discrete
components or discontinuitics. For example, consider the simple case of H20 heated in a
container, where pl denotes the temperature and P2 ~ {O,1} is the state, i. e. p2 = Odenotes
liquid and 192= 1 denotes steam. Let To denote the boiling temperature under this condition.
Then, one of the physical laws is: p2 = O if pl < To and p2 = 1 otherwise. This law can be
represented as

q.pl, w] = P21{p, <To} + (P2 – m{plm} = o)

where the indicator function lC is 1 if condition C is true and is O otherwise. Here, L[.] is
not Lipschiti~. To address the cases typified by such L[.], we consider the class of functions
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with bounded variation [2], which allow for discontinuities and discrete values, and include
Lipschitz functions as a subclass.

Consider a function one-dimensional function h : [–A, A] H R. For A <00, a set of
points ~ = {zo, zI, . . . , Zn} such that –A = Z. < xl <... < x. = A is called a partition

of [–A, A]. The collection of all possible partitions of [–A, A] is denoted by P[–A, A]. A
function g : [–A, A] * 3? is of bounded variation, if there exists M such that for any partition

P={zo, zl,. ... Xn}, we have ~(~) = 5 I.f(z~) – j (x~–1)I s M. A multivariate function
k=l

g : [–A, A]~ - Y?is of bounded variation if it is so in each of its input variable for every value
of the other input variables. The following are useful facts about the functions of bounded
variation: (i) not all continuous functions are of bounded variation, e.g. g(z) = x cos(7r/(2z))
for x # O and g(0) = O; (ii) differentiable functions on compact domains are of bounded
variation; and (iii) absolutely continuous functions, which include Lipschitz functions, are of
bounded variation.

We utilize the fuser classes with finite pseudo-dimension [1], which is described as fol-
lows. Let G be a set of functions mapping from a domain X to R and suppose that
S= {X1,X3..., x~} Q X. Then S is pseudo-shuttered by F if there are real numbers rl, TS,
. . . r~ such that for each b ~ {O,I}m there is a function go in ~ with sgn(~b(~~) – ~i) = bi
for’ 1 s z s m. Then g has the pseudo-dimension d if d is the maximum cardinality of a
subset S of X that is pseudo-shattered by g. If no such maximum exists, we say that g
has infinite pseudo-dimension. The pseudo-dimension of g is denoted Pdim(@. Pseudo-
dimensions arc known for several classes such as sigmoid neural networks, vector spaces, and
linear combinations (see [1]).

Let ~ be the ckws of functions from Z to into [0, M], where M > 0, and let F’ be a
probability measure on Z. Then d~,l(r) is the pseudo metric on g defined by

dL~(pl(gl, g2) = E(lgl – /721)=~ Igl(z) – g2(.z)ld.P(z)

for all .91,g2 ~ g. The covering num~er N(c, g, d~l(P)) of a function class g is the smallest
cardinality for a subclass g“ = {g”} of g such that dI,l(P)(g, g*) s ~, for each g ~ ~.

Theorem 1 Consider that the physical law is of bounded variation such that IL(P) I s MT,
for all p. Let parameters, estimators and measurements are bounded. Let each fuser class Fi
have finite pseudo-dimension di7 and each juser junction g be bounded such that ~g[.]] < M

?1

jor all parameters. Let d = ~ di. Then given a sample oj size
in 1

‘=25:~Fd1n(12:M)+(n+1)1n(4’’)l,
we have

P [E(f) – E(j”) > e] s d,

irrespective oj the sensor distributions. Furthermore, E(f) + E(.f*), as s + cm.
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Proofi Consider the function class L = {L(.fl, j2,..., ~~) : ~1 c 31,.. ”j~ ~ ~n}, where

f ) is defined on a bounded domain. By combining Vapnik’s argument (see [8]qL.f2,..., ?1

for details) with Theorem 3 of Hausslcr [4], wc obtain

P [E(f) – l?(.f”) > c] ~ 2E (rein (2~(e/32, L, d~l))] e-a. (1)

We subsequently show that Af(c, -C,d~l(p)) < 22n (~ in ~)2~, for any ~. The sample size
follows byusing this cover bound inright hand side of Eq (l), andequating to6 and then
solving for s.

Intherest of theproofwe establish the bound on~(.). Since L(.) isofbounded variance,
it can be represented as a sum of two monotone functions L = L1 + L2. For i = 1,2, let

~i = {~i(.fl,.f2,.,. j.fn) : fl ~ flj . . ..fn E ~n}.

Then let Cilj = {Li(pll . . . ,Pj-1, fj, Pj+l,. . . ,p.) : .fj ~ Xjl which is a class of function
obtained by composing a monotone function with functions from Fi with bounded pseudo
dimension. By Theorem 11.3 of [1], we have pdirn(~ilj) < pdirn(~i). Then by US@ Theorem

6 of [4] we have

for any measure F’. By applying this cover bound for every component of Li, we obtain

by the product rule. Since L = Ll + L2 we obtain

(4eM ~n 4eM 2d
N (q L, dLl(p)) < N(e/2, ,CI,d~l(p))N(e/2, & dLl(p)) s 22n — — .

e 6 )

By noting that this bound is independent of P, we obtain

which yields the sample size as shown above. The asymptotic convergence follows from the
Borel-Cantelli Lemma by showing

for every e >0 in a manner identical to that in [8]. ❑

The following corollary is a weaker version of Theorem 1 since li?(f*) s l?(S*) s 13($.

Corollary 1 Let Fi satisfy the isolation property jor all i = 1,2,...,n. Under the same
conditions as Theorem 1, we have jollowing conditions satisjied.

P [E(i) – E(S*)> 6]< J and P [.E(~) – J??($ > e] < &
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Informally speaking, this corollary shows that the error of the computed fuser ~ is not likely
to be much higher than that of the best basic set, and could be much smaller. Theorem 1
states that ~ will be closer to ~* which can have much smaller error than S*.

METHANE HYDRATES WELL LOGS

Gas hydrates are crystalline substances composed of water and gas, in which gas molecules
are contained in cage-like lattices formed by solid water. One of the challenging problems
is to predict the prescence of hydrates using measurements collected at wells located in
certain locations such as off the US coast in mid-Atlantic and Mackenzie Delta in Northwest
Canada. At each well, a number of measurements are collected using a suite of sensors.
These measurements include density, neutron porosity, acoustic transit-time, and electric
resistivity, collected at various depths in the well [3]. Our focus is on the estimation of the
porosity at various depths. Our data consists of 3045 sets of measurements each collected at
different depths in a single well. There area variety of methods to estimate porosity based on
different principles and utilizing different measurements. We employed six known methods
for estimating the porosity based on neutron measurements (~1), d~nsity measurements (~2),
fluid velocity equat~on (@3),acoustic travel tim~ based on S-wave (#4), time-average equation
based on P-wave (~s), and Wood’s equation (f#G).

One of the well-established physical laws relates the parameters of porosity (~), density
(p), and hydrate concentration (~), as follows

~[d>4, PI = (d[Pm – (1 - ‘V)P7JJ+ IfWll– P + Pm)’ = Q

Where pm, PW, and ph are known constants. In this equation, we usc the only one measurement
for density ~ and and a single estimator ~ for the hydrate concentration using the Archie’s
equation. We consider a fuser based on the linear combination of the estimators

~F = W7 + ~Wi6i,
i=l

where (wl, ..., W7) G 0?7 is the weight vector that minimizes the error based on measure-,.
ments. The error achieved by ~~ is about 20 times better than that of the best estimator
~4 (details Can be found in [8]). Note that L[.] and the fusers employed here satisfy the
con~itions of Corollary 1. Incidentally, they also-satisfy

COIVCLUS1OIW3

the smoothness conditions of [8].

We presented an information fusion method that applies to physical systems wherein
accurate measurements of physical parameters are not possible. We presented a method
that combines various measurements and estimators to achieve performance at least as good
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as the best set of measurements. We showed that a close approximation to the this optimal
fuser can be computed such that with a high probability the solution performs at least as
good as the best set of measurements, given large enough sample size. This work is an
advance our earlier work [8] which is applicable to only Lipschitz laws and fusers, The study
of projective fusers and metafusers [7] for the proposed formulation will bc of future interest.
It is also of interest to see if the boundedness of pseudo-dimension in Theorem 1 can be
replaced by that of fat-shattering index [1], which would result in a weaker condition.
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INTEGRATION OF NANOSENSORS IN MICROSTRUCTURES

Li Shi, Guanghua Wu, Arun Majumdar
Department of Mechanical Engineering
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ABSTRACT

This paper reports two examples where nanosensors have been integrated with
microfabricated structures to provide new functional devices. The first is the
integration of nanoscale temperature sensors on probe tips that have been used to
study thermophysics of low-dimensional nanostructures such as carbon
nanotubes. Thermal images at 50 nm spatial resolution are revealing the
dissipation mechanisms in multiwall and single-wall carbon nanotubes, We report
the direct observation of defect scattering on phonon transport in such nanotubes.
The second example involves the generation of nanomechanical motion of a
cantilever beam using specific biological reactions such as DNA hybridization
and protein-ligand binding. We report here some new observations as well as the
thermodynamic principles of how motion is created at nanoscales.

INTRODUCTION

A major engineering challenge that is common to several areas of nanotechnology is the
integration of nanostructures into well-defined micro-patterns. For example, microelectronics
and MEMS currently use optical lithography for generating such patterns. Optical lithography,
however, is limited to a spatial resolution of about 100 nm whereas many of the exciting new
nanoscale phenomena occur in the range of 1-10 nm. It is critical to bridge this 1-100 nm length
scale gap such that nanostructures could be interfaced with MEMS and microelectronics systems
and thereby interface with the macroscopic or “human” length scales. Although electron beam
lithography can be used to fabricate structures in the 10-20 nm range, it is not truly scalable
because it is performed sequentially. Lithography is often called the “top-down” approach to
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making nanostructures since they are used to etch out a pattern. Self assembly of nanostructures,
on the other hand, is a “bottom-up” approach where the process of integration or aggregation is
thermodynamically driven. The combination of the top-down and bottom-up process will
provide a means to integrate nanostructures in microstructure, thereby enabling engineering
systems containing nanoscale components to be built.

In this paper, we report two examples where we have integrated nanoscale sensors onto
microfabricated structures. By doing so, we have developed new functional devices that are now
resulting in new scientific discoveries. The examples that we report here span both the physical
and biological sciences, exempli~ing the wide application of integrating systems across length
scales.

SCANNING THERMAL MICROSCOPY OF NANOSTRUCTURES

In recent years, a number of low dimensional materials with length scale smaller than 100
nm have been developed. Carbon nanotubes, silicon nanowires, and semiconductor/metal
nanocrystals are examples of such synthesized nanostructures. There is a great interest to
experimentally investigate electron and phonon transport and heat dissipation phenomena in
these materials. Such transport and dissipation phenomena are also important in ultra large-scale
integration (ULSI) devices, whose minimum feature sizes are scaling down to sub-100 nm.
Traditional measurement techniques, however, cannot resolve thermal features below 100 nm.
For example, the spatial resolution of fiw-field optical thermometry techniques based on infrared
and laser reflectance is diffraction limited to be on the order of wavelength, which is much larger
than the length scale of sub-100 nm nanostructures currently of interest.

Scanning thermal microscopy (SThM) is capable of thermally investigating nanostructures
and ULSI devices with spatial resolution in the sub-100 nm regime. The SThM maps surface
temperature distribution by raster scanning a sharp temperature-sensing tip across the surilace [1],
The tip is mounted on a micro cantilever beam such that a constant tip-sample contact force is
maintained by the force feedback of an atomic force microscope (AFM). Tip-sample heat
transfer changes the tip temperature, which is measured and used to determine the sample
temperature.

The key element of SThM is the thermal probe. Figure 1 shows the schematic diagram of a
SThM probe, which contains a thermocouple junction at the tip end. The tip-sample heat transfer
mechanisms include solid-solid conduction through the contact, liquid conduction through a
liquid film bridging the tip and sample, and air conduction. The thermal design of the cantilever
probes is extremely important for SThM performance, The thermal resistance network in Fig. 1
suggests that for given ambient, Ta, and sample, TS, temperatures, the tip temperature Tf, can be
written as ~ = T, + (T. – T, )/(1 +$), where # = Rc/R1f is the ratio of the cantilever, RC, and tip-

sample, Rf~, thermal resistances. Hence, changes in sample temperature can be related to changes
in the tip temperature as AT /ATt =$/(1 +$). This relation suggests that the accuracy and

sensitivity of sample temperature measurement by the tip depends on #, which must be large for



better SThM performance. Hence, the
thermal design of the cantilever resistance,
RC, is extremely important. The spatial
resolution, Ax of SThM measurements can
be expressed as Ax= AT. /(d~ /&) where

AT. is the noise in the temperature
measurement and d~ /dx is the measured

temperature gradient. Because the tip and
sample temperatures are related through $,
the spatial resolution can be expressed as

-+ Air Conduction
~ i

T,

Rc

T,

Rt~

T~

Fig. 1 Schematic diagram of a cantilever probe used for scanning thermal

microscopy. The heat transfer mechanisms between the tip, cantilever,and
the sample are also indicated, as is the thermal resistance network.

()1++

b= (dfi&) ~
(1)

Equation (1) clearly suggests that small values of@ lead to poor spatial resolution of SThM.

Previous experiments have reported that R1. x 105 IUW [2].Therefore, the thermal design
of the cantilever must require R, > 105 IUW. In the past, SThM probes were made of a high
thermal conductivity material such as metal or silicon, with no attention to paid to thermal
design. This often led to probes with R. << Rts which led to inaccuracies, loss of resolution, and
artifacts. In addition, they were usually fabricated individually, making the process very time
consuming and irreproducible. Recently, several groups have attempted to batch fabricate probes
for scanning thermal microscopy. Two groups fabricated thermal probes using only optical
lithography and wafer-stage processing steps. However, the probes were made of silicon, leading
to the aforementioned inaccuracies and artifacts [3,4]. Silicon nitride thermal probes were also
fabricated with a thermocouple junction defined at the tip by electron beam lithography [5]. The
low throughput of electron beam lithography prohibits the process for being used for large-
volume fabrication.

To address these issues, we have thermally designed and fully batch fabricated cantilever
probes for SThM [6]. Based on heat transfer modeling, we chose SiOz and SiNXas the tip and
cantilever materials, respectively, in order to increase RC as much as possible. It was shown by
the modeling results that compared to silicon probes with similar geometry parameters, our
current design could largely improve the thermal isolation of the sensor from ambient. In
addition, Pt and Cr were chosen for the thermocouple materials for their high thermopower
difference and low thermal conductivity. Finally, we optimized the geometrical parameters of the
Probe for increasing thermal resistance of the cantilever.

The thermal probes were fully
batch-fabricated using wafer-stage
process steps, with more than 300 probes
fabricated on one single wafer. Figure 2
shows two micrographs of a finished
cantilever probe with the tip containing a
Pt-Cr thermocouple junction, with the Pt
and Cr lines patterned along each
cantilever arm. The tip region containing

Fig. 2 Electron micrograph of the scanning thermal microscope
probe. The picture on the right shows the cantilever beams and
the tip whereas the one on the left shows the tip structure with a
Pt-Cr thermocouple junction on the tip.
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the overlap of Pt and Cr thin films
was 0.5 pm tall and had a tip radius
of about 50 nm. The height of this
region controlled in the fabrication
process to be in the range of 0.1-0.5
ym. Because the thermal resistance
of these probes was very high (= 106
~), a low-power laser beam (x 1
mW) directed at the tip would m

increase its tip temperature-by 80-90 Fig.3(a) Topographic and (b) thermal images of a multiwall carbon
“C, Hence, to optically measure the nanotubecircuit under dc current of 27 mA for applied dc voltage

cantilever deflections for atomic of1.5Vbetween contacts 1 and 3. Contacts 2 and 4 are floating.

force microscopy, a thermally isolated laser reflector was fabricated.

The batch-fabricated thermal probes have been used for quantitative temperature
measurement of VLSI via structures and for studying dissipation in multi-wall (MW) and single-
wall (SW) carbon nanotube (CN) circuits. Figure 3a shows the AFM topography of one MWCN
circuit that was imaged using the SThM probe. The sample contained a 14 nm diameter MWCN
and four 30 nm thick gold contacts on an oxidized silicon wafer. Resistance measurement found
that the tube was broken between contacts 3 and 4. The defect could be located in a high
resolution AFM image. Figure 3b shows the thermal image of the sample obtained for a DC

current of 27 pA flowing in the segment between contacts 1 and 3. The fill width half
maximum (FWHM) of the temperature profile across the CN was on the order of 50 nm,
indicating the spatial resolution of the thermal imaging technique. This was approximately equal
to the tip diameter. The temperature rise in the nanotube between contacts 1 and 3 can be clearly
observed, To verify that the image was not due to topography-induced artifact, the thermal
image was taken at different applied voltages and the thermal signals were found to increase with
the voltage. Another possible artifact in the thermal image could be caused by current flow from
the sample into the probe because of the difference in electrostatic potentials of the tip and
sample. To rule out this possibility, we measured the tip-sample contact electric resistance when
the tip was on top of the CN and the contacts, and found the resistance to be larger than the 1 GC2
measurement range of an Ohmmeter for the low contact force used in thermal imaging. The lack
of electric contact was due to a chrome oxide layer formed at the tip during probe fabrication.
This fact suggested that the thermal images were not due to electron flow at the tip-sample
junction. In addition, the thermal probe was connected to a voltage amplifier with floating
ground, such that no current would have flowed into the probe even if electric contact had been
established at the tip-sample junction. We further confirmed the absence of electrostatic
potential-induced artifacts in the thermal images by raising the electrostatic potential of the entire
CN circuit without passing current through it. As we did so, no noticeable thermoelectric signal
could be measured using the thermal probe scanned on the circuit. Therefore, the electrostatic
potential did not introduce artifacts in the thermal images, and the thermal images were indeed
due to phonon coupling instead of electron coupling at the junction. Furthermore, what the probe
measured was the phonon temperature of the sample, which might or might not be at equilibrium
with the electron temperature.

(a) Topography

(b) Thermal



It is interesting to note that although no current flowed in the segment between contacts 3
and 4, the temperature of the left part of this segment was higher than that of the segment
between contacts 2 and 3. This leads us to speculate that heat might be dissipated at the contacts
and not in the bulk of the CN. Spatially uniform bulk dissipation would have led to parabolic
temperature profiles instead. Note that switching the polarity of the applied voltage did not
change the temperature distribution of the tube, indicating no thermoelectric effects at the
contacts. The fact that the CN section between contacts 3 and 4 did not involve any electron
transport and yet appeared hot suggests that phonon transport is very efilcient in carbon
nanotubes. In addition, it also demonstrates that SThM measured the phonon temperature and the
not electron temperature. The temperature between contacts 3 and 4 dropped rapidly at a point
indicated by the arrow. We suspect that this was due to scattering by a defect in the CN,
presumably the same defect that also blocked electron transport.

This study raises several questions, namely: Does the dissipation indeed take place at the
contacts or along the nanotube? How efficient is phonon transport in the nanotube? What are the
mean free paths for elastic and inelastic electron and phonon scattering? What are the roles of
defects in nanotube transport phenomena? Some of these questions are currently being addressed
experimentally using the SThM and will be presented later.

In conclusion, we have carefully designed and batch-fabricated probes for scanning thermal
microscopy. The probes have been used to obtain thermal images of electrically heated carbon
nanotube circuits. Our experimental results demonstrate that SThM measured the phonon
temperature of the sample, and the tip-sample thermal coupling was dominated by heat
conduction through a liquid bridge. Consequently, the spatial resolution of SThM was limited by
the tip radius and was found to be 50 nm in this study. With tlis resolution, SThM offers the
promising prospects of studying electron-phonon interaction and phonon transport in some low
dimensional materials such as carbon nanotubes.

FROM BIOLOGY TO MOTION

Understanding the mechanisms of how biological reactions produce motion is fundamental to
several physiological processes [7]. While most of the past effort has focused on studying single
molecular motors [8], recent experiments [9,10] using microcantilever beams have reported the
collective effect of multiple DNA hybridization and antigen-antibody reactions to produce
nanomechanical motion. While this offers the promising prospects of interfacing molecular
biology with micro and nanomechanical systems, an understanding of how this motion is
produced has, however, remained elusive. Here we show that cantilever motion is created due to
the interplay between changes in confirmational entropy and intermolecular energetic induced
by specific bimolecular reactions. The entropy contribution can be critical since it determines
the direction of motion. Using these thermodynamic principles in conjunction with DNA
hybridization experiments, we demonstrate that both the direction and the magnitude of
cantilever motion can be controlled and optimized. This thermodynamic framework is also used
to explain the nanomechanical motion created by protein-ligand binding.
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Figure 5 illustrates the experiment that we
used for studying nanomechanical motion
created by multiple specific bimolecular
reactions. The cantilevers used in our study were

Probe Molecule

Beam

,Target Blndhrg

made of silicon nitride (SiNX), with ~ gold
coating on one surface. The experiment started
by first placing a Au/SiNx cantilever in a fluid

Fig. 5 Specific biomo!ecular interactions between target and
cell and then injecting a Sohtion of sodium probe molecules alters the intermolecular energy interactions

phosphate buffer (PB) at pH -7.0 into the cell. withina self-assembled monolayer on one side of a cantilever
beam. l%is produces sufficientlylarge force to bend the cantilever

The next step was to immobilize the probe beamand generate motion. The origin of this nanomechanicel

molecule on the cantilever surface, which was motion lies in the interplay between changes in confirmational
entropy and the intermolecular energetic.

followed by injection of a solution containing
target molecules. The
cantilever motion was
optically monitored at both
the immobilization and
probe-target binding steps.
To form a self-assembled
monolayer of probe SSDNA
on the Au-coated cantilever
surface, the SSDNA was
modified with thiol gxoups
attached to either the 5’ end.
Figure 6A shows the
cantilever deflection as a
fiction of time for a 50nt
long probe SSDNA. Here,
negative deflection
represents the downward

0.0 0.2 0.4 as o.a 1,0
paCencen&etlOn ~]

Figure 6 (A) Change in Au/SiNX cantilever deflection as a function of time
for three different experiments: (i) exposure to 0.1 M phosphate buffer (PB);
(ii) exposure to unthiolated probe SSDNA (iii) exposure to probe SSDNA
thiolated at the 5’ end. Concentrations of unthiolated and single-end thiolated
SSDNASwere all 50 ng/~1 or approximately 3.2 PM. Unthiolated SSDNA and
pure PB solutions did not produce any significant deflection. The inset shows
the steady-state cantilever deflection as a function of length of the probe SSDNA
thiolated. The results indicate that immobilization of probe SSDNA produces
compressive stress bending the cantilever down. (B) Steady-state cantilever
deflections caused by immobilization of SSDNA at different PB concentrations.

bending of the cantilever with the probe molecules on the top surface. Also shown are the
deflection plots after the injection of unthiolated SSDNA and only PB. The inset in Fig. 6A
shows the steady-state cantilever deflection as a fi.mction of the length of the probe SSDNA.
Figure 6 B shows the cantilever deflection for immobilizing 30nt-long probe SSDNA as a
function of PB concentration. It is clear from these experiments that regardless of the length of
SSDNA or the ionic strength, the repulsive interactions between immobilized SSDNA created a
compressive stress to bend the cantilever downwards.

After immobilizing the probe SSDNA,the complementary target SSDNAwas injected into
the fluid cell at the same PB concentration that was used to immobilize the probe SSDNA. Figure
7A shows the deflection plots for the hybridization reactions where the probe SSDNAwas 20nt
long and the target SSDNAwere of four different lengths (20nt, 15nt, 10nt and 9nt) and distally
complementary. The nanomechanical signal was sufficiently sensitive to detect single nucleotide
length differences. The observation that the cantilever bent upwards in all cases suggests that
hybridization relieved the compressive stress created during immobilization of thiolated probe
SSDNA. To confirm that the signals were due to hybridization, a solution of a non-
complementary target SSDNAwas used and was found to produce no deflection signal. Figure
7B plots the steady-state deflection signal for the hybridization reaction under different PB
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concentrations. An optimum
PB concentration of 0.2-0.4 M
was seen to produce the
maximum deflection.

The fact that the
cantilever deflections for both
the immobilization and
hybridization steps were
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influenced by ‘the PB Fiaure7 (A) Chanaes in Au-Si cantilever deflection due to hybridization
concentration suggests that of-aprobe&DNA150 ng/pl or 8 j.LMconcentration) in the di~tal end with

electrostatic repulsive forces complementary target SSDNAof different lengths — 20nt, 15nt, 10nt, and

between neighboring DNA
9nt(40ngl~lor3-6UMconcentration). Also shown is the absence of
cantilever deflection for a non-complementary target SSDNA. The data clearly

molecules must have suggeststhatdifferences in nanomechanical motion due to one nucleotide

produced the compressive difference in length can be observed. (B) Steady-state changes in cantilever

deflection for hybridization of 30-nt long SSDNA at different PB concentrations.
stress that bent the cantilever Notethatimmobilization of probe SSDNAwere at the same PB concentration
down. Because each as thehybridizationreaction.

nucleotide carries a negative
charge due to the presence of a
phosphate group, one would expect
that hybridization would cause even
more repulsion due to the presence of
additional negative charge. However,
the data in Fig. 7 clearly indicates that
regardless of the PB concentration in
the range of 0.05-1 M, hybridization
always relieved the stress and
produced upward cantilever motion.
Therefore, electrostatic or steric
repulsion alone cannot explain the
behavior.

It is worth noting that the

ybridization

Figure 8 Schematic diagram illustrating the mechanism of
motion generation due to DNA immobilization and hybridization.
Immobilization of SSDNAon the top surface bends the cantilever
down. The persistence length of SSDNAis 7.5 A which leads to
higher confirmational entropy resulting in compressive stress.
Hybridization increases the persistence length to about 50 nm,
which significantly reduces the confirmational entropic driving
force, thereby relieving the compressive stress and producing
an upward cantilever motion.

persistence length of SSDNA is about 0.75 nm [11] whereas that of double-stranded DNA
(dsDNA) is about 50-80 nm [12]. We propose that the confirmational entropy of the SSDNA
provides- the driving force to bend the cantilever down.
entropy contribution is significantly reduced which then
in upwards cantilever motion (see Fig. 8).

Upon hybridization, th~ confirmational
relieves the compressive stress resulting
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