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Abstract

Buoyancy-induced (Rayleigh-Bénard) convection of a fluid between two horizontal plates is a central
paradigm for studying the transition to complex spatiotemporal dynamics in sustained nonequilibrium sys-
tems. To improve the analysis of experimental data and the quantitative comparison of theory with experi-
ment, we have developed a three-dimensional finite-difference code that can integrate the three-dimensional
Boussinesq equations (which govern the evolution of the temperature, velocity, and pressure fields associ-
ated with a convecting flow) efficiently in large box-shaped domains with experimentally appropriate lateral
boundary conditions. We discuss some details of this code and present two applications, one to the occur-
rence of quasiperiodic dynamics with as many as 5 incommensurate frequencies in a moderate-aspect-ratio
10 x 5 convection cell, and one to the onset of spiral defect chaos in square cells with aspect ratios varying
from I’ = 16 to 56.

Introduction

A frontier of great importance for DOE-related research is the study of sustained nonequilibrium dynamical
systems, for which imposed external fluxes of energy and matter can lead to states that vary temporally
and spatially in a complex way [1]. Despite the collaboration of theorists, computational scientists, and
experimentalists over the last thirty years and despite the great need to solve numerous practical engineering
problems, many basic questions about sustained nonequilibrium states remain unanswered. Researchers
would like to know what possible states can occur for specified external fluxes, how to predict when one
state will change into another as some parameter is varied, how transport of energy and matter depends on
the spatiotemporal structure of a state, and whether one can select particular states by appropriate external
perturbations so as to optimize a system for a particular goal. While experiments and simulations have been
useful in suggesting what possibilities can occur (e.g., the surprising experimental discovery of the spiral
defect chaos state [2], a numerical example of which is shown below in Fig. 3), there remains a great need
to develop a stronger theoretical and conceptual foundation that can unify the many observations and that
can improve both experimental and computational investigations.

Perhaps the simplest and best idealized experimental system for exploring basic questions and principles
of nonequilibrium systems is Rayleigh-Bénard convection, which has become an experimental and theoretical
paradigm for many researchers [1]. A Rayleigh-Bénard experiment consists of a thin layer of fluid confined
between two horizontal spatially-uniform constant-temperature metal plates such that the bottom plate is
maintained at a constant higher temperature than the upper plate. As the temperature difference (or its
dimensionless equivalent, the Rayleigh number R) is increased in successive constant steps, the fluid first
makes a transition from a motionless structureless state to cellular overturning convection rolls and then to
ever more complex dynamical states which eventually become nonperiodic in space and time. Convection has
significant advantages over other experimental systemns in having static homogeneous boundary conditions,
in having no net flow of fluid through the system, in allowing precise and reproducible experiments with
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good visualization, and in being amenable to a quantitative mathematical description through the so-called
Boussinesq equations.

In this paper, we report applications of a new computer code to two intriguing convection experiments.
The code is the first of several being developed and applied by a Caltech-Duke collaboration whose long-
term goal is to understand convection phenomena more quantitatively, especially in the large-aspect-ratio
limit (cells whose widths are large compared to their depths) which experiments have shown to be of great
interest even close to the onset of convection, where analytical progress is most likely to be possible [1]. Our
code differs from some other recently developed codes [3) primarily through the inclusion of experimentally
appropriate lateral boundary conditions (rather than periodic boundary conditions) on the velocity and
temperature fields so that the forcing due to lateral boundaries can be taken into account. In the following
sections, we give a brief summary of the code followed by a discussion and demonstration of how the code
can provide new insights about two poorly understood experimental phenomena, the occurrence of dynamics
with many incommensurate frequencies in a moderate-aspect ratio convection cell first observed by Walden
et al [4] and the onset of spiral defect chaos in domains of varying size (which has not yet been studied
experimentally). These results provide new and detailed examples of the substantial influence of lateral
boundaries on nonequilibrium dynamics.

Numerical Integration Of The 3D Boussinesq Equations

Since technical details of our numerical algorithm will be available elsewhere [5), we provide only some
motivation for and highlights of our numerical method. The goal is to integrate the five coupled three-
dimensional nonlincar partial differential cquations known as the Boussinesq equations which state (under
certain assumptions not given here) the local conservation of momentum, energy, and mass for parcels of
fluid subjected to buoyancy forces. By scaling time, space, and ficld magnitudes in appropriate ways, one
can write the Boussinesq equations in the following dimensionless form:

du = —u+*Vu- Vp+oV?u+ oRT3, (1)
T = —u*VT + VT, (2)
Veu=0, (3)

where u(t,x) = (ux(, %), uy(t,x),u,(t,x)) is the velocity field at time ¢ and position x = (z,v, 2), T'(t,x)
is the temperature field, p(¢, x) is the pressure field, o is the fluid’s Prandtl number which is assumed to be
independent of temperature and so a constant, and R is the Rayleigh number which is the key parameter
that is varied in most experiments and simulations, usually with all other parameters held fixed. In this
paper, we study these equations in a simple box geometry of dimensions I'; x I’ x 1; the quantities I'; and T',,
are ratios of lateral widths to the unit fluid depth and are called aspect ratios. Since the fluid is confined
by stationary material walls, the velocity vanishes at these walls which provides the following boundary
condition on u:

u=0  on all walls. (4)

With our rescaled variables, the constant temperature boundary conditions on the bottom and top plates
(z =0 and z = 1 respectively) are simply

T(#,z,y,0)=1 and T(t,z,9,1)=0. (5)

The temperature field T satisfies an additional boundary condition on the lateral walls which, for this paper,
we take to be a no-flux condition corresponding to a perfect thermal insulator

O T =10Vl =0 on lateral walls, (6)

where 1 is the normal unit vector at a given point on the wall. However, the code is more general and can
treat thermal boundary conditions that interpolate between conducting and insulating sidewalls.

The numerical challenge is to integrate these equations and boundary conditions efficiently and accurately
over long time intervals in large cells of simple geometry; boxes and cylinders cover nearly all the experimental
cases while a box with periodic sidewalls is useful for comparing with theory. Rayleigh-Bénard convection
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is so important that many numerical methods have been developed and tried over the years although,
somewhat unfortunately, most of these methods have not been compared with each other to determine
which best achieves a practical balance of efficiency, accuracy, ease of programming, and parallel scalability
on some specific computer architecture. Because our interest is to study fundamental questions in simple
cell geometries, we chose not to use finite element or spectral element methods whose main strengths are the
ability to handle irregular boundaries. Because our short term needs are for modest accuracy, simplicity and
flexibility of coding, and good parallel scaling on Beowulf-style computers, we chose second-order-accurate
finite-difference approximations on Cartesian meshes instead of spectral methods.

Our code uses a traditional time-splitting method in which higher-order linear operators are advanced
implicitly in time and lower-order nonlinear terms are advanced explicitly [5], achieving at each time step
an overall accuracy of second order in time. The incompressibility condition Veu = 0 is treated by a
standard projection method [6] in which the momentum conservation equations are used to update the current
velocity u(t,x) to an intermediate field u* that is not divergence free, and then u* is “projected” onto a
divergence-free field u(¢+ At, x) by solving a Poisson equation for the new pressure field. To advance one time
step At, four 3D Helmholtz equations and one 3D Poisson equation must be solved with appropriate boundary
conditions, and the solution of these linear equations constitute the most time consuming part of the code.
For this first generation code, we used FISHPACK fast direct solvers (available through www.netlib.org)
which are well suited for modest-aspect-ratio problems on single-processor Alpha workstations. Future
codes will use parallel iterative methods which are also better suited for the non-constant-coefficient linear
operators that arise in a cylindrical geometry.

Our code was innovative mainly through the use of colocated meshes, in which all field values and all
operators of field values were evaluated on the same set of mesh points. For two- and three-dimensional fluid
simulations of incompressible flow, empirical studies and some analysis have suggested that staggered meshes
(in which scalar quantities are stored at the centers of grid boxes while vector components are stored on the
faces or vertices of the boxes) were necessary to avoid numerical instabilitics associated with the pressure (7).
QOur colocated-mesh Boussinesq code proved to be numerically stable which led to a substantial reduction in
the effort of writing and validating the code compared to a staggered-mesh code. For lack of space, we refer
to our forthcoming paper for further details, c.g., how our code was validated and its efficiency and accuracy
as a function of various parameters [5].

Applications

We now report on two preliminary applications of the above convection code. First we try to simulate an
intriguing experiment [4] that goes to the heart of how chaotic behavior arises in a continuous medium,
here through the occurrence of quasiperiodic states with as many as five incommensurate frequencies. The
mystery to understand is the spatial structure of the different oscillations and their dependence on aspect ratio
and Rayleigh number. Second, we investigate how the onset of spiral defect chaos state [2] depends on the
aspect ratio ' of a square box, which we increase in small successive increments. Varying the aspect ratio is
difficult in laboratory experiments and these calculations demonstrate the usefulness of having quantitatively
accurate codes to complement experiments.

Multi-Frequency Dynamics at Intermediate Aspect Ratios

Our first calculation was motivated by the experimental paper of Walden et al [4], which reported in 1984
the unexpected occurrence of spatiotemporal quasiperiodic states in a convecting flow with as many as five
incommensurate frequencies. This result scemed to contradict one of the major mathematical insights of the
time, a theorem of Newhouse, Ruelle, and Takens [8] which argued that chaotic behavior should be typically
observed after at most threce successive Hopf bifurcations since quasiperiodic dynamics with three or more
incommensurate frequencies can be perturbed infinitesimally to become chaotic. Although the abstract
mathematical arguments were difficult to interpret for laboratory experiments and despite clarifications of
this theorem by later numerical simulations on simple map systems [9], it is still not understood how a
physical continuous medium can develop so many independent oscillations or whether a physical mechanism
can be identified for each independent frequency.
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To make contact with this experiment, we have carried out the first (to our knowledge) simulations in a
box-like domain with parameters nearly identical to those of the experiment. Thus we performed numerical
integrations of the 3D Boussinesq equations in a cell of aspect ratio 9.5 x 4.5 x 1, for a fluid with Prandtl
number ¢ = 3.5 (corresponding to water with a mean temperature of 50°C) and over a comparable range
of Rayleigh numbers up to R = 20R., where R; ~ 1708 is the critical value for the onset of convection in
an infinite-aspect-ratio cell. The most poorly justified approximation was our choice of laterally insulating
sidewalls Eq. (6) since the real experiment had finitely conducting glass sidewalls between a copper bottom
plate and sapphire upper plate. (The thermal diffusivities 5 of copper, glass, sapphire, and water are
respectively 1.20, 0.004, 0.113, and 0.00147 cm?/scc.) A typical run used a resolution of 76 x 36 x 8 points
and a constant time step of At = 0.001. A run to collect 65,000 points took approximately 1.5 hours on a
Compaq XP1000 workstation using a 667 MHz 264 Alpha. chip with a 4 MB cache.

Some representative results are shown in Fig. 1. As the Rayleigh number R is increased in small steps,
new incommensurate frequencies appear until, at R/R. = 17.5, 5 incommensurate frequencies are observed
just as in the experiment. The fact that thesc frequencies were incommensurate was supported by plotting
(not shown) the ratios of frequencies corresponding to different pcaks and observing that these ratios varied
smoothly with R, i.e., no mode locking to a rational value took place. The numerical simulations did not
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Figure 1: Power spectra P(f) versus frequency f for five values of the Rayleigh number R over the range
17 < R/R. < 18.7 in a cell of aspect ratio 9.5 x 4.5 x 1 and for a fluid of Prandtl number o = 3.5. The top
three panels show quasiperiodic motion with 2, 3, and 5 incommensurate frequencies respectively. The last
two panels show spectra of chaotic dynamics with continuous broad-band features.

reproduce quantitatively the magnitude of the lower frequencies observed in experiment. For example, for
the 4-frequency convection state, the simulation has a low frequency peak at fy =~ 0.17 which is about a
factor of three smaller than that observed in the experiment. A first guess is that this discrepancy is a
consequence of the convenient but experimentally inaccurate no-heat-flux boundary condition Eq. (6).

In related simulations, we have also explored how the dynamics depended on aspect ratio, a question
which is difficult to explore experimentally. Fig. 2 shows several instantancous convection patterns and the
power spectra of the corresponding time-dependent states over the range 9.5 < T', < 10.5 with I’ and R
held fixed. A surprising and new result is that simall changes in T' lead to dramatically different patterns and
dynamics. Indeed, for the states of Fig. 2 and others not shown over this same range, one can identify time
independent, periodic, quasiperiodic (with 3 and 4 frequencies), and chaotic dynamics. The spatiotemporal
dynamics is evidently highly sensitive to small changes in the system geometry at these intermediate aspect
ratios.
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Figure 2: Changes in convection dynamics as the aspect ratio I'; is increased in small steps for fixed I';, = 4
and R = 18R.. The left column of plots are instantaneous density plots of the temperature field at the
midplane z = 1/2 with light regions corresponding to warm fluid, dark regions to cool fluid. The right
column of plots are corresponding power spectra P(f) calculated from time series of 65,536 values of the
temperature at the midpoint of the cell. Rows 1, 3, and 5 are chaotic, row 2 is periodic, and row 4 is
quasiperiodic with three independent frequencies.

Onset of Spiral Chaos

As the technology improved for cxploring large-aspect-ratio convection dynamics, experimentalists made a
remarkable discovery in 1993 [2] of an intricate spatiotemporal chaotic convecting flow in a cylindrical ge-
ometry near onset, a regime that previous experiments in smaller aspect ratios had suggested would show
only simple convective patterns, and for which theory predicts that parallel time-independent convection
rolls should be stable [10]. This spiral defect chaos state (so named because of the unexpected occurrence of
rotating spiral structures) retnains poorly understood seven years later and is now regarded by many con-
vection researchers to be an especially important example of spatiotemporal chaos to understand. Intriguing
and also poorly understood is the experimental observation that spiral defect chaos is observed only when
the aspect ratio I" of the cylindrical cell is sufficiently large, with the radius being at least 40 times the fluid
depth.

Using the code described above, we have explored for the onset and properties of spiral defect chaos in
finite cells with experimentally realistic lateral boundary conditions and with varying aspect ratio, although
for a square rather than cylindrical geometry. Representative results for two different values of the reduced
Rayleigh number € = (R — Rc)/Rc are shown in Fig. 3. For " < 24, the asymptotic dynamics are stationary
while time-dependent states are observed for larger I, with spirals being observed only for the larger Rayleigh
numbers. Spirals appear in square geometries for smaller aspect ratios than those of a cylindrical cell at the
same reduced Rayleigh number.

As a first step towards quantifying and analyzing these complex patterns, we have calculated the time-
averaged distribution P(g) of local wave numbers ¢ as a function of aspect ratio and Rayleigh number.
Following a recent suggestion of Egolf et al [11], we estimated local wave numbers g(t,z,y) from the ra-
tio —V28/6 where 8§ = 68(t,x,y,1/2) is the deviation of the temperature field T from its linear conducting
profile, evaluated at the cell midplane z = 1/2. The distribution P(g) was then obtained by averaging many
instantaneous histograms of ¢ over time. A compilation of the mean wave numbers § associated with each
wave number distribution is shown in Fig. 4, which shows rather remarkably that the trend for the variation
of § with R is nearly independent of the aspect ratio, and that § decreases roughly linearly with increasing
Rayleigh number up to R/R. ~ 2. Near the value ¢ — go = —0.8 (with gp the critical wave number at onset),
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Figure 3: Instantaneous patterns observed in various aspect ratios for two values of the reduced Rayleigh
number £ = (R — R.)/R. and for a fixed Prandt] number of o = 0.96, corresponding to the compressed CO5
gas used in the experiments. The first two columns of states are time independent.

there is a dramatic change with § becoming essentially independent of R. At this point, spiral defect chaos
develops in the larger aspect ratio cells while the smaller cells are chaotic and lack spiral defects.

The average spatial disorder of each pattern can also be quantified by a correlation length £, which is
defined here to be the inverse of the width of the distribution P(g). The inset in Fig. 4 shows that £ is
also insensitive to the aspect ratio and obeys approximately a power law dependence £~1/2 which is the
same as that predicted by the amplitude equation theory [1] (although the range of Rayleigh numbers in the
plot is much larger than the range over which this theory might be expected to hold). A similar trend has
again been noticed in cylindrical geometry experiments, although an experiment in a rectangular cell found
a divergence at a nonzero value of e.

The trend of G(e) in Fig. 4, which has also been observed in cylindrical experiments, is far from that
predicted theoretically by Cross and Newell [13], who argued that portions of circular rolls around a “focus
singularity” such as those spanning the corners in the cells of Fig. 3 should lead to the selection of the
same wave number ¢; as that selected in concentric axisymmetric rolls [14]. The discrepancy is particularly
striking in the simple structures seen at low values of € such as Fig. 5, where theory [13] suggests that the
focus singularities in the corners should determine the wave number over much of the system. One possible
way in which arcs of rolls can act differently than complete circles is that arcs can drive a “mean flow”,
which may then modify the wave number distribution. The mean flow is, roughly, the horizontal fluid flow
integrated across the depth of the cell and cannot occur in axisymmetric (or straight) roll configurations
because of the incompressibility of the fluid. The mean flow is known to be important in producing the
skew-varicose instability and in suppressing the zigzag instability for Prandtl numbers of order unity.

Using the detailed knowledge provided by the code of the convection pattern, the wave number distribu-
tion, and the mean flow, we are able to assess for the first time the importance of the mean flow in producing
the deviations of the measured wave number § from gy. Fig. 5 shows the distribution of the wave number
field and corresponding mean flow. In regions towards the center of the cell where the mean flow is small,
the wave number is indeed close to the predicted value g5 = 3.1. However circulating mean flow patterns
develop in the cell corners and the wave numbers there are substantially reduced below g;. A plot of the
distribution P(q) (not shown) indicates in fact that the largest ¢ with significant probability is close to gy
but the spread of P(g) to smaller values of ¢ means that the mean § is considerably below gf. Given the
characteristic form of the mean flows that form in the corners consisting of two regions of counter-rotating
vorticity~ an analytic attack on this long standing question is an appropriate next step.
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Figure 4: Plot of the deviation §— ¢ of the mean wave number g from the critical wave number gp = 3.117 as
a function of the reduced Rayleigh number &. Also shown are the instability boundaries [12} which limit the
range for the ideal roll state in a laterally infinite geometry (SV=skew varicose; O=oscillatory; E=Eckhaus;
Z=zigzag), and the wave number g¢(g) that is selected in axisymmetric rolls. Solid symbols denote states
where dynamic spiral defects are observed. The inset shows the correlation length £ defined as the inverse
of the width of the wave number probability distribution P(q). The straight line has a slope 1/2 as would
be predicted by the amplitude equation theory near threshold.

Figure 5: (a) Roll pattern and (b) wave number distribution (gray scale) at /R, = 1.15 in a cell of aspect
ratio I' = 40. The corresponding mean flow (arrows) was estimated by integrating the horizontal velocity
components of u vertically over the fluid depth. The maximum Euclidean norm of u has the value 6.1 in
units of d/t, while the mean flow is much smaller, with a corresponding maximum magnitude of 0.12.
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Conclusions

As initial applications of our intermediate- to large-aspect-ratio fluid convection code we have studied two
aspects of the onset of chaotic dynamics. In both of these examples the role of the physical boundaries
were found to play a vital role -in the intermediate aspect ratio by determining the basic structures about
which dynamics develops, and in the large aspect ratio cell where the mean flows that form in the corners
of the cell play an important roll in determining the wave number distribution-—and so the physical issues
are not accessible to previous codes where periodic boundary conditions arc used. The preliminary results
we present here suggest further directions to explore, both numecrically and analytically.
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ENTRAINMENT IN HIGH-VELOCITY, HIGH-TEMPERATURE PLASMA JETS
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PO Box 1625, Idaho Falls, ID, USA 83415-2211

ABSTRACT

The development of a high-velocity, high-temperature argon plasma jet issuing into
air has been investigated using a variety of diagnostic techniques. In particular the
entrainment of the surrounding air, its effect on the temperature and velocity profiles and the
subsequent mixing and dissociation of oxygen has been examined in detail. The total
concentration of oxygen and the velocity and temperature profiles in the jet were obtained
from an enthalpy probe. Coherent Anti-Stokes Raman Spectroscopy (CARS) was used to
measure the concenfration and temperature of molecular oxygen. Two-photon Laser
Induced Fluorescence (LIF) was used to measure the concentration of atomic oxygen. It
was found that both the incompleteness of mixing at the molecular scale and the rate of
dissociation and recombination of oxygen have an effect on the observed jet behavior.

INTRODUCTION

The entrainment of cold gas into turbulent, high temperature, and high velocity
atmospheric pressure plasma jets dominates their behavior [1]. Entrainment alters the chemical
composition and quickly slows and cools the jet. Evidence suggest that entrainment is more of
an engulfment or induction phenomena [1-4], rather than gradient driven diffusion. In this
description entrainment refers to the process by which the surrounding irrotational fluid is
transported into the shear flow. The term mixing refers to mixing at the molecular level. A
qualitative conceptual model, which describes the main features of the process, and estimates the

" important time scales, has been proposed by Broadwell and Briedenthal [5S]. The model

describes the entrainment and mixing process as a sequence of events initiated by the engulfment
or induction of irrotational fluid into the jet shear layer. This initial process is kinematic and not
diffusive with the irrotational fluid immediately adjacent to the shear layer participating in the
large-scale structure motion of the shear layer long before it has acquired vorticity of its own.
These entrained or inducted “lumps” of fluid are subsequently strained and broken down into
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smaller and smaller spatial scales or eddys. During this process the interfacial area rapidly
increases until the viscous Kolmogorov microscale, Aq, is reached. Once Ag is reached and the
interfacial zones intermingle, molecular diffusion and heat conduction quickly annihilate the
local concentration and temperature gradients homogenizing the mixed fluid.

For large Reynolds numbers the time to reach the Kolmogorov scale, 4, =k,0/ Rc% , 18

T =~ k)8/AU, where 8 is the thickness of the shear layer, AU = VaUcenterlines and kj and k, are
constants. The Reynolds number, R, = AUS/v, is based on the shear layer thickness and AU. The
time scale to diffuse across the small scale [5] A is Ta = Ao S¢ R, where the Schmidt number S,
is defined as the ratio of kinematic viscosity to mass diffusion coefficient. The other time scale
of importance for the formation of a chemical product is the chemical reaction time, or
Dambkohler number; 1/t for the large scales and 1)/t; for the small scales [6], where 1, is the
chemical reaction time constant. Large Damkohler numbers tend towards mixing limited
chemistry while small values tend toward rate limited chemistry.

An intermediate stage can also be associated with diffusive processes, such as molecular
mixing or heat conduction that may or may not precede to a significant extent the final stage.
The relative importance depends on the relative magnitude of the corresponding molecular
diffusivity to that of the kinematic viscosity or the Schmidt number [7]. The corresponding
diffusion scale Ap differs from the Kolmogorov scale by the inverse of the square root of the

l 3 . - .
Schmidt number, 4, = 4,5 CA In particular for chemical reactions between entrained gases in a

turbulent shear layer where the Schmidt number is of order unity the time scale for this process is
comparable to 15. This intermediate stage, sometimes referred to as infusion, is indistinguishable
in gases from the final diffusive dominated process occurring at the Kolmogorov scale. Because
of the very large temperature gradients present in high temperature jets, significant heat transfer
at the boundaries of cold inducted eddies may occur before the fluid is mixed at the Kolmogorov
scale making this intermediate stage process particularly significant. For the case of chemical
reaction between the entrained fluid and the shear layer fluid, such as the dissociation of oxygen
studied here, this stage of the entrainment process may be very important.

Measurements of plasma velocity, temperature, and composition were obtained using an
enthalpy probe integrated with a mass spectrometer [8-10]. Measurements of the concentration
of atomic oxygen were obtained using two-photon laser induced fluorescence (LIF). Coherent
anti-Stokes Raman Spectroscopy (CARS) was used to determine the temperature of the entrained
molecular oxygen and to estimate the local molecular concentration. In the following sections the
experiment is described, the measurement techniques detailed, and the general features of the
flow field examined. These results will ultimately be used to benchmark a comprehensive
computational model of the entire process that is under development. All testing was conducted
using a commercial direct current plasma torch. The Miller SG-100 plasma torch was operated at
900 A and 40 V, with a standard anode and cathode arraignment (Miller #165 and #129
respectively). The torch nozzle exit diameter was 8.0 mm. The argon flow rate was 35.4 sim.
The measured thermal efficiency of the torch under these operating conditions was 27 %, and the
atmospheric pressure was 85.5 kpa.
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ENTHALPY PROBE

Originally developed in the 1960s, enthalpy probes [11,12] have enjoyed renewed
application to thermal plasma processing problems [13-15]. Their range of application has been
extended by integration with a mass spectrometer for measurement of gas composition [8], and
their performance has been validated by comparison to laser scattering measurements [9,10].
The enthalpy probe is a water-jacketed gas sampling and stagnation pressure probe from which
the enthalpy, temperature, and velocity of a hot flowing gas can be derived once the composition
is known. The probe used is copper with an outside diameter of 4.76 mm and a hemispherical
tip. Probe survivability in high temperature and high velocity flows dictates a large probe size.
The calorimetric method used to determine gas enthalpy and hence temperature depends heavily
on a "tare" measurement. Observation of the coolant temperature rise and flow rate are made in
" the absence of gas flow through the inner diameter of the probe. Gas is then caused to flow and
the same coolant measurements are repeated, together with measurements of the gas flow rate
through the probe and gas temperature at the probe exit. The rate of heat removal from the gas
sample is thus given by the difference between the measured delta of cooling water inlet and
outlet temperatures,

fhg( hoo - he )= n.'lcw Cp [(A Tew )ga,ﬂmy —(A Tew ):m gasjlow]

where m, = gas sample mass flow rate, m,, = cooling water mass flow rate, h. = unknown gas
enthalpy at the probe entrance, h, = gas enthalpy at the probe exit thermocouple, C, = cooling
water specific heat, and AT.,, = cooling water temperature rise. The unknown gas enthalpy h.. at
the probe tip is now uniquely determined, provided that the gas sample flow rate and the gas
enthalpy at the probe exit are known. The exit gas sample enthalpy is determined from the
measured temperature and the gas sample flow rate is measured via a sonic orifice. While the
probe is in the "no gas flow" mode the stagnation pressure is measured. The gas mixture
composition is required to determine the gas sample flow rate and to relate measured enthalpy
and stagnation pressure to thermodynamic properties and gas velocity. Composition is obtained
by a quadrapole mass spectrometer interfaced to the enthalpy probe via a differentially pumped
vacuum system. For low Mach number flows the free stream velocity, U, is obtained from
U=[2(P-P..)/p= ]* where P, is the stagnation pressure and P.. is the ambient or static pressure.
The density p. is a function of the freestream enthalpy, pressure and gas composition.
Centerline velocity and temperature data derived from enthaply probe measurements are shown
in Figures 1 and 2. The axial coordinate is measured from the face of the torch. Particularly
noticeable is the rapid increase in air content and the associated slowing and cooling of the jet.

COHERENT ANTI-STOKES RAMAN SPECTROSCOPY

Non-intrusive optical diagnostic techniques such as CARS, developed for combustion
research, are also applicable in thermal plasma flow fields [14]. CARS has the advantage of high
conversion efficiency, a laser-like coherent signal beam for high collection efficiency, excellent
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fluorescence and luminosity discrimination, and high spatial and temporal resolution. The
technique is applicable to the measurement of the concentration of any Raman active species.

The theory of CARS and its application as a combustion diagnostic are detailed in [7]. A
CARS signal is generated when two laser beams at frequency y, (termed the pump beams) and
one laser beam at frequency w; (termed the Stokes beam) interact through the third-order
nonlinear susceptibility of the medium %*. This interaction generates an oscillating polarization
and thus coherent (laser like) radiation at frequency ®3=2w;-w,. The third order susceptibility is
a complex quantity and is composed of a resonant (¥;) and a non-resonant (y,) component. The

non-resonant component is proportional to the number density of the species present and is
generally a slowly varying function of wavelength.

In general, the pump (w;) and Stokes radiation fields (w;) have a finite line-width. The
CARS signal is then proportional to

L(wy) e J.], (0")dao' J'I, ("), (a)'+a)'’—a)3)|,z'(3)(a)3 _a)")l2 do".

Because our pump beam is transform limited in spectral bandwidth (= 100 MHz) the cross-
coherence effects present when multi-mode YAG lasers are used have been neglected.
Furthermore it is assumed that the CARS lines are superimposed without interaction (isolated
line approximation) and are homogeneously broadened. Normalizing 7. =3®/n and
Z, =2 Inyand noting that 7, =Rey, +ilmy, and that 7, is a real quantity, I3(03) then,
disregarding the convolution, is I,(@,) e ((no,?")2 +2n.y,nRe7, +( an ) )1,2]2. For the case
in which the non-resonant background is insignificant or is suppressed by choosing certain
polarizations of the pump and probe beams (polarized CARS) then 1, o< n*|7. 21,21 ,. The particle

density is obtained by absolute intensity measurement of the CARS signal. The temperature is
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determined from the relative vibrational and rotational populations n(v,j). A typical single shot
Q-branch CARS oxygen spectra taken at 1000 K is shown in Figure 3. Overlaid with the
experimental data is a theoretical spectra calculated using a modified version of the CARSFT
[16] computer code. The feature between 579.0 and 579.2 nm is the so called hot band,
originating from the v=2 to v=I rotational-vibrational transitions. The rotational temperature is
determined by fitting the theoretical distribution to the data with temperature as a parameter. The
particle density measurement, which is dependent upon measurement of the absolute intensity of
the CARS signal, is complicated by intensity fluctuations of the lasers and changes in beam
overlap, while the temperature measurement is dependent only on relative measurements and is

less affected.

Figure 4 compares the rotational temperature of molecular oxygen obtained from the
CARS measurement taken on the centerline of the jet. For locations closer to the torch face than
30 mm the concentration of molecular oxygen is insufficient to yield a CARS signal. As is
evident in the plot the measured temperatures are significantly less than the mixture temperatures
obtained from the enthalpy probe. This indicates that significant amounts of relatively cold air
are rapidly inducted deep into the jet flow. These cold eddys have not yet been fully mixed and
equilibrated with the hot plasma gas. At 60 mm the mixing process is relatively complete and
the two temperature measurements converge.
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Figure 3. CARS O; spectrum at approximately Figure 4. Comparison of CARS O,
1000 K. temperature and enthalpy probe mixture
temperature.

TWO PHOTON LASER INDUCED FLUORESCENCE

Multiphoton excitation techniques are required for laser induced fluorescence monitoring
of the concentration of light atoms such as atomic oxygen [17-19]. Multiphoton excitation
allows the creation, from the ground state, of observable populations of excited state O atoms. A
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simplified energy level dlagram for O is shown in Figure 5. Two 225 nm photons excite the
ground 2p *P state to the 3p °P state. The fluorescence signal at 844 nm results from the 2p °P to
3s S transition. The laser used is a Nd:YAG pumped dye. The fundamental of the dye is
doubled and mixed with the 1.06 pm fundamental from the YAG in a KDP crystal yielding 1 mJ
of 225 nm light. The two-photon LIF measurement is complicated by the extremely high
quenching rates of the Iaser produced excited state. The observed lifetime of the two-photon
produced excited state (3p *P) is less than 2 ns as compared to its natural undisturbed lifetime of
35 ns, Figure 6.
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Figure 5. Simplified atomic oxygen Figure 6. Time resolved fluorescence
energy level diagram. signal.

The measured centerline axial distribution of atomic oxygen is shown in Figure 7. The
decay time (quench rate) of the LIF signal is approximately constant over the extent of the flow
field, hence the intensity of the LIF signal is approximatly proportional to the atomic oxygen
concentration. Also plotted in Figure 7 is the amount of molecular oxygen calculated as the
difference between the total amount of oxygen measured by the enthalpy probe and the LIF
measurement of atomic oxygen. The CARS measurement of molecular O, is also plotted. Much
of the variation in the CARS signal is due to laser intensity drift, thus this plot illustrates the
limitation of CARS in the measurement of concentration. The same data is also shown in Figure
8 along with the calculated amounts of atomic and molecular oxygen that would be present if the
mixture were in equilibrium at the temperature measured by the enthalpy probe. In general the
dissociation of molecular oxygen lags the equilibrium in the hot regions of the jet and the
recombination lags the apparent cooling of the jet. The fundamental question is which
phenomena account for the observations, is the process mixing limited, or does the rate of
chemical reaction, dissociation, and recombination account for the observations.
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DISCUSSION

The dissociation reaction for oxygen is O, + M «— O + O + M where M=Ar,He,02,Ny,¢,...
Initially the time constant for this reactions is approximately t4(Ar) = 1/(2[Ar]kp) where the
reaction rate is kp(Ar) = 1.6x10" exp(-54245/T) [19]. The time constant for dissociation 4 is on
the order of 100 ps at 6000 K. The mixing time scales estimated from the model of Broadwell
and Breidenthal [5] are 1y =20 ps and 75, = 10 ps in the jet near field. With respect to the data in
Figures 2 and 4 the absolute upper limit on the time scale for mixing is on the order of T = .005
m / 500 m/s or 100 ps consistent with the estimates. The corresponding Damkohler numbers are
ty/tc = 0.2 and Ta/t. = 0.1. Thus the entrainment and mixing processes and the chemical reaction
time have similar time scales. This is consistent with the apparent incompleteness of mixing
illustrated by the temperature data in Figure 4 where large scale inhomogeneities still persist well
downstream in the flow field and contribute to the apparent deviations from equilibrium. At the
same time the recombination process (the reverse dissociation reaction) takes place at a relatively
low temperature, on the order of 2000 K. At this temperaature the time constant for
recombination is on the order of 1 ms suggesting a greater influence of the rate of reaction.
Additional experimental work and modeling are underway which will help to clarify the
observed phenomena.
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FILM COOLING IN A PULSATING STREAM:
RECENT RESULTS FOR LAMINAR AND TURBULENT WALL JET
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ABSTRACT

The heat transfer in a forced laminar, transitional, and turbulent wall jet was
investigated with a combined theoretical, experimental, and computational approach.
When forcing is introduced into the laminar wall jet, two staggered rows of vortical
disturbances develop. At high amplitudes, these structures increase the mixing within the
wall jet, which in turn increases the spreading rate and reduces the skin friction. In
addition, the large structures entrain cold fluid from the ambient, and hot fluid is convected
away from the wall, which leads to an increase in the effective thermal diffusion. It is
found that forcing both the principal and subhammonic modes is most efficient.
Experimental investigations of the turbulent wall jet show that forcing at all frequencies
generally decreases the wall friction because the growth rate of the jet increases. The
decrease in wall friction does not seem to have a comparable effect on the wall heat
transfor, This is possibly because the outer shear layer vortices that dominate the flow
when forcing is introduced do not necessarily produce the small scale turbulence in the
inner region that is so important in scalar transport. Preliminary computational
investigations of the turbulent wall jet show that the turbulence model is capable of
predicting the turbulent mean flow accurately. Qualitatively, the effect of the structures on
the turbulent flow is very similar to the laminar flow.

NOMENCLATURE
Reynolds number measured at exit plane Y, maximum normal distance from the wall
= pUyd/p (for the integration domain), m
local mean temperature, K Cp specific heat of air at free-stream, J/kg-K
free-stream temperature, K d wall jet slot width, m
wall temperature, K k thermal conductivity, W/m-K
local streamwise mean velocity, m/s m mass flow rate, kg/s
jet exit velocity, m/s t fluctuating temperature, K
local maximum streamwise velocity, m/s u fluctuating streamwise velocity, m/s
free-stream velocity, m/s xy coordinates, m
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Greek symbols Subscripts

] denotes boundary layer thickness, m J jet exit plane
é, local hydrodynamic boundary layer m maximum

thickness, m o free-stream
& local thermal boundary layer thickness, t thermal

m v hydrodynamic
pr free-stream dynamic viscosity, N-s/m’ w wall
p free-stream density, kg/m’

INTRODUCTION

Along with the boundary layer and the free jet, the wall jet is one of the most important of all flows.
The wall jet is a fluid jet introduced tangentially along a surface. The free-stream can either be co-flowing
or quiescent and the characteristics of the flow are strongly related to the ratio of the jet velocity to the free-
stream velocity. Wall jets have important technological applications such as in film cooling of gas turbine
components. In film cooling, a turbulent wall jet is used to shield blades and other surfaces exposed to high
temperature free-stream flow. In this multiyear investigation, we are investigating the fundamental
mechanisms by which the transport of heat to or from a surface may be enhanced or suppressed by
exploiting the naturally occurring instabilities of the flow. We have chosen to focus on a strong laminar,
transitional, and turbulent wall jet flow since it exhibits characteristics of both free shear layers and
boundary layers that make it particularly susceptible to external excitation. It is thus an ideal flow for
fundamental study of heat transfer control by external forcing.

RESULTS FOR THE LAMINAR WALL JET

By a combined experimental and theoretical approach, we previously showed that selective forcing of
the laminar and transitional wall jet at its dominant instability modes produced profound changes in the
momentum and heat transfer from an isothermal wall. The strong wall jet can be viewed as a combination
of a boundary layer (near the wall) and a free shear layer further away from the wall. These two basic flow
types exhibit very different stability characteristics, a fact that can be exploited to alter the mean flow by
introducing controlled perturbations at specific frequencies and at large amplitudes. The linear stability
characteristics of the laminar jet have now been well established, Likhachev et al. (1998) and
experimentally confirmed, Likhachev et al. (1999), Quintana et al. (1997). We now have substantial
experimental evidence that suggests that forcing with a frequency for which, according to linear stability
theory, the boundary layer mode is unstable, is much more effective than forcing the shear layer mode. For
the laminar wall jet, the experiments definitively established that forcing the inner boundary layer mode at
levels of only 2%, the skin friction can be reduced by as much as 65% and, for the same flow, the wall heat
flux can be increased by 45%, Quintana et al. (1997).

Substantial progress has been made in applying Direct Numerical Simulation (DNS) to the laminar
wall jet, Seidel and Fasel (2000). Our understanding of the physical mechanisms leading to the profound
changes in the momentum and heat transfor has been greatly enhanced. DNS computations were conducted
based on the incompressible Navier-Stokes equations solved in the vorticity-velocity formulation in
conjunction with the energy equation. A 4th-order accurate Runge-Kutta method was used for the time
integration. For the spatial discretization, 4th-order accurate compact differences were used in both the x-
and y-directions. The solution procedure of the viscous terms in the vorticity transport equations was
extensively modified to facilitate the introduction of a wide variety of turbulence models. For the results
shown here, an equidistant grid in the x-direction was used. In the wall normal direction, grid points were
clustered near the wall to resolve the steep gradients.
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Before applying the codes to extensive simulations of our laboratory experiments, the code was tested
and validated to demonstrate its ability to efficiently obtain accurate results. After computing the
undisturbed wall jet mean flow, disturbances were introduced into the flow field by periedic blowing and
suction through a slot in the wall near the inflow boundary. At low disturbance amplitude levels, the results
of the computations showed excellent agreement with results from linear stability theory. Increasing the
disturbance amplitude caused a mean flow distortion due to nonlinear interactions. As in the experimental
investigations, two frequencies were investigated, ;= (the shear layer mode), and J3; = (the boundary layer
mode).

Case | Case0l1 | Case02 | Case03 Case04 | Case05 | Case06 Case07
AJU;. |5x10° | 1x10% |1.5x10° | 1x10* | 1x10° | 1.5x10* | 1.5x10™
AJU; |- - - 1x10° | 1x10* | 1x10° 1x10°

Table 1 Disturbance amplitudes for the fundamental (b=0.094) and the subharmonic (b=0.047) frequency
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Figure 1. Comparison of mean flow distortion of u-velocity and temperature for different forcing
amplitudes.

Forcing the shear layer mode does not show a significant distortion of the mean flow profiles. In
contrast, forcing the boundary layer mode has a pronounced effect on the mean flow profiles. The top three
graphs in Fig. 1 show the mean velocity profiles. Clearly, the disturbances cause a reduction of the local
maximum velocity and the displacement of the location of maximum velocity away from the wall. Both
changes of the mean flow profile contribute to the significant reduction in skin friction. The mean
temperature profile is shown in the bottom three graphs in Fig. 1. When large amplitude disturbances are
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introduced into the flow, the mean temperature profile develops an inflection point near the wall, which
results in an increase in the wall heat transfer. Even though forcing with b= 0.094 has a significant effect
on the mean flow, the reduction in skin friction and the increase in heat transfer is not nearly as large as our
experiments suggest. Scrutinizing the experimental power spectra, the emergence of the subharmonic was
observed. This prompted us to introduce forcing at the subharmonic frequency in addition to the
fundamental frequency (see Table 1 Cases 04 - 07). Figure 1 shows that with this subharmonic, the mean
flow distortion is significantly increased. The spreading rate of the wall jet increases dramatically and the
inflection point in the temperature profile becomes more pronounced. The effect of forcing on the near wall
mean profiles can be seen more clearly in the change of the analogy factor in the Reynolds analogy, 2St/C;.
This quantity is plotted in Fig. 2 as a function of downstream distance. The graph shows that only if the
amplitude of the subharmonic disturbance is sufficiently high can a mean flow distortion comparable to the
experiments be achieved. This clearly shows that it is not the amplitude of the fundamental itself, but rather
the subharmonic resonance that results in the significant mean flow distortion observed in the experiments.
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o Exporiment, unforced H
[r— Caseuz i
3t ---- Casols H
= Exparimsant. 1%
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Figure 2. Analogy factor for b=0.094. See Table 1 for explanation of different cases.

To qualitatively analyze the effect of forcing, the size and location of the large structures is shown in
Fig. 3 for different forcing amplitudes. Color contours show the temperature distribution and the contours
lines identify vortical structures using the A, criterion by Jeong & Hussain (1995). For comparison, Fig
3(a) shows the undisturbed mean flow. Note that the x- and y-directions are scaled with the nozzle height b
to show the spreading of the wall jet in the streamwise direction. If only single frequency disturbances are
introduced, Figure 3(b), a very regular, staggered double row of vortices develops. In addition, the figure
shows that the temperature distribution is governed by the local, unsteady convection. The structures near
the wall tum clockwise, convecting high temperature fluid away from the wall on the upstream side while
convecting low temperature fluid towards the wall on the downstream side. The outer row of vortices,
tumning counterclockwise, enhances this flow pattern. If, in addition, subharmonic forcing is introduced,
vortex pairing occurs, Fig. 3(c). This leads to a doubling of the size of the structures, significant thickening
of the wall jet, and consequently an increase in heat transfer. Increasing the amplitude of the subharmonic
moves the vortex pairing upstream, Figure 3(d).
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Figure 3. Instantaneous temperature distribution and structures in the flow field. a) Undisturbed base
flow, b) Case03, c) Case06, d) Case07.

The effect of the large structures in the flow can be described quantitatively by a local increase in
viscosity and thermal conductivity. Typically, these quantities are written as a Reynolds stress, #'v', and

an eddy thermal diffusivity, v'#'. A comparison of both quantities is shown in Fig. 4. The agreement
between the three results is very good. The figure shows negative Reynolds stress near the wall, which is
another manifestation of the skin friction reduction due to the structures in the flow field. In the right
graphs, the eddy thermal diffusivity is shown. The strong peak near the wall coincides with the reduced
temperature gradient around the inflection point in the temperature profile. These results clearly
demonstrate that the large structures in the flow are responsible for the changes in skin friction as well as
wall heat transfer.
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Figure 4. Normalized uv' (left) and v (right), Case01. Comparison of simulations (- - =), linear theory (...),
and experiments ((J).

The fact that the time mean wall shear stress was reduced while the time mean heat transfer was
increased is a powerful refutation of the Reynolds analogy for steady flows and points out that intelligent
control of convective flows may have a profound impact on rates of transport. In some cases, it may be
possible that those transport rates may be significantly influenced while minimizing the penalty usually
associated with the pressure drop in a heat transfer device. We next turn our attention to the turbulent wall
jet which has greater application but also significantly greater challenges than the laminar jet.

THE STRONG TURBULENT WALL JET

The strong turbulent wall jet is characterized by having a mean jet velocity to free stream velocity
ratio greater than about two. The heat transfer in the steady turbulent wall jet has been extensively studied.
Seban (1960) and Seban and Back (1961) measured the heat transfer coefficient and the effectiveness for
the wall jet with variable slot heights and mass-velocity ratios. It was found that, for mass-velocity ratios of
less than unity (weak wall jet), the effectiveness followed a power law decay with downstream distance.
The power depended on blowing ratio. For mass-velocity ratios of greater than unity, the heat transfer
coefficient could be expressed simply in terms of the slot Reynolds number and the relative downstream
distance of the slot. This simple behavior of heat transfer coefficient arose from its primary dependence on
the flow immediately adjacent to the wall. In contrast, the effectiveness was related to the velocity
distribution in the external part of the boundary layer, between the velocity maximum and the free-stream
value, and this distribution depended more critically on the blowing ratio and system parameters. Myers et
al (1963a,b) predicted the maximum velocity decay, jet thickness, and the shear stress, and compared with
those results analyzed by momentum-integral methods. Myers et al (1963b) studied heat transfer under the
condition of a step change in wall temperature with jet Reynolds numbers ranging from 16,600 to 38,100.
Mitachi et al (1974) reviewed some of these investigations and proposed an analytical solution to the
temperature field using a mixing length turbulence model. Under the condition of constant heat flux, Nizou
(1981) attempted to supplement the relation between heat transfer and skin friction for turbulent wall jets.
He found that St/C, increased slightly along with X /b, hence confirming the applicability of the

Reynolds-Colburn analogy.
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'The use of externally introduced forcing in the turbulent wall jet was demonstrated by Katz et al
(1992). They excited the turbulent wall jet by a loud speaker at different frequencies and amplitudes. They
found that forcing had no appreciable effect on the rate of spread of the jet nor on the decay of its
maximum velocity, but this external excitation caused a significant local reduction of skin friction, and
enhanced the two-dimensionality and periodicity of the coherent motion. For a turbulent wall jet with an
external freestream, Zhou et al (1993a) summarized their experimental data, together with other available
data from the literature, and collapsed them onto a set of universal curves independent of Reand the
thickness of the upstream boundary layer. In the natural turbulent wall jet without forcing, Zhou et al
(1993b) observed a frequency factor of approximately 1.7 between the inner layer and outer layer which
depended on the velocity ratio R unless the two models were coupled. In the case of weak excitation, Zhou
et al (1996) found that, the skin friction was reduced by about 7% between X /b =100 and 200 and the

intensity of #'? was significantly increased by forcing. The excitation also increased the intensity of v'> in
the outer region, but did not affect the spanwise fluctuations w'? .

Stability Considerations

A theoretical stability analysis was performed to gain insight into the stability of the strong heated
turbulent wall jet and understand the mechanisms that might be exploited for its control, Likhachev (2000).
Unlike the laminar wall jet, the theoretical analysis pointed out that the turbulent wall jet has no strong
dominant modes but rather responds over a wider frequency spectrum. The propagation and amplification
of the small-amplitude disturbance waves were modeled as linear instabilities of the mean velocity and
temperature profiles. Because the flow is incompressible and experimental temperature difference is small,
temperature can be treated as a passive scalar. The influence of incoherent turbulent fluctuations on the
large-scale external perturbations was taken into account with an eddy viscosity model that was consistent
with the mean flow. Since the Reynolds number based on the local maximum value of the eddy viscosity is
not sufficiently large, non-parallel effects should be considered in the stability calculations. The multiple-
scales expansion method was used in conjunction with similarity laws of the mean flow to predict the
influence of the jet growth on the linear stability characteristics. Calculations of the perturbation behavior
were made for a variety of imposed frequencies. It was shown that some significant experimental
conclusions based on local measurements could be attributed to the divergence of the flow. In particular,
the existence of different predominant frequencies in the outer and inner regions of the turbulent wall-jet
flow can be attributed to non-parallel effects rather than to nonlinear effects or to the possible existence of
another mode of instability. A comparison of the stability calculations with the experimental data and the
Large-Eddy Simulations is ongoing.

Experimental Measurements

The experiments were performed in a thermally controlled, closed retumn, low speed, air wind
tunnel shown in Fig. 5. The wind tunnel provided a thermally controlled, low speed main flow at a velocity
U, of 5.0 m/s and temperature T, of 23.7 °C. The test section was 711 mm wide, 165 mm high and
2,362 mm long. A slot type wall jet apparatus was used which essentially duplicates the design of Zhou et
al. (1993a) used in the study of a turbulent wall jet with forcing. The wall jet is introduced tangentially just
upstream of the isothermal surface. Flow is delivered by a 0.5 hp centrifugal blower. The flow enters an
air-water heat exchanger followed by a diffuser that decelerates the flow into a plenum chamber. The
plenum chamber is fitted with an acoustic speaker that is used to introduce controlled disturbances
(forcing) into the jet. Three screens of 30, 40 and 50 mesh size and a contraction having a variable area
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ratio complete the apparatus. In the present experiments, the jet contraction ratio is 18:1 resulting in a jet
slot width & of 5.0 mm and a jet exit velocity U ; of 21.0 m/s. The jet temperature T; of 23.7 °C was held

constant by an air-water heat exchanger and a recirculating chiller.

AOOY OF CLOSED RETURM
WIND TUMNEL

Figure. 5 Experimental apparatus

An isothermal heat transfer surface is located downstream of jet exit plane, and has an unheated
starting length of X /b=7. This surface consists of a 19-mm thick, 508 mm wide and 1219-mm long
highly polished aluminum tooling plate, which is held at constant temperature by means of, heated water
from a recirculating chiller that flows through milled slots inside the plate. A 50.8-mm thick sheet of
honeycomb is placed beneath the plate and serves as an insulator and as a rigid support for the top plate.
Ancther plate with heated flow is placed beneath the honeycomb to stabilize any backside thermal losses.
The excited jet flow passes along with a 50.8-mm diameter aluminum Coanda cylinder and flows
tangentially over this heat transfer surface. The side and top walls of the test section are fabricated of
Plexiglas to allow visualization studies to be accomplished.

The measurements of streamwise velocity and temperature were conducted using two side-by-side
(12 mm apart in spanwise direction) standard DISA 55-P11 single hot and cold wire probes, which were
held by a well-designed probe holder. Both the hot and cold bridges were manufactured by AA Lab System
(model AN-1003). The cold wire was calibrated against a NIST traceable lab standard thermistor probe,
and the hot wire probe was calibrated in the exit of a thermally controlled vertical axisymmetric jet against
a standard Pitot tube and an MKS Baratron pressure transducer. Due to temperature gradients in the flow
field, the hot wire output voltage required temperature compensation. The hot wire output voltage was thus
calibrated at different velocities for the range of temperatures, which were used in the experiment. A
polynomial relationship between voltage and temperature for each velocity was produced and used to find
the temperature compensated voltage by iteration. Using this method, the actual velocity can be found due

to the small temperature difference between 7, and ambient. In order to observe the effects of external
forcing on the velocity and temperature fields, pressure fluctuations were artificially introduced into the
wall jet with a 304.8-mm loud speaker placed in the diffuser section. Four frequencies, 37.5Hz, 75.0Hz,
100Hz, and 105Hz, and two amplitudes, 5% and 10%, were chosen in present experiments.

Detailed experiments were performed to first determine the time averaged mean flow and heat
transfer characteristics of an unforced, plane turbulent wall jet flowing over an isothermal surface that was
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heated above the jet and ambient temperature. All experiments were performed in air. A jet velocity of
21.0 m/s and free-stream velocity of 5.0 m/s formed the base case for the measurements. Figure 6 shows
the mean velocity profiles, comparing the unforced case to forcing at 100 Hz, 10 % amplitude. The near
wall profiles shown in Fig. 7 accentuate the decrease in the near wall gradient and hence the wall shear
stress when forcing is introduced. The near wall temperature profiles, Fig. 8, do not show appreciable
changes, except at far downstream distances. Subsequently, the wall friction coefficient, Cy, decreases at
all downstream distances, with forcing at all frequencies, Fig. 9, but the wall Stanton number exhibits only
modest changes, Fig. 10, Although these results have not yet been studied in great detail, a significant clue
as to the insensitivity of the wall heat transfer to forcing is provided by examination of the fluctuating
temperature distribution, Fig. 11. It is seen that even at a 10% forcing amplitude, the near wall fluctuating
temperatures are not strongly influenced. Because #'is a primary component of the turbulent heat flux, vt
one plausible explanation is that the two-dimensional structures in the outer shear layer do not necessarily
cascade downwards at sufficiently small scales to angment the near wall heat transfer. This is an area
currently under intense study.
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Figure 11. Fluctuating temperature

The DNS code described previously was used to investigate the effect of large coherent structures on
the turbulent wall jet. A state-of-the-art two-equation turbulence model was implemented in the code. This
necessitated the development of an accurate and robust solver for the k-g equations. The code has been
tested for the flat plate boundary layer and the turbulent wall jet mean flow. Figure 12 shows the turbulent
mean velocity profile in outer coordinates. Excellent agreement with the theoretical and experimental data
is achieved. In inner coordinates (Fig. 14), a slight discrepancy in the maximum velocity exists, but the
overall agreement with the theoretical curves and the experiments is very good. In Figs. 13 and 15, the
mean temperature profile is shown in outer as well as wall coordinates. Very good agreement is achieved
between the measurements and the computations. For comparison, various logarithmic laws found in the
literature are included in the figure.
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CONCLUSIONS

In order to understand the heat and momentum transfer associated with complex unsteady film-cooling
problems, the plane, laminar, wall jet was investigated experimentally, theoretically, and numerically for
the constant wall temperature boundary condition and with no free-stream. When forcing is introduced, two
staggered rows of vortical disturbances develop. At high amplitudes, these structures increase the mixing
within the wall jet, which in tum increases the spreading rate and reduces the skin friction. In addition, the
large structures entrain cold fluid from the ambient, and hot fluid is convected away from the wall, which
leads to an increase in the effective thermal diffusion. Locally, the highly unsteady flow field leads to the
development of very high wall temperature gradient and in the mean to an inflection point in the
temperature profile and an increase in the wall heat transfer. It is found that forcing both the principal and
subharmonic modes is most efficient.

Experimental investigations of the turbulent wall jet show that forcing at all frequencies generally
decreases the wall friction because the growth rate of the jet increases. Locally, the decrease in wall
friction does not seem to have a comparable effect on the wall heat transfer. The wall heat transfer is not
strongly influenced by the forcing, possibly because the outer shear layer vortices that dominate the flow
when forcing is introduced do not necessarily produce the small scale turbulence in the inner region that is
so important in scalar transport. Preliminary computational investigations of the turbulent wall jet show
that the turbulence model is capable of predicting the turbulent mean flow accurately. In the next step,
disturbances will be introduced to investigate the effect of large, coherent structures on the mean flow
characteristics of the turbulent wall jet. Towards this end, preliminary investigations have been initiated.
Qualitatively, the effect of the structures on the turbulent flow is very similar to the laminar flow.
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OPTIMIZATION OF HEAT TRANSFER EFFECTIVENESS IN
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ABSTRACT

Developments of Volume Averaging Theory (VAT) to describe transport phenomena in heterogeneous media
are applied to optimization of heat dissipation from a heterogeneous media. The media is an unspecified porous (het-
erogeneous) layer and the optimization process is accomplished with rigor using the idea of scaled energy transport.
The enhancement of heat transport is stated mathematically in a way that the lower scale conventional pin heat trans-
port enhancement and the performance of the total device are incorporated for optimization. The problem is addressed
in three steps: 1) solution of a two-temperature problem with inclusion of experimental data correlations, 2) statistical
design of experiments (simulating the problem) for problems with many optimization parameters, and 3) optimization
of 2D heterogeneous volumetric heat removal by conduction and convective exchange. The analysis distinguishes cer-
tain classes of distributed parameter optimization statements whose solutions determine global "in-class” upper limits
of heat enhancement (for a given set of physical assumptions).

1. INTRODUCTION

Development of a VAT mathematical basis and models for optimization of a heterogeneous, hierarchical scaled
media began with work by Travkin, Gratton and Catton [1] and is followed by a series of papers [2-4] documenting
the development of a method that is applicable to a wide variety of transport phenomena ranging from fluid mechan-
ics to crystal photonic band-gap problems [5], clearly demonstrating the interdisciplinary nature the multi-scale VAT
description of transport phenomena. The theoretical development of transport phenomena in heterogeneous media
with multiple scales has now been brought to the level where a specific application can be chosen for demonstration.
The application chosen is enhancement of heat transfer dissipation from a heterogeneous media while minimizing the
frictional resistance (a problem of importance to all designers of heat exchangers). This problem has been under inves-
tigation for more than 3 decades and in spite of its longevity and importance as a problem, it has not been satisfactorily
treated.

A majority of past investigations focused on solutions to a specific optimization task with a very limited
number of spatial parameters to be varied, usually a fixed geometric configuration, that they tuned in their search
for 2 maximum level of heat exchange (see, for example, Bejan and co-authors [6,7] and references therein). This
approach is a "single-scale” approach yielding an optimum for a certain morphology and flow intensity without giving
an explanation for why it was achieved. Without an explanation, there is no guidance on how to change the design to
improve its performance. For each new morphology, the experiment, whether real or numerical, needs to be performed
again, In the heat exchanger industry there are countless research studies devoted to this problem.

In this work we outline how earlier studies [ 1-5] can be applied to a practical application. The present treatment
of the heat exchange optimization process can be applied to any specific hierarchical heterostructure with the aim to
optimize its performance. What has been done is a demonstration of the only heterogeneous media modeling tool that
combines both mathematical and morphological descriptions in one problem statement.

2. VAT EQUATIONS IN THE FORM OF CONTROL EQUATIONS

The averaged laminar momentum equation

o0 1 0(m ()P -

+ UM Conuv + U Friction — Um Drag = ’;}' e

(( m(2)) — —

is "controlled” by the three morphologlcal terms that are defined as the "morpho-convective” fluctuation field distri-
bution based term

~ o~ 9 ~
Ustcans (B, 8,080,807, A%) = 5- (<2 );), @
the interface surface skin friction term
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and the solid phase drag resistance term
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where the second left hand side term & ((—1’2 ) f) / 0z presents cross-fluctuations effect. The presence of the verti-

cal velocities - W and W, orw =W ~ W, seen in the first term, do not exist at the macrolevel because z direction
momentum transport is only present locally close to obstacles. In traditional (homogeneous) one-scale shape optimiza-
tion approaches these three terms are not presented (see, for example, Ledezma et al. [7]) and, as a result, optimization
methods are very restricted in their value and clearly the macroscopic behavior cannot be related to the bottom scale
enhancement.

The laminar fluid energy equation is

=0Ty, 8 |a(mTy 8 |8(m) Ty

oz Oz 9z
+ T_fMmeX + Tf]VIConvZ + TfMSm‘fX + TfMSuer + TfME:rchunge- (5)
with the five additional control terms being
~ o ~
Tymcomox (Tr, @ A0, AQ) = cpro, 5 ((m) {-% 3} f) : (6)
~ 0 ~
TiMConvz (Tf, w, AQf,AQs) =Cprl; 5, ((m) {—Tf w};) ) ™
o [1 -]
Timsursx (k, Ty, 0Sw) = kga—: el Ty ds|, ®
L 2S., -
d 1 -
Trmsursz (k,Tp, O8w) = k5£ AG Ty ds|, )]
L 98, ]
k Ty
TfME:rchngc (k, Tj; asm) = _A—Q‘ / 6_331- ds, (10)
as,,

Finally, the solid phase energy equation has the similar additional terms. In the turbulent regime, the momen-
tum, fluid energy and solid energy equations are similar to what are shown but with an increased number of control
terms and more complexity. They are not reproduced here and can be found in [2,4,5]. Some discussion about how
they will be dealt with is found in the final section of this paper.

The control equations are made general by non-dimensionalization with the following scaling, see Fig. 1,

dmg = 2mQo
Sw = S5,5um, 2=2m2", 2n = g U=unv', Tn = %_, v = zpunt”, (m(2)) = mp (m*),
wm Tm
2’11,,2" _}_ d<p)f = u?u

ca = CgCim, Cam = ‘5(2)—, o7 dz _—271, kfm = ZmUmCpsOf, kf = k}zmumcpfgfa ks = k;zmumcpgs-

The parameters resulting for laminar flow through a morphology that is constant normal to the flow direction are given
in the following table with there possible ranges. These parameters are at the discretion of the designer of a heat transfer
device and can be used for optimization.
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Name | variable min | max Physical meaning of the parameter
Lay = Rep scamC3 S, 10~ [ 5 x 107 | influence of media resistance to flow
Lyan | = Repmy (1/mo) 1072 | 10° media Reynolds number
Lpg | = pp = 2utn 2.1 | 2x107 | Peclet number, Pe = (%(—%}%ﬁ)l/z)/a’f
Lpe | =018y, =2 |10 |10° heat exchange between phases, o} i, = K%L/%‘.‘S'K
Lpwy | = mﬁhazs; 0 10%0 parameter from solid phase energy equation
Lps | = £k = ApLps 10~3 | 1012 parameter from II kind BC, see [8]
There are six nondimensional control parameters and functions, denoted Medium Specific Control Functions

(MSCF),that control the heat and momentum transport in the selected porous medium and that can be modified to

optimize the performance. The two terms with the broadest range also have the greatest influence on the outcome. If
the morphology functions denoting porosity, (m (z)) , and specific surface area, Sy, (2) ,are coordinate specific, then
the equations and parameters sets are different yielding eight control parameters instead of six. A similar exercise for
turbulent flow with (m}) = const, S, = const will yield eight optimization parameters.

3. PRELIMINARY OPTIMIZATION METHODS

Some simulation results using VAT based transport and closure models for flow in a channel with rib roughened
walls, spherical beads, round tube banks and square tube banks yielded optimal configurations. The morphology
models used in the numerical simulations are shown in Fig.1 (see [9]).

The parameters chosen for simulation of flow across spherical beads in a channel were pitch, P = 20mm,
channel height, 21 = 200mm,. and bead diameter, 0.00lmm < d, < 20mm. When the diameter of the beads is
large, the disturbance of the porosity across the channel is large and the flow resistance plays an important role. Asa
result the disturbance of the velocity profile is large. When the porosity approaches unity the disturbance of velocity
profile disappears and the velocity distribution approaches the theoretical distribution. From a physical viewpoint, this
is obvious. When there are no obstacles in the channel, the channel the results are consistent with the theoretical results
in contrast with some other models.

The pitch chosen of the rods are the same as those for the beads. The height of the rods is the same as channel
height. . The porosity is easily varied from 0 to 1.0. by ranging the tube dimension, d,,. The friction factor for flow
across square tube banks and circular tube banks were developed from the micromodeling results of Souto & Moyne
[10] and Watanabe [11] respectively.

By application of SVAT closure models to some general morphology models (orifices and plane slits), in
limiting cases, it was demonstrated earlier [1-3,8,9] that both the transport model and the closure scheme are reasonable.
At the same time, studying the limiting cases of porosity in the channel highlighted mistakes in other studies. The
numerical results demonstrate how the simplest morphological properties of a porous layer such as porosity function
and specific surface along with closure models naturally affects the transport features and that it can be helpful in the
development of optimized morphologies.

Fig. 2 shows the dependence of the effectiveness number, E¢, on the porosity for different morphologies at
different Reynolds numbers. Ej; is a combination of the Nusselt number, the friction factor and the pore Reynolds

number, B _
Nu ) Qdpor _4dm)T _dy £

Esp= W, .with Nu = PP Reypor = VG, and f = 291%2 ( T ) (1)
Fig 2 shows how Ej s increases as the porosity of the channel decreases. When the porosity decreases, the beads inside
the channel play a more important role in increasing the heat transfer while increasing the flow resistance. (for channel
filled with regularly arranged spherical beads, the porosity of the channel has a lower limit of 0.4). Fig. 3 and 4 clearly
demonstrates an optimum value of Ey; .When the porosity is higher than some critical value, the porous media play a
more important role in increasing the heat transfer than in increasing the drag resistance. But when the porosity is too
low, the drag resistance will be high and E¢ will approach 0 when the porosity approaches 0.

When the problem becomes multi-dimensional, 6D or 8D, according to [12-15], it is convenient to use the
statistical design of experiment (DOE) methodology. An optimal response surface was found in two steps. First, nu-
merical simulation was carried out based on statistical selection of the parameter values. Second a statistical analysis
of the results was used to develop a response surface. This procedure was implemented using a commercial computer
code based on DOE.

When the optimization variable is chosen, in our case Eyy,the variables are systematically defined, see the
table of parameters developed above. Next, the numerical experiment design type is selected,e.g. a classical two level,
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mixed level,or nested level. The design type used in this work is the classical two level design. The classical two
Ievel designs are based on standard orthogonal arrays that contain two levels for each experimental variable. It enables
estimation of the effects of some or all terms in a second order model of the general form

Eff =ap+a1 X1 +aXo+ ... +a, X+ (7‘11)(12 +apXiXe+...+ an,n-—lXan—l + ananz;

The independent variables X; X5 ...X,, are the design variables L3y...Lpg. Based on the design type and
design variables, experiment design options will be created. Each option is a set of input parameters for numerical
simulation. Description of what was done to obtain the "experimental results” from the VAT based laminar or turbulent
transport equations for flow in a specific porous media is described elsewhere (see [8,9] ).

After numerical simulation, the numerical results are rigorously analyzed using statistical analysis tools and
graphics tools. These tools inciude nonlinear response/error analysis, experimental error analysis, regression analysis,
residuals analysis, two dimensional graphing, three dimensional response surface graphing, and multi response opti-
mization. One of the response surfaces of our study is shown in Fig. 5. The three dimensional figure shows E as
a function of two variables Lpy and L ps4 (these were chosen for simplicity from the eight independent variables ana-
lyzed) when the other variables are fixed. Although limited by the range of the variables, the optimum point is shown
on the figure, and the trend of the response surface clearly shown in Fig, 5.

4. TWO- AND THREE-SCALE OPTIMIZATION STUDY

Closure of the turbulent regime VAT equations for a porous flat channel also requires closure of additional
terms in the governing equations. This is done (as for laminar regime) using Direct Numerical Modeling (DNM). The
four terms arising in the momentum equation are

% (<Km—a—z> ) ' B2 ((——uw f), AQ / (K, +v)— 32, ds, —_fAQ / P ds, (12)
s 88, 8Sw
the seven terms in the fluid temperature equation

(5 )) (52, ok () )on (o))

(13)
5;{79——/77“ o |mn [ Tr#|ag [ Gerngha ae
ISy L 38, OS.

and five terms in the solid phase temperature equation

8 |/5 06T, 8|/ 0T, 8 {K} (K.}, -
L)) & (=) 2 [ ) na] 2 [ ) 55

8Suw12 9Sw12

85,12
(15)
The mathematical implementation needed to obtain closure of the momentum resistance terms, for example,

for optlmization of the morphology of straight rib fins, see Fig. 6a,b; is dictated by the geometry of the fins. For

example, if ds=7 ds, n = (—i,0,0)| 0., and 7 = (i,0,0)] 85,1, » then the surface integral over the 85, in each
of the intermediate REVs not including portxons of the free volume above the fins and those at the bottom of the solid
phase of the channel will be, for the x-coordinate frictional resistance component,

iy [ U oU ., 8U ~
AQ / (I{m -+ I/ 57; —ds = <—A—Q / (I{m + U) ( * B —+n Ty 8 — 4N, B2 > ds) 1=
89S 1)

. Z(k+1)L aU Fo+nR
= (A_Q / [(K'"*") ‘a?] o, 2T a6 f [(K"‘+”) ]aswn dz) o

zZrr
The calculation of the form drag portion of resistance loss in momentum VAT equation is done in the same

[
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1 1 1 Z(k+1)1 1 2+
27A0 / P ds= oA / P (n ds) = (m / Plos.. dz) i+ (m / Plos,,, d"‘) L (17
dSw 8Sw ZkL zZknr
This is the classical form drag portion of the total kinetic energy loss (shown here only for the x-component). Closure
of other terms in the VAT equations are based on the specific two- or three scale morphologies chosen.

Our analysis of many existing morphological solutions has led us to conclude that the scaled hierarchical VAT
description gives us the ability to find an optimum morphology that cannot be improved when the selection of fluids
and solid phase materials has been made, and the pressure drop through the media is specified. Given these initial
conditions (restrictions), it is possible to find a morphology that cannot be improved based on two scale heat transport
meaning that there is no other solid phase configuration that can be more efficient than the one that has been found.

5. SUMMARY

In this brief paper we have illustrated a method hierarchical optimization of two- and three scale heat transport
in a heterogeneous media.. It is shown how traditional governing equations developed using rigorous VAT methods
can be used to optimize surface transport processes in support of heat transport technology.

The difficulty in treating a multiparameter (more than 3 ) problem, even linear, are well known to be very
difficult to overcome using a parameter sorting process. The combination of VAT based equations and the theory of
statistical design to was used to effectively begin treating 6D or 8D optimization volumes.

We have shown how a two scale heterogeneous heat transfer optimization problem can be solved using exact
procedures for closure of additional differential and integral VAT terms. This method is shown to be as simple as calcu-
lating the appropriate integrals over the morphologies with coordinate surfaces of interfaces pertinent to a morphology
of interest. For more complex or even unknown morphologies, as initial spacial morphologies the mathematical meth-
ods were outlined in detail. These three tasks were carried out, albeit for some elementary morphologies, for the first
time.
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USE OF HOT-FILM ANEMOMETRY TECHNIQUE IN HORIZONTAL BUBBLY
TWO-PHASE FLOW

Alaa Iskandrani and Gunol Kojasoy
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Department of Mechanical Engingering
Milwaukee, Wisconsin 53201, U. S. A.

ABSTRACT

Utility of the hot-film anemometry technique in a horizontal bubbly flow-pattern is examined.
It is shown that a single probe can be used for identifying the gas and liquid phases. Analyzing
the nature of the voltage signal, a signal processing scheme is developed for measurements of
time-averaged local void fraction distribution as well as for the measurements of local mean
axial velocity and turbulent intensity in the liquid phase. The signal processing scheme is
optimized so it can be used in a very high void-fraction region toward the top of the pipe, which
is the unique characteristic of bubbly two-phase flow in horizontal channels. To verify the
accuracy of the proposed method combined effects of the local void fraction and liquid velocity
measurements are checked against the global measurements of liquid flow rate. The results are
found to be satisfactory within the experimental uncertaintics. Furthermore, the area-averaged
void fraction obtaincd from the hot-film probe measurements compared well with the quick-
closing valve technique measurements. The results show that the hot-film probe method is
accurate and reliable for the local measurements of void fraction, liquid velocity and turbulent
intensity in horizontal bubbly flow provided that the data is processed properly. Some results of
the local measurcments of time-averaged void fraction, axial mean velocity and turbulent
intensity at relatively low and high gas flows are also presented for a horizontal air-water bubbly
flow in a 50.3 mm ID pipe.

INTRODUCTION

Void fraction is considered one of the most important parameters in gas-liquid two-phase flows from an
engineering point of view. Several methods are available at present to measure void fraction. These are
photographic, light attenuation, ultrasonic attenuation, double-sensor probe, impedance tomography, and Laser-
Doppler Anemometer (LDA). These methods for measuring the void fraction are effective only in certain idealized
cases. The photographic and light attenuation methods cannot be used with opaque walls and are limited to
transparent dispersed two-phase flows with volumetric void fraction less than a few percent [1]. The ultrasonic
method is not restricted to such conditions, and thus cxpands the measurement of the void fraction beyond the
presently available range of fluids and non-opaque systems [2]. However, the ultrasonic attenuation method has a
major limitation due to the reduction of the measurement certainty because of the scattering echoes, and thus it is
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restricted to low void fraction bubbly systems. The X-ray computed tomography, impedance tomography and ring-
type conductance transducer were used to determine the cross-sectional or volume averaged void fraction [3].
However, the local void fraction can not be measured by such technique,

Several attempts have been made to extend the use of LDA to bubbly flows [1,4]. In a very recent work of
Suzanne et al. [5], it was concluded that at void fraction greater than about 2% the LDA signal is no longer
suitable because of the increase of the beam interruption rate by the bubble crossing. In this case the hot-film
anemometry was recommended.

It is to be noticed that with the exception of the work of Kocamustafaogullari and Wang [6], all of the bubbly
flow experiments were carried out in vertical flow channels. Even in the case of well-studied vertical flow
configurations, experimental results from fairly diverse sources are controversial regarding the void fraction
distributions and the effects of the bubble size and flow conditions causing void profile transformation from a
saddle shape into a convex shape. The difficultics in obtaining completely similar general results undoubtedly
stem from our lack of understanding of the mechanisms involved in determining the intemnal structure of bubbly
flow. Furthermore, due to basic internal structural differences between the vertical and horizontal bubbly flows, it
is impossible to extend the vertical bubbly flow results to harizontal bubbly flows.

In light of the above discussion, it is evident that much experimental work is still necessary to attain a thorough
physical understanding of the internal structure of horizontal bubbly two-phase flows. In view of the intention to
measure local variables in a horizontal bubbly two-phase flow with local void fraction possibly ranging from 0-
65%, it is unavoidable that a probe method must be used. In this context, an experimental investigation has been
underway at the University of Wisconsin-Milwaukee to study the air-water bubbly two-phase flow characteristics
along horizontal flow channels using the hot-film probe technique.

The primary purpose of this research is to show that the hot-film anemometry technique can be successfully
used in horizontal bubbly two-phase flows

e to identify liquid and gas phases (phase separation), from which the local volume fraction can be

evaluated,

s to evaluate the local time-averaged, axial liquid phase mean and turbulent fluctuating velocities,

¢ to measure the local void fraction and local bubble passing frequency of the two-phase flow, and finally,

¢ to investigate the dependence of the local paraineters on other flow variables,

2. HOT-FILM ANEMOMETRY TECHNIQUE

2.1 Principle of Measurement

Hsu et al. [7] and Delhaye [8] were the first to study the response of hot-film probes in a liquid-gas two-phase
flow. Since then, this technique has been used extensively [9-14] in vertical bubbly flow pattern. However, only
limited efforts were made to examine two-phase flow characteristics in large scale experimental programs in
horizontal bubbly flow channels.

In principle, the hot-film probe provides information about the flow field by relating the changes in this field to
changes in the heat transfer at the probe tip surface. As the fluid flows past the constant temperature hot-film
probe, changes in the fluid velocity, including turbulence fluctuations, cool the sensor at different rates. These
changes in cooling rates result in voltage changes in the anemometer. In the case of an air-water two-phase flow,
very sharp variations occur in the anemometer voltage output as the probe tip goes through a gas-liquid interface
because the heat-transfer characteristics of air is completely different than water. A typical sensor output for two-
phase bubbly flow is illustrated in Fig. 1. As seen in this figure the sensor encounters both liquid and small gas
bubbles several times in a very short period. After the sharp initial drop, caused by the probe piercing the front of a
bubble, the voltage gradually continues to decrease while the sensor stays inside the bubble. This is due to the
evaporation of a thin film of liquid that remains on the sensor. On the other hand, the output signal from the probe
shows a very sharp increase to the previous voltage level upon exiting the gas bubble due to wetting of the sensor.
It is interesting to notice that, when the liquid wets the sensor, the signal rebuilds after a very short period during
which it exhibits an overshoot. This is usually the case because the hot-film anemometer circuitry tends to
overcampensate the voltage increase when liquid suddenly envelopes the tip of the probe.

In the upper portion of the pipe, the probe encounters plenty of bubbles, or partial bubbles hits, where the
residence time in gas bubbles and liquid is too short to show the basic output characteristics of the probe and

110



consequently becomes harder to analyze such signals. When the probe is in the gas, the signal is no longer
representative of the velocity, it is thus necessary to remove this part of the signal as discussed in the next section.

2,2 Signal Processing -

2.2.1 Phase Separation
The first requirement in evaluating a two-phase flow with a hot-film probe is the ability to identify and

differentiate the gas and liquid phases on a record of the anemometer signal. A number of investigators have
reported utility of the hot-film anemometry in two-phase flows. In these investigations a variety of bubble
detection techniques, consisted of detecting the voltage changes associated with a change in phase, have been
used.

In the present investigation, Farrar et al. [15] and Lewis [16] methods were combined to develop a reliable
detection technique based on an interactive amplitude and threshold procedure. This new technique tackled the
inherent problems in high-speed, high void fraction bubbly flows. Serious problems associated with previous
methods when applied to a horizontal bubbly flow can be summarized as follows: Firstly, very small bubbles or
partial bubble hits produce signals that do not fall below the voltage level corresponding to the lowest continuous
liquid phase velocity fluctuations. Therefore, they can not be detected. Secondly, the overshoot in the hot-film
signal results in a significant ncgative slope during the decay process following the overshoot. This may be
interpreted as being due to the passage of a bubble front interfaces. The overshooting may cause serious errors in
time-averaged void fraction calculation or it might cause major incorrect evaluation of turbulence.

The voltage output was recorded on disk. The derivative of this output signal with respect to time was then
calculated, This derivative represents the slope of the output signal, By plotting the anemometer output and the
slope on the same time scale, the effects of a bubble striking the probe can be seen as in Fig. 2a & b. For each
bubble passage, the slope signal shows a sharp negative spike for the nose of the bubble followed by a sharp
positive spike for the tail of the bubble. The power required to heat the sensor in the gas phase is considerable less
than in the liquid phase. Similarly, the positive spike in the slope signal is a result of the increase in power required
to maintain the sensor temperature as the probe reenters the liquid phase. From here, it is a matter of determining
the proper threshold values to detect the spikes in the slope signal.

The first threshold is used to determine the rear of the gas bubble. Its value must be positive. This slope
threshold value is the most important because it has the largest magnitudes and is unaffected by any of the flow
characteristics. Therefore, it is the easiest to detect. Iis value should distinguish between the peaks caused by liquid
interface and those from {he turbulent fluctuations. The turbulence slope values were of a magnitude of less than
250. By plotting the anemometer oulput voliage data and the corresponding slope, as seen in Fig. 2a & b, the
positive value of the slope can be recorded for each liquid slug occurrence by visual inspection. This was done for
experimental data covering the entire range of gas and liquid flow rates. The rear of bubble was found to cause a
positive peak with a magnitude greater than 500, This value was used as the threshold for the bubble rear detection
or liquid slug beginning. When this threshold value is reached or exceeded, in the positive plane, the phase
separation step signal, 8, is set cqual to unity indicating the liquid phase (Fig. 2c).

Similarly, a second threshold value was found for the negative spike caused by the probe hitting a gas bubble.
These negative peaks were found to have a magnitude greater than 300 in the negative plane. It is obvious from
Fig. 2b that the magnitude of this slope is usually smaller than the previous one, because the drop in the voltage
occurs gradually. So it is harder to detect and easier to be feigned by the turbulence fluctuations. This is why a
conservative value of —500 has been used as a bubble front detection threshold. This value is used to identify the
bubbles only with relatively clear tail voltage signal. The principal slope is going to be incorporated to double
check the validity of the negative slope as discussed later.

To ensure that all bubbles have been detected and to take care of the overshooting, the program works
backward whenever the first threshold occurs to indicate a start of liquid phase. Since this threshold is very distinct
and impossible to miss, it sets up the base for the further signal analysis. The signal processing program works
backwardly forcing all data to be gas until another first threshold value or a third threshold event (whatever comes
first) takes place. The third assigned slope threshold value is of importance when the second threshold bubble start
detection fails, Because some bubbles, small ones in particular, in‘roduce intermediate negative slope, which may
be hard to differentiate from velocity fluctuations negative slopes, the third slope threshold makes the detection of
gas phase more lenient. Therefore its value is set to -250. This, in its absolute plane, iz much less than the slope
associated with interface passage but slightly greater than the slope of most velocity fluctuations. In this way we
get a narrower band of liquid voltage signal, which results in detecting smaller bubbles. The third threshold works
in conjunction with an amplitude threshold, which will be discussed in the next section.
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When the entire data signal has been analyzed in this way, the program returns the phase separation step signal.
This signal is used for the void fraction analysis and helps to assign the liquid phase data used for velocity
analysis. One problem with the above method, and any other method involving an immersed probe in the two-
phase flow, is as described by Wang et al. [17], the probe deforms and deflects the bubbles prior to piercing. This
would lead to an underestimation of the void fraction.
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2.2.2 Determination of Proper Data Set for Velocity Analysis

In the preceding section it was demonstrated that the proposed bubble detection technique can identify the
starting and ending times of virtually every bubble event within hot-film signal. Nevertheless, using all identified
liquid phase data for velocity analysis causes significant error. Similar to the phase separation method another
method has been developed to identify the proper data set that should be used in liquid velocity data processing.
The back-bone threshold value for this task is the voltage amplitude threshold. Unlike the previous technique, this
one is only of practical use if a method of automatically determining suitable values for the amplitude can be
identified. This was achieved by using the probability density function (pdf). Fig. 3 shows the digitized pdf
corresponding to a large sample of hot-film probe data obtained at a certain probe position in a typical bubbly
flow. A sample of the hot-film signal from which it was obtained is also shown in the figure. The pdf is observed
to have a bimodal shape consisting of two pcaks separated by a low level plateau region, The upper peak
represents the high voltage associated with liquid phase, while the lower peak represents the low voltage
associated with gas phase. In the current program the lower peak, which is located near the bottom of the hot-film
signals, is not determined and thus our pdf is truncated to accommodate only the large peak. This peak
corresponds to the voltage/velocity associated with the continuous phase turbulence. A point on the voltage scale
of the pdf slightly below that corresponding to position “c” on Fig. 3 is an ideal choice for voltage amplitude
threshold since it will be low enough to avoid mistaking any turbulence velocity fluctuations and high enough to
detect the majority points in gas phase.

After identifying the amplitude threshold value internally by the computer program, the points with voltage
higher than this threshold value and their slopes within the first and second threshold slopes are only considered
for velocity analysis. The data points associated with over-shooting, at the rear of bubbles, are excluded again by
proceeding backwards. By working backwards, the current point is compared with the previous few points. If the
current point voltage is higher than the voltage threshold value and its slope is lower than the second slope, then it
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is identified as overshooting provided that the immediate preceding points have the massive positive slope. In Fig.
2d, the velocity evaluation step signal is shown for the corresponding anemometer output voltage, slope, and phase
sepatration. In this figure, unity indicates acceptable data point for velocity analysis, zeros are not admissible points
and should be excluded from any further velocity analysis,

2.3 Statistical Processing of The Data

Although the actual voltage change in a hot-film probe signal due to the probe encountering the bubble is not
important or accurate, the time that the probe is exposed to the bubble can be used to determine the local time-
averaged void fraction, a, at any point, r. It is defined as a time-average of the concentration, &r.t), by:

a(r) = lim I (1-3(r,t))dt )

—)Wo

where, &, as a function of the space coordinate, r, and time, t, is equal to 0 if the probe sensor is in the gas phase
and equal to 1 if ﬂle sensor is in the liquid phase. Equation (1) can be written in discrete form as follows;

a(r) = TE (t2i — tai1) 2

where i indicates the i gas bubble and t,;, and t,; define the time when the probe enters into the gas bubble and
liquid, respectively, the number of gas bubbles passing the probe sensor in the total sampling time, t, isn.
The local mean axial liquid velocity and the values of turbulent fluctuations were calculated by using

Umean(r) - _I\-I-kglu,((r, t) 3)
and
u'(r) = —;;[ A LR -Umm(r)]’} @

respectively. In Eqgs. (3) and (4), u(r,t) is the instantaneous axial velocity for the k™ data point in the liquid phase,
and N is the total number of data points in the liquid phase of the digital sample, k = 1....N. To remove the error
caused by the intermittent wave motion, the time-based filtering process was developed in calculating turbulence
fluctuations, Iskandrani [18].

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

A sample of the time-averaged local void fraction, o, liquid-phase mean axial velocity, Upea, and the
turbulence structure as presented by the turbulent velocity, v', and turbulent intensity defined as (W'/Upgen joca), a¥€
described in Figures 4 and 5 for relatively low and high values of <jg>. The single-phase liquid flow
measurements of axial velocity and turbulence structure corresponding to the same liquid flow rates, i.e., the same
superficial velocity, <j¢>, as the respective two-phase flow, are also shown on these figures as a reference. When
the two-phase flow profiles are compared in theses figures, it is evident that the void fraction, mean axial velocity,
and turbulence structure distributions have similar behaviors. More detailed observations can be made in the
following scctions.

3.1 Void Fraction Profiles

As described above, the time-averaged local void fraction measurement is calculated by Eq. (2). The void
fraction distributions are illustrated in Figures 4c and Sc. It is evident from these figures that the void fraction
distribution shows a sharp decrease toward the bottom of the pipe and practically becomes zero at a certain probe
position /R, indicating the existence of a liquid layer free of voids except near the wall of pipe, where the profile
of void fraction starts to build up again, This liquid layer thickness decreases by increasing gas flow rates at a
given liquid flow. It covers a liquid region between /R = 0.2 and r/R = -0.8 at <jz> = 0.25 m/s and between 1R =
-0.1 to r/R=-0.8 at <jz> = 0.8 m/s, as shown in Figures 4¢ and 5c.
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Bubbles tend to migrate toward the upper wall under the dominating influence of buoyancy force. Thus, the
void fraction under all test conditions generally showed distinct peak near the top wall at about /R ~ 0.8 to 0.9.
This range corresponds to 2.5-5.0 mm distance from the wall. This observation is more pronounced at high gas
flow rates, since at low gas flow rates the void fraction profile peaks at the wall itself, or too close to not reachable
by the finite probe size. This peak which appears in most cases, can be attributed to the increased hydraulic
resistance of the liquid path between the bubble and wall which may cause a sharp decline in void fraction. This
phenomena is identical to the one that has been observed in vertical bubbly two-phase flows [9, 10, 17] and in
horizontal bubbly flow [6] using double-sensor resistivity probe.
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Figure 4. Two-Phase Flow Data for <j>= 4.4 m/s and Figure 5. Two-Phase Flow Data For <jo>= 4.4 m/s and

<jg>=0.25 mv/s: <jg>= 0.80 n/s:

(a) Local Mean Velocity; (b) Local Turbulence Velocity;  (a) Local Mean Velocity; (b) Local Turbulence Velocity;
(¢) Local Void Firaction; (d) Turbulent Intensity (c) Local Void Fraction; (d) Turbulent Intensity
Distribution. Distribution.

O Single-phase data; o Two-phase data 0 Single-phase data; o Two-phase data.

3.2 Mean Velocity Profiles
The mean velocity profiles as documented on Figures 4a & 5a show asymmetric character with the largest

velocities located at the bottom part of the pipe. The degree of asymmetry is shown to decrease with increasing
liquid flows or decreasing gas flow. An interesting feature of the velocity profile is that the velocity distribution
within the bottom liquid layer exhibits a fully-developed turbulent flow character as demonstrated by the 1/7th
power law profile. The 1/7th power law was fitted by the experimentally measured maximum velocity located in
the liquid layer. Obviously, the maximum velocity in this ‘liquid layer’ occurs slightly off the pipe centerline (i.e. -
0.2 <1/R £ 0). 1t is interesting to note that although the value of this maximum velocity increases as either the gas
or liquid flow rate increases, the location of the maximum remains almost unchanged.

It is evident that within the high population bubble region at the upper portion of the pipe the mean liquid
velocity decreases sharply towards the upper pipe wall. Its values go even below the single-phase profile. This
sharp drop in the liquid velocity may be attributed to two reasons. Firstly, when the bubbles present they induce
additional turbulence which is called the bubble induced turbulence. As a result a sharp increase in turbulence due
to presence of bubbles naturally reduces the mean local velocity. Secondly, increased bubble population toward
the top of the pipe creates an additional resistance to liquid flow resulting in retardation of the liquid mean velocity
in this region. These combined retardation of increased bubble population turbulence and the resistance to the
liquid flow results in considerable reduction of the mean liquid velocity toward the top of the tube. On the other
hand, the reduction of the liquid mean velocity in this region causes considerable increase of velocity in the rest of
the pipe to maintain the overall continuity requirement. This observation is most pronounced at low liquid flow
rates, since in this case bubbles are concentrated at the uppermost part of the pipe and plenty of room for the liquid
(i.e. easier path) to flow.
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3.3 Turbulence Structure

The turbulence structure is presented in terms of the axial turbulent fluctuation and the turbulent intensity as
defined by (U'/Upeenocat). The turbulence fluctuations, o/, always increases when the gas introduced as seen in
Figures 4b & 5b. In the lower part of the pipe, the slight increase is compared to the single-phase profile.
However, at the upper part of the pipe where the population of bubbles is high, it substantially increases until it
peaks and then drops down abruptly in the region next to the wall,

It is interesting to notice that the location where u’ starts to build up is exactly the location where o distribution
initiated to take off. Morcover, the level of void fraction profile determines the level of turbulence velocity. This
indicates that the liquid turbulent velocity, u’, is a strong function of bubble population, ie., bubble induced
turbulence. This observation is similar to what is observed in vertical bubbly flow [11] and others that turbulent
kinetic energy increases strongly with void fraction.

Figures 4d & 5d of turbulence intensity (0'/Upean1ocat) further verify our results of u’ values. The surprising
identical trend of turbulence intensity in the lower part of the pipe between single-phase and two-phase confirm
the liquid layer existence. That means introducing air has no effect on turbulence intensity in the liquid layer. On
the other hand, the intensity increases rapidly as void fraction increases. It is very interesting to notice that
W/Upean locat is function of o for a certain setting of <jz> and <j2, unlike u’ which is a function of the relative
velocity too. This result is similar to the one reached by Lance and Bataille [11] for vertical bubbly flows. The u'/
Unnean1oca Profiles peaks next to the wall very similar to void fraction profiles. However, next to the lower pipe wall
they are negligibly higher than single phase profiles because of the interactions of bubble-induced and wall-
induced turbulence.

4, SUMMARY AND CONCLUSIONS

The internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm ID transparent horizontal
pipeline have been experimentally investigated by using the hot-film anemometry technique. The gas volumetric
superficial velocity changed from 0.25 to 0.8 m/s while the liquid volumetric superficial velocity kept fixed at 3.8
m/s, The time-averaged local values of the void fraction, the mean liquid velacity, and the liquid turbulence
fluctuations were measured.

An improved digital processing method based on a combination of amplitude and slope thresholds has been
developed to identify the phases in the hot-film anemometer output signal due to the passage of bubbles in a high-
speed bubbly two-phase flow. This technique has proved successful in identifying virtually all bubble passages,
including partial hits and very small bubbles and in determining the appropriate signal data for velocity analysis.
The method has the advantage of incorporating the probability density function of the anemometer output signal to
obtain automatically suitable value for the voltage amplitude threshold.

The experimental results indicate that the void fraction has a local maximum near the upper pipe wall. For the
horizontal bubbly flow, the observed time-averaged local void fraction can reach as high as 65%. It was found
that increasing the gas flow rate at fixed liquid flow rate would increase the local void fraction.

The axial liquid mean velocity showed a relatively uniform distribution except near the upper pipe wall, where
a sharp reduction in velocity was noticed. The local mean liquid velocity and turbulence fluctuations increased
with gas flow rate. It was also concluded that the local turbulent intensity is mainly a function of local void
fraction.
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ABSTRACT

'

A newly developed micro four-sensor conductivity probe is presented. The new
probe is applicable to a wide range of two-phase flow and capable of acquiring the
time-averaged local two-phase flow parameters of various types of bubbles. The data
acquired by the probe are categorized into two groups in view of the two-group fluid
particle transport; namely spherical/distorted bubbles as group 1 and cap/Taylor
bubbles as group 2. Benchmark experiment employing the image analysis method is
performed to validate the probe method, and a good agreement is observed. The data
obtained by the probe in the bubbly and bubbly to slug transition condition is
compared with the one-group interfacial area transport equation.

1. INTRODUCTION

In the two-phase flow system, the interfacial area concentration (a;) and the void fraction (@)

are two of the key geometric parameters in fluid particle transport and heat transfer capability. In
view of detailed assessment of the given two-phase system, many two-phase system analysis codes
employ the formulation using the two-fluid model[1], which is based on the detailed treatment of the
phase interactions at the interface. However, since the two-fluid model solves the conservation
equations for each phase separately, the phase-interaction terms arise. They are expressed in terms
of a, and the driving force such that

(Interfacial Transfer Term) ~ a; X (Driving Force). )
Therefore, the closure relation for the a; is indispensable for accurate assessment of the two-phase
flow system using the two-fluid model. In efforts of solving this closure problem in the two-fluid
model, Kocamustafaogullari and Ishiif2] established the foundation in developing the interfacial area
transport equation. [t was followed by recent efforts by Wu et al.[3] and Kim([4]. Nevertheless, in
order to evaluate the existing model, the detailed local measurement of the two-phase flow
parameters should be established.
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The conductivity probe was first proposed by Neal and Bankoff[S] accounting for the
fundamental differences in conductivity between water and air. With the acquired signals from the
multi-sensor probe, the local time-averaged two-phase flow parameters, such as «, and g, can be
acquired. The double sensor conductivity probe has been employed in dispersed bubbly flow
conditions, whereas the four-sensor probe has been applied in cap or slug flow conditions.

The measurement principle of the multi-sensor conductivity probe in obtaining the local time-
averaged a;, is based on the definition given by Ishii[1], such that

7' =L (__/_ @)
T AT\, n)

where j denotes the j” interface whlch passes a local point during the time mterval AT. Here, v; and
n; are the bubble interfacial velocity and unit surface normal vector of the j* interface, respectlvely
In view of this, Kataoka et al.[6] formulated a mathematical method to determine the local time-
averaged a, for both double-sensor and four-sensor probes. In the application of the double-sensor
probe, it was suggested that

1
Ivlcosq)
where N, is the number of bubbles which pass the point (x,y,z,) per unit time, and ¢ is the angle

between the unit normal of the bubble interface and its interfacial velocity. In formulating equation
(3), however, it was assumed that the bubbles are spherical in shape, and every part of the bubble has
equal probability of being intersected by the probe. The application of the four-sensor probe, on the
other hand, is important when the size of the bubbles become larger and they are no longer spherical
in shape. In the four-sensor conductivity probe, the local a, is acquired by acquiring three
components of interfacial velocity. For example, when the directions of the three independent

probes are chosen as the x, y, and z axes, the time-averaged q; can be acquired[6] by
7 /12

2 / 2
a = = (—/—J + + / 4)
AT .f/_/ V.r.’j V.r.i_/'

Therefore, unlike the double~sensor probe technique, no hypothesis for the bubble shape is necessary
in the mathematical formulation to calculate the local 4.

al(xy,p,2,)=2N, (3)

In previous studies[7,8], however, some major shortcomings have been reported in applying the
four-sensor conductivity probe, which had prevented the probe from being used in practice. These
shortcomings included missing bubble signals and deformation of the bubble interface.

2. DEVELOPMENT OF THE MICRO FOUR-SENSOR CONDUCTIVITY
PROBE METHOD

To minimize the limitations of the conventional probe, new designs are sought for the new probe
configuration. Both the conventional and the newly designed four-sensor probes are illustrated in
Figure 1. The significant reduction in the cross-sectional measurement area of the newly designed
probe and its sharply tapered tips of the sensors can effectively minimize both the number of missing
bubbles and the deformation of passing bubble interfaces. The new probe also accommodates the
double-sensor probe capability in the four-sensor configuration, such that it can be applied in two-
phase flow regimes spanning over bubbly, cap, slug, and churn-turbulent flow.
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Figure 1. Schematic diagrams of the conventional and newly designed conductivity probes.

Furthermore, in the new signal processing scheme, the signals are categorized into signals of
spherical, distorted, cap, and Taylor bubbles based on the bubble chord length information acquired by
the common sensor (sensor 0 in Figure 1). In the present experiments, spherical and distorted
bubbles are categorized as group 1, and the cap and Taylor bubbles are categorized as group 2. In
identifying the bubble types, the maximum distorted bubble limit and the spherical bubble limit given
by Ishii[9], and Ishii and Zuber[10] are used as criteria, such that

D,=4 Z—O-N”"' ; spherical bubble limit where  _ K, &)
oy gAP By u, 12
pc f_o__
( "V gap
and o
o, = 4 9 ; maximum distorted bubble limit (6)
g4p

Recently, in view of the double-sensor probe application, Wu and Ishii[8] suggested a correction
method accounting for the missed interfaces. In this study, they considered the effects of the lateral
movement of the bubbles and the probe tip spacing (/p; in Figure 1). By determining the calibration
factor £, the formula given by Kataoka et al.[6] was improved as

7 = A with fq=2+| 2| for As=036D,~086D, (I
a/ ‘/l‘am/(AsAT) Nb—/v””:u. 1otal (Vb} h b ( )

where N, is the number of total bubbles obtained, v,’ is the fluctuation of bubble velocity, ;; is the
average bubble velocity obtained by effective signals, and At,, AT, As are the time delay obtained

by effective signals for the j™ bubble interface, total sampling time at a local point, and distance

between two tips of the sensors, respectively. For bubble sizes varying from 0.6 to 1.4 times the
mean bubble size, it was found that the ¢, calculated by equation (7) would result in a statistical error
of £7-% for a sample size of approximately 1,000 bubbles[8].

For bubbles whose shapes are not spherical, the local time-averaged a; is obtained by the signals

acquired from the four sensors. Unlike the double-sensor method, the corrections for the defective
signals from the distorted and cap bubbles are made in two steps in estimating the local a;, such that

— —_— jv/al = Mﬂ/
Lo = ”y.qy'( - ) + e [ (8)
Nf -".‘I' N"‘-’”‘

where g, is the average g; calculated with effective bubble signals, Ny is the number of effective
bubble signals, N

o,
» denote front and rare bubble interfaces, respectively. Furthermore, in order to account for the

is the total number of bubbles counted by the common sensor, and subscripts f and
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missing signals due to the steep interface of Taylor bubbles near the wall, the correction method by
Ishii and Revankar[7] is employed such that
e N Q)
a/'.m/:r.r"' miss A ]v 4

where N, is the number of missing Taylor bubble interface, ¢, is the residence time of the missing
bubble signals, AT is the total sampling time, [ is the average distance between three independent
sensor pairs (i.e., /;5, I3, and /,; in Figure 1), and 4, is the measurement area of the probe.

3. BENCHMARK OF THE PROBE

Two separate benchmark experiments employing the image analysis method are performed in
order to validate both the double-sensor and the four-sensor method. The benchmark experiments
for the double-sensor probe is performed in a transparent air-water vertical rectangular flow duct[11].
A computer code developed by Zhang and Tshii[12] is used to process the captured images to obtain
the location and the diameter of each bubble. The typical result from the double-sensor probe
benchmark experiment is shown in Figure 2. The relative percent difference between the two-
methods is within +10-%. Considering the limitation of the image method near the edge of the
viewing window, the results from both measurement methods agree well.

[n benchmarking the four-sensor probe, on the other hand, an adiabatic air-water two-phase flow
loop of 5.08-cm ID with 375-cm in height is employed. Bubbles are generated through stainless steel
hypodermic tubes of 0.12-mm in ID, which are arranged in a 20x20 square matrix. The probe is
traversed by a micrometer at a fraction of 1.27-mm from the center to the wall of the test tube. In
the present experiment, the gas flow rates are varied by j,=0.052, 0.179, and 0.432-m/s while the
liquid flow rate is fixed at j=0.321-m/s. The data acquired by the probe is then benchmarked by the
images of Taylor bubbles captured in the test loop as shown in Figure 3. From the captured images,
the contour of the Taylor bubble is calculated with respect to the slug length assuming symmetric
front and flat rear interfaces. The agreement between the calculated values and the experimental
data is quite acceptable in both o and a,. Some deviations may be due to the errors in estimating the

Taylor bubble chord-length and to the fact that the image analysis assumes the smooth and
symmetric front and flat rear interfaces.

4. EVALUATION OF THE ONE-GROUP INTERFACIAL AREA TRANSPORT EQUATION

The objective of developing the interfacial area transport equation is to replace the flow regime
dependent correlations for the a; in the thermal-hydraulic system analysis. The approach employing
such correlation does not dynamically represent the changes in interfacial structure, such that it can
not only induce non-physical oscillations in system behavior but limit the code accuracy. Therefore,
improvements in the treatment of interfacial structure and flow regime transition will greatly
enhance the capability of the system analysis codes. In what follows, the one-group interfacial area
transport equation applicable to the two-phase flow in a round tube geometry is presented along with
the cvaluation results against the data acquired by the newly developed probe. For the detailed
formulation procedures and the mechanistic modeling, however, authors recommend the readers to
refer to references[3,4] given earlier.
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Figure 2. Typical results obtained from the comparison between the a; measured by the double-sensor
probe and that from image analysis. Here, W=half-width of the total flow duct width in the x-
direction.
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Figure 3. Comparison of the & and a;. between the experimental data and the values calculated based

on the image analysis for flow conditions; jfixed at 0.321-m/s and j, varied at (a) j, =0.052-m/s, (b)
J¢=0.179-m/s, and (c) j;=0.432-m/s

In developing the one-group interfacial area transport equation, the source and sink terms are
established through mechanistic modeling of major bubble interaction phenomena in the bubbly flow
regime. These include the number source/sink rates stemming from; disintegration due to turbulent
impact (77), coalescence through random collision driven by turbulent eddies (RC), and coalescence
due to the acceleration of the following bubble in the wake of the preceding bubble (WE). The one-
group interfacial area transport equation is then given by

2
9, +V-(ay)= é(—g)(?ﬁ +V. avg) + -i(%) [8 = Rope = Ry ] + DR ;5 (10)

or ot Jw a
where, the source and sink terms in the right hand side of the equation are given by
R,=C, 2% exp(—Zeﬂ) ]—&C , when We > We,,; (1)
D, We We
wu ol
RﬂC:C}C[aﬁ;(aﬂ;—baﬂj) /—exp —CW s (12)
Ry = CCp( Dy’ Dju(D,), (13)
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Here, the Cyy, Cpc, and Cyyy; are coefficients to be determined through experiments, and We,, and @y,

are the critical Weber number over which the bubble disintegrates and the maximum packing limit,
respectively. [n benchmarking the model against the data, equation (10) is averaged over the
channel cross-sectional area to simplify the evaluation procedure. This assumes all parameters
exhibit radially uniform profiles, so that the covariance terms are negligible. Furthermore, noting
from the experimental data that the bubble size across the flow duct at a given axial level is nearly
uniform, the a; weighted bubble interfacial velocity is approximated by the void weighted bubble
velocity. The local data are acquired in air-water vertical co-current adiabatic two-phase through the
2.54-cm ID and 5.08-cm ID tubes. In both test sections, the local measurements are made by
traversing the conductivity probe in radial direction at three axial locations. The flow conditions of
the present experiments are summarized in Table 1.

Table 1. Experiimental conditions for the data employed in the model evaluation

Tube ID [cm] Run No. J. [m/s] Jr[m/s]
-1 0.055 0.262

1-2 0.078 0.262

-3 0.041 0.872

1-4 0.143 0.872

2.54 1-5 0.046 1.750
1-6 0.257 1.750

1-7 0.051 3.490

1-8 0.201 3.490

1-9 0.702 3.490

2-1 0.242 0.986

2-2 0.321 0.986

5.08 2-3 0.471 2.010
2-4 0.624 2.010

2-5 1.106 5.000

2-6 1.790 5.000

In the present study, the coefficients in the model are determined based on the acquired data. I[n
highly turbulent flow conditions, the 77 and RC mechanisms are assumed to be dominant, whereas in
low Reynolds number flow condition, WE is assumed to be dominant compared to RC. Furthermore,
the constant C in RC, which accounts for the effective range of influence of eddies in driving bubbles
to collisions, is assumed to be 3. In estimating the critical Weber number, it is varied from 2.3 to 8,
based on the previous studies [13,14]. Then, the coefficients were determined by finding the values,
which yield the best agreement with the experimental data. They were given by: Cy,=0.002;
Cp=0.004; C=3.0; 0x=0.75; C;=0.085; and We_=6.0.

The results of the model evaluation are shown in Figure 4. The overall agreement between the
model and the data is good within the measurement error of approximately £10%. Some deviations
in transition flow conditions are observed due to the error associated with the presence of the group 2
bubbles. Nevertheless, it is of noteworthy that the one-group interfacial area transport equation
generally predicts well in the wide range of bubbly flow conditions in different sizes of pipe flow.

The characteristic contributions from the individual source or sink terms to the total change in a,
are also plotted in Figure 5. Under the given flow conditions, the bubble expansion due to the
pressure change (£XP) plays an important role in the increase in ¢, The contribution from the 77
mechanism depends mainly on the given flow condition, such as liquid Reynolds number and the fluid
particle Weber number, such that it is significant in Run 1-9, whereas it is minimal in Run 2-3. It can
be also seen that the dominant mechanism among bubble coalescence mechanisms is attributed to RC.
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Figure 4. Evaluation of the Model with Experimental Data. (a) Data obtained in 2.54-cm ID pipe.
(b) Data obtained in 5.08-cm ID pipe.
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J772.010-m/s in a round pipe of 5.08-cm ID.

5. SUMMARY AND CONCLUSIONS

The newly designed micro four-sensor conductivity probe and its signal processing scheme are
presented. The new probe not only minimizes the bubble deformation and missing bubble
phenomena, but also accommodates the capability of a double-sensor probe for small bubbles. This
feature enables one to establish the database for the two-group bubble transport. The signal
processing scheme accounts for the missing and non-effective signals and is constructed such that the
two-phase flow parameters of the different types of bubbles can be separated and categorized
accordingly. A good agreement is observed in the benchmark test employing the image analysis

method, which assesses both the newly designed probe and the measurement principles in the signal
processing,

The one-group interfacial area transport equation applicable to the adiabatic air-water bubbly
flow in round tubes is established. The development of the g; along the flow path predicted by the
model agrees well with the data. Active fluid particle interactions are well demonstrated through the
sensitivity analysis on individual source and sink terms, which reflects the dominant mechanisms at
various flow conditions. Under the present experimental conditions, the RC mechanism plays a
dominant role in bubble coalescence as a sink term, whereas the contribution from the 77 mechanism
varies depending on the Reynolds number and the particle Weber number.
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ABSTRACT

A broad theoretical attack has been made on all phases of subcooled
boiling, as evidenced by the publication or submittal of five papers in leading
journals in the 1999-2000 period. For details, the reader is referred to these
publications. Here we give a broad outline. These have included nucleate,
transition and film boiling. Nucleate boiling is perhaps the most interesting,
because of the enormous steady heat fluxes attainable (>30 MW/m?), but also the
most complex and difficult. An analogous, but somewhat simpler, problem is
that of a vapor bubble confined between two parallel plates, one of which is
heated and the other cooled. Simultaneous evaporation and condensation occurs.
This latent heat transport is thought to be the dominant heat transfer mode in
subcooled nucleate boiling. There is a transition region between the nearly-
circular advancing bubble front in the parallel-plate (or thin capillary tube)
problem, behind which an ultrathin liquid film is deposited, and thus evaporates
on the heated wall. The initial thickness of this film depends on the bubble front
velocity. By asymptotic matching of the transition region with the curved
interface, it was established that this thickness is proportional to (Ca)**, where
the capillary number, Ca, is a dimensionless bubble velocity. Previously, it had
been thought that it was proportional to (Ca)'?. Another study showed that on
imperfect (coated) surfaces, it was possible to obtain on a stable,
microscopically-thin (1-3 nm) liquid film on the heated wall, owing to the
combined presence of conjoining and disjoining presences in an apolar liquid.
These arise from molecular dispersive forces from the top and bottom of the
coating. This permits stable good wetting, resulting in complete utilization of the
locally-available coolant. This may resolve a 50-year old puzzle as to how such
enormous heat fluxes are possible.

The stirring action of a growing and collapsing bubble while attached to
the heating wall was simulated by considering a periodically-oscillating wedge
with constant apex angle with a heated wall in a semi-infinite liquid. The
linearized equation was solved by transform methods and Floquet analysis, and
showed multiple vortices developing and migrating.
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Film boiling, in which a thin vapor layer is interposed between the
subcooled liquid and the hot solid, is also important for its negative aspects in
nuclear reactor accidents and burnout of heat transfer equipment. The
equilibrium base state has traditionally been taken to be a quiescent uniform
vapor film. However, as the wall temperature is progressively reduced, a
nonlinear bifurcation takes place, which may be supercritical (bounded) or
suberitical (possibly unbounded). By integrating along the nonlinear branches,
some fascinating phenomena are revealed, such as stable or unstable, steady
states or traveling waves, and hysteresis loops. Convection in the film parallel to
the plate leads to accumulation points for vapor, which are incipient bubbles.

At a later stage liquid tongues penetrate the horizontal film, making
contact with the solid surface. These contacts may grow or shrink, depending
upon , among other things, the evaporation rate and the liquid downflow rate. A
wetting/dewetting map was thus constructed, giving the neutral stability line for
the onset of transition boiling, and the minimum film boiling temperature.

INTRODUCTION

Significant new insights have been published in the past year on subcooled boiling, in which
the bulk liquid is below the saturation temperature. Subcooled boiling can reach steady heat fluxes
above 30 MW/m? [1] in a relatively simple device, which makes it the heat transfer mode of choice in
several high-heat-flux applications. A major barrier to the further densification, and hence
miniaturization, of computer chips is the need for steady heat removal from concentrated sources.
Plasma studies, leading towards eventual realization of fusion energy, and intense photon beams for
material property studies (Argonne National Lab) are other sources of very large steady heat fluxes.
On the other side of the coin, operation at such high fluxes implies that instabilities, leading to film
boiling rather than nucleate boiling, are of concern because of possible equipment damage, melting
and even vapor explosions, as in the Chernobyl accident. Despite a large number of investigations
over the past half-century, knowledge of the mechanics of flow and heat transfer in boiling systems is
based on small-scale experiments and phenomenological models. These have been useful, but our
approach represents a new attack on the problem.

SUBCOOLED NUCLEATE BOILING

In highly-subcooled nucleate boiling, enormous numbers of tiny bubbles grow and collapse
while attached to the heating surface. Because they never detach, the bulk liquid remains free of
vapor, in contrast to the usual situation in saturated boiling. Despite this important simplification,
experimental information remains scarce, since the bubble maximum radii are of order 1-mm , with
millions of bubbles with lifetimes of order 1 ms. There has therefore been a controversy for the past
50 years concerning the principal mechanism for this extraordinary heat transfer. One might suppose
that it lies in the latent heat transport by the vapor, but this has been discounted on the basis of visual
vapor volumetric generation rate, and calculation of evaporation rate from the thin liquid microlayer
at the base of the growing bubble. Alternative possibilities include stirring of the liquid between the
bubbles and quenching of the dry solid when the liquid returns after bubble collapse. The former
mechanism has been studied by Tilley, et al. [2] However, it is readily shown that neither of these
possibilities can account for average surface heat transfer coefficients of the order of 1 MW/m? K.
On the other hand, condensation heat transfer rates of 60-80 MW/m? were measured ' by
Bankoff and Mason [3] at the surface of an oscillating bubble resulting from the injection of steam in
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a turbulent water stream, with similar dimensions and cycle, so that the latent heat mechanism seems
plausible. But how was the required vapor rate to be achieved?

The assumption has been that the thin liquid microlayer at the base of the growing bubble
remains immobile once it has been deposited by the advancing bubble front. A simpler analog to the
bubble growing in an infinite sea of liquid is a bubble confined between two parallel plates, one of
which is heated and the other cooled. If the microlayer remains locally immobile as it evaporates, the
film can become discontinuous, since the local time of dryout depends on the film thickness that was
deposited at that location when the bubble passed over it at some previous time. Wilson, Bankoff and
Davis [4] found, by asymptotic matching of the transition region to the curved bubble front, that the
local thickness at deposition was proportional to the capillary number (or dimensionless bubble wall
velocity) to the 2/3 power, instead of square root, as previously assumed. Furthermore, in a long tube
the bubble wall velocity can be discontinuous more than once.

This was a first step towards the computation of a single bubble, and of an array of bubbles,
growing and collapsing on a heated wall in subcooled nucleate boiling.

The next clue was provided by a study by Bankoff and Oron (5] of the dryout of an
evaporating ultrathin film on a coated hot surface. A model by Vold [6] for a pure, apolar, isothermal
liquid acting on a coated colloidal particle, was extended to the case of a thin film of non-isothermal
apolar liquid acting on a coated (oxide, organic material or other contaminant) solid evaporating to
dryness. This leads to a two-term van der Waals exponent pair in the evolution equation,
corresponding to simultaneous conjoining/disjoining pressures resulting from attractions from the
bottom and top of the coating for the vapor-liquid interface. This is in contrast to the [3,9] exponent
pair usually used, which leads to attraction, but not repulsion until the solid surface is actually
reached. With the [3,4] potential a stable liquid precursor film is produced, which may be 1-3 nm in
thickness. This would correspond to complete wetting. Furthermore, hydrodynamic, rather than
adsorption/desorption, equations are appropriate for films of this thickness. The apparently dry area,
which appears on the heated surface, grows and pushes the remaining liquid into drops surrounded by
ultrathin film. Because of the enormous evaporation rates from the ultrathin film, the drops shrink,
acting as reservoirs under the difference in conjoining pressures, until they disappear. All liquid
quickly then evaporates. This is in contrast to the case considered by Burelbach, Bankoff and Davis
[7] for a poorly-wetted surface, in which local dryout occurs as soon as the free-surface wave reaches
the solid surface. Very little of the liquid has been evaporated at that point. With a wetted surface
the process is efficient, in that all of the coolant is utilized. It appears that this may explain the 50-
year old paradox, but more data are needed to test this theory.

Practical Significance
Wettability of the heating surface thus may be important in determining the efficiency of
high-flux heat transfer. This may call for special surface treatment.

TRANSITION BOILING

Once film boiling is established a relatively quiet film of vapor separates the heated surface
from the bulk liquid. However, close to the minimum film boiling temperature, tongues of liquid
penetrate the film and touch the surface. The contact is generally unstable, and the tongues retract.
However, a critical condition exists under which the contacts spread and cover the surface. This is
known as transition boiling, leading to full-fledged nucleate boiling. Joo, Davis and Bankoff [8]
offered a simple hydrodynamic theory for this process, in which an inviscid liquid column flows
downwards, being simultaneously evaporated at the solid surface. For the first time a phase
diagram was produced which showed the critical condition for wetting/dewetting as a function of
liquid downflow rate and solid thermal resistance, other factors being held constant. Extensions are
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intended which will take into account capillary effects in spreading and explore the parameter space
more fully.

Practical Significance

This is the first map which has been published for wetting/dewetting of hot dry surfaces
under a vapor layer, which marks the onset of transition boiling and the minimum film boiling
temperature. Long-range conjoining/disjoining pressures, as above (Oron and Bankoff [5,9], together
with capillary effects, need to be brought in.

FILM BOILING

Before the stable film actually produces down-flowing tongues of liquid, there is a critical
heat flux at which the smooth quiescent vapor film surface becomes unstable. At this point a
bifurcation takes place, which may be supercritical or subcritical. Exploration by Panzarella, Davis
and Bankoff [10] of these nonlinear branches reveals the existence of stable or unstable steady states
or traveling waves, possible existence of hysteresis loops, and accumulations of vapor which are the
precursors to bubble formation and removal. Weakly-nonlinear stability analyses of this type,
leading at the third order to Landau-Ginsberg equations for the nonlinear growth of the wave
amplitude are well-known, but have never been applied previously to film boiling. This is the first
rigorous exploration into the nature of film dynamics in horizontal film boiling.

OTHER WORK

Other work published in the past year supported by this grant was a study of a slender dry
patch on an inclined plate in a draining liquid film by Wilson, Duffy and Davis [11], relevant to the
dewetting problem, spreading and imbibition of a viscous liquid on a porous base by Hocking and
Davis [12], and the dewetting of hot coated surfaces by Bankoff and Oron [13].
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COMPLEX DYNAMICS IN LARGE ARRAYS OF FLUID-ELASTIC
OSCILLATORS

F.C. Moon, Cornell University, Ithaca, New York USA
M. Kuroda, Mechanical Engineering Laboratory, MITI, Tsukuba, Ibaraki, Japan

Abstract

New experiments on the dynamics of 90 and 300 elastic oscillators in a steady
cross flow are described. Unlike the single row dynamics, which lead to limit
cycle behavior, multi-row arrays seem to exhibit chaotic though not
necessarily, low dimensional dynamics, at a critical flow value. With
increasing flow velocity however, organized wave-like structures appear to
develop. Experimental models of this type may serve to help understand
complex dynamics in large array heat exchange systems. It may also be a
model to understand wind crop dynamics and damage.

INTRODUCTION

Fluid-elastic vibrations occur in heat exchanger systems, agricultural crop-wind
interactions and bio-mechanical problems such as ciliated epithelia. Classic problems
include the flow of fluid through tube structures and around tubes and have generally
focused on linear dynamics. In this study we discuss experimental nonlinear dynamics of
a large array of up to 300 cylinders in a cross flow. The rod-like structures are
cantilevered at a base and free to vibrate at the top. (Figure 1) The coupling between rods
consists of fluid forces and contact when the vibration amplitude becomes too large. The
fluid forces are of two types; fluid-elastic nearest neighbor forces equivalent to springs
and dampers, and non-nearest neighbor forces produced by vortices leaving the forward
rows of cylinders and effecting the dynamics of the rearward rows of cylinders.

Observations of the tip vibration dynamics reveal complex patterns of motions of
the rods, some of which appear nearly stationary, others vibrate in a straight-line motion
in-line and at an angle to the upstream flow and others vibrate in elliptical patterns
sometimes associated with rod to rod contact. While the rod frequencies lie close to their
natural frequencies, the phases and types of motion, i.e., stationary, straight-line and
elliptic show no regular pattern and change in time. It is important to emphasize that the
linear theory would predict 2xNxM eigenmodes for a NxM array or rods. However, no
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clear modal pattern emerges as the wind tunnel velocity is increased. Thus, we have
sought to apply entropy measures of complexity to describe the dynamics.

DESCRIPTION OF EXPERIMENT

The wind tunnel is a low turbulence system with a 25.6 cm X 25.6 cm cross
section, The 17.1 cm long rods were steel with a diameter of 1.59 mm and a spacing
between rod centers of 3.2 mm or a gap equal to the rod diameter. The Reynolds number
based on the rod diameter ranges from 200-900. Although the base holes are precisely
regular, the spacing of the ends of the rods varied slightly from a periodic spacing due to
small initial curvature in the rods. The data reported in Figures 2,3 are for a 3 row by 30
rod array, as shown in Figure 1. However, another experiment involves 10 rows of 30
rods. Dynamic data are obtained by instrumenting one or two rods as well as video
taping of the motion of the ends of the rods of the entire array. Also photographic images
with a shutter speed on the order of the vibration period for 10 Hz were taken. The wind
speeds ranged from 0-10 m/s, but no significant dynamics were observed below 2 m/s.

The 90 rod experiments were extended to 300 rods of the same diameter and
spacing with 10 rows of 30 rods. In these experiments, the flow behind the 10 row array
in a cross flow was measured with a pitot tube. The results are shown in Figure 4. The
data shows that the array acts as a porous rigid object in the flow with most of the flow
directed around the sides and over the top of the rods. There still is significant flow
through the array however. In addition an accelerometer was fixed to the middle rod in
the last row. Power spectra and probability distribution of accelerations were also
measured. Video data was recorded to show the wave-like structures in the flow.

RESULTS

To describe the vibration patterns in the 90 rod array photographs were taken at
different wind speeds from the onset of vibrations, around 2 m/s to 9 m/s. We use an
entropy measure based on three symbols corresponding to the three types of motion;
stationary, straight-line and elliptical orbits. A typical pattern is shown in Figure 3.
Although the states of each rod varied in time, it was found by observation of the video
records that the photographic pattern gave a good sample of the average patterns.

In Figure 2, we show the number of rods in straight-line and elliptical orbits as a

function of wind speed. Clearly, one can see an onset of motion at a critical speed and
the growth of the number of rods in elliptical motions. This may be related to the greater
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incidence of rod impact at the higher wind velocities. The data also shows hysteresis for
increasing and decreasing flow.

Data was also taken for the array at an angle to the flow direction. The same
phenomena occurs as in the head-on flow case except near the 90 degree flow case where
there are 30 rows of 3 rods each. In this case, there is very little motion as the array
seems to act as an airfoil and directs the flow around the array instead of through it.

For the 300 rod array, velocity measurements (Figure 4) show that the collective
action of the rods screens the flow, forcing a large fraction around the sides and over the
top. However there is no indication that the edge rods experience more or less vibration.
Video pictures clearly show that all the rods participate, sometimes in wave-like motion
transverse to the flow direction. Also the accelerometer data on one of the rods, (Figure
5) shows bursting phenomena probably related to impact between the rods as the flow
velocity is increased. We are trying to be able to take data from the video records in order
to obtain more collective dynamic measurements.

ENTROPY MEASURES

Several pattern entropy measures were used, based on the entropy measure
5= p,log(1/p,)

where p, is a probability measure of a certain spatial pattern occurring. These measures
of local cluster pattern show an increase in entropy with flow velocity.
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ROBUST FOREWARNING OF DYNAMICAL CHANGE FROM SINGLE-CHANNEL
SCALP EEG DATA

V. Protopopescu, L. M. Hively, and P. C. Gailey

Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

ABSTRACT

We present a robust, model-independent technique for measuring changes in the
dynamics underlying nonlinear time-serial data. We define indicators of dynamical change
by comparing distribution functions on the attractor via L;-distance and % statistics. We
validate these measures against model data and then we apply them to clinical single-
channel, scalp EEG data with the objective of capturing the transition between non-seizure
and epileptic brain activity in a timely, accurate, and non-invasive manner. We find a clear
superiority of the new metrics in comparison to traditional nonlinear measures as
discriminators of dynamical change.

INTRODUCTION

Nonlinear processes are ubiquitous. Examples include: brain and heart waves; electrical transients in
power systems; fluid (air or water) flow over the surfaces of automobiles, airplanes, or submarines;
weather and climate dynamics; machine tool chatter; nuclear reactor instabilities; fusion plasma
instabilities; earthquakes; turbulent flow in conduits; fatigue and stress crack growth; and planetary or
satellite motion. Typically, nonlinear data arise from a virtual “black box” with little or no knowledge of
the underlying system, its dimensionality, or noise contamination. More often than not, traditional
nonlinear analysis requires some assumptions about the underlying dynamics. For example, calculation of
Lyapunov exponents or Kolmogorov entropy implicitly assumes that the process can at least be modeled
as a (low dimensional) dynamical system. At a more fundamental level, one may ask whether the data
arises from a stationary process. It is very likely that complex systems, such as the weather or the brain,
could not be well modeled by low dimensional, stationary dynamics over long times.
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The technologist must frequently distinguish or quantify differences between nonlinear states that are
apparently similar, but actually different. Inherent nonlinearity and high levels of noise in most real-life
systems make condition or state comparisons extremely difficult or even impossible with linear or
traditional nonlinear analyses. New measures are needed that are less affected by noise and at the same
time are more sensitive to structural or parametric changes in the underlying dynamics.

We describe a new model-independent method for measuring dynamical change in nonlinear,
possibly nonstationary data. The dynamics of reference and test cases are represented as discrete
distributions of the density of points in reconstructed phase space during different time windows.
Variability is captured by the visitation frequency at various regions of phase space as described by the
distribution function. The method quantifies differences in these reconstructed dynamics by comparing
the distribution functions. We make no specific assumption about stationarity, because no dynamical
properties are inferred from the reconstructed attractor. The system dynamics may change within the time
window, but such variability presents no problem for our technique, which measures dynamical change
over a variety of length scales, and over a wide range of time scales. Moreover, our method allows
measurement of dynamical change that that occurs continuously or intermittently.

Recently, Moeckel and Murray [1] discussed similar concepts for measuring the “distance” between
attractors from time-delay reconstructions. In this context, our method provides continuous measures of
change, in contrast to stationarity tests for whether or not any statistically significant change has occurred.
Due to their continuous nature and their independence from assumptions about stationarity, our measures
are particularly useful for analysis of physiological data. We illustrate the practical use of the technique
for such data, namely analysis of single-channel, scalp EEG for forewarning of epileptic seizures.

TRADITIONAL NONLINEAR MEASURES

We assume that an unknown scalar signal, x, is sampled at equal time intervals, T, starting at time, ty,
yielding a sequence of N points, X; = x(to + it). Dynamical process reconstruction [2] uses d-dimensional
time-delay vectors, y(i)=[xi, Xisr » ..., Xis@-1p ], fOr a system with d active variables and time lag, A. The
choices of lag and embedding dimension, d, determine how well the reconstruction unfolds the dynamics
for a finite amount of noisy data. A proper reconstruction allows calculation of nonlinear measures that
are consistent with the original dynamics. Below, we use three traditional measures, for comparison to our
phase-space indicators of dissimilarity.

The mutual information function is a nonlinear form of auto-correlation function. Mutual
information was devised by Shannon and Weaver [3], and applied to time series by Fraser and Swinney
[4]. Mutual information measures the information (in bits) that can be inferred from one signal about a
second signal, and is a function of the time delay between the measurements. Univariate (bivariate)
mutual information measures information within the same (different) data stream(s) at different times.
Here, we use the first minimum, M, in the univariate mutual information function. M; measures the
average time separation (in time-steps) that decorrelates two points in the time series.

The correlation dimension, D, measures process complexity and is a function of scale length, §, in
the data. Here we use the maximum-likelihood correlation dimension developed by Takens with

modifications for noise by Schouten et al. [5,6].

The Kolmogorov entropy, K, measures the rate of information loss (bits/s). Positive, finite entropy
generally is considered to clearly indicate chaotic features. Large entropy implies a stochastic, totally
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unpredictable process. Entropy measures the average time for two points on an attractor to evolve from a
small initial separation to more than a specific (large) distance, 8 > ;. We use maximum-likelihood
entropy by Schouten et al. [7].

Noise corrupts all real data. In addition, finite precision computer arithmetic truncates model data.
Thus, we choose a finite-scale length that is larger than the noise, 8, = 2a, at which to report K and D,
corresponding to finite-scale dynamical structure. Our choice of length scale balances local dynamics
(typically at 3 < 3a) against avoidance of excessive noise (typically at 8 < a). The symbol, a, denotes the
absolute average deviation as a robust indicator of variability? in the time serial data:

N
a=(I/N) Z x; - x| )
i=1
where symbol x denotes the mean of x;. Thus, our values of K and D have smaller values than expected
for the zero-scale-length limit.

NEW MEASURES OF DYNAMICAL CHANGE

Traditional nonlinear measures characterize global features by averaging or integrating over the data.
Such measures describe the long-term behavior but poorly indicate dynamical change. Greater
discrimination is possible by more detailed analysis of the reconstructed dynamics. The natural (or
invariant) measure on the attractor provides a more refined representation of the reconstruction,
describing the visitation frequency of the system dynamics over the phase space. We begin by converting
each signal value, x;, to one of S different integers, {0, 1, ..., S-1}:

0 < 5= INT[S(X; - Xmin)/(Xmax = Xmin)] < S-1. 2)

Here, Xy and X0 denote the minimum and maximum values of x;, respectively, over the reference case
only and INT is a function that rounds a decimal number to the closest lower integer. For Xmin < X; < Xyae
the inequality 0 <'s; < S-1 holds trivially. We take s;(X; = Xmax)= S-1 in order to maintain exactly S distinct
symbols and to partition the phase space into ¢ hypercubes or bins. We then discretize the distribution
function on the attractor, by counting the number of phase-space points occurring in each bin. We denote
the population of the i-th bin of the distribution function, P;, for the base case, and Q; for a test case,
respectively. For this work, we iteratively vary each parameter (S, d, N, etc.) with the others fixed, to
obtain optimum sensitivity of the measures to changes in process dynamics. A systematic method to
determine optimal values for these parameters is the subject of future work.

We use an embedding window, M, = (d — 1)A. Here, the first minimum in the mutual information
function, M,, is measured in timesteps. We obtain an integer value for the lag from the previous equation
by A =INT[0.5 + M;/(d-1)] > 1, thus constraining the largest value of dimensionality to d < 2M, + 1.

We compare the distribution function of a test state to the reference state, by measuring the
dissimilarity between P; with Q; via the y” statistics and L, distance:

x =Z(P;- Q)Y/(P;i + Q;), and )

L =2 - Ql. @
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The summations include all of the populated cells in the phase space. The sum in the denominator of Eq.
3 is based on a test for equality of two multinomial distributions. Proper application of these measures
requires a rescaling so that the total population of the test case distribution function is the same as the
total population of the base case.

By connecting successive phase-space points as indicated by the dynamics, y(i) — y(i+1), we
construct a 2d-dimensional phase-space vector, Y(i)=[y(i), y(i+1)]. Thus, we obtain a discrete
representation of the process flow [8]. This approach extends the method to capture more dynamical
information using pair-wise connectivity between successive d-dimensional states. We use base-S
arithmetic to assign an integer identifier j = ; for the i-th phase-space state, using I; = £d™' si(m). The
sum runs from m=1 to m=d, corresponding to successive components of the d-dimensional phase—space
vector. The symbol, si(m), denotes the m-th component of the i-th phase-space vector. The numeric
identifier for the sequel phase-space point is k = I+). Then, we can define the measure of the dissimilarity
between these two connected phase-space states, as before, via the L;-distance and x? statistics:

%6 = Z (P~ Qu)/(Pye + Qe ), and (5)
L.= % [Pj — Q- (6)
J
P; and Qi denote the distribution functions for the base case and test case, respectively, in the connected
phase space. The summations in both equations run over all of the populated cells in the connected phase

space. The subscript, c, denotes the connected measures, which are stronger metrics than the non-
connected versions, according to the following inequalities [9-10): ¥* < L, %ol <L, L <L, and 3* < %2

VALIDATION

We test the discriminating power of our measures on chaotic regimes of the Lorenz system [9] and of
the Bondarenko model [11]. The latter model mimics high-dimensional EEG dynamics via a system of
delay-differential equations. The Lorenz model reads [12]:

dx/dt=a(y - x)
dy/dt=rx-y-xz @)
dz/dt=xy - bz.

As stated before, some traditional nonlinear measures are good indicators of a bifurcation or
transition to chaos. However, transitions between two chaotic regimes are poorly detected by these
measures, especially for relatively small changes in the parameter that underlies the transition. Therefore
we focus on detecting dynamical changes within a region where the Lorenz system is known to behave
chaotically, namely [13]: a= 10, b= 8/3, and 25 <r < 90. We compute various nonlinear measures versus
r, by analyzing only the time serial values of z. The results of this analysis are as follows [9]. The
correlation dimension, D, varies erratically from 1.7 to 2.15 over the whole range of r. The Kolmogorov
entropy, K, also varies irregularly from 0.03 to 0.05. The value of M,, increases somewhat
monotonically, but step-wise as r rises, so that relatively large variations in r are poorly indicated (e.g.,

constant for 60 < r < 72). In sharp contrast, as r rises from 25 to 90, the PS and CPS measures increase
almost monotonically from zero to rather large values. The values of L and + essentially coincide over
the whole range because the measures are dominated by (C)PS domains that are populated only for the
base case (Q; > 0 for R; = 0) and only for the unknown (R; > 0 for Q; = 0), for which the two measures
become analytically equivalent.
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We also assess the phase-space measures by testing them on the Bondarenko neuron model [11],
which is a coupled set of time-delayed ordinary differential equations:

M N '
du;/dt = -u;(t) + E| &5 f(uj(t - "Cj)), (8)
j=

The signal from the i-th neuron is uy(t). The indices, i and j, run from 1 to M=10 for ten neurons. The
matrix, a; , is a set of coupling coefficients having uniformly random values, -2 < a;; < 2. The time delay
is a constant, ;= 10. The function, f(x) = ¢ tanh(x), simulates nonlinear neural response to signals from
neighboring neurons. We concentrate on measuring dissimilarity within a region where the Bondarenko
system is known to behave chaotically [11]: 5 < ¢ < 16. We use one of the ten neuron signals for
dissimilarity detection. The results of this analysis are as follows [10]. The correlation dimension varies
erratically between 3.5 and 8.5 as c increases from S to 16. Over the same range of ¢, the Kolmogorov
entropy rises almost monotonically from 0.025 to 0.16. The location of the first minimum in the mutual
information function, M,, also varies erratically as ¢ increases. In sharp contrast, as ¢ rises from 5 to 16,
the (connected) phase space measures increase almost monotonically over several orders of magnitude.
As before, the values of L and %* essentially coincide over the whole range because the measures are
dominated by phase space bins that are populated only for the base case P; > 0 for Q; = 0 and only the test
case P; > 0 for Q; = 0, for which the two measures become analytically equivalent.

Analysis of these two analytical models of chaotic dynamics shows continuous change in the phase-
space measures, which increase monotonically by four orders of magnitude over a reasonable parameter
range. Over this same parameter range, the phase-space measures of condition change consistently
outperform the traditional nonlinear measures, which are indistinguishable from noise or vary erratically
by a factor of two. These results provide confidence that the phase-space measures are useful for noisy
clinical EEG data.

EEG DATA ANALYSIS AND RESULTS

We analyze a fixed channel of scalp EEG with 12-bit precision at a sampling rate of 512 Hz. Table 1
summarizes these nine datasets with monitoring periods of 1380-3115 seconds. The clinical seizures
begin at 966-2775 seconds. We also analyze digital scalp EEG from other clinical sites, sampled at 200
Hz with 10-11 bits of precision. These data have 23-32 channels with monitoring periods of 2,217-20,000
seconds. The clinical seizures begin at times that range over 1,930-15,750 seconds. Only one clinically
designated channel was examined in each of these eleven datasets, as shown in Table 1.

We choose N=22,000 data points for each cutset to balance better time discrimination (smaller N)
against higher statistical power (larger N). We next remove muscular artifacts (e.g., eye blinks) with a
zero-phase quadratic filter [9-10]. We designate the first ten non-overlapping time windows (cutsets) as
base cases. We then compare each base case cutset to every test case cutset to obtain average values for 3
and L (and a corresponding standard deviation of the mean). We find that d=3 and S=22 are adequate for
this data. The value of M; comes from the base case period of (nonseizure) data.

The substantial disparity in range and variability of the conventional and phase-space measures
makes them difficult to compare and interpret. To remove this disparity and compare all the measures on
a consistent basis, we renormalize the nonlinear measures as follows. For each nonlinear measure, V, we
define V; as the value of nonlinear measure for the i-th cutset. The variable, V, is in turn D, K, M,, 2, etc.
We obtain the mean, V, of V; over the ten non-overlapping base case cutsets. The corresponding sample
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standard deviation is denoted by . Then, the renormalized form is U(V) = [V; — V|/c. For an indication of
change, we use U > U= 3.09, corresponding to a false positive probability of <10 in Gaussian random
data. We require two or more consecutive occurrences of a positive indication to avoid spurious false
positives, corresponding to a joint false positive probability of <107 in Gaussian data.

Table 1: Summary of EEG datasets

Dataset # # Channels Seizure (s) Tot Time (s) Channel Sample Rate (Hz)

109310 16 2775 31153 13 512
109314 16 2480 2742.4 13 512
119230 16 2491 2917.4 13 512
119234 16 2560 2649.6 13 512
62723t 16 2620 3060.8 13 512
69212 16 2356 2547.8 13 512
73305d 16 1245 1380 13 512
c8492d 16 966 1603.6 13 512
wm12sd 16 1041 1428.6 13 512
szpr00 23 5236 5401 Fp2 200
szprec 32 1930 2217 F7 200
szpr03 32 1932 2217 T4 200
szpr04 23 3794 3963 T4 200
ezpr05 23 4888 6000.2 T4 200
emu(2 27 4320 15,006 F4 200
emu03 27 13,200 16,228 C3 200
emu04 27 15,750 18,423 C4 200
emuld 27 4080 20,000.2 F4 200
emul8 27 4200 18,000.2 T3 200
emu26 27 13,987 16,224 Fpl 200

Table 2 summarizes the forewarning times for each renormalized nonlinear measure over the twenty
EEG datasets. A negative value of forewarning time corresponds to an indication after seizure onset.
Starred (*) values indicate that no condition change was detected by this measure. Bold entries denote the
earliest time of change. These results are assessed as follows. The phase space measures provide the
earliest seizure forewarning in 11, 10, 14, and 13 datasets for L, L, xcz, and xz, respectively. Moreover,
the phase-space measures provide preseizure indications in all twenty cases. In sharp contrast, the
traditional nonlinear measures only give the earliest forewarning of a seizure in 1, 1, and 3 instances for
K, M,, and D, respectively. These same traditional measures provide no forewarning of a seizure in 7, 8,
and 6 cases, respectively. The total number of instances of earliest-forewarning times exceeds twenty,
because more than one measure can simultaneously detect condition change. We note that the
forewarning time (10 seconds) for dataset #wm12sd is too short to be clinically useful. In addition, the
forewarnings of more than one hour (datasets # emu003, emu004, emu026) are too long to be clinically
useful. These results show that the phase space measures are much superior to the conventional nonlinear
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measures as preseizure indicators of condition change for a single channel of scalp EEG. Analysis of
normal EEG shows no positive indication of change.
Table 2: Times (seconds prior to seizure) when change is detected

Dataset # D K M L, L W %
109310 1099 * * -61 -61 1142 -6l
109314 1921 1406 1835 1878 1921 1921 1921
119230 901 386 -216 471 -44 471 514
119234 1915 * * 1915 1915 1915 1915
62723t 1374 * -44 2233 1675 2233 2233
69212 * 165 637 1626 1497 1626 1626
73305d 600 600 * 343 772 87 172
c8492d -22 321 364 193 193 193 193
wml2sd * * * -76 10 10 10
szprec 500 -160 500 610 610 610 610
szpr00 * * 1496 726 -154 836 1716
szpr03 -158 -158 172 502 502 502 502
szpr04 -166 * -166 384 384 384 384
szpr05 3568 3348 3568 3678 3568 3678 3568
emu002 * -190 -410 2230 2780 1900 2780
emu(003 * * * 12760 12760 12760 12760
emu004 * 6950 * 13660 13550 14540 13660
emu014 * * 540 670 670 -210 670
emuC18 -90 -1630 -310 3650 2220 3650 2220
emu026 11127 11237 4747 11237 11237 11237 11237

Figure 1 shows changes in various metrics as functions of time, for dataset #c8492d. The first 300
seconds of data displays modest variability in all of the measures, representing the dynamics of normal
brain activity. The clinical seizure occurs at 966-1035 seconds, as indicated by the vertical bars at these
times; all of the measures clearly show the seizure. Maxima and minima in the raw EEG (Fig. 1a) provide
no preseizure indications, nor does the correlation dimension, D, (Flg 1b). Both the Kolmogorov entropy,
K, (Fig. Ic) and mutual information, M;, (Fig. 1d) show preseizure change, beginning at 750 seconds.
Connected (solid lines) and non-connected (dashed lines) phase-space measures for the L, — distance (Fig.
le) and ¥ statistic (Fig 1f) exhibit significant dlSSlml]al‘lty, starting at around 600 seconds, The ordinate
value of the respective metric change, U( . ), are in units of standard deviation from the mean.

DISCUSSION

The present results differ markedly from previous work, which used conventional nonlinear measures,
such as correlation dimension [14], largest Lyapunov exponent [15], and correlation integral [16]. First,
previous investigations used multichannel data from subdural and depth electrodes. The present work uses
single-channel scalp EEG data, which allows non-invasive, ambulatory, long-term, non-clinical
monitoring. The use of scalp data is made possible by the combined effect of sensitive measures and
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effective low frequency artifact filtering [17]. The robustness of the methodology has been tested over a
variety of clinical conditions: digital and analog EEG data from several clinical sites; data sampled at 200
and 512 Hz; raw EEG data precision between 10-12 bits; presence of substantial noise in the raw EEG;
various types of seizure; use of a fixed channel in the bipolar montage (channel 13 which lies over the
patient’s right eye and has a large eye-blink artifact) as well as various clinically designated channels in
the 10-20 montage. We intend to develop the methodology to include: (i) consistent use of multi-channel
data for improved monitoring and forewarning; (ii) analysis of surrogate data; (iii) more robust
renormalization techniques to facilitate broad comparisons; and (iv) other medical, engineering, and
geophysical applications.
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Figure 1: Various metrics for dataset #c8492D versus time (see text for complete explanation)

145
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ABSTRACT

Signal propagation in discrete nonlinear noisy media has been connected to dynam-
ical processes in systems as diverse as chemical excitable media, arrays of coupled
electronic resonators, dislocations in crystals, adsorbed atomic layers, and cardiac
tissue. We highlight a number of interesting properties of nonlinear arrays consisting
of masses connected by anharmonic springs. In particular, we focus on the effects of
a thermal environment and on the role that thermal fluctuations may play in energy
localization and propagation in these chains. We show that it is possible to tune the
temperature to obtain optimal response, and that the optimal temperature depends
on the desired response. We also show that the dynamics of activated processes
depend sensitively on the nature of the thermal environment.

In the past few years it has become abundantly clear that the presence of noise in nonlinear
systems may lead to an enhancement of a number of desirable features such as energy localization
and mobility and the detection and propagation of weak signals. The interplay of stochasticity
and nonlinearity that amplifies the system response is a2 cooperative phenomenon whose detailed
nature depends on the particular structure of the system and the forces acting upon it. Reccent
literature, including our own work [1-3], has focused on spatially extended systems [4] includ-
ing noisc-enhanced propagation in coupled arrays of bistable units [5, 6], excitable media [7-9],
reaction-diffusion systems [10], and dynamics and signal propagation in cardiac tissue [11,12]. It
has been repeatedly noted that discrete extended systems pose particular mathematical challenges
that have barely been explored in spite of the fact that many physical systems are intrinsically
discrete [13-17]. We focus on some of the simplest nonlinear arrays, namely, chains of masses
connected by anharmonic springs, thereby isolating some of the most generic features responsible
for these cooperative phenomena.

In this report we highlight some of our results concerning four sets of questions: 1) What is
the texture {magnitude, spatial distribution, persistence) of thermal fluctuations in various discrete
anharmonic arrays [1,3]?7 2) How does a pulse travel and disperse along these arrays and how are
these properties affected by temperature [2]7 3) How do various chains transmit a persistent signal
applied at one end (amplitude and distance of travel) and how are these properties affected by
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temperaturc? 4) If a bistable impurity is embedded in a thermalized discrete medium, how does
the nature of the medium affect the transition rate of the impurity [3]?
The equations of motion for chains of N unit masses are

N
= — Z V! (Zn, Tm) — YEn + () (1)

m=1

where n = 1,--- , N, « is a dissipation parameter, and the 7’s are zero-centered Gaussian ther-
mal fluctuations that obey the fluctuation-dissipation relation at temperature T, (7,(t)9m (7)) =
2vkpTdpmd(t— 7). Dots denote time derivatives and the prime a derivative with respect to z,,. The
potential of intcraction V' (z,,2,,) connects only nearest neighbors. We consider three prototype
potentials (here z = z, — T, ):

Viz) = %kﬁ + %k’:z:’* hard (2)
1, .
= -2—ka: harmonic (3)
k 1 ;
= |z] — o In(1 + ¥'|z]) soft 4)

The numerical integration of the stochastic equations is performed using the second order Heun’s
method (equivalent to a second order Runge Kutta integration) [18,19).

In Fig. 1 we display a typical set of equilibrium energy landscapes for the three chains with
periodic boundary conditions [1, 3], all at the same temperature and subject to the same damping
parameter. Darker regions represent higher energies. The horizontal axis indicates the location
along the chain and the vertical axis is time evolving upward. Noteworthy features (robust over
broad ranges of parameter values) are: 1) The magnitude of the fluctuations is greatest in the soft
chain. This can be explained straightforwardly using the virial theorem [20}; 2) The fluctuations
are mobile in the harmonic and hard chains but not in the soft; 3) The thermal fluctuations travel
most rapidly and remain localized over considerably greater distances in the hard chain.

Now suppose that a strong (relative to thermal motions) kinetic energy pulse is applied to a
particular site on the chain. The pulse then propagates and disperses. We obtain the following
results, not all of which can be illustrated here [2]. The pulse in the hard chain propagates more
rapidly as one increases its intensity, decreases the damping, or increases the temperature. The
pulse in the soft chain propagates more slowly with these same variations, and the pulse velocity
in the harmonic chain is independent of thesc variations. The dispersion increases in all cases with
increasing temperature, but most slowly in the hard chain. A rather dramatic illustration of the
different effects of damping on the different chains is shown in the left panel of Fig. 2. The effect of
a temperature increase is illustrated in the right panel of the figure. The quantities displayed are
the local energy E(n) defined as
3 In

E(n) = + V(:z,n+1,a:n)+ V(:z:n,J:n_l) (5)

(here illustrated for n = 5), and the average distance (z) traveled by the pulse, defined as

_ 2 InlB(n)
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Figure 1: kpT = 0.08, v = 0.005, N = 71, 4, = 160. Hard (top): & = 0.1, ¥’ = 1. Harmonic
(middle): k& = 0.1. Soft (bottom): £ =0.1, ¥ = 5.

These results, some of them perhaps counterintuitive, all follow from the observation that pulse
velocity increascs with average array frequency while pulse dispersion decreases with increasing
frequency. Increased pulse intensity, decreased damping and higher temperature are all associated
with higher energy; in turn, a higher cnergy in a hard chain leads to a higher average frequency. In a
soft chain higher energies are associated with lower frequencies, and in a harmonic chain the average
frequency is independent of energy [2]. The connection between pulse velocity and dispersion and
the average array frequency can be established analytically for a periodic chain, but is at this point
only a numerical observation for the anharmonic arrays.

The tendencies of the hard array to keep the energy “together” and to transport it more quickly
may conflict under certain conditions. For example, in a two-dimensional hard array a front travels
more rapidly with increasing temperature, but a local pulse that would have to travel out radially
tends to remain localized because outward motion along the bonds of the lattice as required by
symmetry would dispersec the energy [2] (see Fig. 3.

Next suppose that a sustained sinusoidal signal £(t) = Asin{wgt) is applied at one site of an
otherwise free chain. We observe the propagation of the signal along the chain and, in particular,
its temperature dependence. We observe that in a hard chain increasing the temperature can lead
to enhanced signal propagation (whereas this does not occur for the other chains). Of course if
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Figure 2: Left panel: Mean distance traveled by the pulse as a function of time for hard (k = 0,
k' = 1), harmonic (k = 1), and soft (k = k' = 1) chains of 151 sites at zero temperature and for
different damping cocflicients. Initial momentum at the middle site is 4(¢ = 0) = 8. Right panel:
Energy profile vs time at the 5% site from the initial pulse at different temperatures with damping
parameter v = 0.2.

Figure 3: Left panel: energy distribution at a subsequent time for an initial front in a harmonic
(upper) and hard lattice (lower). Right panel: encrgy distribution at a subsequent time for an
initial pulse at the center of a harmonic (first) and hard (second) array.

the temperature is too high the signal is buried in the fluctuations and transmission ceases to be
effective. Thus we conclude that the temperature can be tuned to achieve optimal transmission
properties, with a specific temperature leading to optimization of a specific property. For example,
there is an optimal temperature to maximize the signal-to-noise ratio (SN R)

. signal power (j)
SNRU) = logm (thcrmal power (.7)) , (7)

at a given distance from the forced site, or one can choose a temperature to optimize the trans-
mission distance. These effects are illustrated in Fig. 4. The SN R at site j is expressed in terms
of the power spectral density S;(w) at each site j defined as a Fourier transform of the velocity
autocorrelation function; the thermal power is estimated by performing a polynomial fit to S;(w)
around - but not including -- the forcing frequency wy, and the signal power is just the value Sj(wp).
The SNR at different distances from the forced site as a function of temperature for a hard chain
is shown in the left panel (in the other chains the dependences are monotonically decreasing at
all sites). The propagation length is defined as the maximum distance at which the SNR exceeds
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Figurc 4: Left panel: SNR curves as a function of temperature for different sites from n = 6
(highest curve) to n = 15 (lowest curve) along the hard chain with £ =0, ¥’ =5, v = 0.2, A = 0.5,
and wyp = 1. Right panel: propagation length as a function of temperature for the hard chain
(dashed curve) and for a harmonic chain (solid curve) (k = 1).

a threshold value. The propagation length as a function of temperature with the threshold value
arbitrarily picked as 0.4 is shown in the right panel. We have identified the maxima. in the curves as
thermal resonances, and point to this as one of the few cases in which such resonances are achieved
by thermal (as opposed to external noise) tuning.

Finally, consider a bistable system embedded in our various thermal environments. Bistable
systems are ubiquitously invoked as models for chemical processes. One well represents the “re-
actant” state, the other the “product” state, and separating them is the “activation barrier”. A
thermal environment may induce transitions from one state to the other, and one studies the asso-
ciated transition rate or “reaction rate”. This rate of course depends on the nature of the thermal
environment and the way in which the bistable system is coupled to it. For example, one of the most
extensively studied problems is that of the dependence of the transition rate on the damping [21]: at
low damping the system is in the “energy-limited” regime where the transition rate increases with
increasing damping. In this regime it is difficult for the system to gain or lose energy. Therefore the
system tends to move periodically within one well, rarely gaining enough energy to move over the
barrier. When it does so, it tends to recross the barrier many times within this single event before
losing energy and becoming trapped again in one of the wells, where it again performs periodic
motion. With increasing damping the transition eventually becomes “diffusion-limited.” Here the
system tends to move erratically within one well. The system can easily gain cnergy from large
fluctuations, but it can also lose energy rather easily. Therefore the independent barrier crossing
events are more frequent, but recrossings are rarc and the system immediately gets trapped in a
well where it moves erratically until another large fluctuation causes another barrier crossing event.

If a bistable system is embedded in a chain which is in turn connected to a thermal environment,
how does the nature of the chain affect the transition rate [3]7 A sample of behaviors can be seen
in Fig. 5, which shows the trajectory of the coordinate y of a bistable system connected to the
three types of chains. When the bistable system is in the right (left) well the coordinate is y =1
(y = —1). The thermal fluctuations and crossings over the barrier at y = 0 are apparent. Note that
these three sample trajectories involve the same damping and temperature - the only difference
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Figure 5: Trajectory of a bistable impurity with barrier height of 0.25 embedded in a chain of 30
oscillators with kT = 0.08, and v = 0.005. Top panel: hard chain with £ = 0.1 and &' = 1.
Middle panel: harmonic chain with k& = 0.1. Bottom panel: soft chain with ¥ = 0.1 and &' = 5.

lies in the naturc of cach chain. Nevertheless the trajectories are entirely different; in particular,
in the hard chain the trajectory is typical of the diffusion-limited regime, while in the soft chain it
is that of the energy-limited regime. This is a direct reflection of the behavior seen in Fig. 1, that
is, of the fact that in the hard chain the thermal fluctuations created elsewhere along the chain
have a good chance of reaching the bistable impurity and hence causing a transition, but the same
energy mobility also makes it easy for the impurity to then lose its energy back to the chain. In the
soft chain, on the other hand, only fluctuations that occur in the sites immediately adjacent to the
impurity can excite the impurity - fluctuations originating elsewhere do not travel to the impurity.
These neighboring fluctuations arc rarer but stronger and more persistent.
A useful characterization of these trajectories is the correlation function

_ {wt+ 7))

where the brackets indicate an average over ¢. The corrclation functions for the three trajectories of
Fig. 5 are shown in Fig. 6. The oscillations apparent in the soft and harmonic chain at short times
are the direct result of oscillatory motion characteristic of energy-limited behavior. The alternation
of amplitudes of the oscillations in the soft chain correlation function is a direct consequence of the
correlated periodic motion above the barrier that is associated with the prolonged bursts that often
accompany the barrier crossing event. Such bursts are not nearly as prevalent in the harmonic
system. The hard chain correlation function decays essentially monotonically: the suppression
of oscillations is indicative of the erratic motion within the wells that is characteristic of higher
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Figure 6: Correlation functions associated with the trajectories of Fig. 5. Dashed curves: hard
chain; solid curves: harmonic chain; dotted curves: soft chain. Left panel: short-time behavior.
Right panel: correlation function on a logarithmic scale.

effective damping. The slopes in the logarithmic rendition can be associated with the inverse of
the transition rate from one well to the other. The transition rate is highest for the bard chain and
lowest for the soft. The hard chain clearly provides the most favorable environment for transitions
to occur at a given temperature. More detailed explanations, comparisons, and parameter variation
effects can be found in Ref. [3].
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