

COMMERCIAL POTENTIAL FOR THE KELLOGG COAL GASIFICATION PROCESS

KELLOGG (M. W.) CO., PISCATAWAY, N. J

SEP 1967

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

Search the NTIS Database from 1990 forward

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161

PB 180358

COMMERCIAL POTENTIAL FOR THE

KELLOGG COAL GASIFICATION PROCESS

FINAL REPORT

Prepared for

Office of Coal Research Department of the Interior Washington, D. C. 20240

By

The M. W. Kellogg Company Piscataway, New Jersey 08854

Contract No. 14-01-0001-380

Period of Performance June 1964 - September 1967

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

COMMERCIAL POTENTIAL FOR THE

KELLOGG COAL GASIFICATION PROCESS

FINAL REPORT

on

Contract No. 14-01-0001-380

Prepared for

OFFICE OF COAL RESEARCH DEPARTMENT OF THE INTERIOR WASHINGTON, D. C. 20240

By

.

•.

THE M. W. KELLOGG COMPANY P. O. Box 696 Piscataway, New Jersey 08854

Dr. George T. Skaperdas Manager, Process Development

ん

PAGE NO		i-a/
---------	--	------

TABLE OF CONTENTS

.

TITLE	PAGE	2	
SUMMAR	RY		l
I.	THE	KELLOGG COAL GASIFICATION PROCESS	
	в.	Introduction Typical Process Flow Sheet Process Alternatives	2 3 7
		 Gas Purification Methane Synthesis 	7 9
	D.	Process Economics	11
		 Pipeline Gas (a) Secondary Product Recovery Hydrogen Synthesis Gas 	11 13 15 15
	E.	Effect of Variables on Economics	17
		 Gasification Rate Combustion Efficiency Sodium Carbonate Loss Quench Level of Product Gases Temperature Ash Content of Melt Carbon Content of Melt Gas Velocity 	17 17 20 20 20 20 22 22
	F.	Discussion	22
		 Materials of Construction Reaction Rates Combustion Efficiency Sodium Carbonate Loss Product Gas Heat Recovery 	22 23 24 24 25

PAGE NO.

PAGE NO. ______

TABLE OF CONTENTS

PAGE NO.

-

II.	SUM	MARY	OF BENCH SCALE WORK	26
	A.	Cher	mical Process Research	26
		1.	Gasification Rates	26
		2.	Combustion Rates	36
		3.	Combustion Efficiency	42
		4.	Chemistry of Ash Removal	42
		5.	Viscosity Studies	44
		6.	Salt Carryover	44
			Mineralization Studies	44
		8.	Disposition of Sulfur in the Process	49
			Ash Settling Studies	49
	в.	Mec	hanical Development	50
		1.	Corrosion Studies	50
		2.	Coal Feeding Studies	61
		3.	Quench Tests	64
		4.	Cross-Flow Contamination	64
		5.	Salt Transport	71
		6.	Bed Expansion Tests	77
			(a) Melt Studies	77
			(b) Simulation Studies	81
			(c) Effect of Bed Height	86
		7.	Molten Sodium Carbonate Bed Degasification	94
		8.	Melt Viscosity	94
		9.	Salt Carryover	99
III	. PI	ROPOS	ED PILOT PLANT	103

iii

.

PAGE NO.

TABLE OF CONTENTS

ç

IV.	API	PENDIX A - CONCEPTUAL PROCESS FLOW SHEET	104
	A.	Process Description (Commercial Plant)	104
		 Section 100 - Coal Storage and Preparation 	104
		2. Sections 200 and 600 - Gasification	104
		and Ash Removal	105
		3. Section 300 - Shift Conversion	108
		 Section 400 - Gas Purification Section 500 - Methane Synthesis 	108
		5. Section 500 - Methane Synthesis	109
		6. Section 1100 - Offsite Facilities	111
	в.	Economics of Pipeline Gas	120
	с.	Design Bases	125
v.	APF	PENDIX B - REMAINING PROBLEMS	127
	Α.	Present Status	127
	в.	Continued Bench-Scale Work	127
		1. Chemical Process Research	127
		2. Mechanical Development	128
		3. Process Design	129
		· · · · · · · · · · · · · · · · · · ·	125
	с.	Pilot Plant Program	129
	,	1. General Objectives	129
		2. Process Description of Pilot Plant	129
		a. Section 100 - Coal Handling	
		Facilities	129
		b. Section 150 - Carbonate Handling	
		Facilities	130
		c. Section 200 - Gasification	130
		d. Section 300 - Ash Removal	132

.

.

PAGE NO. ______

.

TABLE OF CONTENTS

PAGE NO.

-

C. (continued)

.

3.	Design Rationale	133
	a. Section 100 - Coal Handling	
	Facilities	133
	b. Section 150 - Carbonate Handling	
	Facilities	134
	c. Section 200 - Gasification	134
	d. Section 300 - Ash Removal	134
4.	Specific Objectives and Pilot Plant	
	Program	135
	a. Sections 100 and 150 - Coal and	
	Carbonate Handling	135
	1. Objectives	135
	2. Program	135
	b. Section 200 - Gasification	136
	1. Objectives	136
	2. Program	138
	c. Section 300 - Ash Removal	140
	1. Objectives	140
	2. Program	140
5.	Cost and Schedule of Program	142
FEREN	ICES	144

VI. REFERENCES

.

PAGE NO. V

LIST OF TABLES

TABLE NO.

TITLE

.

ł

PAGE NO.

1	Cost Summary 250,000,000 SCFD of Pipeline Gas	12
2	Potential Credits in Pipeline Gas Manufacture for By-Product Recovery	14
3	Cost Summary 250,000,000 SCFD of Hydrogen from Bituminous Coal	16
4	Cost Summary 250,000,000 SCFD of Synthesis Gas from Bituminous Coal	18
5	Corrosion Test Results Monofrax A	52
6	Materials Tested and Found Unsatisfactory	60
7.	Summary Table Effect of Gas Velocity on Percent Bed Expansion	93
8	Entrainment in Aeration Gas Exiting a Sodium Carbonate Melt Bed (CO ₂ Aeration Gas 8% Ash in Bed)	101
9	Composition of Material Carried Overhead from Melt Entrainment Tests	102

PAGE NO. <u>vi</u>

LIST OF TABLES

PAGE NO. TABLE NO. Α Process Stream Balance 250,000,000 SCFD Pipeline Gas 112 from Bituminous Coal В Utilities Summary 250,000,000 SCFD Pipeline Gas from Bituminous Coal 113 С Investment Summary 250,000,000 SCFD Pipeline Gas 121 from Bituminous Coal Estimated Annual Operating Cost D and Gas Selling Price 250,000,000 SCFD Pipeline Gas 123 from Bituminous Coal 143 Projected Costs Ε

.

LIST OF FIGURES

.

FIGURE NO.	TITLE	PAGE NO.
1.	Simplified Flow Sheet for the Kellogg Gasification Process	4
2	Flow Diagram for Ash Removal and Sodium Recovery	6
3	Effect of Combustion Efficiency on Pipeline Gas Manufacturing Cost	19
4	Effect on Pipeline Gas Cost of Quenching Both Synthesis and Flue Gases to Same Temperature	21
5	Typical Examples of Carbon Disappearance with Time	28
6	Feedstock Evaluation Effect of Temperature on Rate of Gasification	29
7	Effect of Steam Pressure on Gasification Rate	30
8	Effect of Superficial Gas Velocity on Rate of Gasification of Bituminous Coke	32
9	Effect of Ash Content in Melt on Rate of Gasification of Bituminous Coke	33
10	Effect of Melt Height on Gasification Rate of Bituminous Coke	34
11	Effect of Melt Height on Rate of Gasification of Bituminous Coke (Extrapolated)	35
12	Effect of Carbon Concentration in Melt on Gasification and Combustion Rates of Bituminous Coke	37

. ^.

٠

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
13	Effect of Temperature on Combustion Rates of Anthracite and Bituminous Coke	38
14	Effect of Sodium Sulfate in Melt on Combustion Rates of Bituminous Coke and Anthracite	39
15	Effect of Particle Size on Combustion Rate of Bituminous Coke	40
16	Effect of Melt Height on Gasification and Combustion Rates of Bituminous Coke	41
17	Effect of Temperature, Ash Concentration and Coke Concentration on Melt Viscosity	45
18	Salt Carryover in Gasification and Combustion Runs	46
19	Effect of Carbon Dioxide in Nitrogen on Freezing Point of 8% Alumina in Na ₂ CO ₃ Melt	47
20	Effect of Carbon Dioxide in Nitrogen on Freezing Point of 8% Silica in Na ₂ CO ₃ Melt	48
21	Coal Gasifier Reactor Conceptual Design	55
22	Transfer Line Construction	56
23	Melt Quench Tower	57
24	Overhead Separator	58
25	Insulag Test Vessel	59

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
26	Pressure Drop vs. Coal Loading	62
27	Pressure Drop vs. Coal Loading	63
28	Design Layout Coal Feeding Device	65
29	Coal Feeder Feed Rate Calibration	66
30	Cross-Flow Circulation System Model	67
31	Carryover Ratio vs. Transfer Velocity	68
32	Carryover Ratio vs. Transfer Velocity	69
33	Carryover Ratio vs. Transfer Velocity	[`] 70
34	Experimental vs. Calculated Flow Air Lift Pumping Water 1-3/8" ID x 9' Long Tube	72
35	Melt Circulation Performance Curve Steam as Lift Medium	73
36	Melt Circulation Performance Curve Air as Lift Medium	74
37	Gas Lift Circulation System	75
38	Experimental Flow Results for O Lift Cross-Flow Model Water and 100 CP Glycerine Mix	76
39	Bed Expansion vs. Superficial Velocity	78
40	Bed Expansion vs. Superficial Velocity	79
41	Bed Expansion vs. Time	80
42	Bed Expansion vs. Time	82

PAGE NO. X

_

•

-

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
43	Effect of Ash Concentration Bed Expansion vs. Time	83
44	Bed Expansion vs. Time	84
45	Bed Expansion Test Apparatus	85
46	Bed Expansion vs. Air Superficial Velocity Water 5-1/2" I.D. Tower	87
47	Bed Expansion vs. Air Superficial Velocity Ethylene Glycol — 5-1/2" I.D.Tower	88
48	Bed Expansion vs. Air Superficial Velocity 100 CP Glycerine-Water Mixture 5-1/2" I.D. Tower	89
49	Bed Expansion vs. CO ₂ Superficial Velocity Melt at 1800 ^O F, 8% Ash	90
50	Bed Expansion vs. CO ₂ Superficial Velocity Melt at 1800 ^O F, 8% Ash	91
51	Bed Expansion vs. CO ₂ Superficial Velocity Melt at 1800°F, 8% Ash	92
52	Molten Salt Degasification 1800 ⁰ F, CO ₂ Gas	95
53	Molten Salt Degasification 1800 ⁰ F, CO ₂ Gas	96
54	Melt Outflow Vessel	97
55	Comparison of Outflow Times	98
56	O.C.R. Coal Gasification Carryover Tests	100
A	Anticipated Design-Construction-Operations Schedule following pa	age 143

PAGE NO. ______Xi

LIST OF DRAWINGS

DRAWING NUMBER	TITLE	LOCATION FOLLOWING PAGE NUMBER
6026-3-5	Pipeline Gas from Bituminous Coal 250,000,000 SCFD (Commercial Plant)	111
P-2718-D	Molten Salt Gasification Pilot Plant 100 Section - Coal Handling	
P-1169-B	Facilities Molten Salt Gasification Pilot Plant 150 Section - Carbonate Handling	143
P-2719-D	Facilities Molten Salt Gasification Pilot Plant Section 200 - Gasification	143 143
P-2720-D.	Molten Salt Coal Gasification Pilot Plant	
P-2721-D	Section 300 - Ash Removal Molten Salt Coal Gasification Pilot Plant	143
	Section 2000 - Offsites	143