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FOREWORD 

This is the first Technical Progress Report for DOE Contract 
EC-77-C-03-1543~ "Fundamental Characterization of Alternate Fuel Effects 
in Continuous Combustion Systems". It includes background information 
and results for the first four months of the program. Part A concerns 
problem analysis and experimental description. This information has b~an 
generated by Exxon Research and Engineering Company as part of Task 1 of 
the first phase of this program. Portions of this information were 
extracted from a paper written for the DOE co-sponsored Workshop on 
'~iternate Hydrocarbon Fuels for Engines, Combustion and Chemical Kinatics~" 
September 7-9, 1977. Part B concerns analytical mode!ins and represents 
effor=s conducted under Task 2 of this program by Science App!ications~ inc. 

William S. B!azowski 
Principal Investigator 
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SU~4ARY 

Alternate fuels derived from coal, oil shale, and tar sands 
are expected to play an increasingly important role in meeting the future 
national energy demand. The properties of these fuels can result in 
significantly different combustion performance compared with conventional 
specification fuels° For example, decreased hydrogen content can result 
in increesed flame luminosity and exhaust smoke emissions, higher fuel bound 
nltrog~n can result in increased NOx emissions, and fuel impurities can 
result in deposition within the combustion device. Although additional 
refinin~ and fuel treatment can mitigate these problems to some extent, 
the approach of adapting the combustion system to utilize fuels having 
"unconventional" properties while operating in an environmentally acceptable 
manner se=.ms to be most cost effective and energy efficient. This program 
will provide vital fundamental information necessary for the efficient 
pursuit of this approach. 

The subject program is a multi-year effort to provide an improved 
fundamental understanding of the relationships between fuel properties and 
combustion characteristics and to develop analytical modeling/corre!ation 
capabilities for the prediction of fuel effects. The work wil! be limited 
to investigation of alternate liquid and gaseous fuels used in continuous 
combustion systems5 with gas turbine systems receiving special attention. 
The program philosophy is to relate fundamental combustion phenomena to 
fuel Characteristics using analytical models developed with and eventually ~ 
verified by data obtained in carefully designed experiments. Consequent!y, 
the program will proceed along two parallel paths~ modeling and experimental. 
ER&E will be responsible for overall program direction and experimentation~ 
while Science Applications~ inc. (SAi) will be responsible for analytical 
modeling under subcontract to ER&E. 

Effort during the first phase of this program will provide a well- 
developed plan for subsequent years of the program. Key combustion;properties 
and ranges of fuel variation of interest to our subsequent effor~s~i:have been 
surveyed. Recently inltiatedexperimenta! work includes the utilization of 
unique ER&E ex~erimenta! equipment for evaluation of fuel combustion charac- 
teristics. The analytical modeling effort includes new applications of 
quasi-global modeling techniques as well as predictions of and comparisons 
wi=h the experimental results generated. Efforts during the second two years 
of this program will concentrate on solving the problems identified using the 
approaches defined in Phase i. These efforts will be characterized by the 
broad application of ~xperimentai combustion facilities available at ER&E. 
The SA! modeling work will not only attempt to better define chemical and 
physical phenomena~ but will also provide valuable guidance concerning the 
design of experiments. This cooperative, iteratlve procedure will optimize 
the improvements to fundamental understanding and the generation of an 
analytical model durSng this program. 

i i i  



This report is intended to provide background information 
which describes the current understanding of alternate fuel effects in 
gas turbines. From this discussion, the key technical areas requiring 
additional study and analysis will be identified and prloritized. Current 
plans for experimental study of the highest priority problem, soot formatfon, 
will be briefly reviewed. A survey of appropriate analytical modeling 
capability has been conducted and is also reported in Part B. Discussions 
are divided into four sections: computational methods for reeirculat~ng 
reacting flows, turbulent flow modeling and the phenomena of unmlxedness, 
droplet and spray combustion, and fuel decomposition and combustion. 
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i. INTRODUCTION 

With increased emphasis on the utilization of U.S. energy resources 
for national self-reliance, alternate (synthetic) fuels are expected to play 
an im~portant role in future energy developments° The major North American 
resources from which future synthetic fuels (synfue!s) ~ii be derived are 
co~l, shale, and tar sands deposits. Fuels derived from these resources will 
include coal liquids, methanol, and low, intermediate, and high BTU coal gas 
products as well as hydrocarbon liquids derived from oil shale and tar sands.* 
While the liquid fuels are expected to replace the continually diminishing 
supply of petroieum products, the characteristics of these synfue!s are not 
yet defined. 

Even before the significant appearance and usage of synfuels, the 
characteristics of petroleum-derived fuels can be expected to undergo some 
change. A~ petroleum availability declines and as previous large consumers 
utilize other resources~ market competition may cause fuel:variation within 
specifications and may even result in significantly increased requests for 
specification waivers. In addition, production from new locations (i.e. the 
Alaskan North Slope~ North Sea, and U.S. offshore areas) may yield crude with 
characteristics which further aggravate the situation. 

These future changes in fuel characteristics will affect energy 
consumers differently. In stationary applications, where significant non- 
petroleum energy is already utilized, widespread conversion to the usage 
of coal from oil is anticipated. While ne~ exhaust emissions control 
technologies must be developed to accomplish this ta~k in an environmentally 
accep£able manner~ the engineering know-ho97 to utilize coal and experience 
previously developed can be expected to facilitate conversion. Transportation 
applications~ ho~,mver, present a much more difficult problem. Nearly all 
fuels currently used in these applications are petroleum-derived and 
significant variations in fuel character have not been previously experienced. 

It is most likely that a liquid hydrocarbon fuel will continue 
to be necessary for the more fuel-sensitive transportation applications. 
Difficulties which may soon be experienced in utilizing expanded specifica- 
tion petroleum-derived fuels will eventually yield to the more severe 
requirements associated with synfue! usage. The synthetic fuels are 
significantly different from traditional petroleum-derived fuels. Synfue!s, 
especially those derived from coal, will be more aromatic and have siEnifi- 
cant!y decreased hydrogen content. These characteristics can be expected to 
result in increased soot formation, increased fiam~ radiation (which can 
affect the Intezrlty of coL~ustor hardware), and increased deposit formin~ 
tendency~ possibly rasultlng in plugging and fouling of equipment. Another 
significant difference between conventional petroleum and synthetic etudes 
is nitrogen con~ent. Depending on the extent of refining perform~d~ increased 
NO~ emission from fuel hound nitrogen may also be a problem. Finally~ as a 
result of the ganeraliy lower volatility of synthetic cvudes~ synfue!s might 
b~ expected to be less volatile than petroleum-derived fuels thereby causin~ 
proh!em~ associated with fuel droplet bu£ning. 

* Limited synfuel production from tar sands is already a reality, but this 
resource is small compared to the potential of coal or oll shale reserves. 
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I R e p r o d u c e d  f r o m  
b e s t  a v a i l a b l e  c o p y  

Optional apFroaches for the utilization ~f svnfuels and/,~r 
petroleum-, derived fuels in the future consist of energy-intenslve r~fining 
st~ to match conventional fuel speciflcaticn~ or de\'isln~ wavs of alterin~ 
c~,~stlon systems to allow combustion of fuels n~t meetin~ current 
speclflcatlons. In his plenary session pa~er "Synthetic Fuels and Combustion" 
at the 16:h International Combustion Sympeslum, J. P. !onzwell of Exxon 
Research and EnKineering Company discussed the rationale for the utllJzatlon 
of synthetic liquid fuels without extensive refining. The incentives for 
following this route were shown to be very significant from the standpoints 
of energy conservation and cost. 

For the transportation system designer, the task at hand is one 
of evaluating the impact of changes in fuel character and defining the 
range ~f fuel cilaracteristics within which the syste~ can operate. ~le 
U.S. Air Force has initiated one such program for defining future military 
aircraft fuels. The combustion effects of future fuels are to be charac- 
terized along with other system factors (e.g., fuel tank design, pumps, 
handling requirements, etc.) and fuel processing information is to be 
acquired. A trade-off analysis will then determine the characteristics 
(a future fuel specification) which will result in minimum total operating 
cost and adequate availability without significant sacrifice in safety, 
performance, or environmental impact. With respect to availability, 
geographic variability in the staple resource and in refining capability 
will cause combustion system flexibility to be an important assen. Future 
development of "fuel flexible engines" may receive high priority, especially 
for military applications. 

Indeed, each application to utilize future synfue!s or expanded- 
specification petroleum fuels must develop such a program. It is anticipated 
that the outcome of such studies will be the realization that future fuels 
should be significantly different than those now in use. Naturally, these 
findings should strongly influence future synfuel process design 

ReBardless of the application, the impact of the fuel on the 
combustion system would be expected to play the major role. Unfortunately, 
the investigation of fuel impact on combustion systems is almost entirely 
empirical and expensive, large-scale testing is necessary. Our current 
understanding of the fundamental combustion phenomena which influence a 
fuel's practical combustion characteristics is extremely limited. ~le 
extensive efforts to develop combustor models during the past decade have 
avoided the complexity of input details which would define fuel characteristics 
and the existing ability to predict, or even extrapolate, fuel effects is 
nearly non-existent. 

The current situation, although understandable in light of the 
previous assumed availability of low-cost fuel of consistent high quality, 
must now be corrected. Fundamental understanding of the combustion 
phenomena influencing a fuel's performance (gas phase fuel pyrolysis 
kinetics, soot formation and oxidation, droplet evaporation and combustion, 
and aerodynamic/chemical interactions) must be developed. Further, models 
to be used by the combustion system designer for prediction of fuel effects 
in real systems (i.e., means to utilize the details discussed above) are 
required. 
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~lis program addresses t h e  serious weakness in our ability to 
fund~mentally relate fuel characteristics to combustion effects. The end 
product of the ~rogram will be an imporved fundamental understanding of 
fuel effects and analytical models for the prediction of fuel effects based 
on data acquired in carefully designed experiments. These tools will be 
of invaluable assistance to combustor designers in both the mear term, 
where the impact of variations in the characteristics of petroleum-derived 
fuels are of concern, and mid to long term applications, where synfuels 
will be utilized and fuel flexible engines will be desired. 

While the information derived in this program may be broad!y 
applicable, it is not possible to address directly all types of combustion 
systems within the current program scope. The work will concentrate on 
continuous combustion systems, which are known to be the most fuel flexible, 
thereby anticipating future demands for fuelflexibility, Particular 
emphasis will be placed on gas turbine systems, as they constitute a well- 
defined application of continuous combustion and represent a significant 
and increasing portion of transportation energy consumption. References 1-16 
discuss future gas turbine fuels developments. 

Consistent with this orientation, the following sections address 
gas turbine combustion systems, fuel effects on gas turbines combustion 
systems, and changes for fuel flexibility. Based on this information a matrix 
of fuel chszacteristics and combustion phenomena requiring study have been 
developed. These are described in Section V. Present plans to study soot 
formation through the use of the jet stirred reactor are discussed in 
Section VI. The References and Bibliography Section includes the numbered 
references cited in Part A as well as a more extensive listing of information 
sources uncovered in literature searches conducted during this program. 

Portions of this text have been extracted from a paper written for 
=he SQUID Workshop on "~ternate Hydrocarbon Fuels for Engines: Combustion 
and Chemical Kinetics", September 7-9, 1977 at Columbia, Maryland. This DOE 
co-sponsored event included discussions on a number of different engine types 
but aircraft turbines received special attention. As a result of this 
emphasis the following sections relate closely to the aircraft gas turbine 
application. Tnis orientation is beneficial in a number of respects. First, 
the aircraft industry provides much of the advanced technology for other gas 
turbine applications; focusing on the aircraft application allows the most 
advanced technology to be considered. Secondly, it is beneficial to consider 
the problem of alternate fuel usage within the constraints posedby system 
design requirements (e.g. size, weight, etc.). In the sections which follow 
these requirements are outlined and their impact or our ability to achieve 
more fuel flexible designs will be evident. 
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II. THE GAS TURBINE COY~USTION %YSTEM 

The gas turbine employs the Bravton thermodynamic cycle -- 
adiabatic compression, constant pressure heat addition, and adiabatic 
expansio~. The function of the combustion system is to accomplish the 
heat release with complete combustion and minimum pressure loss and to 
satisfy numerous engine operational requirements. This section describes 
the t~pe of hardware used and the requirements which must be satisfied. 

A. Description 

Turbine engine combustors have undergone continuing development 
over the past 40 years resulting in the evolution of a variety of basic 
main combustor configurations. Contemporary aircraft combustion systems 
ma> be broadly classified into one of the three types schematically 
illustrated in Figure i. 

The function of the main burner is to provide for the mixing of 
fuel and air within the proper environment to ensure their nearly complete 
reaction to desirable combustion products. Operation of can, cannular, and 
moder~ annular combustors is adequately described through consideration of 
Figure 2o In the "primary zone", fuel and oxidizer are mixed, usually in 
sligh~:ly fuel-rich proportions. Approximately 90 percent of the fuel is 
burned in this zone. Fuel oxidation is completed in the "secondary zone". 
In modern engines, turbine inlet temperatures are close to the temperature 
at which significant chemical reactions cease (*1600eK) and no dilution is 
required. However, older designs with reduced turbine inlet temperatures 
utilize a "dilution zone" to further reduce temperature. No significant 
reaction occurs within this zone. 

The fuel-air ratio typically required for the combustor tempera- 
ture increase is less than one-third the stoichiometric quantity -- that 
resulting in complete 02 consumption upon fuel conversion to CO 2 and H20. 
The equivalence ratio parameter, ~, defined as the ratio of the actual 
fuel-air mixture strength to that required for stoichiometric combustion, 
provides a convenient way of describing mixture variations through the 
combus~or. Current primary zone equivalence ratios are about one whereas 
combustor exit values are less than one-third. 

The purpose of the primary zone is to stabilize combustion. High 
temperatures resulting from stoichiometric operation promote rapid fuel 
consumption r e a c t i o n s .  P r imary  zone f low i s  dominated  by a s t r o n g  r e c i r c u -  
! a t i o ~  r e g i o n  ( e s t a b l i s h e d  by s w i r l i n g  the  a i r  e n t e r i n g  the  head end or  dome 
of the burner) which furthers combustion stability. The requirement to 
ensure an adequate residence time for completion of chemical reactions is 
satisfied by limiting combuetor reference velocity (the average cold-flow 
velocity Just behind the primary zone) to about 25 m/sec. 

:n prsctically all current gas-turbine combustore, the fuel is 
injected al, a liquid. The formation of a well distributed diepersion of 

small droplets is desirable to promote rapid evaporation of the fuel and 
intimate mixing of the fuel and air. Two general categories of fuel injectors 
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Figure i: Types of Combustion Systems 
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F~gure 2: Conventional Main Combustor 
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are currently employed. Pressure atomizers utilize a larBe fuel pressure 
drop (greater than !00 psi) across a nozzle to create a finely dispersed 
spray of small (<50U) fuel droplets which quickly vaporize. Airblast 
atomizers create strong swirling motions of a small portion of the eombustor 
air flow into which fuel is introduced. The severe shearing motion of the 
air disperses the fuel and results in small fuel droplets. 

The secondary zone introduces additional air to provide for the 
chemical reactions which consume the products of incomplete combustion passing 
from the primary zone. Air participating in these chemical reactions is 
introduced normal to the main flow direction. The remaining air enters 
parallel to the main flow at the combustor walls to provide a film of cool 
air which protects the combustor liner and to tailor the temperature profile 
exitin~ the comhustor. Design of the combustor liner hole pattern to 
accomplish this requirement traditionally involves a costly development 
effort to avoid a number of possible detrimental effects. Excessive addition 
of air nay result in quenching chemical reactions (especially carbon monoxide 
and soot oxidation) essential in reducing emissions. Air introduction must 
be accomplished in a manner which results in the correct temperature profile 
entering the turbine; a 25 K increase in temperature at a critical region 
of a turbine blade can result in a four-fold decrease in blade life. These 
design objectives must be met within a prescribed combustor length. Aithough 
increasing combustor size might facilitate the design =ask, this would cause 
undesirable increases in engine length~ main shaft size, bearing requirements 
and engine weight, 

Combustor liners must be designed for high structural integrity 
to support forces resulting from pressure drop and must have high thermal 
resistance capable of continuous and cyclic high temperature operation. 
This is accomplished through utilization of high strength, high temperature 
oxidation-resistant materials and effective use of cooling air. Depending 
upon the temperature rise requirements of the combustor, 20-50 percent of 
the inlet airflow may be utilized in liner cooling. A number of conventional 
cooling techniques are illustrated in Figure 3. 

a. Louver Cooling--Many of the early jet engine combustors used 
a louver cooling technique in which the liner was fabricated ihto a number 
of cylindrical panels. When assembled, the l-lmer =ontained a series of 
annular air passages at the panel intersection points, the gap heights of 
which were maintained by simple wiggle-strip louvers. This permitted a film 
of air to be injected along the hot side of each panel wall providing a 
protective thermal barrier. Subsequent injection downstream through remaining 
panels permitted replenishment of this cooling air boundary layer. Unfortunately, 
the louver cooling technique did not provide accurate metering of the cooling 
air which resulted in considerable cooling flow nonuniformitywith attendant 
variations in combustor exit profiles and severe metal temperature gradients 
along the liner. 

b. Film qpoliD~--This technique is an extension of the louver 
cooling technique but with machined injection holes instead of louvers. 
Consequently, airflow metering is more accurate and uniform throughout the 
combustion chamber. Most current combustors use this cooling technique. 
However, increased operating gas temperatures of future combustors will 
result in less air for cooling and more advanced cooling techniques/m~teria!s 
will be required. 
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Figure 3: Conventional Combustor Liner Cooling Techniques 



-9- 

c. Convection/Fi!m ¢ooling--This relatively new technique developed 
by Detroit Diesel Allison Division of General Motors permits much reduced 
cooling air flow (15-25 percent) while providin~ hiFh coolinK effectiveness and 
uniform metal temperatures. It is particularly suited for high temperature rise 
combustion systems where cooling air is at a premium. The convection/film 
cooled liner takes advantage of simple but controlled convection cooling enhanced 
by roughened walls while providing the protective boundary layer of cool air at 
each cooling panel discharge plane. Although somewhat similar in appearance 
to the louver and film cooled liners, the convection/film coolant passage lengd~ 
is several times greater~ more accurate coolant metering is provided and a more 
stable coolant film is established at the panel exit. Principal disadvantages 
of this design are somewhat heavier construction, increased manufacturing 
complexity and repairability difficulties. 

B. System. Requirements 

A broad list of combustion system performance and design objectives 
is required of all combustors. Although this list can be quite lengthy, the 
more important requiremsnts~ some of which were alluded to above~ are discussed 
b elow~ these focus on the aircraft application but are adaptable to the 
industrial/utility turbine combustors with obvious modifications which 
recognize ground utilization. 

• Performance Objectives 

a. High combustion efficiency (100%) at all operating conditions. 
b. Low overall system total pressure ioss~ 
c. Stable combustion at el! operating conditions. 
d. Reliable ground-level ignition and altitude relight capability. 

G ~esi~n Objectives 
e. Minimum size, weight, and cost. 
f. Combustor exit temperature profile consistentwith turbine 

design requirements. 
g. Good durability, maintainability, a~Id reliability. 
h. Minimum exhaust emissions consistent with current specified 

limitatioms end regulations. 

These demands are discussed in more detail in the following subsections. 

a. Combustion Efficiency: Since propulsion system fuel consumption 
has a direct affect on aircraft system range, payload and operating cost, it 
is imperative that design point co~ustor efficiency Be as close to 100% as 
possib!~. Combustion efficiency at the high power/high fuel consumption 
conditions of take-off and cruise is always near 100% (usually greater than 
g9.5~). However, off-design efficiency, particularly at idle, can be in the 
low nineties. 

b. Overall Pressure Loss: The combustion system total pressure 
loss from the compressor discharge to the turbine inlet is normally e~ressed 
as a percent of compressor discharge pressure. Losses of 5-8% are typically 
encountered in contemporary systems. Combustion system pressure loss is 
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recognized as necessary to achieve certain design objectives (pattern 
factc r, effective coollng, etc.) and can also provide a stabi]izinR 
effect on combustion aerodynamics. However, pressure loss also impacts 
engine thrust and specific fue] consumption. Each additional percent 
increase in pressure loss will result in approximately a 1% decrease In 
thrust and a .5-.75% increase in specific fuel consumption. Consequently, 
design goals for pressure loss represent a compromise among the above factors. 

c. Combustion Stability: Combustion stability is defined as 
the ability of the colnbustion process to sustain itself in a contlnuou~ 
manner. Stable, efficient combustion can be upset by the fuel-alr mixture 
becoming too lean such that temperatures and reaction rates drop below the 
level necessary to effectively heat and vaporize the incoming air and fuel. 
Such a situation causes blowout of the combustion process. In addition to 
these extinction considerations, oscillatory combustion -- sometimes called 
acoustic instability -- must be avoided. 

d. Ignition: Ignition of a fuel-air mixture in a turbine engine 
combustor requires Inlet air and fuel conditions within flammability limits, 
sufficient residence time of the potentially burnable mixture, and the 
location of an effective ignition source in the vicinity of the burnable 
mixture. Reliable ignition in the combustion system is required during 
ground-level startup and for relighting during altitude windmilling. The 
broad range of combustor inlet temperature and pressure conditions 
encompassed by a typical ignition/relight envelope is illustrated in 
Figure 4. It is well known that ignition performance is improved by 
increases in pressure, temperature, fuel-air ratio, and ignition-source 
energy. In general, ignition is impaired by increases in reference 
velocity, poor fuel atomization, and low fuel volatility. 

e. Size, Wei~ht~ Cost: The main combustor of a turbine engine, 
like all other main components must be designed within constraints of size, 
weight, and cost. The combustor diameter is usually dictated by the engine 
casing envelope provided between the compressor and turbine and is never 
allowed to exceed the limiting diameter defined for the engine. Minimization 
of comb~,stor length allows reduction of engine bearing requirements and 
permits substantial reductions in weight and cost. Advancements in design 
technoloBy have permitted major reductions in combustor length. With the 
advent of the annular combustor design, length has been reduced by at least 
50% when compared to contemporary cannular systems. 

f. Exit Temperature Profile: A critical turbine-llfe-determining 
parameter controlled by the combustor design related to the temperature 
uniformity of the combustion gases as they enter the turbine. In order to 
ensure that the proper temperature profile has been established at the 
combustor exit, combustion gas temperatures are often measured by means of 
high temperature thermocouples or via gas sampling techniquesemployed at 
the combustor exit plane. A detailed description of the thermal field 
entering the turbine both radially and circumferentially can be determined 
from this data. 

g. DuraSility , Maintainability~ Reliability: A principal 
combusto" design objective is to provide a system with sufficient durability 
to permlt continuous operation for an acceptably long time period between 
scheduled major engine overhauls, at which time it becomes cost effective 
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to make necessary repairs and/or replacements. In the case of the main 
burner, durability is predominantly related to the structural and thermal 
integrity of the dome and liner. The combustor must exhibit good oxidation 
resistance and low stress levels at all operating conditions if durability 
is to achieved. 

A maintainable component is one that is easily accessible, repairable," 
and/or replaceable with a minimum of time, cost, and labor. While most 
combu~tor liners can be weld repaired if damaged or burned, turbine removal 
is required for replacement of combustors in many cases. Combustor cases 
an@ diffuser sections require minimal maintenance and fuel nozzles and 
ignitors can generally be replaced and/or cleaned with minimal effort. 

Reliability can be defined as the probability that a system or subsystem 
w~ll perform satisfactorily between scheduled maintenance and overhaul 
periods. Component reliabillty is highly dependent on the aircraft mission, 
geographical location, and pilot operation since these factors strongly 
affect the actual combustor temperature-pressure environment and cyclic 
history of the components. In that the combustor has virtually no moving 
parts, its reliability is strongly related to fuel nozzle and ignitor 
performance. While fouling and carboning of these subcomponents are common 
causes for engine rejection, these problems are relatively easy to correct 
through normal inspection and replace field maintenance procedures. 

h. Exhaust Emissions: With the advent of environmental regulations 
and goals for aircraft gas turbine systems (17,18), the levels of carbon 
monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NO x) and 
smoke in the engine exhaust become important. Naturally, the environmental 
constraints directly impact the combustion system -- the principal source of 
nearly all pollutants emitted by the engine. Major changes to combustor 
design philoscphy have evolved in recent years to provide cleaner operation 
at all conditions without serious compromise to engine performance. Further 
emissions reductions are being sought in efforts such as the NASA Experimental 
Clean Combustion Program, ECCP (19-21). 

CO and HC are the products of incomplete combustion in a gas turbine 
system. At design conditions -- near full load or at cruise conditions -- 
both of these emissions are negligible. However, during engine idle conditions 
when combustor inlet temperatures and fuel-air ratios are low, combustion 
efficiency decreases and CO and HC emissions increase. Techniques to minimize 
these emissions focus on control of fuel-air distribution at idle to optimize 
temperature and ~esidence time conditions to provide for maximum combustion 
efficiency. 

NO x emissions from continuous combustion process result from three 
formation mechanisms. The best understood mechanism involves "thermal NO" 
which arises primarily from combination of N 2 and 0 present during combustion 
at near stoichiometric conditions. N 2 and 0 equilibrium concentrations can 
be utilized to predict thermal NO. While "prompt NO" may result from similar 
chemical reactions, this second mechanism is not predictable by equilibrium 
concentration assumptions. Prompt NO is formed at the very beginning of 
the combustion process and is thought to be associated with active radical 
concentration levels far in excess of equilibrium formed during the fuel 
pyrolysis and chain branching which initiates the combustion process. The 
third and final mechanism for NO formation is that where nitrogen chemically 
bonded to the fuel is converted to NO x. Fuel nitrogen has been found to be 
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very effectively converted to NO x (30-100% conversion) in laboratory studies 
and in actual gas turbine combustion testing. This mechanism for NO x 
formation is thought to be very rapid, occurring early [n the combustion 
process during fuel pyrolysis. 

The importance of each of these three contributions in gas turbine 
combustors is illustrated in Figure 5. An assumed fuel nitrogen concentration 
of 0.~% and a 100% conversion efficiency have been used in developing this 
figure. Thermal and prompt NO x values were determined with the analytical 
correlation of Reference 22. At low power, combustion inlet temperature 
corresponding to large engine idle or small (<I000HP) engine operation, fuel 
nitroge~, is the predominant contribution followed by prompt and then thermal 
N0 x. At high inlet temperature operation, corresponding to stationary or 
aircraft high-power conditions~ thermal NO is the primary contribution 
followed by fuel NO x and finally, prompt NO x. It should be noted that 
current aircraft jet fuels have fuel nitrogen contents far below this level 
(usually less than 20 ppmw) and NO x from fuel nitrogen is not a present 
concern. 

Smoke is formed at higher power conditions when the primary zone 
of the combustor operates with its highest fuel-air-ratio. The carbon 
particle formation processes which occur in the primary zone and the limits 
of soot formation will be described in Section IV A.I. Techniques which 
have been employed to reduce smoke emission depend on the introduction of 
additional air into the primary zone (to achieve !caner operation) and the 
improvement of mixing to avoid rich fuel-air pockets (23-28). 

Beyond the difficulty of exhaust visibility is the ill-defined 
issue of the health effects of emitted particulates. While there has been 
some general discussion of the effects of humans of particulates of various 
size ranges, none of the existing regulations address this potential problem. 
It should be noted that some limited work has indicated the possibility 
that carcinogenic compounds may be present in gas turbine emitted particulates 
(29). 
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Iii. FUEL EFFECTS ON COMBUSTION SYSTEMS 

Fuel characteristics which are most likely to affect the gas turbine 
combustor designer in the future are fuel hydrogen and nitrogen content and 
fuel thermal stability. In addition, the designer may be confronted with 
changes in fuel characteristics influencing volatility, vlscosity~ su!fur~ 
and trace metal content. Each of these topics is discussed below. 

A. Fuel BydrqsenContent 

The impacts of reduced fuel hydrogen content are associated with 
increased rates of carbon particle formation. Effects include increased 
flame luminosity leading to higher combustion liner temperatures and increased 
smoke emission. The following subsections focus on the carbon particle 
formation process, smoke emission dependence on hydrogen content and the 
effects of increased flame luminosity. 

i. The Carbon Particle Formation Process 

~ile both carbon formation and carbon consumption processes occur 
in continuous combustion systems, the latter are very much slower. 
The optimum approach for preventing hardware distress and avoiding serious envir- 
or=ante! consequences is to develop technology to avoid carbon formation while 
satisfying other system requirements (efficiency'~ gaseous emissions, hardware 
re!lability, etc.). 

The predominance of fundamental research activity has involved 
laminar premlxed flames. Street andThomas' work published in !955 is 
extremely thorough in experimental detail and breadth of hydrocarbons examined (30); 
it has become the classical paper in the field. Other publications are 
References (31-42). These investigations have universally confirmed that soot 
formation is a klnetically controlled process. Equilibrium calculations 
Indicate that soot should not be present at fuel-air mixture conditions where 
the oxygen-to-carbon atomic ratio (O/C) is greater than one. That is, the 
general chemical equation 

cx + x ~ 0  2 ÷ 

should define a soot formation threshold. 
soot formation at O/C substantially in excess of unity. 

xco + 

All experimental results have shown 

Another very important premixed flame experiment conducted at the 
British National Gas Turbine Estab!ishment (NGTE) attempted to evaluate the 
effect of pressure on soot formation (37). All previously mentioned work with 
premlxed flames concerned atmospheric or sub-atmospheric conditions. The 
combustion system employed took special precautions to prevent flashing back 
to upstream locations, an, addltional difficulty associated with the high 
pressure operation, in addition to sooting limits, the amount of soot formed 
was determined and expressed as a "soot formation ratio" (the percent of fuel 
carbon evldenz as soot). The index of the soot quantity was found to increase 
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with the cube of pressure. Very useful plots of pressure versus equivalence 
ratio for various values of soot formation ratio were presented. Examples are 
shown in Figure 6 for cyclohexane, cyclohexene, and benzene. Gas phase species 
were also determined during this testing and it was concluded that H20 and C02 
(oxygenated compounds not predicted by equilibrium for the system (CxHy + ~ 02 
XCO + ~ H2) are formed in sub~tantlal quantities and deplete the system of oxygen 
prior to consumption of all fuel. 

Soot formation in laminar diffusion flames has also been studied (43-46). 
The direct utility of this information for the gas turbine combustion application 
has been questioned, as the mixing rates and characteristic times for chemical 
reaction are very much different than those in the typical combustor. Shlrmer (47) 
has discussed the significant differences between such experiments and the actual 
combustion process. He is particularly critical of the use of the smoke point 
test as an index of fuel tendency to form carbon particulates. Turbulent dif- 
fusion flame results would appear to be more applicable (48). Wright (46) has 
examined soot formation in a diffusion flame burner and has published results 
of soot measured when the fuel side of the flame is supplemented with oxygen at 
concentrations well below O/C = i. Surprisingly, it was found that the addition 
of oxygen increases soot formation up to an optimal rate at which the influence 
abruptly reverses and soot suppression is accomplished at higher 02 concentrations. 

Wright's work involving soot formation in the Jet stirred reactor (49,50) 
is perhaps of most interest to this discussion -- it is a combustion process 
similar to that at which soot forms in the primary zone of an actual continuous 
combustion system. As in the previously mentioned studies, it was determined 
that soot forms at O/C > 1 but the strong backmixing of the Jet stirred reactor 
did afford some broadening of the soot-free O/C ratio. In addition to the estab- 
lishment of sooting limits, as determined by the color of the flame (luminous 
yellow versus blue), Wright determined the concentrations of soot formed for 
some limited conditions of O/C below the soot limit. No analysis of this "yield" 
data to determine soot formation kinetics was undertaken but it is recognized 
that more such data might provide the basis for global carbon formation chemical 
models. 

The key fundamental data discussed above have been summarized in 
Table I. These results indicate that all hydrocarbons soot at O/C > ]. 
The table also illustrates broadened soot limits afforded by backmixing in 
the jet stirred reactor. Figure 7 illustrates the difference in soot 
production between the jet stirred reactor and a premixed laminar flame (50). 
Since the troublesome aromatic compounds are present in relatively small 
amounts in practical fuel blends, the fuel-air ratio to achieve the design 
temperature rise is dominated by the balance of the fuel composition which 
may be relatively high in hydrogen content. Therefore, the fuel-alr mass 
ratio for incipient soot formation is most important to the combustor 
designer. This information based on the jet stirred reactor sooting limits 
(49), has also been included in Table I. The fuel-air ratio representation 
emphasizes the soot form in S tendencies of the aromatic type compounds. 
Consequently, attempts to utilize reduced hydrogen content fuels with increased 
aromatic compounds would be expected to experience the difficulties associated 
with soot formation. 
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T_able i. Carbon Formation Limits for Various Fuels 
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2. Smoke and Particulate Emission Effects 

Reductions in fuel hydrogen content can severely handicap the 
designer in his goal of attaining exhaust invisibility. Figure 8 illustrates 
the relationship between smoke emission and fuel hydrogen content. These 
data were acquired at a combustor inlet temperature of 756°K using a T56 
single combuster rig (51). Substantial increases in the SAE Smoke Number 
(SN) -- determined from the reflectance of a smoke spot formed on filter 
paper after passing a known volume of exhaust sample (52) -- wltb decreasing 
hydrogen content are noted at each combustor inlet temperature. These 
changes can cause serious visibility problems in engines with current SN 
values near the visibility threshold (depending on engine size the threshold 
varies from SN = 20 to 40). Further, since the relationship between SN and 
particulate mass loading (gravlmetrlc exhaust concentration) is exponential 
(53), these ~ncreases represent very substantial increases in absolute 
particulate emission levels. 

Even smaller changes in fuel hydrogen content can significantly 
affect smoke emission. Testing of combustion systems on both JP-4 and either 
JP-5 or Jet A has indicated that smoke levels are substantially lower with 
JP-4 (54). The slightly higher hydrogen of JP-~ (about 14.5 vs. 13.9 weight % 
for Jet A) is thought to be primarily responsible for the increase. Figure 9 
illustrates one example of this type of result for the case of the CJO05 (J79) 
engine (55). 
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3. Flame Luminosit 7 Effects 

The flame in a gas turbine combustion system radiates energy to 
the combustor liners which must be cooled with substantial quantities of 
compressor discharge air (47,51~56-62). Radiation may be considered both 
luminous and non-luminous. The non-luminous infrared emission is due to 
CO 2 and H20 band radiation while the luminous component is due to radiation 
from carbon particles within the flame. The non-luminous portion of the 
flam~ emissivity can be calculated from the equation (56~59): 

en£ = 1 - exp (-2.86 ~ 102 P (rZ) 0"5 Tf -1.5) 

wh~re: 
kN 

? = combustor pressure m2 

r = fuel-air mass ratio 

£ = radiation path length (m) 

Tf= flame temperature (°K) 

The conditions which would result in the highest value of en~ correspond to 
high power operation of a modern high bypass ratio engine: 

P = 30 arm = 3039 -~ 
m 

r = .05 

= 7.5 cm = .075 m 

Tf = 2500=K 

Even under these conditions en~ is only 0.346. Consequently~ non-luminous 
radiation does not approach optically-thick conditions, increases in 
luminous emissivity resulting from use of a low hydrogen content fuel can 
have substantial heat transfer impact. 

~L~ny investigators have studied the effect of fuel characteristics on 
flame luminosity and the resulting effects (5!~63-69). Figure !0 illustrates a 
correlation of much of this data. This figure illustrates the relationship 
between hydrogen content and combustor liner temperatures for a number of 
aircraft gas turbine engines. The ordinate in Figure 12 is a non-dimensional 
temperature parameter (51)~ TL-TLn is the difference between liner temperature 
with a given hydrogen content fuel and that obtained with a standard fuel (in 
this case /9-4 %Ith 14.5% hydrogen content) and TLo-T s is the difference 
betwe=_n the JP-4 liner temperature and the comhustor inlet temperature. The 
parameter is representative of the fractional increase in liner temperature 
(over, the Baseline JP-4 case). Thinking of the liner as a radiative heat 
flux ga=~e, the parameter is also representative of additional radiative 

loading. 
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A non-dim2nsional temperature parameter of 0.25 represents a 
substantial liner temperature increase. Since TLo-T 3 couldbe about 300°C~ 
the increase in liner temperature over that of the standard fuel would be 
75©C. Such changes, especially as they occur at highly stressed combustor 
locations, can seriously reduce hardware reliability and durability. 

A simplified radiation heat transfer analysis of the combustor 
liner temperature data hasproduced a relationship between particulate 
concentration in the primary zone (which increased luminosity) and the fuel 
content (68). The relationship is of the form: 

PC 
(pc) ° i + c I (A~) n 

where: PC = particulate concentration 

(PC) o = particulate concentration with JP-4 

C 1 = constant 

&5 = 14.5 - ~: where 14.5 = JP-4 hydrogen 
content and H is the hydrogen 
content of the test fuel 

n = 0~ i~ 2, etc. 

The be~t fit of the data of Figure 12 indicated that n = i. 

Hore d e t a i l e d  e v a l u a t i o n s  o f  h y d r o c a r b o n  t y p e  on t h e  enhancement  
of luminous radiation have bean pursued (68)° Figure ii iilustrate~ the 
influence of single and double ring aromatic compounds on the prev±ously 
described nonUdimensiona! temperature parameter using results from testing 
with a T56 single combustor. Different hydrocarbon compounds wereadded .to 
the fuel to achieve reduction in hydrogen content--nap£ha!ene is~n unsat 2''- 
urated double ring ~ompDund, t~t"r~i!n is double ring with one saturated and 
one unsaturated ring~ decaline is a saturated double ring compound~ and ~ylene 
is a single ring unsaturated compound with two methe! groups, The figure 
illustrates that in this instance hydrogen content is a sufficient correiating 
parameter and hydrocarbon-type influences are secondary . . . .  
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B. Fuel Nitrosen Content 

i. Fuel Nitrogen ÷ NO x Chemistry 

A number of researchers have studied the fuel nitrogen problem 
from a fundamental standpoint (70-79). All indications point towards 
extremely rapid conversion of the fuel nitrogen to a nltrogen-containing 
intermediate with subsequent rapid oxidation to NO. Some correlations 
and models have been suggested but it seems certain that only at rich 
mixture ratio conditions can minimization of NO formation be possible. 

Equilibrium conditions at rich mixture conditions call for the fuel 
nitrogen to be converted largely to N 2. Sufficient time for the approach to 
equilibrium must be allowed; otherwise large quantities of the nitrogen contain- 
ing intermediates can enter the burnout stage and be converted to NOx 
during that process. Consequently, the kinetics of the initial fuel pyrolysis 
and partial oxidation process must be evaluated. 

The key researchneeds in this area focus on: a) how to accomplish 
rich combustion without detrimental side effects (smoke, hardware carboning, 
flame radiation) and b) what are the products of rich combustion which 
must be a=co~znodated in the second stage combustion process. The time 
requirements, volumetric loading limitation, inlet temperature influence, 
and fuel type variations must all be considered in estabiishment of the 
rich operating limits. The form of the nitrogen compounds as they exit 
this first stage (i.e. NH3, CPE~, NO, etc.) as a function of operating 
conditions will be important to the design of the secondstage burnout 
process. The possibility that some of the fuel nitrogen is present in 
the soot particulate must also be examined. 

Previous work in strong!ybackmixed systems again focuses on 
the jet stirred reactor. Bartok eta!. (75) established N~ conversion 
efficiencies dependence on mixture ratio for methane combustion with 
addition of NE3, (CN)2 ' and CH3NH 2. Conversion was clearly decreased by 
operation at greater-than-stoichiometric mixture ratios, Figure 12 
illustrates jet-stirred reactor conversion rates for propane fuel doped 
with 500ppm CH3NH 2. 

2. Effects on Engine Emission 

The importance of nitrogen in future fuels arises from its 
high conversion (30-100%) to NO x. The extent of this problem in future 
continuous combustion systems is a complex issue. Most importantly, 
the levels of nitrogen which might be expected in future fuels have not 
been defined. 

Discussion at the recent NASA hydrocarbon fuels workshop (80) 
indicated that the impact of fuel nitrogen on the storage and thermal 
stability of jet fuels may dictate levels which, even if completely con- 
verted to NOx, would be nearly undetectab!e. This conclusion, however, 
was drawn in consideration of petroleum-derived fuels and current " . .  

technology aircraft systems and refining methodology. A more long range 
look at the jet fuel nitrogen issue, where non-petroleum fuels and improved 
techniques for copingwith stability difficulties are considered, may alter 
this assessment. 
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The effect of increased fuel bound nitrogen in actual engine 
systems, is evaluated by determining the additional NO x emission occurring 
when nitrogen is present in the fuel and calculating the percent of fuel 
nitrogen conversion t o  NO x necessary to cause this increase. Current 
petroleum Jets fuels which have near zero (< I0 ppmw) fuel nitrogen .are 
usually used as the zero fuel nitrogen baseline. Results presented In 
Figure 13 were acquired using a standard JP-4 fuel doped wlth pyrldlne to 
fuel nitrogen levels of 0.i, 0.3, and 1.0 weight percent (51). A T56 single 
combustor was utilized in this testing. These results indicate the :Lmportance 
of two variables. First, as combustor inlet temperature is increased, conversion 
is reduced. Secondly, as fuel nitrogen concentra=ions are increased, conversion 

decreases. Other results of gas turbine combustor testing have reached these 
same conclusions (66,67,81-84). 

Another observation to be made with the information presen::ed in 
Figure 13 is the conversion achieved with nitrogen naturally present in a 
refined Jet fuel from a non-petroleum source. In this case the fuels were 
derived from Colorado oil shale resources and nitrogen contents of 250-800 ppm 
resulted. The oil shale Jet fuel results are shown on a band in Figure 13 
because of difficulties in accurately measuring small NO x increases. 

C. Fuel Stabilit~ 

In many aircraft applications the fuel is used as a coolant prior to 
being combusted. Subsonic applications use the fuel to cool engine c il 
while supersonlc-cruise aircraft may also require the fuel to serve as a 
heat sink for aerodynamic heating effects. As the fuel enters the combustor 
it flows through hardware (fuel nozzles, fuel pipes, manifolds, etc.) exposed 
to high temperature due to heating by the compressor discharge air and often 
radiant heating from the combustion zone. For these reasons the thermal 
stability is a closely monitored fuel quality. 

The combustor designer must recognize this fuel limitation and 
take appropriate precautions to prevent the fuel from reaching temperatures 
where thermal breakdown leading to deposition can occur. Designs for low 
emissions Involving fuel staging are especially troublesome in this respect. 
As the fuel flow to a stage of the combustor is started or stopped the fuel 
is exposed to a transient heating. After starting the hardware may be at an 
initial temperature corresponding to the compressor discharge and thus, the 
fuel is exposed to very high wall temperatures for a brief period. After 
stopping, the fuel may reach high temperatures as it slowly drains from 
the system with no supplemental cooling. 
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~.nother potential difficulty is the formation of carbon deposits 
within the combustion system. These would be distinctly different then those 
wi~hln the fuel system which are formed in the absence of oxygen. Unplanned 
ImplnZsment of fuel on ccmbustor walls with the use of airblast fuel 
Injection techniques~ can result in substantial carbon deposit buildup. In 
addition to the difficulties associated with a distorted aerodynamic 
sltuatlon~ fra~ents of deposit can separate from the hard,are, pass through 
the combustor and impinge on the turbine (85). 

The introduction of lower hydrogen, higher nitrogen content 
fu~ls ~ould further aggravate the design difficulties of coping with the 
fua!'s limitations° The techniques which would be expected to offer 
i~proved fuel flexibility (eg. airb!ast atomization and staged combustion) 
may e~erisnce especially difficult problems because of liquid fuel cohtact with 
metal surfaces and interm3.ttant fuel nozzle usage. 

D. Other Fuel Factors 

Volatility affects the rate at Which liquid fuel introduced 
into the ccmbustor can vaporize. Since important heat release processes 
do not occur until gas phase reactions take place~ reduction of volatility 
shortens the time for chemical reaction within the combustion system. 
In the aircraft enzine this can result in difficulty in ground or 
altitude ignition capabi!ity~ reduced combustor stabi!ity~ increased 
e=issions of carbon monoxide (CO) and hydrocarbons (HC)~ and the 
associated loss in combustion efficiency. Moreover~ carbon particle 
formation is aided by the formation and maintenance of fuel-rich 
pockets in the hot combustion zone (86). Low volatility allows rich pockets 
to persist because of the reduced vaporization rage. Again~ increased 
particulates can cause additional radiative loading to combustor liners 
and increased smoke emission between JP-4 and /P-5~ Some of the differences 
between IF-4 and JP-5 smoke levels (Figure !!) can be attributed to the vol- 
atility effect~ 

The desired formation of a finely dispersed spray of small fuel 
dropletsis adversely affected by viscosity° Consequently~ the shortened 
time for gas phase combustion reactions and prolonging of fuel-rich 
pockets ~erienced with low volatility can also occur with increased 
viscosity. The ignition~ stabi!ity~ emissionss and smoke problems pre- 
viously mentioned also increase for higher viscosity fuels. 

Both sulfur and trace metals.are at very low concentrations 
in current jet fuels° Sulfur is typically less than 0.1% because the 
petroleum fraction used for jet fuel production is nearly void of sulfur- 
containing compounds. Although syncrudes from coal or oil shale may 
contain higher sulfur leveis~ it is not likely that the current 
specification limit of 0.4% would be exceeded with the processed jet fuel. 
~ne nature of modern turbine blade design and the operating temperatures in 
this component require that the trace metals be removed. Because of the way 
in which future jet fuels are expected to be produced~ trace metals are also 
expected to continue to be present at low concentrations (less than ! ppmw). 
Should higher levels appear possible, the necessity to preserve the high fuel 
efficiency benefits of the advanced technology turbine blade would justify 
additiena! expense for removal. 
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IV. CHANCES FOR FUEl FLEXIBILIIX 

In consideration of future R&D requirements, this Section presents 
the types of designs which might be expected to afford some fuel flexibility 
are described. 

I. Premixing/Prevaporlzation/Lean Operation 

Since carbon particulate formation occurs at f,J~l-air ratios 
above a limit determined by the fuel composition, it is cvident that the 
primary approach towards eliminating luminous radiation and smoke problems 
is to maintain fuel-air ratios below the incipient carbon formation limit 
at all points within the combustor. To assure this situation the m~Imum 
degree of premlxing, prevaporlzation, and lean operation should be pursued. 
The ability to incorporate these design characteristics, however, It; seriously 
limited by the difficulties to be described below. 

The most recent current designs incorporate some degree of premlxing 
and lean operation to minimize smoke emission while using fuels within existing 
specifications. The General Electric CF-6 combustor illustrated in Figure 14 
utilizes airblast atomization and a lean primary zone. Testing of the CF-6 
combustor has produced results which indicate combustor liner temperature 
dependencies on fuel hydrogen content significantly below that of older 
designs (87). Figure 15 compares the non-dimensional temperature parameter 
for the CF-6 with that of the older designs established as Figure 12. Inter- 
preting the non-dimensional temperature parameter in terms of a heat flux 
parameter, it is clear that the fractional increase in combustor thermal 
loading resulting from luminous radiation is far less for the CF-6 combustor. 

Low NO x emissions designs tested in the NASA Experimental Clean 
Combustor Program have a leaner, more premixed design. These advanced 
combustors make use of a staged design as illustrated in Figure 16. The 
first stage, being the only one fueled at idle, is designed forpeak idle 
combustion efficiency. The second stage is only utilized at higher power 
conditions. This main combustion zone is designed with the primary motivation 
of NO x control and operates fuel lean. It has been found that some of these 
designs indicate nearly no sensitivity to fuel type; the behavior of such 
systems as expressed in the manner of Figure 15 would be a horizonta] llne (87). 
That is, all fuel air ratios in the combustion zone must have been below the 
incipient sooting limit. 

It should be noted that not all evidence points to greater fuel 
flexibility for modern engines. During the recent NASA Hydrocarbon Fuels 
Technology Workshop, combustor liner temperature results from th= testing 
of some of the ECCP advanced combustors was thought to imply an equal sensitivity 
to the older designs (80). It was generally agreed, however, that the direction 
in which the ECCP combustor designs proceded to satisfy performance requirements 
and reduce emissions is favorable to promoting fuel flexibility. 
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PRDDUCTiON CF6=50 Ei~G~_~ CO~BUSTOR 

Figure 14: CF6-50 Standard Combustor (From Reference 87) 
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The designer's ability to incorporate premixing/prevaporizatlon 
~echniques into his combustor is seriously limited by preignition and 
flashback limitations and by combustor geometry constraints. At the high 
¢ombustor inlet temperatures and pressures associated with takeoff climbout 
or cruise operations, the ignition delay time of the fuel air mixture may 
be less than i0 ms. Should this residence time be achieved prior to the 
mixing entering the burning zone, ignition will occur with resultant 
destruction of the combustor hardware. If droplet size is too large the 
prevaporization passage may be too short to accomplish sufficient vaporization. 
Recognizing the need for future premixing/prevaporization systems a number 
of efforts have begun to collect fundamental information of methods of best 
achieving this condition in practical systems (88,89). 

2. Combustor Liner Cooling 

A second, or perhaps additional, approach to avoiding har@~are 
distress resulting from increased flame luminosity is the use of advanced 
combustor liner cooling techniques. Three concepts are to be reviewed here: 

implngement/film cooling, transpiration cooling, and thermal barrier coatings. 
Figure 17 illustrates characteristics of each of these techniques. 

The impingement/film cooling technique is well suited for applications 
involving high radiative flux and minimum availability of cooling air. Small 
jets of air impinge on the hot side of the combustor liner providing very 
effective heat transfer. When combined with the additional film cooling 
feature (see Figure 3), impingement cooling provides for excellent thermal 
protection of a high temperature liner. Its disadvantages, however, are 
similar to those of the film/convection liner--heavler construction, manu- 
facturing complexity and repairability difficulties. 

Transpiration cooling is the most advanced cooling scheme available 
and is particularly well-suited for future high temperature applications. 
Cooling air flows through a porous liner material, uniformly removing heat 
from the liners while providing an excellent thermal barrier to high combustion 
gas temperature. Both porous (regimesh and porolloy) and fabricated porous 
transpiring materials (Lamilloy*) have been examined experimentally. Fabri- 
cated porous materials tend to alleviate plugging and contamination problems, 
inherent disadvantages of the more conventional porous materials. As can be 
seen in Figure 17, transpiration cooling offers better temperature control 
and uniformity than any other cooling technique. 

Beyond these techniques are other approsrhes involving coatings 
and thermal barriers. Recent efforts at NASA Lewis Research Center have 
illustrated that thermal barriers can provide significant relief from high 
radiative loads allowing acceptable metal temperatures in conventional 
combustion designs when burning fuels with low hydrogen content (90). The 
thermal barrier consisted of a 0.01 cm bond coat of nickel-chromium-aluminum- 
yttrium alloy covered with a 0.025 cm ceramic layer of 12% yttria stabilized 
zlrconla. Combustor liner metal temperature decreases of over 200°C were 
indicated when using a high aromatic fuel. 

* Developed by Detroit Diesel Allison, Div. of GMC, Patent Number 3,584,972, 
titled "Laminated Porous Material," 15 June 1971. 
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3. Minimizing Smoke Emission 

The most attractive means of controlling smoke emission is to 
maintain fuel-alr ratio conditions throughout the combustor at values below 
the incipient carbon formation limit. However, because of the practical 
problems presented by premixing, prevaporizatlon, and lean combustion, this 
may not be possible. In such a case the previously discussed liner cooling 
techniques will be of value in handling the increased amounts of luminous 
radiation. 

Carbon particulates which are formed will have to be oxidized 
within the secondary zone. Close control of mixture ratio, temperature 
and residence time within this zone will be necessary to achieve maximum 
consumption. Radcliffe and Appleton (91) have determined that optimum 
consumption of particulates occurs at ~ = 0.75. Their particle surface 
consumption rates of 1-20 Bm/sec. indicate that particles whose initial 
diameter is less than 0.04 ~m will be consumed in a typical residence time of 
five ms. Even with optimum conditions, however, it may not be possible to 
consume sufficient amounts of soot to provide acceptable exhaust levels, 
especially if significant agglomeration has occurred to form particles 
l~t~er ~han 400 ~. 

4. Fuel Nitrogen Conversion 

The primary approaches to minimizing fuel nitrogen conversion tO 
NO x involve rich combustion to react fuel nitrogen to N 2 followed by lean 
burnout of the rich zone products. The necessity for the rich combustion 
zone creates substantial difficulty in the task of preventing carbon 
particulate formation. In brief, this limits the "window" of premixed 
prevaporized conditions which the designer must satisfy and creates the 
necessity for a sequentially staged design (rather than spaclally or parallel 
staged design as in the NASA ECCP combustors). Difficulties associated with 
the conflicting approaches to soot minimization and fuel nitrogen + NO x 
control coupled with therma I stabil~ty requirements will certainly contribute 
towards a preference to remove nitrogen from future aviation fuels. 

5. Other Fuel Characteristics 

Fuel thermal stability, volatility, viscosity, and sulfur and 
trace metal content would have significant impacts. As previously discussed, 
thermal stability might become a more significant problem in staged designs 
where fuel introduction systems are started and shut down frequently, thus 
undergoing substantial thermal transients. Cautious design of fuel system 
components and control of fuel quality will be required to overcome this 
difficulty. 

Reduced volatility and increased viscosity would impact ground 
and altitude ignition capabilities. It must be emphasized that the system 
must be designed for and qualified at the most stringent operating parameters 
(in this case lowest temperature) and future fuels might have very difficult 
properlies at such conditions. 
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V. R&D NEEDS 

The purpose of this section is the identification of basic 
combustion phenomena requiring further study along with indications of 
priority for accomplishing this work. These thoughts must be related to 
the foregoing discussion of alternate fuels problems in gas turbine 
combustion systems. This will be accomplished by a matrix which depicts 
the relationship between combustion system performance and fuel 
characteristics, The matrix provides a means of identifying major areas 
requiring attention. A second matrix relates the key combustion processes 
requirin~ study to the problem areas identified. 

Combustion system influences which must be considered in this 
analysis are: 

ignition 
combustion stability 
combustor liner temperature and deposits 
combustion efficiency 
gaseous emissions 
smoke emission 
trace emission 
flashback and preignition 

With the exception of the last two items, these topics have already been 
adequately discussed. Trace emission relates to the potential emission 
of material which is not governed by current regulations. For examples the 
more aromatic nature of future fuels might cause increased emission of 
po!ynu¢lear organic material either in the gaseous state or adsorbed on 
emitted particulates. Another possibility would be trace metal emissions 
associated with increased amounts of these materials in fuels. Flashback 
and preignltion becomes an important influence with future combustion systems 
because of the need to premix and prevaporize to provide stab!e~ lean 
combustion to minimize soot and NO x formation. As these combustors are 
developed, the influences of the fuel characteristics on flashback and 
preignition must be considered, 

Figure 18 relates these combustion system influences to the fuel 
characteristics discussed in previous sections: fuel hydrogen content 
and changes in hydrocarbon composition, nitrogen content, fuel thermal 
stability, volatility, viscosity, trace metal content, and sulfur content. 
Problems known to exist because of future changes in each fuel characteristic 
are designated with a P. Potential problems are indicated with a p. The 
seriousness of the problem is indicated numerically with i being a minor 
problem and 3 being a major problem. The matrix illustrates that attention 
should be focused on: 

a. Fuel hydrogen content effects on combustor durability 
and smoke emission. 

b. Fuel nitrogen conversion to NO x. Note that this conclusion 
applies directly to non-aircraft turbine only as future 
jet fuel nitrogen levels are very uncertain (see Section IV). 
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c .  Fuel hydrogen content (hydrocarbon composition) influences 
on preignition/flashback in combustion systems. 

d. Thermal stability influences on deposits, especially for 
future prevaporization/premixing designs. 

e. Volatility effects on ignition, gaseous emission, and smoke. 

f. Viscosity effects on ignition, gaseous emissions, and smoke. 

g. Hydrogen content, trace metal, and sulfur effects on trace 
emissions. 

~nile this prioritization of gas turbine combustion problems 
is interesting in itself, it only provides guidance for formulation of 
the appropriate fundamental combustion program. Figure 19 provides a 
schematic representation of the combustion model being developed in this 
program. The framework of the model provides a structure for thinking of 
the basic combustion phenomena requiring improved understanding, as well 
as far determiuing requirements which can lead to the ability to analytically 
predict fuel effects on combustion systems. Fuel related elements of the 
model are those appearing in the upper left portion of the schematic. A 
final key element requiring attention is flame radiation and the ability 
to predict variations in it with fuel type. 

These elements have been presented along with the key system 
problems expected (as previously discussed) in the final matrix of Figure 20. 
Here the priority problems are related to items which we can study and 
from which our program can be formulated. Note that the potential for 
studying the deposit problems associated with low thermal stability using 
a combustion model is very low; new experimental procedures for evaluation 
of thermal stability difficulties must be pursued. Further, while the 
HI and CO oxidation chemistry will play a vital role in the combustion 
chemistry, additional information on this process is not necessary to allow 
prediction of fuel effects. 

it is apparent that the following ordering of priority should De 
respected in selection of tasks for future program years. 

a. Soot Formation 

b. Fuel Pyrolysis 

c. Soot Oxidation 

d. Flame Radiation 

e. Bound Nitrogen ÷ NO Conversion 
x 

f. Aerodynamic Chemical Interactions 

g. Fuel Vaporization and Spray Dynamics 

It should be noted that these topic areas are not very sharply defined. 
For example, soot formation occurs during fuel pyrolysis and one topic 
could not be totally excluded from study of the other. Further, the 
difference in the priority of the first five items is very small. Bo~/id 
nitrogen conversion should be given urgent priority even though it is 
fifth on the list. 
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Schematic Representation of a Combustor Model 
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Vl. CURRENT EXPERIMENTAL PLAN 

The current experimental program focuses on study on the soot 
formation process using the jet-stirred combustor. This device ls a 
modification of the Longwell-Weiss reactor (92) with hemlspherlcal 
geometry. This choice has been used extensively in fluid mechanic and 
combustion modeling because combustion rates are limited by chemical 
kinetics as opposed to transport effects. The reactor (Figure 21) consists 
of an outer shell of fire brick shaped as two halves of a sphere five 
inches in diameter. The upper hemisphere is solid with the exception of 
the hole through which the reactants are brought to the injector. The 
lower hemisphere is hollowed out to a reaction zone of 1.5 inch diameter 
and has twenty-five holes of 0.125 inch diameter through which the burned 
mixture exhausts. New reactors are being fabricated which will allow for 
different diameter reaction zones (i and 2 inches as well as 1.5 inch) and 
to evaluate reactor heat loss effects. 

Fuel and air are metered separately through calibrated rotameters, 
preheated to the desired inlet temperature and then mixed before entering 
the combustor. Air and fuel heating to temperatures of 350°C (and fuel 
prevaporization in the case of liquids) is accomplished in an "aluminum 
block heater". Separate coils for fuel and air are embedded in the block 
which is wrapped with electrical resistance heaters. In the case of liquid 
fuels, a small flow of N 2 is maintained through the fuel coil to provide 
smooth vaporization and uniform flow. The temperature of the fuel/air stream 
is determined immediately before injection. This measurement is input to a 
digital controller which provides power to the block heater to maintain 
injector inlet temperature within + 3°C of the set point. The fuel-alr 
mixture enters the reaction zone through an Inconel injector which is a 
hemisphere into which are drilled forty-radial holes of 0.020 inch diameter. 
The above mentioned new JSC design will allow for rapid changing of injectors 
in case of burnout or to determine the effects of injector head design. The 
reactants enter the reaction zone as small sonic jets which stir the reactor 
contents and produce a mixture of essentially uniform temperature and 
composition in a characteristic time which is short compared with the 
average residence time. Combustion experiments can be conducted at atmospheric 
pressure with a range of residence times from 1-1/2 to 4 milliseconds. The 
capabilities of this apparatus may be extended to include operation above 
atmospheric pressure as part of the current DOE effort. 

A new system for gas and particulate sampling has been developed. 
Special care has been taken to prevent condensation of water or unburned 
hydrocarbons within the sample lines, as high concentrations of these 
constituents are expected at mixture ratios of interest in this study. 
The sampling probe is hot-water cooled and sample transfer is accomplished 
using electrically heated sample lines. All pumping and valving is 
accomplished within an oven maintained at 150°C. Valves have been selected 
which are rated for operation at temperatures up to at least 1750C and 
design characteristics are such that lubricated valve components are sealed 
from the gas path. The pump selected is a high temperature metal bellows 
type (Model MD-158 HT) driven by a 1/4 horsepower motor external to the oven. 
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Figure 21 

Schematic of the Jet Stirred Combustor 
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Gas sampling is accomplished w~th conventional process instru- 
mentation. Gases leaving the oven are transferred hot (150°C) to a Beckman 
Model 402 Analyzer for hydrocarbon measurement. Another sample gas stream 
is chilled to eliminate condensable water and hydrocarbons prior to 
introduction into NDIR analyzers for CO and CO2, and an amperometric 
instrument for 02 . Particulate sampling will be accomplished usin~ a &O nun 
glass fiber type filter (Gelman type AE). Pre- and post-weighing (after 
appropriate drying) will be utilized and sufficient collection in times of 
less than I0 minutes is expected. 

Ethylene has been used as the base fuel for this program. Liquid 
fuels to be studied are: 

n-octene 
cyclo-octane 
hexane 
cyclo-hexane 
n-octane 
iso-octane 
toluene 
ortho-xylene 
meta-xylene 
para-xylene 
cumene 
tetralin 
decalin 
1-methyl napthalene 
dlcyclopentadiene 

Early experiments will involve C2H 4 as the fuel and will focus 
on determining the effects of reactor loading and inlet temperature on 
the incipient soot limit and soot formation rate. Gaseous specie 
concentration will also be determined to evaluate the changes in ~{drocarbon, 
CO, and CO 2 concentration as the soot limit is reached and exceeded. 

Similar experiments will follow using the liquid fuels. The 
objective of these studies will be to evaluate the effect of hydrocarbon 
structure on sooting characteristi,~s under intensely backmlxed conditions. 
All of this testing will have been conducted using pure fuels. Subsequently, 
fuel blends will be studied, The relationship between fuel hydrogen content 
and soot emission will be established. Finally, practical fuel blends 
(a jet fuel, diesel fuel, and unleaded gasoline) and actual synfuels (coal 
or oil shale derived) will be tested. The objective of these last tests 
will be to examine the similarity between results obtained with blends of 
pure fuels and those of practical fuel mixtures. 
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