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A. Summary of Rounded Off and Published Work 

The work summarized below has been performed under the current grant, 

"The Carbidic Adlayer as Rate-Controlling Factor in CO/H 2 Catalysis," and has 

been published [10-1¢]. 

The notion of a "carbidic" mechanism for methanation (and Fischer Tropsth 

hydrocarbon synthesis) has "been challenged' by isotopic transient-kinetic 

experiments. "Carbidic mechanism" is being utilized in the prevailing context 

for a global scheme [5]: 

i 

+H C O { g ) ~  CHx-ad 

characterized by an 

intermediates CHx-ad, 

. ~  CH4(g) 

" ~  CnH2n(+2)(g) 

inventory of non-oxygen containing ("carbidic") 

serving as the precursors for methane and higher 

hydrocarbons. Platinum is known to be a methanation catalysts at the one 

hand, and being incapable of dissociating CO e f f i c ien t l y  at the other hand 

[ I 5 ] .  I t  therefore= is unplausible that methanation over platinum proceeds via 

a "carbidic" mechanism. Nickel dissociates CO e f f i c ien t l y  and has been 

ident i f ied with the "carbidic m mechanism, Accordingly, an isotopic transient- 

k inet ic comparison of platinum and nickel was performed [13]. 

Fig, la and b give representative transient responses of Ni and PC. In 

the pertaining experiments the feed at the in le t  of a plug-flow reactor was 

-switched -abrupt-ly -from 12CO/H 2 -to 13C-D/12. -Wi-t-h on--1-i~e mass spec-ti'eme~i'y ~he 

transient decay of 12CH4 and the transient ingrowth of 13CH 4 was monitored at 

the reactor outlet' The transient response of platinum and nickel is clearly 

different. When changing from 12C0/H2 to 13C0/I12, the production of 12CH4 

over platinum ceases immediately, whereas over nickel i t  continues for some 
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1O0 s (Fig. la and b). Noteworthy is that reaction conditions have .been 

selected which lead to turn-over-frequencies (TOF's) which are very similar 

for Ni and Pt. 

The data have been analyzed starting from the response of a single 

unidirectional elementary step: 

R R 
C0(g) - - - - *  Nc, ¢c -----* CH4(g) 

In response to a switch from 12C0 to 13C0 the abundancy of 12C-containing 

surface intermediates (abundancy N12, average lifetime ¢) w i l l  decay: 
N 

R = -- (I) 
T 

dNl2 NI2 
- (2 )  de 

For the l i fet ime, T, of the intermediates i t  is immaterial whether they are 

being surrounded by 12C- or 13C-containing surface intermediates. The 

quantity T in (2), therefore, "is independent of N12 , and (2) integrates into: 

t 
N12 = N~- T (3) 

with N = N12 + NI3 being the total coverage of C-containing intermediates at 

steady state. The decay of N12 is being observed as a decay of the rate of 

12CH4 production at the reactor out|et, R12: 

t 
R12 = R -T C4) 
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with R = Rl2 + R13 being the methanation rate at steady state: Figs. 2 and 

3. From a comparison of Fig. la and Fig. lb i t  follows that the lifetime of 

platinum-bonded intermediates is some two orders lower than that of nickel- 

bonded i ntermedi ares. 

N By dividing in the relation R =T the le f t -  and right-hand side by Ns, 

the number of surface-exposed atoms, one obtains: 

TOF =e_ (5) 

With TOFpt - TOFNi and Tpt << TNi one obtains: 

apt << ONi (6) 

The two orders difference in m~gnitude of ¢ and e at comparable TOF support 

the notion of a different reaction mechanism being operative over platinum, 

which is being discussed further in [13]. 

In separate work, not covered by the current grant, the notion of a 

carbidic mechanism for the higher hydrocarbon (FT) synthesis has been 

challenged, Fig. 4 summarizes a pertinent result. The incorporation of 12C 

in hydrocarbons continues after replacement of 12COad by 13COad {see also 

below). Accordingly, CHx-ad rather than CO-ad precursors feature in the 

-s'ceady-s~ate( ! -} product+on -of -hydrocarbons. 

In pre l iminary t r a n s i e n t - k i n e t i c  experiments [8]  we observed coverages in 

carb id ic  intermsdiates which were general ly  very low (0,01 < s < 0 .1) .  

Accordingly,  we formulated the hypothesis that  at "normal" (high pressure)" 

steady-state cata lys is  the .  major i ty  of the surface was being blocked by 

i r r e a c t i v e  byproduct.s. Post-react ion examination of  nickel surfaces wi th AE$ 
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however led Goodman et al. [16-18] to a different conclusion, i .e . ,  low 

coverages in CHx-ad deriving from a low rate constant of production (k I) 

compared to the rate constant of consumption (k2): 

k k 2 
COad--~-~ CHx-ad-----~ CH4(g) 

Simi lar  conclusions were reached by Gardner and Bartholomew [273 and by 

Underwood and Bennett [28].. A focal point of the work under the current 

grant= accordingly, was to chal]enge our hypothesis. This was done by 

counting i n - s i t u  the number of surface-exposed (unblocked) metal atoms via 

12C0/13C0 exchange [10], 

The 12C0 stream was traced with a 5% amount of Ar: 12CO(AP). When 

switching a steady-si~ate reaction conditions from 12CO(Ar)/H2 to 13CO(He)/H2 

there is a noticeable delay between the disappearance of 12C0 and Ar at the 

reaction outlet: Ar decays f i r s t  (Figure 5). The effect arises from the 

reactor containing an inventory of adsorbed CO which is not being paralleled 

by an inventory of adsorbed Ar. Entering 13C0 displaces 12rOad in a very 

rapid exchange process: 

~CO(g) , :lZcgd --,.IZc,4(g) 

The (chromatographic, f ronta l  e lu t ion)  delay in Fig. 5 does not derive 

from the rate of  exchange, but rather obeys [10]:  

• t =v  (7) F 
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in which V the magnitude of the reservoir of COad (ml stp) and F the in let  

flow rate (ml stp/s), As just i f ied more fu l ly  in [10] i t  follows (Fig. 6) 

that in-situ observation of the chromatographic delay, At, gives a measure for 

the amount of toad present at the surface during steady-state catalysis. 

In separate experiments i t  was established that deliberate surface 

blocking (short successive exposures to pure CO at 300°C) leads to a 

proportional decrease of the TOF and the amount of COad present during steady- 

state catalysis: Fig. 7. I t  therefore follows that, at reaction conditions, 

CO does not adsorb'on top of surface blocking Cad. Accordingly, a high value 

of COad provides evidence of a largely unblocked surface. 

Ample evidence was obtained [10] that on v i r tua l ly  unblocked surfaces 

(OCO high) coverages in carbidic intermediates can be very low, especially at 

lower temperatures (190Oc __< T ~ 240°C). We therefore had to discard our 

starting hypothesis: low intermediate coverages are not merely the result of 

an irreactive carbidic adlayer, blocking unselectively the majority of the 

catalyst surface [10]. 

Having established that unselective surface blocking is not rate 

controlling within the f i r s t  few hours of exposure to CO/H 2, measurements were 

extended to significantly longer times-on-stream.- The work focused on Raney 

Nickel, with the result summarized in what follows. 

A Raney nickel catalyst, when exposed to hydrogen-lean syngas, i n i t i a l l y  

declines at a rate of approximately 0.2%/h. In an approximately 120h period 

the decline rate levels off at a value of approximately 0.03%/h. Based on the 

existing l i terature [17,19-21] an "adlayer deterioration" hypothesis was 

formulated: 



concurrent with reactive 

"carbon" is being produced. 

high decline rate (0.2%/h). 

carbidic intermediates site-blocking 

This is responsible for the i n i t i a l l y  

The site-blocking "carbon" is being 

removed from the surface in a slow hydrogenation reaction, resulting 

in an average residence time at the surface of the order, of 120 h. 

Accordingly, i t  takes approximately 120h to reach steady state, i . e . ,  

a balance between the "carbon" production and removal. The residual 

decline of 0.03%/h is due to irreversible deterioration o, ~ "carbon" 

into irremovable "graphite". 

The hypothesis subsequently was challenged by conducting translent-kinetic 

experiments i n  a repetitive mode during the entire line-out period. The 

results disproved the above-formulated hypothesis, as shown below. 

Aging is found to be reflected in the transient behavior: the transients 

develop a " ta i l " :  Fig. 8, These transients ~re found to be described by: 

= z)  
F13CH4 C1 £ + C2 £ (8) 

Such a behavior is characteristic for CH 4 originating via two parallel 

pathways. Th is  could be confirmed by frequency-response experiments, fu l l y  

described in [12]. 

Whereas the time constants of the two paralle/ pathways are essentially 

independent of aging: 

T 1 = 120 + 20 s .. 

~2 = 850__+200 s 

10 
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the re la t ive  contr ibut ion of the two pathways is observed to change upon 

aging: the coefficients Cland C 2 in (8) are slowly changing in time (Fig. 

g). 

What emerges is a situation of a "slow" pathway (72 =850 s} taking over 

from a "fast" pathway (~1 = 120 s) over a period of 120 h. The total surface 

coverage, corresponding to pathway I and 2 combined, slightly increases over 

the f i r s t  120h period. This, combined with the observation that surface 

species with a surface ~sidence time of only 850 s do not require 120h to 

reach steady-state coverage, leads to the conclusion that aging in th is  

pa r t i cu la r  case is in essence n o t  a process of  s i te  blocking but rather a slow 

"deter iora t ion"  of the nickel i t s e l f ,  causing pronounced k ine t ic  heterogeneity 

[12]. 
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B. Summar~ of Currently, Unfinished Work 

As work in the f i r s t  period of the current grant yielded more and more 

indicat ions that; unselective s i te  blocking is not a major act iv i ty-determining 

fac tor  we changed our focus towards the i n t r i n s i c  k ine t i c  properties of the 

nickel-catalyzed methanation pathway. As isotopic transients have the unique 

capabi l i ty  o? furnishing value fo r  eCHx, OCO and OH, we set out to determine 

the behavior of these quant i t ies,  with PCO, PH 2, T and the nature of the 

nickel catalyst  being the independent variables. A sample of representative 

results is presented below. 

The amount of COad present during steady-state catalysis was determined 

from the amount of  12COad removed in H2/I3CO atmosphere (cf .  Fig. 5). 

Pert inent results are being summarized in Figs. 10 - 12. I t  appears that up 

to T = 250°C, CO is present at c lose-to-saturat ion coverage, conform ea r l i e r  

IR evidence [4,22,23].  

The to ta l  amount of "Had = { i . e . ,  H bonded to metal and H bonded to 

carbon) was estimated l ikewise, i . e . ,  from the amount of  H 2 and HD removed in 

D2/CO atmosphere, Inconsistent results orginate. Fig. 13 ( i . e . ,  ml H 2 vs. 

PH2) suggests imcomplete coverage, whereas Fig. 1¢ ( i . e . ,  ml H 2 vs. PCO 

suggests saturat ion coverage. In addi t ion,  the value obtained for  "Had" 

exceeds that  fo r  CGad. Coexistence of large amounts of COad and "Had" also 

has been observed recently by Bell et a l .  [24].  

The amount of carbidic intermediates, CH~(-Jld, was estimated from the  

production of  13CH4 in 12C0/H2 atmosphere. The amount of CHx-ad varies 

s i gn i f i can t l y  and reversibl ~, with PH2 and PCO: Figs. 15,16. Noteworthy is 

that eCH x increases with increasing PH2, a trend opposite to that observed 

with post-react ion AES analysis by Goodman et a l .  [18] .  

13 



The decay of 12CH 4 in 13C0/H2 atmosphere is ,  fo r  "fresh" catalysts, close 

t o  exponential: F = exp[-t/T]. Figs. 17-19 describe the variation of T with 

PH 2, PCO and T. Fig. 17 is suggestive of a hydrogenation reaction determining 

the relaxation time. 

By conducting back-to-back D2/12C0 + D2/13C0 and H2/12C0 + H2/13C0 

transients we could compare (k, e) o1 ~ CD x intermediates with (k, e) of CH x 

intermediates: Fig. 20. Noteworthy is that at the conditions prevail ing in 

Fig. 20 there is a s igni f icant  inverse "kinet ic" H/D ef fect :  RCD4/RcH4 

-1 .3 .  Surprisingly, the "kinetic" H/D effect turns out to be a e effect 

rather than a k effect. This is seemingly inconsistent with a hydrogenation 

reaction determining the relaxation time (k = ~-1 see above). 

The aforementioned results al] pertain to 60% w Ni/SiO 2. Highlights of 

resul1:s obtained for Raney Nickel and nlckel powder are given below. 
l 

Fig.21 presents data on the decay of 12CH4 in 13C0/H 2 atmosphere (k = T- 

1). I t  appears that the reactivity of the carbidic intermediates varies with 

the nature of the nickel catalyst. 

Fig. 22 presents data on the integrated production of 12CH4 in 13C0/H 2 

atmosphere ( i . e . ,  on the coverage tn intermediates). Again, a s igni f icant  

variation of 6 is being observed. 

Fig. 23 presents data. on-the variat ion in coverage with the rat io 

H2/CO. The nickel powder behaves seemingly abnormal. However, in doing so i t  

conforms to the trend reported by Goodman et al .  [18]. 

14 
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