2.4 Hot-Gas Cleanup

HOT-GAS CLEANUP

Semiannual Technical Progress Report for the Period January 1, 1992 - June 30, 1992

by

Michael L. Jones, CESRI Director Jay S. Haley, Research Engineer John Hurley, Research Supervisor Blazo Ljubicic, Research Engineer Murali Ramanathan, Research Scientist

Energy and Environmental Research Center University of North Dakota Box 8213, University Station Grand Forks, ND 58202-8213

Technical Monitor: Richard A. Dennis

for

U.S. Department of Energy Morgantown Energy Technology Center 3610 Collins Ferry Road P.O. Box 880, Mail Stop EO2 Morgantown, WV 26507-0880

July 1992

Work Performed Under Cooperative Agreement No. DE-FC21-86MC10637

TABLE OF CONTENTS

			<u>Page</u>
LIST	ST OF FIGURES	•••	ii
LIST	ST OF TABLES	•••	iii
1.0	INTRODUCTION	• • •	1
2.0	GOALS AND OBJECTIVES	• • •	1
3.0	PROJECT DESCRIPTION		1
4.0	ACCOMPLISHMENTS	•••	2 2 13
	 4.3 Thermochemical Equilibrium Modering: Photbe Database Modifications 4.3.1 Database Format Change 4.3.2 Additions to Database 4.3.3 Database Utilities 4.3.3 Database Utilities 4.4 PHOEBE Algorithm Extensions 4.4.1 Original Algorithm Description 4.4.2 Pressure Calculations 4.4.3 Preprocessor Utilities 4.4.4 Tests of the Database Algorithms 	 	26 27 28 30 32 32 34 35 37
5.0	FUTURE WORK	• • • • • • • • •	37 37 39 39
6.0	REFERENCES		39
APPEN	PENDIX A	• • •	A-1
APPEN	PENDIX B		B-1

LIST OF FIGURES

Figure		Page
1	Hot-gas cleanup test loop	3
2	Nitrogen pressure variation $(p_{initial} = 18 \text{ psi})$	5
3	Nitrogen pressure variation $(p_{initial} = 37 \text{ psi})$	5
4	Nitrogen pressure variation $(p_{initial} = 60 \text{ psi})$	6
6	Infinite pulse $(p_{initial} = 37 \text{ psi})$	7
7	Infinite pulse $(p_{initial} = 60 \text{ psi})$	7
8	Backpulse gas temperature in front of the filter $(p_{initial} = 18 psi)$.	8
9	Backpulse gas temperature in front of the filter $(p_{initial} = 37 psi)$.	8
10	Backpulse gas temperature in front of the filter $(p_{initial} = 60 psi)$.	9
11	Pressure wave intensity in front of the filter $(p_{initial} = 18 psi)$.	10
12	Pressure wave intensity in front of the filter $(p_{initial} = 37 psi)$.	10
13	Pressure wave intensity in front of the filter $(p_{initial} = 60 \text{ psi})$.	11
14	Particulate sampling system	12
15	Pressurized drop-tube furnace process schematic	15
16	Furnace assembly in PDTF vessel	16
17	Photograph of PDTF pressure vessel	17
18	Photograph of PDTF translating mechanisms	18
19	Schematic of PDTF sampling probe with interchangeable tips	19
20	Schematic of coal feeder for pressurized drop-tube furnace	20
21	The percent of the total ash collected in each size fraction for the tests of kaolin as an alkali getter	22
22	The major element composition of the ash collected in each size fraction for the tests of kaolin as an alkali getter	24
23	The weight percent of each element collected in each size fraction for the tests of kaolin as an alkali getter	25
24	An example system definition tree (SDT)	36

LIST OF FIGURES (Continued)

25	A plot of the experimental PHOEBE-predicted phase	
	diagram for Al_2O_3 -SiO ₂	38
26	A plot of the experimental vs. predicted phase diagram for Na_2SiO_4 .	38

•

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Specifications for an Isokinetic Particulate Sampling System	11
2	Average Test Conditions for Alkali Gettering Tests in the EERC Pressurized Drop-Tube Furnace System	21
3	Field Identifier Prefixes (FIPs) and Explanations	28
4	PHOEBE Database: Record Entry for Aluminum	29

HOT-GAS CLEANUP

1.0 INTRODUCTION

The U.S. Department of Energy (DOE) is promoting the development of coal-based advanced power systems under the direction of the Morgantown Energy Technology Center (METC). This activity covers a broad range of technologies involving combustion, gasification, and the integration of combustion and gasification technologies. The objective is to maximize cycle efficiencies to provide for a stable, secure, and environmentally sound energy future.

Specific combustion program areas include the development of heat engines such as direct coal-fired turbines and diesels and pressurized fluidized-bed combustion (PFBC). Gasification technology development includes mild gasification for coproducts and hydrogen and methane production for fuel cell applications. Integrated gasification combined cycle (IGCC) technology promotes high cycle efficiencies by combining coal gasification with direct product-gas firing in turbines. In all of these cases, hot-gas cleanup systems are required to achieve acceptable process performance and to meet current and future environmental emission standards.

2.0 GOALS AND OBJECTIVES

The goals of the hot-gas cleanup project at the Energy and Environmental Research Center (EERC) are to build and operate a hot-gas cleanup test loop in conjunction with various pilot-scale advanced systems currently in operation at the Center and to explore the various ash/alkali corrosion mechanisms for ceramic barrier filter materials and to determine the effects of various mitigation options. The mitigation options will focus primarily on gettering techniques. Eventually these techniques will be verified at the pilot scale using the hot-gas test loop.

The Center is currently operating the following pilot-scale fluidized-bed reactors:

- Fluidized-bed mild gasification reactor
- Fluidized-bed catalytic reactor for the production of hydrogen
- Pressurized fluidized-bed combustor

The Center is also planning to install and operate a transport reactor test unit (TRTU) to provide scaleup data for the hot-gas cleanup test facility in Wilsonville, Alabama.

3.0 PROJECT DESCRIPTION

The Energy and Environmental Research Center is currently involved in a number of research projects in both the combustion and gasification of coal and also in gas-stream cleanup. The fundamental gas-stream cleanup issues common to the various advanced concept systems are being investigated in this project. Emphasis is being placed on particulate control techniques and on ash/alkali interactions with the filter materials.

In order to investigate particulate control methods, a test loop was constructed and inserted into the exhaust piping of the advanced concept reactors at the Center. The test loop provides a means of exposing various hot-gas cleanup systems to actual product gases from coal gasification and combustion using fluidized-bed reactors. Long-term effects on hot-gas cleanup systems can be studied economically by passively participating in the various research gasification and combustion runs. Filter efficiency, strength degradation, changes in permeability, and corrosion resistance are being investigated, as well as other pertinent issues such as cleaning techniques and temperature/pressure effects.

The Center has been involved in research related to ash/alkali interactions and slag behavior for many years. This expertise is being used in studying the effects of alkali interactions with filter media and possible mitigation options that may improve filter life. The global or overall objective in this phase of the project is the study of the thermodynamically equilibrated reaction mechanisms and mineral matter transformations in advanced coal combustion systems.

During this reporting period, bench-scale tests of kaolin as an entrained alkali getter in atmospheric and pressurized coal combustion conditions were performed. In addition, software was improved to permit a computer model study of other possible getters and getter concentrations.

The thermochemical equilibrium calculation package PHOEBE, developed at the EERC, was selected as the software tool to perform this study. After a careful review of the current state of development of PHOEBE, two major components of the package were identified as being critical to the applicability of the package to advanced coal combustion systems and in need of further development.

A framework for the requisite development was established. This framework was comprised of two tasks. The first was to address the enlargement of the database component of PHOEBE so that chemical species characteristic of advanced coal combustion systems would be well represented in the database. The second was set up to address the algorithmic aspects of the package so that the equilibrium computations would be pressure-dependent. (Since the system pressure is a critical operational parameter, sensitivity to variations in pressure is required of any equilibrium computation package used in this context.)

4.0 ACCOMPLISHMENTS

4.1 Particulate Control

A hot-gas cleanup test loop has been designed and constructed for use with each of the three reactors (Figure 1). The test loop was constructed using high-alloy metals with no refractory in order to minimize maintenance and to avoid ash/alkali/refractory interactions that may occur due to the high surface-to-volume ratio present in smaller-scale systems. The alloys used in construction were Haynes alloys HR-160 and 556, and 316H stainless steel. The

Figure 1. Hot-gas cleanup test loop.

piping used in the highest-temperature regions was HR-160 and 556. It is expected that these alloys will demonstrate good high-temperature corrosion characteristics under both oxidizing and reducing conditions. The test loop is designed to operate at temperatures up to 1650°F and pressures up to 150 psig. The system was designed in accordance with B31.3 piping codes. The test loop consists of a single inlet pipe which branches into three different flow paths. Each path is controlled by a high-temperature valve located as far downstream as possible in order to minimize thermal stresses in the valves. Two of the flow paths are identical and are used as filter element test bays, and the third branch is used as a bypass line. Filter elements can be installed in either or both test bays simultaneously. The filter modules are flange-mounted so that they may be replaced as necessary for different

filter types. The flanges used currently will permit operating conditions up to 1500°F and 150 psig. In order to achieve operating conditions up to 1650°F and 150 psig, further engineering is required to ensure that the flanged connection satisfies the criteria of the B31.3 piping code. The system will not be operated above 1500°F and 150 psig until this work has been completed. Gas flow rates through the various paths can be regulated by the downstream valves. The piping system is heated electrically using guard heaters. Pipe temperatures can be maintained at 1650°F continuously so that the process gas temperature can be raised or maintained as required in order to simulate the desired hot-gas conditions. The system has a heated backpulse system capable of delivering pressurized, heated, inert gas to the filter modules for cleaning purposes. The inlet piping to the test loop can be connected to a 100-lb/hr fluidized-bed gasifier or to other reactors being used for research at the Center. The TRTU is expected to be operational sometime in early 1993 and will be installed near the 100-1b/hr fluidized-bed reactor. The test loop will be connected to the TRTU when it is ready for operation.

To effectively use filter elements for a given application, many variables need to be considered, including system temperature, system pressure, initial clean pressure drop, total allowable pressure drop, system flow rate, etc. Any combination of these factors can affect the resulting filter efficiency.

Before a final parametric study was performed to define the characteristics of unsteady flow associated with the heated nitrogen backpulse system, research was conducted on the cleanup system. The goal was to determine backpulse operating range (minimum and maximum pulse duration) and to define solenoid valve operating policy that will maximize nitrogen backpulse cleaning efficiency.

Operating policy was specified by nitrogen pressure and backpulse duration. Three levels of nitrogen pressure were analyzed: 18, 37, and 60 psi. Pulse duration was controlled by a computer-controlled solenoid valve. Valve-opening duration was increased from 0.1 to 1 sec, with time increments of 0.1 sec; from 1 to 2 sec, with time increments of 0.25 sec; and from 2 to 3 sec, with time increments of 0.5 sec. Finally, the solenoid valve was opened for 90 sec, and nitrogen temperature versus time dependence was determined. For all tests, pressure and temperature at the points relevant to filter behavior over the observation periods were recorded and data stored in a computer.

Nitrogen pressure variation as a function of time and pulse duration is shown in Figures 2 through 4. For all three different initial pressure levels, minimum pressure reached was a strong function of pulse duration: the longer the pulse, the lower the minimum system pressure observed. Tests with the solenoid valve permanently open indicate that minimum pressure was reached in a maximum 8-sec period for all pressure levels (see Figures 5 through 7).

Backpulse gas temperature at the front of the filter for three different pressure levels is shown in Figures 8 through 10. Results indicate that pulse durations less than 2 sec were not long enough to ensure that the maximum temperature was reached. A higher initial pressure level resulted in a higher maximum gas temperature reached at the front of the filter. Infinite pulse tests showed that, once maximum temperature was reached, it remained constant as long as the solenoid valve was open (Figures 5 through 7).

Figure 2. Nitrogen pressure variation ($p_{initial} = 18$ psi).

Figure 3. Nitrogen pressure variation $(p_{initial} = 37 psi)$.

Figure 4. Nitrogen pressure variation $(p_{initial} = 60 \text{ psi})$.

Figure 5. Infinite pulse (p_{initial} = 18 psi).

Figure 6. Infinite pulse ($p_{initial} = 37 psi$).

Valve Open at $t=2 \sec$

Figure 7. Infinite pulse $(p_{initial} = 60 \text{ psi})$.

Figure 8. Backpulse gas temperature in front of the filter $(p_{initial} = 18 \text{ psi})$.

Figure 9. Backpulse gas temperature in front of the filter ($p_{initial} = 37 psi$).

Pressure wave intensity in front of the filter showed that both intensity and pulse duration are directly dependent on initial pressure level (see Figures 11 through 13). As expected, higher initial pressure resulted in a higher pressure wave intensity. The longer the solenoid valve was open, the longer the pulse duration that was involved.

A high-temperature, high-pressure, particle sampling system is being developed for use with the hot-gas cleanup test loop. This sampling system must meet the National Electrical Code (NEC) and B31.3 piping requirements as well as allowing sampling at the extreme operating conditions of the test loop. Aside from code-related issues, the particle sampling system currently in use is slow and cumbersome to use. A separate probe must be inserted to make flow measurements, then the particulate probe must be inserted'to make dust-loading measurements. It takes approximately 45 to 60 minutes to collect one sample with the current configuration. While this system may be adequate for intermittent measurements on a temporary basis, it is inadequate for safe, reliable, long-term work. The particulate sampling system is being designed to sample at pressures up to 200 psi at a temperature of 1800°F under both oxidizing and reducing conditions. Table 1 shows the performance specifications for the sample system, and Figure 14 shows the sampling system. A sampling probe is inserted into the test loop, and a particulate sample is withdrawn isokinetically. The sample probe is considered to be disposable (based on wear). Different materials will be used for different operating conditions. The gas sample will pass through a series of cyclones and a borosilicate filter to remove all particulate matter, then through a quench train to remove any condensables, then through gas meters to determine flow. The probe and cyclone assembly will be electrically heated to maintain the gas temperature until it reaches the quench train.

9

Figure 11. Pressure wave intensity in front of the filter ($p_{initial} = 18 psi$).

Figure 12. Pressure wave intensity in front of the filter $(p_{initial} = 37 psi)$.

Figure 13. Pressure wave intensity in front of the filter $(p_{initial} = 60 \text{ psi})$.

Specifications for an Isokinetic Particulate Sampling System

Maximum Inlet Gas Temperature	1,800°F
Maximum Inlet Gas Pressure	200 psig
Gas Flow Range	2,000 - 30,000 scfh
Maximum Gas Temp. @ Filter	1,000°F
Typical Sample Rate	One Sample per Hour
Gases to be Sampled	Exhaust Gases from Coal Combustion and Gasification (Reducing and Oxidizing)
Electrical Classification (NFPA)	Class I, Div. 2, Group B
Applicable Codes	ASME B31.3 Piping Code

1	1	1						
	17							
1	16	ļ	FLOW CONTROL VAL	.∨£				
	15		ORIFICE METER	_				
1	14		DRY GAS METER					
1	13		FLOW NETER					
1	12		DIL TRAP WITH IND	ICAT	R		1	
1	11		CAMPLING PROBE AS	SEMI	LY			
2	10		HEAT TRACE LINE					
1	9		HEATER SPLIT SHEL	.L. a	ERAMIC		1	
1	8		PARTICULATE SAMPL	ING /	ASSEMBLY			
1	7		ADSORBER HOLECUL	NR SI	EVE			
1	6		ADSORBER, ACTIVATE	ED CA	REON		1	
1	5		BUBBLER, SILICA GET	LL				
1	4		BUBBLER, DRY					
2	з		BUBBLER, SOLUTION	BUBBLER, SOLUTION				
1	2		GAS CONDITIONING T					
1	l		POSITIONING JACK, 2					
QTY	ITEM	PART NO	DESCRIPTION				HATERIAL SPEC	
E	NE	RGY	AND EN	1/	/IRON	ME	ENTAL	
		RES	GRAND FORKS, NORT		CENTI akuta, u.s.a.	ΞF	Ś	
		PARTI	CULATE SAM	PLI	ER ASSEM	IBL	Y	
			DRAWN BY: DM	B	DATE: 1-10-92	FUN	ID NOI 4358	
DTHER	ANCES	SPECIFIED	CHECKED BY: VR	к	DATE: 1-14-92	VOR	RK REQ: VI	
FRACTIC	NAL 1	0.005 PROJ. MGR: GLS DATE: 1-14-92 RE		REV	SCALE 14			
C PLC. 1 1 PLC. 1 ANGLE 45	DEC. 1 (1030 11 1/2 DECREET	APPROVED BY:		DATE	SHE		
		INC DEDREES	FINAL ASSY:	NEX	T ASSY:	DVO	G. ND: 1076	
				L				

Figure 14. Particulate sampling system.

4.2 Pressurized Drop-Tube Furnace

Tests of kaolin as an entrained alkali getter in atmospheric and pressurized coal combustion systems were performed during this reporting period with the EERC pressurized drop-tube furnace system. Kaolin is a clay which is composed primarily of the mineral kaolinite $(Al_2 \cdot i_2 O_5[OH]_4)$. In pressurized fluid-bed combustion tests using granular filter beds, clays have been shown to be good sorbents for removing alkali compounds from the gas stream (1). In laboratory studies, kaolin has been shown to be effective not only at removing sodium compounds from the gas phase, but also in irreversibly fixing the sodium (2). Other clays are also believed to absorb sodium compounds from the furnace gas when the clay is added to the coal feed to a boiler. Emathlite has been shown to be especially good at gettering sodium (2).

To be an effective getter, the clay material must not deposit once the sodium is fixed. This implies that the gettering material must be composed of small particles, typically less than 5 μ m in diameter. Since clay particles normally have diameters smaller than this, they would appear to be ideal gettering agents. However, moist clays can be highly agglomerated due to surface moisture, so it is best if the clay feed is dry before feeding to reduce agglomeration.

Kaolin was preferred for the gettering test over other types of clays because it can be found in relatively pure form, containing less alkali and alkaline earth elements which may flux the material upon heating. Also, kaolinite has a layered structure composed of a sheet of silica tetrahedra bonded on one side to a sheet of aluminum hydroxide octahedra, so it has a higher aluminum-to-silicon ratio than most other clays. Because of its higher aluminum content, its possible fusion with an ash deposit will usually increase the viscosity of the deposit, thereby weakening it. Kaolin is mined in a number of places in the United States and can be supplied in rock, dried powder, or sieved dried powder forms.

Although a small body of data is available about the getters in laboratory experiments, limited data are available about the use of kaolin under carefully controlled coal combustion conditions, and none is available about its use in pressurized coal combustion conditions. Therefore, four tests were performed to test the efficacy of kaolin as a getter in both atmospheric and pressurized coal combustion conditions and to determine the mechanism of gettering. The kaolin used for these tests was provided as rock by J.M Huber Corporation of Macon, Georgia. It was dried, then ground in a mortar and pestle. Only fine powder was used for the gettering experiments.

The kaolin powder was mixed with pulverized coal from the Spring Creek mine, Montana, in the ratio of 1 part kaolin to 2 parts ASTM coal ash. Spring Creek coal was chosen because it has relatively high sodium and low ash contents, and because the sodium is present in the coal as an ion associated with carboxylic acid groups in the organic structure of the coal. Because of this association, the sodium is vaporized during combustion. Vaporized sodium that encounters an ash particle is typically absorbed by the particle. However, Spring Creek coal produces little ash, so much of the sodium remains in the vapor phase in the hot zone of the combustor. In cooler regions of the boiler, it may condense homogeneously to ultimately form submicron sodium sulfate particles. There is some contention as to whether sodium hydroxide condenses, then sulfates, or sodium sulfate directly condenses. In either case, at 1800°F, a considerable portion of the sodium is likely to be in the vapor phase. This sodium is very reactive and could cause severe corrosion of ceramic hot-gas particulate pollution control devices such as candle or crossflow filters. Therefore, Spring Creek was chosen as a "worst-case" example of a coal that may cause alkali corrosion of ceramic hot-gas cleanup devices.

Four combustion tests were performed in all. One test each of raw Spring Creek at atmospheric pressure, coal plus kaolin at atmospheric, raw coal at 100 psi, and coal plus kaolin at 100 psi. The tests were performed in the EERC pressurized drop-tube furnace system (PDTF). The following description of the system is modified from that provided in the July through December 1991 semiannual technical progress report for the Turbine Combustion Phenomena project being performed under the Cooperative Agreement at the EERC.

The pressurized drop-tube furnace (PDTF) is capable of operating under the following conditions:

Temperature: ambient to 2732°F (1500°C) Pressure: ambient to 300 psia (20.4 atm.) Oxygen: 0-20 mol% Gas Flow: 0 to 7.8 scfm (220 L/min) Residence Time: 0 to 5.0 sec

Optical access at any residence time
Provision for char and ash collection
Provision for ash deposition studies

A drawing of the PDTF facility is given in Figure 15. The entire PDTF is constructed of standard 24" and 6" flanged pipe sections. The large pressure vessel contains the electrically heated furnace sections of the PDTF as shown in Figure 16. Figure 17 is a photograph of the PDTF pressure vessel. The walls of the vessel are water-cooled to dissipate the heat from the furnaces. Optical access is provided by four 3" diameter ports in the pressure vessel. The optical sight ports are located below the secondary air preheater and top two furnace sections and above one furnace to reduce the temperature gradient across the optical access section. Electrical power is supplied to the furnaces through terminals in the bottom blind flange of the pressure vessel.

Above the large pressure vessel is the fuel injector section. The injector is a one-inch-diameter water-cooled probe sheathed in high-temperature insulation. Figure 18 is a photograph showing the translating mechanism used for raising and lowering the injector into the ceramic tube inside the furnace assembly. The injector may be retracted completely out of the furnace when not in use, or may be lowered into the furnace to give a residence time between zero and 5.0 seconds. Small viewports in the pipe crosses at the bottom and top of the injector section allow visual inspection of the probe and the sample-feeding behavior.

Below the large pressure vessel is a sampling probe assembly and translation mechanism. The construction details of the probe are shown in Figure 19. The sampling probe tip is interchangeable to allow ash deposit or fly ash samples to be collected without removing the entire sample probe. For the

Figure 15. Pressurized drop-tube furnace process schematic.

Figure 16. Furnace assembly in PDTF vessel.

Figure 17. Photograph of PDTF pressure vessel.

Figure 18. Photograph of PDTF translating mechanisms.

entrained getter tests, fly ash samples were collected and size-segregated online with a series of two cyclones and a final nylon filter. The sampling probe may be raised to the level of the optical access ports and retracted completely from the furnace for the removal of sample deposits or when not in use. Two pipe crosses with small sight ports allow inspection of the collection probe operation, and the removal of a blind flange provides access for the removal of sample deposits.

The sample feeder assembly is a blank flanged 6" pipe cross pressurized to slightly above the furnace pressure with gas connections to the furnace assembly. Figure 19 also shows the sample feeder pressure vessel located next to the sample injector translating mechanism. Figure 20 is a schematic of the coal feeder used in the PDTF. The design allows the actual sample feeder to be constructed of lightweight material, since it does not have to withstand more than slight pressure differentials. A small sight port allows inspection of the feeder operation, and the removal of a blind flange gives access to the vessel for filling or adjustment of the feeder. The lightweight feeder can then hang from a load cell in the pressure vessel to provide a continuous record of the sample feed rates. The gas composition and flow rate of gas into the PDTF is controlled by oxygen and nitrogen mass flow controllers. Gas composition can be controlled between 0-20 mol% at flow rates up to 220 L/min. The furnace pressure is controlled by a letdown control valve at the exit of the furnace.

Schematic of PDTF sampling probe with interchangeable tips. Figure 19.

Figure 20. Schematic of coal feeder for pressurized drop-tube furnace.

Average PDTF conditions during the four alkali gettering tests are shown in Table 2. The excess air for the test of the raw Spring Creek coal at atmospheric averaged a negative 25%, indicating a fuel-rich condition for those tests. This may affect the phases that would form as compared to those that would form under oxidizing conditions, but is not expected to affect the size distribution of the sodium-rich phases, so the measured gettering effect is believed to reflect the level that would have been measured if the test were run in fuel-lean conditions. The temperatures reported for the separate furnaces are the temperatures measured at the wall of the central alumina tube. Zone 1 is at the top of the furnace, Zone 4 at the bottom where the collection probe is placed. The lower temperatures measured in Zone 3, optical section, and Zone 4 during the pressurized runs are caused by air influx through cracks in the optical system from the relatively cool space between the furnace and the pressure shell. The lower temperatures may have reduced the amount of gettering that would have occurred at pressure if there had been no air influx.

TABLE 2

Average	Test	Conditions for /	Alkali	Gettering	Tests
in the	EERC	Pressurized Drop	p-Tube	Furnace Sy	/stem

	Raw Coal 2 psig	Coal+Kaol. 2 psig	Raw Coal 109 psig	Coal+Kaol. 109 psig
Feed Rate (g/min)	1.0	0.52	0.79	0.57
Excess Air (%)	-25	46	660	990
Zone 1 Tube T (°C)	1497	1497	1498	1498
Zone 2 Tube T (°C)	1497	1498	1494	1498
Zone 3 Tube T (°C)	1495	1496	1176	1212
Optical Zone T (°C)	1040	1061	921	1053
Zone 4 Tube T (°C)	1097	1097	903	981
Residence Time (s)	2.1	2.1	2.3	2.3

Figure 21 shows the percent of the total ash (corrected for unburned carbon) that was collected in each cyclone for each test. The bars represent the values for the raw coal tests, the lines represent the values for the test of the coal/kaolin blend. Because different flow rates were used for the atmospheric tests versus the pressurized tests, the cut points of the cyclones were different, so the data should not be used to determine changes in weight distributions due to pressure, only changes due to the addition of the kaolin. Attempts to measure the actual size distributions of the collected samples via laser light scattering (Malvern) were not completely successful because of particle agglomeration. In general, however, particles collected in Cyclone 2 (larger cyclone) had diameters greater than 10 microns; in Cyclone 5 (smaller cyclone) the diameters were between 1 and 10 microns; and on the filter they were less than one micron in diameter.

(a) Wt% of ash in each size fraction in the atmospheric pressure tests.

(b) Wt% of ash in each size fraction in the high-pressure tests.

Figure 21. The percent of the total ash collected in each size fraction for the tests of kaolin as an alkali getter.

In both pressure and atmospheric tests of the raw Spring Creek coal, approximately 3/4 of the ash was collected in the larger cyclone with the remainder split over the smaller cyclone and filter. At both pressures a shift toward the middle (Cyclone 5) range of ash particles occurs when kaolin is added. The size shift occurs because the kaolin predominantly ends up in this size range in the ash. The effects of the addition on ash composition are illustrated in Figure 22. The figure contains 2 three-dimensional bar graphs showing the major element compositions of each size fraction of ash for each of the four graphs. Figure 22a presents data for the atmospheric pressure tests, Figure 22b for the high-pressure tests. In each graph, the front row of data gives compositions of the raw coal samples, the back row for the coal plus kaolin tests. For each element (reported as an oxide) within each data set, the three bars represent the compositions of the larger cyclone, smaller cyclone, and filter samples respectively moving from left to right. Other elements were either present in quantities of less than 5% or did not show any gettering behavior.

Figure 22 indicates only minor changes in ash composition versus size due to pressure differences. Because different size ranges were collected in the cyclones at different pressures, the influence of pressure on these changes cannot be determined unambiguously. However, all size-related variations are maintained when pressure is changed. As is true with most U.S. low-rank coals, silica is more concentrated in the largest size range than in the smaller ranges. The increases in silica and alumina contents in the Cyclone 2 and Cyclone 5 samples indicate that most of the kaolin that was added in the gettering tests ended up in those size ranges, primarily in Cyclone 5 as indicated by the size distribution data given in Figure 21. Unlike silica and alumina, elements such as sodium and sulfur that vaporize at some point during combustion tend to concentrate in the smallest size range. XRD indicates that sodium sulfate is the major crystalline constituent of this range. Much of the sodium sulfate likely formed through cooling during sample collection, either through homogeneous nucleation of sodium hydroxide which then sulfated, or by direct nucleation of the sodium sulfate. Because cooling rates are so rapid and no residual sodium hydroxide was indicated by XRD, the latter scenario is more probable.

To determine the efficacy of the kaolin additions in gettering, the weight distribution of elements among the different size ranges must be used. Figure 23 shows two combination bar-line graphs that illustrate the weight percent of the major elements that were collected for each test in each size fraction. Like Figures 21 and 22, two graphs are used, one for the pressurized tests, the other for the atmospheric tests. The bars represent the values for the raw coal tests, the lines represent the values for the test of the coal/kaolin blend. For each element, the three data points are for the larger cyclone, the smaller cyclone, and the filter, moving from left to right.

Silicon, aluminum, and calcium all tend to be predominantly concentrated in the larger particles, with negligible fractions present in the submicron particles. In contrast, large percentages of the sodium, sulfur, and chlorine are found in the smallest particles. Sulfur was bimodally distributed, most likely present as calcium sulfate in the largest particles and as sodium sulfate in the smallest particles. Because the cyclones had different size cut points for the atmospheric versus pressurized tests, the effects of pressure on the size distributions of the elements are somewhat ambiguous. It

(a) Major element composition of the ash in each size fraction in the atmospheric pressure tests.

(b) Major element composition of the ash in each size fraction in the high-pressure tests.

Figure 22. The major element composition of the ash collected in each size fraction for the tests of kaolin as an alkali getter.

(a) Wt% of each element in each size fraction in the atmospheric pressure tests.

(b) Wt% of each element in each size fraction in the high-pressure tests.

Figure 23. The weight percent of each element collected in each size fraction for the tests of kaolin as an alkali getter.

is only clear that the weight distributions of all elements except chlorine among the different sizes are not strongly affected by pressure. In the raw coal tests, chlorine shows the only significant size shift, from larger to smaller particles at higher pressures. The chlorine-containing particles in the smallest size range probably formed during quenching of the gas during sample collection, indicating that at higher pressure more chlorine (probably as chloride) may exist in the gas phase than at atmospheric pressure. However, this conclusion is only preliminary at this point because there may have been some interference in the test data for chlorine.

The most important conclusion about the gettering tests is that sodium is shifted strongly away from the smallest particles by the addition of kaolin. If we assume that the sodium sulfate in the smallest size fraction formed when the gas was quenched during collection, then one half of the sodium was removed from the gas phase due to the kaolin addition. This result holds both at atmospheric and higher pressure. Most of the sodium was shifted to the 1to 10-micron size range, which is where the kaolin is concentrated. The shift in sulfur from the smallest to the largest size ranges indicates that the sodium was chemically combined with the kaolin, probably in the hightemperature zone, and that the kaolin did not merely serve as a condensation surface for sodium sulfate. Because much of the sodium was removed from the gas phase, the sulfur shifted to the largest size range by sulfating additional quantities of the calcium-rich particles.

4.3 Thermochemical Equilibrium Modeling: PHOEBE Database Modifications

In the area of thermochemical equilibrium modeling, the following objectives had been set forth under Task D:

- la Improve PHOEBE database
- 2b Run simulations

Both items were addressed this fiscal year and are now complete. Item 1a, the improvements to the PHOEBE database, required a substantially (approximately 4 months) longer period of time than had been originally anticipated. However, the database now contains about 850 species, which is a threefold increase from its former size of about 270 species. Additionally, the database has also been thoroughly cross-checked. Validation tests have also been conducted and the database modified depending on the results of these tests. We also wish to emphasize that we expect the updating and validation process to be an ongoing activity throughout the lifetime of this (and possible other) projects.

The thermodynamic systems simulations of Item 2b have also been completed. Initially, very simple systems (like water, gas mixtures, etc.) with well-characterized thermodynamic behavior were simulated to validate the correctness of the overall PHOEBE algorithm as well as to optimize the standard free energy of formation values for many of the species in the database. A total of about 20 such simple systems were simulated. During this stage, the algorithm also underwent a few iterations of revisions and changes. Two real-life systems were selected for the final phase of this task item and their equilibrium behavior simulated. A comparison of the simulation results with the experimental phase diagrams shows quite acceptable results, the largest error in the simulated results being about 23%. A list of chemical compounds relevant to advanced combustion systems was compiled. A variety of vapor and liquid-phase species were specifically chosen to better represent fluidized-bed combustion systems. The requisite free energy of formation (FEF) data for each species were also collated and entered into the database. The current PHOEBE database contains approximately 370 chemical compounds with an average of more than two physical phases (gas, liquid, or solid) per compound. This makes a total of roughly 800 species, which is a threefold increase over the original database. Appendix A is an index list of the database sorted by the names of the chemicals, and Appendix B is an index list of the database sorted by formulas.

The original PHOEBE database was modified to a Freeform ASCII database (FAD). This has the advantage that any conventional text-editing software can be used to edit the database. Also, since almost any text editor or word processor may be used to update, modify, or edit the database, specialized software to perform these tasks becomes redundant.

A database management utility that performs searching, retrieval, indexing, etc., was written (in C), debugged, tested, and is fully operational. Although these tasks can also be accomplished by some of the more advanced word processors, their specialized nature prohibits their execution by generic text editors.

Routines to curve-fit the free energy of formation data of the species have also been written. These routines allow a wide variety of representations (linear, polynomial, rational, logarithmic, etc.). The curve-fit representations of the FEF data can thus be chosen in the most optimal manner. In most cases, the curve-fitted FEF data are used, if need be, at the computation level.

4.3.1 Database Format Change

The advantages of FADs are twofold. First, since the database is simply an ASCII file, no specialized utilities are needed to maintain and manage the database, and the database can be transported to other operating systems or environments with no or minimal portability problems. Second, since data are entered in an arbitrary manner (with no fixed record or block size, etc.), adding, modifying, or updating entries in the database can be performed with any text editor or word processor. Once again, no specialized routines to perform these tasks are necessary. It may be noted that altering the record structure, which is quite complicated in the case of databases with fixed format records, is also trivially accomplished. Finally, since data for all of the fields of a record or chemical are often unavailable, the data entry process is also simplified to the extent that only available data need be input.

Thus each chemical in the PHOEBE database is viewed as a record, but without the limitations of fixed size and fixed number of fields. In turn, each record contains fields comprising two parts: a field identifier prefix (FIP) and the value for that field. Field identifier prefixes, as the name indicates, serve to identify the field for which the data are being entered. All FIPs start with the "dot" or "period" character (ASCII 0 H) and are followed by one or more alphabetic characters that are chosen to serve as acronyms for the field. For example, the FIP ".n" serves to identify the "name" field of the chemical, while the FIP ".f" serves to identify the "formula" field of the chemical. Table 3 gives the list of FIPs and their explanations that are currently being used in the PHOEBE database.

TABLE 3

Field Identifier Prefixes (FIPs) and Explanations

FIP	Explanation
.n	Name of Chemical
.f	Formula of Chemical
.mp	Melting Point
.bp	Boiling Point
• p	Phase (Solid/Liquid/Gas) of Chemical
.r	Reference Citation for Data for Chemical
.۷	Free Energy of Formation (FEF) Value(s) for Chemical
.end	End of Data for Chemical

As regards the value part of a field, the user simply enters the relevant data for a field subsequent to entering the FIP. For instance, for the FIP ".n" (the "name" field), the user will enter the chemical's name, while for the ".f" or "formula" field, the value part is the chemical's formula. A sample data entry for these two fields might look as follows:

.n Pyrite .f FeS₂

Note that one or more spaces are mandatory between the FIP part and the value part of a field.

The FIP ".end" is a specialized prefix. It has no value part and is best thought of as not being an FIP at all. It is used to delineate the end of a record; that is, it is used to mark the end of data for each chemical. In principle, the use of such an "endmarker" is not necessary. However, the resulting algorithmic complexity in recognizing "end of record" without its use was sufficiently severe that it was deemed necessary.

To bring this discussion on the organization of the PHOEBE database into perspective, the actual data entry for aluminum has been extracted from the database and listed in Table 4.

4.3.2 Additions to Database

The original PHOEBE database contained approximately 130 chemicals (about 270 species) and was configured to analyze primarily the fly ash equilibrium behavior in pulverized coal- (PC) and cyclone-fired systems. However, a wide variety of condensed and vapor-phase species were not included due to lack of available data. Also, the emphasis was placed on condensed rather than vapor-phase components.

.n .f .mp .bp	Aluminum Al 933.25° 2793.0°						
.p .r .v	s Janaf 0.0 ^{5,0} 0.760	0.0 1.878	0.0 2.951	0.0	0.0	0.0	0.0
.p .r .v	£ Janaf 7.180 ^{6.c}	6.053	4.926	3.798	2.671	1.535	0.384
.p .r .v	g Janaf 288.816 ^{6.6} 197.027	275.243 185.422	261.785 173.917	248.444 162.503	235.219 151.172	222.112 139.921	209.126 128.742

TABLE	E 4	
-------	-----	--

PHOEBE Database: Record Entry for Aluminum

• Melting and boiling points are in K.

* FEF values are in kJ/mol and are in 100 K intervals starting at 300 K.

• Not all the available FEF values are listed.

In contrast, PFBC and other advanced systems operate at elevated pressures, up to even 50 atmospheres, and it thus becomes necessary to analyze the probable phase and species distributions in these systems more critically. A simple case in point is the classic textbook example of the depression of the boiling point of water at elevated altitudes (lower atmospheric pressures) and its converse, the raising of the boiling point at higher pressures.

As a general rule, systems at elevated pressures exhibit critical behavior or phase transformations at higher temperatures as compared to systems at standard atmospheric pressure. The temperature ranges of condensed phases are thus usually prolonged, and melting is also usually skewed toward higher temperatures. Such considerations become especially important in regards to chemicals exhibiting thermal decomposition (carbonates, nitrates, hydroxides, etc.).

The selection of additional species to be included in the PHOEBE database was influenced by the higher operating pressures and the importance of alkali and reduced species in advanced systems. New species most relevant to these combustors were selected, and a literature search was conducted to collate the FEF and other data for these species. The primary sources of data references were Chase and others (3), Robie and others (4), Barin and Knacke (5), Hastie and others (6), and Kubaschewski and Alcock (7). The FEF data for an additional 240 chemicals have been now included in the database, so that the current chemical count stands at 370 with about 800 species. This represents, approximately, a threefold increase in the size of the database.

In some cases, the FEF data over the entire range of 300 to 3000 K were unavailable. A variety of approximation and extrapolation techniques were adopted to ensure that data were available over the entire temperature range. It must be noted that the temperature range of 300 to 3000 K represents metastable regimes for almost all species (excluding perhaps some vapor-phase ones), and, hence, the requisite FEF data must usually be approximated.

The extrapolation technique used in many cases was that of graphical extrapolation wherein the formational free energy values are curve-fit to canonical or standard curves and the resulting curve extrapolated over the entire temperature range. In cases where the data were almost complete or almost linear, linear extrapolation was used to extend the range of the values. In the case of some vapor-phase species, however, since literature data were totally unavailable, the free energy values were computed from first principles as outlined in Mayer and Mayer (8) and McBride and Gordon (9).

In the case of a few liquids, data below the melting point were approximated by using a glass transition temperature (-7/10 the melting point) and determining the free energy values by integrating the isobaric specific heat (C_p) data of the solid. It may be noted that the liquid may not necessarily cool to a glassy state in the metastable regime; nevertheless, as admonished by Chase and others (3), the use of a glass transition temperature is necessary to prevent an entropy paradox wherein the free energy of the thermodynamically more stable solid phase is higher than its metastable counterpart.

4.3.3 Database Utilities

A database search and sort utility and another utility to curve-fit the species FEF data have been implemented and are fully operational. As remarked earlier, these utilities are specific to the database and can be used to conduct a wide range of searches as well as select optimal curve fits for the FEF data.

The curve-fitting routines attempt to approximate the free energy data as a smooth function of temperature by regression. The basic ideas are as follows. Let μ° be the true FEF function and f_1, f_2, \ldots, f_p a set of Pfunctions ("basis" functions). The approximate $\tilde{\mu}$ to the n FEF values is then defined by

$$\tilde{\mu} = \sum_{\alpha=1}^{P} c_{\alpha} f_{\alpha} \qquad [Eq. 1]$$

where the coefficients c_1, \ldots, c_p are determined by the condition that the residual R is defined by

$$\mathbf{R} = [\mu^{\circ} - \tilde{\mu}] = [\mu^{\circ} - \sum_{\alpha} c_{\alpha} f_{\alpha}] \qquad [Eq. 2]$$

be a minimum, where $\| x \|$ denotes the norm of x.

Conventionally, the norm in Eq. 2 is taken to be the ℓ_2 or Euclidean norm, which then leads to a multilinear regression problem. With other norms, such as the ℓ_1 or ℓ_2 norms, the problem becomes nonlinear, and nonlinear minimization algorithms (such as the Marquardt-Levenberg algorithm) need to be utilized. Since the PHOEBE curve-fit routines are general purpose routines, both the linear and nonlinear cases are handled without any difficulty.

As to the choice of the approximating functions f_1, \ldots, f_p it may be mentioned that three particular sets of approximants are prevalent in the literature. The first is the linear approximant

$$f_1 = 1, f_2 = T,$$

the second is the log-linear approximant

$$f_1 = 1$$

$$f_2 = T$$

$$f_3 = T \ln T$$

and, finally, the third is the log-hyperbolic-cubic approximant

$$f_{1} = 1/T f_{2} = 1 f_{3} = T f_{4} = T^{2} f_{5} = T^{3} f_{6} = T \ ln \ T$$

Of these three, the 6-term log-hyperbolic-cubic approximant appears to be emerging as the accepted standard.

The PHOEBE database search and sort routines have also been implemented as fairly general purpose utilities. These allow the user to search the database in a variety of ways including searching by chemical name, by formula, by melting and boiling points, and by phase. The Boolean operations AND, OR, and NOT can also be used in specifying search criteria so that chemicals and species can be located very efficiently. In addition, a rudimentary regular expression matching facility is also included, enabling the user to specify search criteria in terms of regular expressions as well.

Currently, three sort options are available to the user to sort the chemicals in the data. One of these, of course, is to sort by the names of the chemicals, the other is to sort by the formulas of the chemicals, and the third option is to sort by the number of elements comprising the chemicals. Additional sorting categories, such as sorting by molecular or formula weight, or sorting by melting point, etc., can be included, although, in contrast to the search utility, no provision has been made to permit a dynamic sort specification facility. The index lists in Appendices A and B have been constructed using the PHOEBE database sort utility.

4.4 PHOEBE Algorithm Extensions

The modules to enable equilibrium computations to be performed under different system pressures have been completed and incorporated into PHOEBE. These modules are, technically, "supervisory" modules in that the equilibrium behavior of the system under different system pressures is computed based upon user-specified or user-selectable models for the equation of state of the system. Thus a wide variety of equations of state, empirical and theoretical, can be simulated and tested, allowing for the possibility of optimal equations of state. The debugging and testing of these modules have been completed.

The entire set of PHOEBE routines, originally written in FORTRAN, have been rewritten in C to extend the portability of the package as well as to take advantage of the emerging object-oriented languages (such as C++). The overall algorithm has also been debugged and tested, and Section 4.4 describes some of the results obtained.

A preprocessor module has also been added to PHOEBE that allows the user to specify and work with thermodynamic systems in a fairly abstract manner. A given system once defined will be usable as a system in and of itself, or as part of a larger system. Some of the more common systems, such as "air," "xrf," "ultimate," etc., have been predefined and may be used as such. Thus, starting with simple systems, a whole hierarchy of systems can be defined leading to more complex systems such as coal blends, systems with additives, and so on.

Three major modifications have been carried out at the algorithmic level. The entire set of PHOEBE routines has been rewritten in C, modules to handle variations in system pressure have been incorporated, and an input data preprocessor has been added that permits abstract system definition and usage. Sections 4.3.2 and 4.3.3 describe, respectively, these modifications.

4.4.1 Original Algorithm Description

The original PHOEBE routine's had been coded in FORTRAN. A menu-driven I/O preprocessor, written in ASSEMBLER, served as the user interface to the PHOEBE kernel. Maintenance, updating, and portability issues had been raised even then, but, for lack of other alternatives, were set aside. With the current proliferation of and advancement in windowed operating systems, Graphical User Interfaces (GUIs), and object-oriented languages, portability issues have become important. Thus one of the objectives of this task was the "modernization" of PHOEBE in terms of rewriting it in a more flexible and modern language.

The choice of C as the programming language was based on two reasons. One, the standardization of C is well in place, and a large number of operating system environments support the language so that the portability requirement is easily met. Two, interfacing with object-oriented languages, especially C++, is trivially accomplished, so that constructing friendly interfaces is also relatively simple. As mentioned earlier, the PHOEBE routines have been rewritten in C and a majority of them tested and debugged during the coding stage itself. The overall program also has been tested for algorithmic correctness.

The central computational module in PHOEBE is an optimization routine that minimizes the Gibbs Free Energy of the system of interest. This minimization is achieved by varying the amounts of the species in the various phases until the smallest possible value of the free energy is achieved. More precisely, if the system comprises k phases whose free energies are G^1 , G^2 , ..., G^* , the free energy G of the entire system is approximated as:

$$G = \sum_{\alpha=1}^{\kappa} G^{\alpha} \qquad [Eq. 3]$$

Note that Eq. 3 is exact if there are no phase-phase interactions or if these interactions are negligible.

The individual phase free energies G* are in turn given by

$$G^{\alpha} = \sum_{i=1}^{N^{\alpha}} (\mu_{oi}^{\alpha} + \ln a_{i}^{\alpha}) n_{i}^{\alpha} \qquad [Eq. 4]$$

where N[•] is the number of species in the phase, n_i^{α} is the (molar) amount of species i in the phase, μ_i^{α} is the (standard) FEF of species i, and a_i^{α} is the activity of i within phase a. The ideal approximation to G[•] arises when the activities a_i^{α} are approximated by:

1, when
$$\alpha$$
 is a pure condensed phase

$$a_{i}^{\alpha} = \frac{n_{i}^{\alpha}}{\sum_{j}^{j}} n_{j}^{\alpha}, \text{ when } \alpha \text{ is a solution phase} \qquad [Eq. 5]$$

$$\frac{P}{P_{o}} \left(\frac{N_{i}^{\alpha}}{\sum_{j}^{j} n_{j}^{\alpha}}\right), \text{ when } \alpha \text{ is a gas phase}$$

where P and $P_{\rm o}$ are, respectively, the system pressure and the standard pressure.

The species amount or abundance vector n_i^{α} is not completely arbitrary, but has to satisfy the so-called mass balance and nonnegativity constraints. The mass balance constraints are linear equalities connecting the elemental amounts b_1, b_2, \ldots, b_M (where M is the number of elements in the system) and the n_i^{α} . These can be succinctly expressed as:

$$b_{a} = \sum_{\alpha=1}^{\kappa} \sum_{j=1}^{n^{a}} S_{aj}^{\alpha} n_{j}^{\alpha}$$
 [Eq. 6]

where S_{ij}^{*} is the stoichiometry coefficient of element a in species j in phase α . The nonnegativity constraints

$$n_{i}^{*} \geq 0, \ \alpha = 1, \ \dots, \ \kappa, \ j = 1, \ \dots, \ N^{*}$$
 [Eq. 7]

are conventionally not regarded as explicit constraints, but treated implicitly in the minimization algorithm. A more detailed account of this and other related aspects can be found in Ramanathan and others (10,11) and the references contained therein.

4.4.2 Pressure Calculations

It may be recalled from classical thermodynamics that the Gibbs Free Energy G of a thermodynamic system is defined as:

$$G = H - TS$$

where H is the enthalpy, T the temperature, and S the entropy of the system. In general, G is a function of the temperature T, the pressure P, and the molar amounts n^{*} of the species. Since almost all of the data on the free energy of formation of substances are for a particular pressure (usually, the standard atmospheric pressure), extrapolation of this data is necessary in order to study the equilibrium behavior of systems at elevated pressures.

This extrapolation is based on the fact that the pressure derivative $\frac{\partial u}{\partial P}$ of the free energy is the volume V of the system:

 $\frac{\partial G}{\partial P} = V \qquad [Eq. 8]$

so that,

 $G(T,P) = \int_{P_o}^{P} VdP + G(T,P_o)$ [Eq. 9]

Eq. 9 is the key expression that permits the computation of the free energy for different pressures P, once the value $G(T, P_o)$ is known at a particular pressure P_o . In order to perform the integration in Eq. 9, an explicit expression of the volume in terms of pressure is needed. This is usually obtained from an equation of state, either empirical or theoretical, for the system.

A variety of state equations are available in the literature, starting with the Van der Waals equations of state for (real) gases, to the Murnaghan model (12) for condensed phases. The Murnaghan model, in particular, is predicated on the assumption that the bulk modulus B is an affine function of the pressure; i.e.,

$$B(T,P) = B_{A}(T,P_{A}) + nP$$

where B_{\circ} (T, P_{\circ}) is the bulk modulus at the standard pressure P_{o} and n is the pressure coefficient (usually about 4). Since the bulk modulus is related to the pressure derivative of the volume through

$$\frac{1}{V}\frac{\partial V}{\partial P} = \frac{1}{B} = \frac{1}{B_{a} + nP}$$

integration of the above equation yields

$$V(T,P) = V_o(T) (1 + \frac{nP}{B_o})^{-\frac{1}{n}}$$
 [Eq. 10]

which may then be used in performing the integration in Eq. 9.

As remarked earlier, the pressure module routines in PHOEBE are primarily supervisory and can accommodate any user-specified equation of state. Such a capability is almost a must if formational free energies are to be computed at different pressures for a plethora of chemical compounds ranging over the spectrum of solid, liquid, and gaseous phases. Although some of the more standard equations of state are already built into the system, it is expected that an expanded library of such state equations will become a standard feature in PHOEBE in the near future.

4.4.3 <u>Preprocessor Utilities</u>

A significant enhancement in the area of problem statement and formulation in PHOEBE is the addition of preprocessor utilities that allow abstract (thermodynamic) system definitions and usage. Complex systems can thus be analyzed quite easily and naturally, and, since the facility is a dynamic one, a library or database of systems can be predefined and used in a straightforward manner.

Conventionally, one of the primary inputs to PHOEBE, the abundance or amount vector, had been specified at the elemental level, or in some cases at the oxide level. Algorithmically, this is the form of input that is needed and accepted by PHOEBE. However, from an application standpoint, this input format is quite inconvenient and cumbersome in many cases. For instance, in order to analyze the effect of additives such as alkali getters on performance, the most natural statement of the problem will be to define a thermodynamic system whose "components" are the coal and the envisaged additive. Another example is the analysis of coal blends. In this case, the "components" are the coals to be blended. There are many instances where an extended definition of a "component" of a thermodynamic system simplifies and, in some cases, even clarifies the problem formulation. To accommodate these cases, preprocessor utilities have been added to PHOEBE that ease the drudgery of data entry and enable the user to specify the problem in a very natural manner. These utilities work by constructing a hierarchial diagram or a system definition tree (SDT) that contains the information relating a system to its subsystems and ultimately down to the basic components: the elements. (In the terminology of tree-processing, the elements constitute the "leaves" or "external nodes" of the SDT). Note that the recursive definition of trees implies that SDTs can be imbedded to any arbitrary level, limited only, perhaps, by available memory. A typical SDT starts with the highest-level abstract specification and successively gets more and more concrete until finally the definitions reduce to lists of chemical formulas or elements. For instance, the following definition-set:

Fuel = Air, Coal Coal = Ultimate, Ash Ultimate = H_2O , CO_2 , SO_2 , NO_2 Ash = Al_2O_3 , SiO_2 , MgO, CaO Air = N_2 , O_2 , CO_2

is an example of an abstract thermodynamic system, "fuel," and illustrates the utility, flexibility, and power of abstract system definitions. The SDT of this system has as its root the node "fuel" with two principal branches, connecting the (sub) systems "air" and "coal." Figure 24 displays the SDT of this model system. In the figure, the elemental nodes or leaves of this tree are also displayed.

Figure 24. An example system definition tree (SDT).

In some cases it proves useful to define systems with a fixed stoichiometry between its subsystems. For example, the thermodynamic system "air" is commonly considered to be a system containing O_2 , N_2 , H_2O , and CO_2 in fixed proportions. To accommodate such fixed stoichiometry systems, a PHOEBE system definition tree is permitted to have an optional stoichiometry specification as well. Thus, for example, one can define the system "air" as:

air = 78 * N_2 + 21 * O_2 + 0.5 * H_2O + 0.5 * CO_2

so that the stoichiometry values (78, 21, etc.) become built into the definition of the "air" system.

4.4.4 <u>Tests of the Database Algorithms</u>

Two phase diagram calculations were performed with PHOEBE as part of overall program verification as well as to gain an understanding of the program's accuracy. In general, phase diagram calculations are very time intensive since the free energy of the system needs to be repeatedly minimized as the program steps through the extensive variables (like temperature and component amounts). The two phase diagram calculations that were done, for instance, took a total of 4 hours to compute (and plot). The results of these calculations are displayed in Figures 25 and 26.

Figure 25 is a plot of the experimental versus PHOEBE-predicted phase diagram for the binary system $Al_2O_3 - SiO_2$. (The solid lines are the experimentally determined phase boundaries while the dotted lines are the predicted phase boundaries.) Figure 26 is a plot of the experimental versus predicted phase diagram of the system Na_2SiO_4 . (This represents a cross-section of the ternary system $Na_2O - Al_2O_3 - SiO_2$.) As can be seen from these figures, the predicted values track the experimental values fairly well with the largest error being about 23%. It should also be noted that both these systems were assumed to behave ideally (i.e., with unit-activity coefficients) so, necessarily, we expect errors in the predicted values since it is well known that these systems are nonideal. Additionally, it must also be borne in mind that inherent inaccuracies exist in the FEF values in the database. All in all, therefore, it can be concluded that PHOEBE provides acceptably accurate representations of the equilibrium behavior of multiphase, multicomponent systems.

5.0 FUTURE WORK

5.1 Particulate Control

Future work will consist of making modifications to the test loop to improve outlet particulate loading data, relocating some of the instrumentation, adding additional instrumentation, building the particulate sampling system, continued testing of filter elements, performance characterization of the heated backpulse system, and studying various alkali issues as they relate to advanced cycle power systems.

The design work required to relocate the test loop cannot be done until the location of the test loop is determined. This is contingent upon the size, shape, and location of the TRTU. For this reason, some of the design Al₂O₃-SiO₂

Figure 25. A plot of the experimental PHOEBE-predicted phase diagram for Al_2O_3 -SiO₂.

Figure 26. A plot of the experimental vs. predicted phase diagram for Na_2SiO_4 .

work remains unfinished. As soon as the necessary TRTU parameters are identified, the design work on the test loop will be completed. The test loop is expected to be in place and operational in time to be used in conjunction with the initial testing of the TRTU.

High-temperature flange connections for the filter modules are also being designed in order to operate at the extreme conditions of the test loop and to comply with B31.3 piping codes. This will consist of finite element modeling of flange connections to determine thermal stresses and creep phenomena.

5.2 Alkali Gettering

The short-term objective is to construct a coal-water slurry feed system for the PDTF to permit long-duration tests of alkali corrosion of ceramic materials in atmospheric and pressurized coal combustion systems.

5.3 Thermochemical Modeling

No specific task or action item is proposed. Instead, it is expected that PHOEBE will be extensively used as a general tool for the thermodynamic analyses of advanced combustion systems and, specifically, as an optimizer for the selection of alkali gettering materials.

6.0 REFERENCES

- 1. Lee, S.H.D; Johnson, I. "Removal of Gaseous Alkali Metal Compounds from Hot Flue Gas by Particulate Sorbents," *Journal of Engineering for Power* 1980, *102*, 397-402.
- Punjak, W.A.; Shadman, F. "Aluminosilicate Sorbents for Control of Alkali Vapors During Coal Combustion and Gasification," *Energy and Fuels* 1988, 2 (5), 702-708.
- 3. Chase, M.W., Jr.; Davies, C.A.; Downey, J.R., Jr.; Frurip, D.J.; McDonald, R.A.; Syverud, A.N. *JANAF Thermochemical Tables*, 3rd ed.; American Chemical Society, NY, 1985.
- Robie, R.A.; Hemingway, B.S.; Fisher, J.R. "Thermodynamic Properties of Minerals and Related Substances at 285.15 K and 1 Bar (10⁵ Pascals) Pressure and at Higher Temperatures," 1978, U.S. Geol. Surv. Bull. 1452.
- 5. Barin, I.; Knacke, O. Thermochemical Properties of Inorganic Substances; Springer-Verlag, NY, 1973.
- 6. Hastie, J.W.; Ondik, H.M.; Bonnell, D.W. "Development of a Ceramic Phase Diagram and Thermodynamic Data Bank," International Conference on the User Applications of Alloy Phase Diagrams, Oct. 4-9, 1988, Lake Buena Vista, FL.
- 7. Kubaschewski, O.; Alcock, C.B. *Metallurgical Thermochemistry*, 5th ed.; Pergamon Press, NY, 1979.
- 8. Mayer, J.E.; Mayer, M.G. Statistical Mechanics; Wiley, NY, 1957.

- 9. McBride, B.J.; Gordon, S. "FORTRAN IV Program for Calculation of Thermodynamic Data," NASA TN D-4097, 1967.
- Ramanathan, M.; Kalmanovitch, D.P.; Ness, S.R. "New Techniques for Thermochemical Equilibria Predictions in Coal Ash Systems - I," High Temp. Science, An Int'l. Journal 1989, 28.
- Ramanathan, M.; Kalmanovitch, D.P. "New Techniques for Thermochemical Equilibria Predictions in Coal Ash Systems II," Conference on High-Temperature Materials Chemistry, ACS Div. Fuel Chemistry, Dallas, TX, 1989.
- 12. Murnaghan, F.D. Proc. Natl. Acad. Sci. USA 1944, 30, 244.

APPENDIX A

Chemical Name Index

No.	Name	Formula	
0	2-BUTYNEDINITRILE	C ₄ N ₂ (g)	
1	ACETYLENE	$C_{z}H_{z}$ (g)	
2	AKERMANITE	$Ca_2MgSi_2O_7$ (s)	
3	ALBITE	NaA1513Ue (s,1)	
4	ALUMINUM	Al (s,1,g)	
5	ALUMINUM CARBIDE	A10 (g)	
6	ALUMINUM DICHLURIDE	Alliz (g)	
/		$AIU_2 (g)$	
8	ALUMINUM HEXHCHLURIDE	A12CIA (Q)	
7			
11		A1C1 (a)	
17			
13	ALLIMINUM NITRIDE	AlN (s.n)	
14	ALLMINUM DXYCHLORIDE	A10C1 (s.o)	
15	ALUMINUM SULFATE	$Al_{2}S_{3}O_{12}$ (5)	
16	ALUMINUM SULFIDE	AlS (g)	
17	ALUMINUM SULFIDE	Al_2S_3 (s)	
18	ALUMINUM TRICARBIDE	$Al_{4}C_{3}$ (s)	
19	ALUMINUM TRICHLORIDE	A1C1 ₃ (s,1,g)	
20	AMIDOGEN	NH_{2} (g)	
21	AMMONIA	NH ₃ (g)	
22	AMMONIUM CHLORIDE	NH ₄ Cl (s)	
23	AMMONIUM NITRATE	$N_{2}H_{4}O_{3}$ (s)	
24	AMMONIUM FERCHLORATE	NH _a ClO ₄ (s)	
25	ANDALUSITE	Al ₂ SiO ₅ (s)	
26	ANHYDRITE	CaSO ₄ (s)	
27	ANORTHITE	$CaAl_2Si_2O_{a}$ (s,1)	
28	ARGON	Ar (g)	
29	AZIDE	N ₃₅ (g)	
30	BARITE	Basd _a (s)	
31 70	BARIUM	Ba (s,1,g) D-01 (-)	
32 77	BARIUM CHLURIDE	Ball (g) DeCl (g) =)	
33	BARIUM DICHLORIDE	Bablz (S,1,g)	
<u>ः</u> स रह	BARIUM DIHYDRUXIDE BARIUM MONOHYDBOXIDE	Pau2n2 (5,1,9) Paul (a)	
ುರ ನಗ	BARION MONOHIDROXIDE	Badh (g) Badh (c l c)	
	BARIUM CHIEIDE	$B_{2}G (c, n)$	
70	BARION SOLFIDE	$\Delta 1 \text{PD}_{-} (\text{c})$	
39	BOEHMITE		
40		CaAl-SiD. (s)	
41	CALCITE	CaCO ₊ (s)	
42	CALCIUM	Ca (s.1.o)	
43	CALCIUM FERRITE	CaFe ₂ O ₄ (s)	
44	CALCIUM MONOCHLORIDE	CaCl (g)	

Chemical Name Index

No.	Name	Formula	
45	CALCIUM MONOHYDROXIDE	CaOH (g)	
45	CALCIUM NITRATE	CaN _z O _a (s)	
47	CALCIUM OXIDE	CaO (s,1,g)	
48	CARBON	C2 (g)	
49	CARBON	C ₃₃ (g)	
50	CARBON	C ₄ (g)	
51	CARBON	C ₅ (g)	
52	CARBON	C (s,g)	
53	CARBON DIOXIDE	$CO_{\mathbb{Z}}$ (g)	
54	CARBON DISULFIDE	CS_2 (g)	
55	CARBON MONOXIDE	CO (g)	
56	CARBON OXIDE SULFIDE	COS (g)	
57	CARBON FHOSPHIDE	CP (g)	
58	CARBON SUBOXIDE	C_3D_2 (g)	
59	CARBON SULFIDE	CS (g)	
60	CARBON TETRACHLORIDE	$CC1_{4}$ (g)	
51	CARBONIC DICHLORIDE	COCl ₂ (g)	
52	CARBONYL CHLORIDE	COC1 (g)	
63	CHALCOCITE	Cu ₂ S (s)	
64	CHLORINE	Cl (g)	
65	CHLORINE	$Cl_2(g)$	
66	CHLORINE DIOXIDE	ClO_{z} (g)	
67	CHLORINE MONOXIDE	C10 (g)	
68	CHLOROETHYNE	C_2HC1 (g)	
69	CHLOROMETHANE	CH ₃ Cl (g)	
70	CHLOROMETHYLENE	CHCl (g)	
71	CHLOROMETHYLIDYNE	CC1 (g)	
72	CHLOROSILANE	$SiH_{3}UI(g)$	
73	CUHENITE	Fest (s)	
/4		Lu (s,1,g)	
/5			
/6	LUPPER LYANIDE		
77	COPPER DICHLORIDE		
78	CORPER HYDRUXIDE		
/7 00	CORFER MUNULALURIDE	CuCi (5,1,9)	
80 01	COPPER UNIDE	CuCD (S,y) CuCD (c)	
01 01	CORDIEDITE	$M_{2} \land I \subseteq I \subseteq \{0\}$	
೦೭ ೧೯		$\begin{array}{ccc} \text{Ny}_{2\text{HI4}} \\ \text{All } \\ \end{array}$	
04 04		$H_{12}O_{3} \left(\begin{array}{c} 2 \\ 2 \\ 1 \end{array} \right)$	
04		$CN(\alpha)$	
0 J 0 L		CNC1 (a)	
00 07	DIALUMINUM DIAYIDE		
37 30	DIALUMINUM MONOYIDE		
30 80	DIALONINUN MUNUKIDE	N.H. (g)	
07	DIHTENE (CID)	112112 (Y)	

Chemical Name Index

No.	Name
-----	------

Formula

90	DICALCIUM FERRITE	Ca ₂ Fe ₂ O ₅ (s)
91	DICHLORINE MONOXIDE	$Cl_2O(q)$
92	DICHLOROETHYNE	$C_2Cl_2(q)$
93	DICHLOROMETHANE	CH_2CI_2 (q)
94	DICHLOROMETHYLENE	$CCl_2(q)$
95	DICHLOROSILANE	SiH_2Cl_2 (q)
95	DICOPPER SULFATE	Cu ₂ SO ₃ (s)
97	DIHYDROGEN FHOSFHIDE	$H_2F(q)$
98	DIIRON HEXACHLORIDE	Fe_2Cl_4 (q)
9 9	DIIRON TETRACHLORIDE	Fe_2Cl_4 (g)
100	DILITHIUM DICHLORIDE	Li_2Cl_2 (q)
101	DILITHIUM DIHYDROXIDE	$Li_{2}H_{2}O_{2}$ (g)
102	DIMAGNESIUM TETRACHLORIDE	Mq_2Cl_4 (q)
103	DINITROGEN OXIDE	$N_2O(q)$
104	DINITROGEN PENTAOXIDE	N_2O_3 (q)
105	DINITROGEN TETRADXIDE	$N_2 D_4$ (5,1,q)
106	DINITROGEN TRIOXIDE	$N_{2}D_{3}$ (q)
107	DIOPSIDE	CaMgSizOs (s.1)
108	DIFOTASSIUM CYANIDE	$K_2 C_2 N_2 (q)$
109	DIPOTASSIUM DICHLORIDE	$K_2Cl_2(q)$
110	DIPOTASSIUM DIHYDROXIDE	$K_2H_2O_2$ (q)
111	DISILICON NITRIDE	Si ₂ N (g)
112	DISODIUM CYANIDE	$Na_2C_2N_2$ (g)
113	DISODIUM DICHLORIDE	$Na_2Cl_2(g)$
114	DISODIUM DIHYDROXIDE	$Na_2H_2O_2$ (g)
115	DISULFUR DICHLORIDE	S_2Cl_2 (1,g)
116	DISULFUR MONOCHLORIDE	$S_2Cl(g)$
117	DISULFUR MONOXIDE	S ₂ O (g)
118	DOLOMITE	CaMgC ₂ O ₆ (s)
119	ETHANEDINITRILE	C_2N_2 (q)
120	ETHYLENE	C₂H₄ (g)
121	ETHYNYL	C₂H (g)
122	FAYALITE	Fe ₂ SiO ₄ (s)
123	FERRIC SULFATE	$Fe_2S_3O_{12}$ (s)
124	FORMALDEHYDE	CH₂O (g)
125	FORMYL	HCO (g)
126	FORSTERITE	Mg ₂ SiO ₄ (s,1)
127	GEHLENITE	$Ca_2Al_2SiO_7$ (s,1)
128	GROSSULAR	$Ca_3Al_2Si_3O_{12}$ (s)
129	HEMATITE	Fe ₂ O ₃ (s)
130	HEXACHLOROETHANE	C ₂ Cl ₆ (g)
131	HIGH SANIDINE	KAlSizO _e (s.1)
132	HYDRAZINE	N_2H_4 (1,g)
133	HYDROGEN	Н (д)
134	HYDROGEN	H_{z} (g)

.

Chemical Name Index

No	•	Na	me

-

Formula

•

135	HYDROGEN CHLORIDE	HCl (g)
136	HYDROGEN CYANIDE	HCN (g)
137	HYDROGEN ISOCYANATE	HCND (g)
138	HYDROGEN PEROXIDE	$H_{2}O_{2}$ (g)
139	HYDROGEN PHOSPHIDE	HF (g)
140	HYDROGEN SULFIDE	H₂S (g)
141	HYDROPEROXO	HO_{2} (g)
142	HYDROPHILITE	CaCl ₂ (s, l, g)
143	HYDROXYAPATITE	$Ca_{s}F_{s}HO_{1s}$ (s)
144	HYPOCHLOROUS ACID	HOC1 (g)
145		FeTiO _s (s)
146	IMIDOGEN	NH (a)
147	IFON	Fe (s.1.a)
148	IRON CARBONYI	$FeC_{-}O_{-}(1,\alpha)$
140		FeCla (s.l.o)
150	IRON HYDROXIDE	FeH_2O_2 (s.g.)
151		FeCl (a)
157		FeQ (5.1.0)
157	TEON SHI FATE	FeSO ₄ (s)
154		FeC1+ (5,1,0)
155	TEON TELEVOROYIDE	FeH-D- (s)
154		NaAlSi O_{4} (s.1)
157		$K\Delta ISiO_{2}$ (S)
150	LAPHILEITE	Ca-SiD. (5)
159		$KA1Si_{2}O_{4}$ (s)
140		1i(5.1.0)
1.4.1		-1 (-1)
162	I THTUM ALLMINATE	$LiAlO_{2}(s, l)$
162		lio[a (5)]
144		1 = 202 (27)
145	LITHIUM DISILICATE	$1 i_2 S i_2 S (S, 1)$
166		1 i H (s, 1, a)
147		LiOH (5,1,0)
148		LiOC1 (a)
148		$i C \left(s, l, n \right)$
170		lin(a)
171		LiN (g)
177		$1 = 0$ (s. 1 σ)
173		Li_{20} (s, r, g)
170		LiClO((g))
175		(3,1)
174		$L_{12}U_{2} (a; y)$
177	LINIUM CONTUM OVIDE	L_{120103} (a)
170	LINTUN CULEATE	$L_1 = S \Pi_2 (e_1 - a_1)$
170		$ \begin{array}{c} (1) \\ (1) \\ (1) \\ (2) $
1/7	LINHIUM IEIKAMIDKUALUMINAIE	LIMINA (5)

No. Name

Formula

		والمتحاذ المراجع المحادي والمحادثة والمتحاد والمحاد
180	LITHIUM TITANATE	LizTiO _z (s,1)
181	MAGNESIOFERRITE	MgFe _z O ₄ (s)
182	MAGNESITE	MgCO _s (s)
183	MAGNESIUM	Mg (s,l,g)
184	MAGNESIUM	Mg ₂ (g)
185	MAGNESIUM CARBIDE	Mg ₂ C ₃ (s)
186	MAGNESIUM CARBIDE	MgC ₂ (s)
197	MAGNESIUM DICHLORIDE	MgCl ₂ (s,l,g)
188	MAGNESIUM DIHYDRIDE	MgH ₂ (s)
189	MAGNESIUM DIHYDROXIDE	MgH ₂ O ₂ (s,g)
190	MAGNESIUM DINITRIDE	Mg ₃ N ₂ (s)
191	MAGNESIUM DITITANATE	MgTi ₂ O ₅ (s,l)
192	MAGNESIUM HYDRIDE	MaH (g)
193	MAGNESIUM HYDROXIDE	MgOH (g)
194	MAGNESIUM MONOCHLORIDE	MgCl (g)
195	MAGNESIUM NITRATE	MgN ₂ O ₆ (s)
196	MAGNESIUM NITRIDE	MgN (g)
197	MAGNESIUM ORTHOTITANATE	MgzTiO ₄ (s,1)
198	MAGNESIUM OXIDE	MgO (s,l,g)
199	MAGNESIUM PHOSPHATE	Mg ₃ F ₂ O _e (s,1)
200	MAGNESIUM SILICATE	MgSiO ₃ (s,1)
201	MAGNESIUM SILICIDE	Mg _z Si (s,l)
202	MAGNESIUM SULFATE	MgSO ₄ (s,1)
203	MAGNESIUM SULFIDE	MgS (s,g)
204	MAGNESIUM TITANATE	MgTiO ₃ (s,l)
205	MAGNETITE	Fe304 (s)
206	MASCAGNITE	N ₂ H _B SO ₄ (s)
207	MERCAPTO	HS (g)
208	MERWINITE	Ca ₃ MgSi ₂ O ₈ (s)
209	METHANE	CH₄ (g)
210	METHINOPHOSPHIDE	CHP (g)
211	METHYL	CH ₃₅ (g)
212	METHYLENE	CH ₂ (g)
213	METHYLIDYNE	СН (д)
214	MULLITE	Al ₄ Si ₂ O ₁₃ (s,1)
215	MUSCOVITE	$KAl_3Si_3H_2O_{12}$ (s)
216	NEPHELINE	NaAlSiO ₄ (s,l)
217	NITER	KNO _s (s)
218	NITRIC ACID	HNO ₃ (g)
219	NITROBARITE	BaN ₂ O ₆ (s)
220	NITROGEN	N (g)
221	NITROGEN	N ₂ (g)
222	NITROGEN DIOXIDE	NO_{2} (g)
223	NITROGEN MONOXIDE	NO (g)
224	NITROGEN TRIOXIDE	ND ₃ (g)

· Chemical Name Index

No.	Name	Formula
225	NITROSYL CHLORIDE	NOC1 (g)
226	NITROUS ACID	HNO ₂ (g)
227	NITROXYL	HNO (g)
228	NITRYL CHLORIDE	NO ₂ Cl (g)
229	OLDHAMITE	CaS (s,g)
230	OXIRANE	$C_{z}H_{4}O(g)$
231	OXYGEN	0 (g)
232	OXYGEN	0 ₂ (g)
233	OZONE	
234	PEROVSKITE	CaTiO ₃ (S)
235	PHOSPHORIC ACID	$H_{3}FO_{4}$ (s,1)
236	PHOSPHOROUS MONOCHLORIDE	PCI (g)
237	PHOSPHORUS	P (s,1,g)
238	PHOSPHORUS	$F_2(g)$
239	PHOSPHORUS	P4 (g)
240	PHOSPHORUS DIOXIDE	FU ₂ (g)
241	PHOSPHORUS MONDXIDE	PU (g)
242	PHOSPHORUS NITRIDE	PN (g) DOI (-)
243	PHOSPHORUS PENTACHLURIDE	ruis (y) P.O. (r.a)
244	PHOSPHORUS PENTAUXIDE DIMER	F4U10 (5,9/
245	PHOSPHORUS SULFIDE	r5 (y) FCl (a)
246	PHOSPHORUS TRICHLURIDE	ruiz (g) r O (a)
247	PHOSPHORUS TRIUXIDE DIMER	$F_{4}\cup_{\Delta}(\mathbf{y})$
248	PHUSPHURUS TRISULFIDE	F403 (5,1,4) E0Cl (a)
249	PHUSPHURYL IRICHLURIDE	C-0 4 (c c)
250	FURILANDITE	V = V = V = V
251	FUTASSIUM	N (5,1,9) V (a)
252	FUTASSIUM	N2 (9) KA19_0_ (c)
253	PULASSIUM ALUMINUM SULFHIE	NAI3200 (3) K_CA_ (4 1)
254	PUTASSIUM CHREUNHTE	KCl (e) o)
200		KCN (s l.a)
236	PUTASSIUM CTHNIDE	KO_ (c)
23/	POTAGGIUM DIOXIDE BOTAGGIUM DEVACH OBOALUMINATE	K_{-A1C1} (s)
208	POTASSIUM HYDRIDE	K3H1012 (3) KH (5.0)
207	POTASSION ATORIDE	KOH (5.1.0)
260	POTASSION ATOROXIDE	КОЛ (D) КО (D)
201 247		KaAlaCle (5)
202 247	POTASSIUM NYIDE	Ka0 (5)
200	POTASSION OXIDE	KC10 ₄ (s)
204	POTASSIUM PEROXIDE	$K_{2}O_{2}$ (S)
260	POTASSIUM SU ICATE	K_2SiO_3 (s,1)
260	POTASSIUM SULFATE	K_2SO_4 (s,1,g)
264	POTASSIUM SULFIDE	K_2S (s,1)
260	POTASSIUM TETRACHLOROALUMINATE	KAlCl ₄ (s)
· · · /	a in the second second second and a second	

Name

No.

Formula

270	PYRITE	FeS_2 (s)
271	PYROPE	$Mg_3Al_2Si_3U_{12}$ (s)
272	FYROFHYLLITE	$Al_2Si_4H_2U_{12}$ (s)
273	FYRRHOTITE	Feo.8778 (S)
274	RUTILE	TiO_2 (s, l, g)
275	SILICON	Si (s,l,g)
276	SILICON	$Si_2(g)$
277	SILICON	Si ₃ (g)
278	SILICON CARBIDE	SiC (s,g)
279	SILICON DICARBIDE	$SiC_2(g)$
280	SILICON DICHLORIDE	SiCl ₂ (g)
281	SILICON DIOXIDE	SiO_2 (s,1,g)
282	SILICON DISULFIDE	SiS_2 (s,1)
283	SILICON HYDRIDE	SiH (g)
284	SILICON MONOCHLORIDE	SiCl (g)
285	SILICON MONOXIDE	SiO (g)
286	SILICON NITRIDE	SiN (g)
287	SILICON SULFIDE	SiS (g)
288	SILICON TETRACHLORIDE	SiCl ₄ (g)
289	SILICON TETRAHYDRIDE	SiH ₄ (g)
290	SILICON TRICHLORIDE	SiCl ₃ (g)
291	SODIUM	Na (s,1,g)
292	SODIUM	$Na_2(g)$
293	SODIUM ALUMINATE	NaAlU ₂ (S)
294	SODIUM CARBONATE	Na_2CU_3 (5,1)
295	SODIUM CHLORIDE	NaCl (s,1,9)
296	SODIUM CYANIDE	NaCN (s,1,g)
297	SODIUM DIOXIDE	NaU ₂ (S)
298	SODIUM DISILICATE	$Na_2S1_2U_3$ (S,1)
299	SODIUM DISULFIDE	Na_2S_2 (S,1)
300	SODIUM HEXACHLORDALUMINATE	NasAluia (S)
301	SODIUM HYDRIDE	NaH (S,g)
302	SODIUM HYDROXIDE	NAUH (5,1,9)
203	SODIUM MONOXIDE	Nau (g)
304	SODIUM OXIDE	Na ₂ U (5,1)
305	SODIUM PERCHLORATE	Naciua (S)
306	SODIUM PEROXIDE	Na_2U_2 (S) N_2 (S)
307	SODIUM SILICATE	$Na_{2}SIU_{3} (S_{1} I)$
308	SODIUM SULFATE	Na2004 (3,1,4)/ Na20 (e 1)
309	SODIUM SULFIDE	N223 (291)
310	SODIUM TETRACHLORUALUMINAIE	$Ma \land 1 \land C \land (a)$
311	SFINEL	□yHi2U4 (>;i/ C (c] n)
312	SULFUR	0 (0) 0 (0;1;4A)
313	SULFUR	92 (y) C (a)
314	SULFUR	$a_{\mathbf{z}}$ (g)

۲

Formula

No.	Name	Formula
715	SHI FUR	S ₄ (g)
210 714	SULFUR	$S_{a}(q)$
210	SULFUR	$S_{a}(q)$
710	SULFUR	$S_{\tau}(\mathbf{g})$
719	SULFUR	Se (g)
320	SULFUR DICHLORIDE	SC1 ₂ (1,g)
301 301	SULFUR DIOXIDE	50 ₂ (g)
322	SULFUR MONOCHLORIDE	SCl (g)
323	SULFUR MONOXIDE	SD (g)
324	SULFUR NITRIDE	SN (g)
325	SULFUR TRIOXIDE	SO₃ (g)
326	SULFURIC ACID	$H_{2}SO_{4}$ (1,g)
327	SULFURIC ACID DIHYDRATE	$H_{z}SO_{z}$ (1)
328	SULFURIC ACID HEMIHEXAHYDRATE	$H_{13}SO_{10,300}$ (1)
329	SULFURIC ACID MONOHYDRATE	H_4SO_5 (1)
330	SULFURIC ACID TETRAHYDRATE	$H_{10}SD_{B}$ (1)
331	SULFURIC ACID TRIHYDRATE	$H_{B}SO_{7}$ (1)
332	SULFURYL CHLORIDE	SU ₂ Cl ₂ (g)
333	TETRACHLOROETHYLENE	$C_2 C_{14} (g)$
334	TETRAMETHYLSILANE	$51U_4H_{12}$ (g)
335	THIOPHOSPHORYL TRICHLORIDE	SFUI s (g) D-Tipip (c)
336	TITANITE (SPHENE)	$La(1510_{5}(5))$
337	TITANIUM	$\begin{array}{c} 11 (5,1,g) \\ T \in \mathcal{D} (-1) \end{array}$
338	TITANIUM CARBIDE	110 (3,1) T(C), (c, d)
339	TITANIUM DICHLORIDE	(1012 (3)9/ T;H_ (c)
340	TITANIUM HYDRIDE	$T_{1} = T_{2} = T_{1}$
341	TITANIUM UVBOCULORATE	TiOC1 (q)
342	TITANIUM MONOCHLORIDE	TiCl (s)
343	TITANIUM MONOXIDE	TiO (s.l.q)
344	TITANIUM NITRIDE	TiN (5,1)
746	TITANIUM OXIDE	$Ti_{2}O_{3}$ (s.1)
347	TITANIUM PENTADXIDE	$Ti_{3}O_{3}$ (s,1)
348	TITANIUM SEPTOXIDE	Ti407 (s,1)
349	TITANIUM TETRACHLORIDE	TiCl ₄ (s,l,g)
350	TITANIUM TRICHLORIDE	TiCl ₃ (s,g)
351	TREMOLITE	Ca ₂ Mg ₅ Si ₆ H ₂ O ₂₄ (s)
352	TRICHLOROMETHANE	CHCl ₃ (g)
353	TRICHLOROMETHYL	CC1 ₃ (g)
354	TRICHLOROMETHYLSILANE	SiCH ₃ Cl ₃ (g)
355	TRICHLOROSILANE	SiHCl ₃ (g)
356	TRICOPPER TRICHLORIDE	$Cu_3Cl_3(g)$
357	TRIHYDROGEN PHOSPHIDE	H₃F'(ġ)
358	TRILITHIUM NITRIDE	$L_{1:SN}$ (S)
359	TRILITHIUM TRICHLORIDE	L13013 (Q)

_

,

Chemical Name Index

.

No.	Name	Formula
360	TRIPHOSPHORUS PENTANITRIDE	P ₃ N ₅ (s)
361	TRISILICON TETRANITRIDE	Si ₃ N ₄ (s)
362	TROILITE	FeS (s,l,g)
363	WATER	H₂O (1,g)
364	WHITLOCKITE	Ca ₃ F ₂ O ₈ (s)
365	WITHERITE	BaCO _z (s)
366	WOLLASTONITE	CaSiO _z (s)
367	WUSTITE	Feb.9470 (S)

A-9

-

.

APPENDIX B

, ·

⎖

-4

No.	Formula	Name
0	Al	ALUMINUM (s,l,g)
1	AlC	ALUMINUM CARBIDE (g)
2	AICI	ALUMINUM MONOCHLORIDE (g)
3	AlClz	ALUMINUM DICHLORIDE (g)
4	AlClas	ALUMINUM TRICHLORIDE (s,1,g)
5	Alh	ALUMINUM HYDRIDE (g)
5	AIN	ALUMINUM NITRIDE (s,g)
7	A10	ALUMINUM MONOXIDE (g)
8	Aloci	ALUMINUM OXYCHLORIDE (s,g)
9	Aloh	ALUMINUM HYDROXIDE (g)
10	A102	ALUMINUM DIOXIDE (g)
11	AlO ₂ H	BOEHMITE (g)
12	A1PO4	BERLINITE (s)
13	A1S	ALUMINUM SULFIDE (g)
14	Al ₂ Cl ₆	ALUMINUM HEXACHLORIDE (g)
15	Al _z O	DIALUMINUM MONOXIDE (g)
16	A1202	DIALUMINUM DIOXIDE (g)
17	AlzOz	CORUNDUM (s,1)
18	Al ₂ S ₃	ALUMINUM SULFIDE (s)
19	Al ₂ S ₃ O ₁₂	ALUMINUM SULFATE (s)
20	Al ₂ SiO ₅	ANDALUSITE (s)
21	$Al_2Si_4H_2O_{12}$	PYROPHYLLITE (s)
22	AlaCz	ALUMINUM TRICARBIDE (s)
23	Al_Si2013	MULLITE (s,1)
24	Ar	ARGON (g)
25	Ba	BARIUM (s,l,g)
26	BaCO ₃	WITHERITE (s)
27	BaCl	BARIUM CHLORIDE (g)
28	BaCl ₂	BARIUM DICHLORIDE (s,l,g)
29	BaNzOs	NITROBARITE (s)
30	BaO	BARIUM OXIDE (s,l,g)
31	BaOH	BARIUM MONOHYDROXIDE (g)
32	BaO ₂ H ₂	BARIUM DIHYDROXIDE (s,l,g)
33	EaS	BARIUM SULFIDE (s,g)
34	BaSO ₄	BARITE (s)
35	С	CARBON (s,g)
36	CC1	CHLOROMETHYLIDYNE (g)
37		DICHLOROMETHYLENE (g)
38	CC13	TRICHLOROMETHYL (g)
39	CCl4	CARBON TETRACHLORIDE (g)
40	СН	METHYLIDYNE (g)
41	CHC1	CHLOROMETHYLENE (g)
42	CHCls	TRICHLOROMETHANE (g)
43	CHP	METHINOFHOSFHIDE (g)
44	CH2	METHYLENE (g)

Chemical Formula Index

No.	Formula	Name
45	CH ₂ Cl ₂	DICHLOROMETHANE (g)
46	CHaO	FORMALDEHYDE (g)
47	CH3	METHYL (g)
48	CH ₃ C1	CHLOROMETHANE (g)
49	CHA	METHANE (g)
50	CN	CYANOGEN (g)
51	CNCI	CYANOGEN CHLORIDE (g)
52	CO	CARBON MONOXIDE (g)
53	COC1	CARBONYL CHLORIDE (g)
54	COClz	CARBONIC DICHLORIDE (g)
55	COS	CARBON OXIDE SULFIDE (g)
56		CARBON DIOXIDE (g)
57	CP	CARBON FHOSPHIDE (g)
58	CS	CARBON SULFIDE (g)
59	CSa	CARBON DISULFIDE (g)
60		CARBON (g)
61		DICHLOROETHYNE (g)
62		TETRACHLOROETHYLENE (g)
63		HEXACHLOROETHANE (g)
64	C₂H	ETHYNYL (g)
65		CHLOROETHYNE (g)
66		ACETYLENE (g)
67	C ₂ H ₄	ETHYLENE (g)
68		OXIRANE (g)
69		ETHANEDINITRILE (g)
70	Ca	CARBON (g)
71	C302	CARBON SUBOXIDE (g)
72	C4	CARBON (g)
73	C4N2	2-BUTYNEDINITRILE (g)
74	Ca	CARBON (g)
75	Ca	CALCIUM (s,l,g)
76	CaAl _z SiO _s	CA-AL PYROXENE (s)
77	CaAl ₂ Si ₂ O _e	ANORTHITE (s,1)
78	CaCO s	CALCITE (s)
79	CaC1	CALCIUM MONOCHLORIDE (g)
80	CaClz	HYDROPHILITE (s,l,g)
81	CaFe ₂ O ₄	CALCIUM FERRITE (s)
82	CaMgC2O4	DOLOMITÉ (s)
83	CaMgSi20 ₆	DIOPSIDE (s,1)
84	CaN ₂ O ₆	CALCIUM NITRATE (s)
85	CaO	CALCIUM OXIDE (s,1,g)
86	CaOH	CALCIUM MONOHYDROXIDE (g)
87	CaOzHz	FORTLANDITE (s,g)
88	CaS	OLDHAMITE (s,g)
89	CaSO ₄	ANHYDRITE (s)

-

No.	Formula	Name
90	CaSiO ₃	WOLLASTONITE (s)
91	CaTiO s	PEROVSKITE (s)
92	CaTiSiO _s	TITANITE (SPHENE) (s)
93	Ca ₂ Al ₂ SiO ₇	GEHLENITE (s,1)
94	Ca ₂ Fe ₂ Os	DICALCIUM FERRITE (s)
95	Ca2MgSi2O7	AKERMANITE (s)
76	Ca ₂ Mg ₅ Si ₆ H ₂ O ₂₄	TREMOLITE (s)
97	Ca ₂ SiO ₄	LARNITE (CA-OLIVINE) (3)
7 8	Ca ₃ Al ₂ Si ₃ O ₁₂	GROSSULAR (s)
99	CazMgSizOe	MERWINITE (s)
100	$Ca_{3}P_{2}O_{6}$	WHITLOCKITE (s)
101	CasP:HO13	HYDROXYAPATITE (s)
102	C1	CHLORINE (g)
103	C10	CHLORINE MONOXIDE (g)
104	C10 ₂	CHLORINE DIOXIDE (g)
105	Cl_2	CHLORINE (g)
106		DICHLORINE MONOXIDE (g)
107	Cu	COPPER (s.l.g)
108	CuCN	COPPER CYANIDE (s)
109	CuCl	COPPER MONOCHLORIDE (s,1,g)
110	CuCla	COPPER DICHLORIDE (s)
111	CuHz0z	COPPER HYDROXIDE (s)
112	CuO	COPPER OXIDE (s,g)
113	CuSO ₄	COPPER SULFATE (s)
114	Cuz	COPPER (g)
115	Cu ₂ O	CUPROUS OXIDE (s,1)
116	CuzS	CHALCOCITE (s)
117	Cu ₂ SO ₅	DICOPPER SULFATE (s)
118	CusCls	TRICOPFER TRICHLORIDE (g)
119	Feo. 8775	PYRRHOTITE (s)
120	Feo. 9470	WUSTITE (s)
121	Fe	IRON (s,l,g)
122	FeCsOs	IRON CARBONYL (1,g)
123	FeC1	IRON MONOCHLORIDE (g)
124	FeCl ₂	IRON DICHLORIDE (s,1,g)
125	FeC1 ₃	IRON TRICHLORIDE (s,1,g)
126	FeH202	IRON HYDROXIDE (s,g)
127	FeH303	IRON TRIHYDROXIDE (s)
128	FeO	IRON OXIDE (s,1,g)
129	FeS	TROILITE (s,1,g)
130	FeSO ₄	IRON SULFATE (s)
131	FeSz	PYRITE (s)
132	FeTiO ₃	ILMENITE (s)
133	Fe ₂ Cl ₄	DIIRON TETRACHLORIDE (g)
134	Fe ₂ C1 ₆	DIIRON HEXACHLORIDE (g)

;

No.	Formula	Name
135	FezOs	HEMATITE (s)
136	Fe ₂ S ₃ 0 ₁₂	FERRIC SULFATE (s)
137	FezSiO4	FAYALITE (s)
138	FezC	COHENITE (s)
139	FesO4	MAGNETITE (s)
140	Н	HYDROGEN (g)
141	HCN	HYDROGEN CYANIDE (g)
142	HCNO	HYDROGEN ISOCYANATE (g)
143	HCO	FORMYL (g)
144	HC1	HYDROGEN CHLORIDE (g)
145	HNO	NITROXYL (g)
146	HNOz	NITROUS ACID (g)
147	HNOs	NITRIC ACID (g)
148	HOC1	HYPOCHLOROUS ACID (g)
149	HOz	HYDROPEROXO (g)
150	HP	HYDROGEN PHOSFHIDE (g)
151	HS	MERCAPTO (g)
152	H ₂	HYDROGEN (g)
153	HzO	WATER (1,g)
154	HaOa	HYDROGEN PEROXIDE (g)
155	H2P	DIHYDROGEN FHOSPHIDE (g)
156	H ₂ S	HYDROGEN SULFIDE (g)
157	H ₂ SO ₄	SULFURIC ACID (1,g)
158	HzP	TRIHYDROGEN PHOSPHIDE (g)
159	H3PO4	PHOSPHORIC ACID (s,1)
160	H4SO3	SULFURIC ACID MONOHYDRATE (1)
161	H ₄ SO ₄	SULFURIC ACID DIHYDRATE (1)
162	HeSO7	SULFURIC ACID TRIHYDRATE (1)
163	H10SOm	SULFURIC ACID TETRAHYDRATE (1)
164	$H_{13}SO_{10,300}$	SULFURIC ACID HEMIHEXAHYDRATE (1)
165	ĸ	PDTASSIUM (s,l,g)
166	KA1C14	POTASSIUM TETRACHLOROALUMINATE (s)
167	KA1S ₂ 0 ₈	POTASSIUM ALUMINUM SULFATE (s)
168	KA1SiO ₄	KALIOPHILLITE (s)
169	KA1Si204	LEUCITE (s)
170	KAlSi ₃ 0 ₈	HIGH SANIDINE (s,l)
171	KAl ₃ Si ₃ H ₂ O ₁₂	MUSCOVITE (s)
172	KCN	POTASSIUM CYANIDE (s,l,g)
173	KC1	POTASSIUM CHLORIDE (s,l,g)
174	KC104	POTASSIUM PERCHLORATE (s)
175	КН	POTASSIUM HYDRIDE (s,g)
176	KNO s	NITER (s)
177	KO	FOTASSIUM MONOXIDE (g)
178	кон	POTASSIUM HYDROXIDE (s,1,g)
179	KOz	POTASSIUM DIOXIDE (s)

=

_

	•	
No.	Formula	Name
130	Ka	POTASSIUM (g)
181	KaCOa	FOTASSIUM CAREONATE (s,1)
182	KaCaNa	DIPOTASSIUM CYANIDE (g)
183	KaCla	DIFOTASSIUM DICHLORIDE (g)
184	KaHaDa	DIFCTASSIUM DIHYDROXIDE (g)
185	K-0	POTASSIUM OXIDE (s)
186	KaDa	POTASSIUM PEROXIDE (3)
187	K-S	POTASSIUM SULFIDE (s.1)
188	K-50-	POTASSIUM SULFATE (s.1.a)
139	K-SiO-	POTASSIUM SILICATE (s.1)
190	K-A1C1_	POTASSIUM HEXACHLORDALUMINATE (s)
191	K-Al-Cle	POTASSIUM NANOCHLORDALUMINATE (=)
192	Li	LITHIUM (s.l.a)
193	LiAlHa	LITHIUM TETRAHYDROALUMINATE (3)
194	LiAlDa	LITHIUM ALUMINATE (s.1)
195		LITHIUM MONOCHLORIDE (5.1.0)
196		LITHIUM PERCHLORATE (s.1)
197	1 1 4	LITHIUM HYDRIDE (5.1.0)
198	liN	LITHIUM NITRIDE (a)
199	i Nafi	LITHIUM SODIUM OXIDE (a)
200		LITHIUM MONOXIDE (a)
201		LITHIUM HYPOCHLORITE (a)
202		LITHIUM HYDROXIDE (5.1.7)
203		LITHIUM OXYNITRIDE (D)
204	Lio	ITHIUM (a)
205		LITHIUM CARBONATE (5.1)
206		LITHIUM CARBIDE (S)
207		
208	LiaHaDa	DILITHIUM DIHYDROXIDE (g)
209		LITHIUM OXIDE (S.).D)
210		LITHIUM FERDIDE (5,0)
211		I THILM SULFATE (s. 1. a)
212	li _a SiO r	LITHIUM STLICATE (S.1)
213		LITHIUM DISULICATE (S,1)
214		LITHIUM TITANATE (3,1)
215		TRU ITHIUM TRICHLORIDE (a)
216	L i _N	TRU ITHUM NITRIDE (g)
217	Ma	MAGNESIUM (s) a)
218	MgAl_D	SPINEL (a 1)
219	MaCO-	MAGNESITE (=)
220	MaCa	MAGNESIIM CARRIDE (=)
221	MoCl	MAGNESTIM MONOCHLOSTE (S)
222	MaCl_	MAGNESTIM DICULOBIDE (4)
223	Mofe_0.	MAGNESIOFEERITE (~)
224		MAGNESTIM UVDEIDE (S)
		HUNCALUN HIVALVE (Y)

_

No.	Formula	Name				
225	MgH ₂	MAGNESIUM DIHYDRIDE (s)				
226	MgHzOz	MAGNESIUM DIHYDROXIDE (s,g)				
227	MgN	MAGNESIUM NITRIDE (g)				
228	MgN204	MAGNESIUM NITRATE (s)				
229	MgD	MAGNESIUM OXIDE (s,1,g)				
230	MgOH	MAGNESIUM HYDROXIDE (g)				
231	MgS	MAGNESIUM SULFIDE (s,g)				
232	MgSOA	MAGNESIUM SULFATE (s,1)				
233	MgSiOz	MAGNESIUM SILICATE (s,1)				
234	MgTiOz	MAGNESIUM TITANATE (s,1)				
235	MgTizOs	MAGNESIUM DITITANATE (s,1)				
236	Maz	MAGNESIUM (g)				
237	Mq_A1_SisO18	CORDIERITE (s)				
238	MagCa	MAGNESIUM CARBIDE (s)				
239	Mg ₂ Cl ₄	DIMAGNESIUM TETRACHLORIDE (g)				
240	Mq ₂ Si	MAGNESIUM SILICIDE (s,1)				
241	Mg_SiO4	FORSTERITE (s,1)				
242	Mg ₂ TiO ₄	MAGNESIUM ORTHOTITANATE (s,1)				
243	Mg_Al_Si_D_	FYROPE (s)				
244	MasNa	MAGNESIUM DINITRIDE (s)				
245	MasPa Oe	MAGNESIUM PHOSPHATE (s,1)				
246	N	NITROGEN (g)				
247	NH	IMIDOGEN (g)				
248	NHa	AMIDOGEN (g)				
249		AMMONIA (g)				
250	NH ₄ C1	AMMONIUM CHLORIDE (s)				
251	NHaClOa	AMMONIUM PERCHLORATE (s)				
252	NO	NITROGEN MONOXIDE (g)				
253	NOC1	NITROSYL CHLORIDE (a)				
254	NDa	NITROGEN DIOXIDE (a)				
255	NO ₂ C1	NITRYL CHLORIDE (g)				
256	NO-	NITROGEN TRIOXIDE (a)				
257	Na	NITROGEN (a)				
258	NaHa	DIAZENE (CIS) (g)				
259	NoHa	HYDRAZINE (1.g)				
260	NoH a D-	AMMONIUM NITRATE (s)				
261	NoHoSO4	MASCAGNITE (s)				
262	N-D	DINITROGEN OXIDE (a)				
263	NaDa	DINITROGEN TRIOXIDE (a)				
264	NaDe	DINITROGEN TETRAOXIDE (s.1.a)				
265	N-O-	DINITROGEN PENTADXIDE (a)				
266	N-	AZIDE (a)				
267	Na	SODIUM (s.l.a)				
268	NaAlCla	SODIUM TETRACHLORDALUMINATE (s)				
269	NaAlOa	SODIUM ALUMINATE (S)				
	a a sun a a sum sum sum sum					

=

-

Chemical Formula Index

•

No.	Formula	Name
270	NaAlSiO4	NEPHELINE (s,1)
271	NaA1SizOs	JADEITE (5,1)
272	NaAlSizO _e	ALBITE (s,1)
273	NaCN	SODIUM CYANIDE (s,1,g)
274	NaC1	SODIUM CHLORIDE (s,l,g)
275	NaC10A	SODIUM PERCHLORATE (s)
276	NaH	SODIUM HYDRIDE (s,g)
277	NaO	SODIUM MONOXIDE (g)
278	NaCH	SODIUM HYDROXIDE (s,l,g)
279	NaO2	SODIUM DIOXIDE (s)
280	Naa	SODIUM (g)
281	Na-CO-	SODIUM CARBONATE (s,1)
282	NasCaNa	DISODIUM CYANIDE (g)
293	Na-Cl-	DISODIUM DICHLORIDE (g)
234	NasHaDa	DISODIUM DIHYDROXIDE (g)
785	NanO	SODIUM OXIDE (s,1)
786	NanOn	SODIUM PEROXIDE (s)
787	NasS	SODIUM SULFIDE (s,1)
788	Na_SO4	SODIUM SULFATE (s,1,q)
789	Na-So	SODIUM DISULFIDE (s.1)
290	Na.SiO-	SODIUM SILICATE (s.1)
001	Na_Si_0_	SODIUM DISILICATE (s.1)
292	Na_A1C1.	SODIUM HEXACHLORDALUMINATE (3)
		CXYGEN (g)
794	0_	OXYGEN (g)
795		DZONE(a)
294	03 0	PHOSPHORUS (s.l.g)
297	PCI	PHOSPHOROUS MONOCHLORIDE (a)
298		FHOSEHORUS TRICHLORIDE (a)
299	PC1_	PHOSEHORUS PENTACHLORIDE (a)
300	PN SIS	PHOSPHORUS NITRIDE (g)
301	20	FHOSPHORUS MONOXIDE (a)
202	2001 -	PHOSPHORYL TRICHLORIDE (a)
202 202		EHOSEHORUS DIOXIDE (g)
304		PHOSPHORUS SULFIDE (g)
705		PHOSPHORUS (a)
204	N -	TRIPHOSPHORUS PENTANITRIDE (s)
300		PHOSPHORUS (a)
700		PHOSPHORUS TRIAXIDE DIMER (a)
		PHOSEHORUS PENTADXIDE DIMER (3.0)
207	-4U10 D C	PHOSPHORUS TRISULFIDE (s.l.a)
010 711	1 403 C	
-21 -7	9 601	SULFUR MONOCHLORIDE (a)
-) 717	901 971	
ن ان. م ا ج	CN CN	SHELP NITRIDE (a)
014	NIC	SOFLOW WILKIDE (Å)

No.	Formula	Name
315	SO	SULFUR MONOXIDE (g)
315	SOa	SULFUR DIOXIDE (g)
317	SO ₂ Cl ₂	SULFURYL CHLORIDE (g)
318	SO ₃	SULFUR TRIOXIDE (g)
319	SPC1	THIOPHOSPHORYL TRICHLORIDE (g)
320	Sz	SULFUR (g)
321	S ₂ C1	DISULFUR MONOCHLORIDE (g)
322	Sacla	DISULFUR DICHLORIDE (1,g)
323	SzO	DISULFUR MONOXIDE (g)
324	Sa	SULFUR (g)
325	S4	SULFUR (g)
326	Sa	SULFUR (g)
327	54	SULFUR (g)
328	S-	SULFUR (g)
329	5 	SULFUR (g)
330	Si	SILICON (s,l,g)
331	SiC	SILICON CARBIDE (s,g)
332	SiCHzClz	TRICHLOROMETHYLSILANE (g)
333	SiCz ·	SILICON DICARBIDE (g)
334	SiCaHiz	TETRAMETHYLSILANE (g)
335	SiC1	SILICON MONOCHLORIDE (g)
336	SiCla	SILICGN DICHLORIDE (g)
337	SiCl ₃	SILICON TRICHLORIDE (g)
338	SiCla	SILICON TETRACHLORIDE (g)
339	SiH	SILICON HYDRIDE (g)
340	SiHCla	TRICHLURUSILANE (g)
341	SiH ₂ Cl ₂	DICHLURUSILANE (g)
342	SiH ₃ Cl	CHLURUSILANE (g)
ن4ن.	SIHA	SILICUN IEIRAATURIDE (G)
<u>344</u>	SIN	SILICUM MIRIDE (g)
343	510	SILICON DIOXIDE (g)
340		SILICON SULEIDE (S)I,97
347	313	STLICON DISHLEDE (g)
048 740	515 <u>2</u>	SILICON DIGGLIDE (S,I)
347	C: N 273	DISULION NITRIDE (D)
751		SILICON (a)
757		TRISU LCON TETRANITRIDE (S)
757		TTANTIM (S, 1, n)
754	TiC	TITANIUM CARBIDE (5.1)
355	TICI	TITANIUM MONOCHLORIDE (s)
356	TiCla	TITANIUM DICHLORIDE (s.a)
357	Ticl-	TITANIUM TRICHLORIDE (s.a)
358	TiCla	TITANIUM TETRACHLORIDE (s.l.a)
359	TiHa	TITANIUM HYDRIDE (s)

Chemical Formula Index

.

No.	Formula	Name
340	TiN	TITANIUM NITRIDE (s,1)
361	TiO	TITANIUM MONOXIDE (s,l,q)
362	TiOC1	TITANIUM HYPOCHLORITE (g)
343	TiOClz	TITANIUM HYPOCHLORATE (g)
364	TiOz	RUTILE (s,1,g)
365	Ti ₂ 03	TITANIUM DXIDE (s,1)
366	Ti zOa	TITANIUM PENTADXIDE (s,1)
367	Ti407	TITANIUM SEPTOXIDE (s,1)

.

B-9

.

,3**4**

	am/Pro	ject Ide	ntificatio	on No.	2.	rogram/	Project 1	litle							1	3. Repo	rting Per	iod		# <u></u>
DE-F	c21-	86MC	Energy	and E	nvironn	nental F	lesearc	h Cente	r							4-1- 5. Prog	92 throi am/Proje	oct Start	Date	
			Univer	sity of	North I	Dakota	- 6	nd Easte		= = = = = = = = = = = = = = = = = = = =		011 77	7 5000			4-1- 8. Com	86 pletion D	ate		
			BOX 84	213, 0	nversit	y Static									J	9-30	<u>-92</u>			
. FY	8. Mo	nths or	Quarters	0.					1991	LAUG	CED.	OCT	NOV	DEC	1992	CER			MAY	I II IN
. Cost	L	a. Dollar	a Expres	ised in				b. Dollar	500	AUG	JEF		NOV	DEC	JAN	160	MAN	Arn	MAT	301
Statu	H	Thou	ands					Scale		[
										+									<u> </u>	
O. Cos	t Char	t						400					ļ							
									ļ				<u> </u>					<u> </u>	<u> </u>	
	[Que	rter		Cum.	Tot.	350					ļ							~
und		îst	2nd	3rd	4th	to Date	Plan	300	┝───	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>			\vdash
DOE	Р	88	87	88	87	350	350													Z
	A .	32	68	75	123	298		200	'								₽		\vdash	
	A					<u> </u>		200	, 						~	F		\checkmark		
	P							150	,	ļ				2		<u> </u>	\downarrow]		\vdash
	¦ } ∣				<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>		-			<				
	A							100	°			1		\geq				<u> </u>	 	
Tota Tota	1 P 1 A	88 32	87 88	88	87	296	350	50	,	1	E	\vdash	\square	<u> </u>	<u> </u>	<u> </u>			<u> </u>	t
Varia	nce	58	21	13	(38)	54			2	<u> </u>					[I			1	1
Total P	anned	Costs f	Planned or Progra	A = m/Projec	ct		·····	Planned			88	1	1	175	<u> </u>	1	263	1	1	350
			\$	350				Actual	1	1	32		ļ	98		ļ	173		ļ	296
								Variance	· <u> </u>	<u> </u>	58	<u> </u>			<u> </u>	1	90	1	1	1 64
1. Ma	jor Mil	estone S	itatus				Unite F	Tanned Complete	-											
A. Lite	aratur	e Revi	w				Р		1									·····		
							P		No ac	tivities	in curr	ent pro	ject yei	ar.						
									1											
B. Ho	t-Gas	Partic	ulate C	ontrol			P				1. J.						2	*		
							P								<u> </u>	A				
C. Ho	t-Gas	Sulfur	Contro	oi 					No a	ctivities	in curr	ent pro	ject ye	er.						
							P		-											
D. Ali	cali Tr	ansfor	mation	and in	teractio	n	P					1 🔻			2	▼ 3	•			
Sti	ldies								C			· ·								
							F		2											
E. Se	mianr	nual Pre	oject Re	aports			P			1 4 2										
							P		Ĭ											
·····							<u> </u>		c											
							F		2											
							P													
							P		4											
									ē		/					,				
							P		1											
							P		1											
							P		<u></u>											
							F		c											
							P		-											
									<u></u>											
12.84	marks						heat	da =-1			, 7E +	002 -			t	huke 0	have !		ا- مامريا	
_		Ab						00 001	11 6201	ALLE DED	. zn 1	aa/ (JANE OF L	arou (CD)	A VIUL	mave b		numeri e	
D	or et	the EE	RC fisc	al year	end, tr		OOOKS													

.

FORM E1A-459E (10/80)

U.S. DEPARTMENT OF ENERGY FEDERAL ASSISTANCE MANAGEMENT SUMMARY REPORT

1. Program/Project Identif DE-FC21-86MC	ication No. C10637	3. Reporting Period <u>4-1-92</u> through <u>6-30-92</u>				
4. Name and Address	Energy and		5. Program/Project Start 4-1-86	: Date		
	Box 8213, U		6. Completion Date			
	Grand Porks	Actual				
Milestone ID. No.		Description		Completion Date	Completion Date	Comments
Task B	Hot-Gas Parti	culate Control:				
b.1	Operational 1	tests on HTHP cyclone		11-1-91		Task
b.2	Modify same	olina equipment		4-1-92		deleted.
b.3	Modify bot-a	as test loop		10-1-92		
				10 1 02		
Task D	Alkali Transfo	rmation and Interaction St	udies:			
d.1	Improve PHC	DEBE data base		11-1-91	11-1-91	
d.2	Run simulati	ons		2-1-92	3-31-92	
d.3	Perform gett	ering experiments		3-1-92	5-31-92	
d.4	Perform cera	mic protection experiment	S	6-30-92		
Task E	Semiannual P	roject Reports:				
e.1	First-half rep	ort		1-15-92		
e.2	Second-half	report		6-30-92		