TITLE: Catalyst and Reactor Development for a Liquid Phase Fischer-Tropsch Process. Quarterly Technical Progress Report, 1 October 1983-31 December 1983.

AUTHOR: B. W. Brian;   W. E. Carroll;   N. Cilen;   R. Pierantozzi;   A. F. Nordquist.

INST.  AUTHOR: Air Products and Chemicals, Inc., Allentown, PA.

SPONSOR: Department of Energy, Washington, DC.

LANGUAGE: English

PUB.  TYPE: Technical Report

PUB.  COUNTRY: United States

SOURCE: Department of Energy [DE],  Jan 85,  41p.

NTIS ORDER NO.: DE85005894/INW

ABSTRACT:

Two major tasks continued in the thirteenth quarter: (1) Slurry Catalyst Development; and (2) Slurry Reactor Design Studies. In addition, work, as part of a three month contract modification, was begun to develop and improve the activity and center the selectivity for diesel fuel products of a proprietary catalyst A. This catalyst was found to produce yields in the diesel fuel region equal to or greater than the Schulz-Flory maximum with low rates of deactivation and good stability during previous extended periods of testing. A phase two extended slurry test of a proprietary catalyst B was completed this quarter. A considerable improvement in activity was observed, making this batch nearly four times as active as in the first phase of testing. The selectivity for total, gasoline and diesel, fuels was over 65 wt % in both phases of testing. The results of this test show the importance of metals loading and the need for further development work to optimize the activity and selectivity for diesel fuel of this catalyst. A short term (21 day) slurry test was conducted on another modified catalyst optimized by the gas phase screening program.  Parametric gas phase screening tests were conducted on three additional catalysts. The optimum preparation and activation methods for diesel fuel selectivity will be chosen as these tests are completed. In the hydrodynamic studies, work in the 12 inch Cold-Flow Simulator was completed. A Box-Behnken experimental design was utilized to determine the statistical significance of the independent parameters studied (superficial gas velocity, solids weight fraction, solid size, etc.) on gas holdup, as well as, any synergistic effects. Correlations for gas holdup in the 12 inch and 5 inch columns were obtained. In each column, a strong linear dependence on superficial gas velocity was obtained. 6 references, 5 figures, 5 tables. (ERA citation 10:018080)

REPORT  NUMBER: DOE/PC/30021-T16

CONTRACT  NUMBER: AC22-80PC30021